US9951812B2 - High capacity bearing - Google Patents
High capacity bearing Download PDFInfo
- Publication number
- US9951812B2 US9951812B2 US15/256,713 US201615256713A US9951812B2 US 9951812 B2 US9951812 B2 US 9951812B2 US 201615256713 A US201615256713 A US 201615256713A US 9951812 B2 US9951812 B2 US 9951812B2
- Authority
- US
- United States
- Prior art keywords
- assembly
- outer race
- shaft
- rollers
- bearing
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 230000000712 assembly Effects 0.000 description 1
- 238000000429 assembly Methods 0.000 description 1
- 238000010276 construction Methods 0.000 description 1
- 230000001419 dependent effect Effects 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
Images
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F16—ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
- F16C—SHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
- F16C33/00—Parts of bearings; Special methods for making bearings or parts thereof
- F16C33/30—Parts of ball or roller bearings
- F16C33/34—Rollers; Needles
- F16C33/36—Rollers; Needles with bearing-surfaces other than cylindrical, e.g. tapered; with grooves in the bearing surfaces
- F16C33/363—Rollers; Needles with bearing-surfaces other than cylindrical, e.g. tapered; with grooves in the bearing surfaces with grooves in the bearing-surfaces
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F16—ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
- F16C—SHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
- F16C19/00—Bearings with rolling contact, for exclusively rotary movement
- F16C19/22—Bearings with rolling contact, for exclusively rotary movement with bearing rollers essentially of the same size in one or more circular rows, e.g. needle bearings
- F16C19/34—Bearings with rolling contact, for exclusively rotary movement with bearing rollers essentially of the same size in one or more circular rows, e.g. needle bearings for both radial and axial load
- F16C19/36—Bearings with rolling contact, for exclusively rotary movement with bearing rollers essentially of the same size in one or more circular rows, e.g. needle bearings for both radial and axial load with a single row of rollers
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F16—ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
- F16C—SHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
- F16C33/00—Parts of bearings; Special methods for making bearings or parts thereof
- F16C33/30—Parts of ball or roller bearings
- F16C33/46—Cages for rollers or needles
- F16C33/4605—Details of interaction of cage and race, e.g. retention or centring
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F16—ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
- F16C—SHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
- F16C33/00—Parts of bearings; Special methods for making bearings or parts thereof
- F16C33/30—Parts of ball or roller bearings
- F16C33/46—Cages for rollers or needles
- F16C33/4617—Massive or moulded cages having cage pockets surrounding the rollers, e.g. machined window cages
- F16C33/4623—Massive or moulded cages having cage pockets surrounding the rollers, e.g. machined window cages formed as one-piece cages, i.e. monoblock cages
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F16—ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
- F16C—SHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
- F16C33/00—Parts of bearings; Special methods for making bearings or parts thereof
- F16C33/30—Parts of ball or roller bearings
- F16C33/46—Cages for rollers or needles
- F16C33/52—Cages for rollers or needles with no part entering between, or touching, the bearing surfaces of the rollers
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F16—ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
- F16C—SHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
- F16C33/00—Parts of bearings; Special methods for making bearings or parts thereof
- F16C33/30—Parts of ball or roller bearings
- F16C33/58—Raceways; Race rings
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F16—ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
- F16C—SHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
- F16C33/00—Parts of bearings; Special methods for making bearings or parts thereof
- F16C33/30—Parts of ball or roller bearings
- F16C33/58—Raceways; Race rings
- F16C33/583—Details of specific parts of races
- F16C33/585—Details of specific parts of races of raceways, e.g. ribs to guide the rollers
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F16—ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
- F16C—SHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
- F16C33/00—Parts of bearings; Special methods for making bearings or parts thereof
- F16C33/30—Parts of ball or roller bearings
- F16C33/58—Raceways; Race rings
- F16C33/60—Raceways; Race rings divided or split, e.g. comprising two juxtaposed rings
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F16—ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
- F16C—SHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
- F16C33/00—Parts of bearings; Special methods for making bearings or parts thereof
- F16C33/30—Parts of ball or roller bearings
- F16C33/58—Raceways; Race rings
- F16C33/60—Raceways; Race rings divided or split, e.g. comprising two juxtaposed rings
- F16C33/605—Raceways; Race rings divided or split, e.g. comprising two juxtaposed rings with a separate retaining member, e.g. flange, shoulder, guide ring, secured to a race ring, adjacent to the race surface, so as to abut the end of the rolling elements, e.g. rollers, or the cage
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F16—ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
- F16C—SHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
- F16C19/00—Bearings with rolling contact, for exclusively rotary movement
- F16C19/54—Systems consisting of a plurality of bearings with rolling friction
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F16—ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
- F16C—SHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
- F16C2240/00—Specified values or numerical ranges of parameters; Relations between them
- F16C2240/40—Linear dimensions, e.g. length, radius, thickness, gap
- F16C2240/70—Diameters; Radii
- F16C2240/80—Pitch circle diameters [PCD]
- F16C2240/82—Degree of filling, i.e. sum of diameters of rolling elements in relation to PCD
- F16C2240/84—Degree of filling, i.e. sum of diameters of rolling elements in relation to PCD with full complement of balls or rollers, i.e. sum of clearances less than diameter of one rolling element
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F16—ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
- F16C—SHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
- F16C2300/00—Application independent of particular apparatuses
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F16—ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
- F16C—SHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
- F16C35/00—Rigid support of bearing units; Housings, e.g. caps, covers
- F16C35/04—Rigid support of bearing units; Housings, e.g. caps, covers in the case of ball or roller bearings
- F16C35/06—Mounting or dismounting of ball or roller bearings; Fixing them onto shaft or in housing
- F16C35/063—Fixing them on the shaft
Definitions
- the present invention relates generally to bearings and more particularly bearings specifically designed for high loads.
- Bearings 5 found in the prior art shown in FIGS. 1 and 2 commonly consist of stacked pairs of ball bearings 6 mounted on a support shaft 7 .
- the bearing may mount or attached to a cavity or support surface formed on a part 9 .
- the load capacity of the ball bearings 6 is dependent on the number of ball bearings 6 stacked together, and the size and number of balls 8 .
- the larger number of ball bearings 6 stacked together, and the larger the size and number of balls 8 used the larger is the load capacity of the bearing 5 .
- the bearing 5 must be relative large and the shaft and housing must be relatively large.
- the load capacity of a bearing 5 is determined by the size and number of contact points 11 , 12 between the balls 8 and the bearing's inside and outside races 9 and 10 , respectively.
- the size and number of balls 8 and the sizes of the races 9 , 10 are often limited by the environment or machine where the bearing 5 is used. In environments where the load capacity is near or slightly lower than the maximum load capacity of the bearing 5 , the bearings 5 frequently wear out and must be replaced.
- Disclosed herein is a compact bearing with increased contact areas between opposing structures located inside the bearing that substantially increases the bearing's load capacity and increases the bearing's life span.
- the bearing is specifically designed so that it may be easily assembled.
- the bearing includes a plurality of small diameter rollers axially and radially aligned therein.
- the rollers include a plurality of non-helical teeth that simultaneously engage compatible-shaped, non-helical grooves formed on the inside surface of an outer race assembly.
- the outer race assembly is a cylindrical structure made of two half cylindrical sections joined together. When the two half cylindrical sections are joined to form a complete cylindrical structure, a cylindrical outer sleeve is positioned around the two half cylindrical sections to hold them tightly together.
- the two half sections include non-helical grooves that when tightly joined together, form continuous, circular aligned non-helical grooves on the inside surface of the outer race assembly.
- the rollers are part of a roller assembly positioned longitudinally inside the bearing.
- the roller assembly includes a means for holding a plurality of longitudinally and axially aligned rollers inside the outer race assembly.
- Each roller includes a plurality of non-helical teeth configured to mesh and engage the non-helical grooves formed on the outer race assembly.
- the roller assembly includes a rotating support structure that holds the rollers longitudinally in a fixed position inside the bearing and hold the rollers in an equally spaced, radially aligned position.
- the rotating support structure may be two aligmnent rings or a cylindrical cage.
- a cylindrical inner race is disposed over the shaft and inside the roller assembly.
- the inner race includes a plurality of non-helical grooves configured to engage the teeth on the rollers.
- the inner race is mounted and locked in position on a bearing support surface on the shaft.
- the roller assembly is disposed inside a gap formed between the outer race assembly and an inner race or the shaft.
- the inner race is a cylindrical with a smooth center bore and a plurality of non-helical grooves designed to mesh with the teeth on the rollers.
- the rollers are circumferentially aligned around the inner race and fit inside the raceway and against the inner race and the outer race assembly.
- Each roller has a sufficient diameter and length so that the non-helical teeth simultaneously mesh with the non-helical grooves formed on the outer race assembly and the inner race.
- the bearing is placed on the bearing support surface on the shaft.
- the shaft includes an abutment surface and external threads that extend outside the bearing.
- a nut is attached to the threads on the shaft which squeezes the inner race against the abutment surface to fix the inner race onto the shaft.
- the outer sleeve and outer race assembly are mounted on a fixed location on a support surface or cavity located on a desired part. The rotation of the roller assembly and the rotation of the individual rollers between the outer race assembly and the inner race, the enable shaft and part to rotate and transfer load forces there between.
- the inner race is eliminated and a modified shaft is used that includes a bearing support surface region with the second set of non-helical grooves identical in shape and size to the first set of non-helical grooves formed on the outer race assembly and configured to mesh with the teeth on the rollers.
- the non-helical teeth on the rollers mesh with the non-helical grooves formed on the outer race assembly and on the shaft.
- the abutment edge on the shaft and the nut may be eliminated.
- a modified two part outer sleeve and a modified outer race assembly are used so that forces exerted between the shaft and the outer race assembly do not cause the outer sleeve to be removed from the outer sleeve assembly.
- the outer sleeve includes two outer sleeve sections placed over the opposite ends of the outer race assembly to hold the two outer sleeve sections together. A gap is formed between the two outer sleeve sections.
- the modified outer race assembly includes an outward extending circular collar that fits into a gap formed between an outer sleeve made up of two outer sleeve sections.
- FIG. 1 is a perspective view of two duplex ball bearing sets used in the prior art.
- FIG. 2 is a sectional side elevational view of the two ball bearing sets shown in FIG. 1 .
- FIG. 3 is a perspective view of the high capacity bearing disclosed herein and mounted on a shaft.
- FIG. 4 is an exploded, perspective view of the invention shown in FIG. 3 .
- FIG. 5 is a partial sectional, perspective view of the first embodiment of the bearing that uses an inner race that is engaged by the rollers.
- FIG. 6 is a sectional, side elevational view of the bearing shown in FIGS. 4 and 5 .
- FIG. 7 is a partial sectional, perspective view of the second embodiment of the bearing in which the modified shaft with non-helical grooves formed thereon that eliminates the need for an inner race with non-helical grooves.
- FIG. 8 is a sectional, side elevational view of the bearing shown in FIG. 7 .
- FIG. 9 is a sectional, perspective view of another embodiment of the bearing showing the two alignment rings being replaced by a cylindrical cage.
- FIG. 10 is a sectional, perspective view of bearing shown in FIG. 9 showing the rollers disposed in elongated slots formed on the cylindrical cage.
- FIG. 11 is a perspective view of another embodiment of the invention that includes an outer race assembly with a semi-circular collar formed on each outer race section that forms a circular collar that fits into a gap formed between two shorter outer sleeves.
- FIG. 12 is an exploded, perspective view of the embodiment of the invention shown in FIG. 11 .
- FIG. 13 is an illustration showing a modified two part outer sleeve and a modified outer race assembly are used so that forces exerted between the shaft and the outer race assembly do not cause the outer sleeve to be removed from the outer sleeve assembly.
- FIG. 14 is an illustration showing how the net thrust force exerted on the shaft are transferred through the bearing with the modified two part outer sleeve and the modified outer race assembly.
- a high load capacity bearing 15 mounted on a shaft 60 that has greater internally opposing contact areas that substantially increases the bearing's overall capacity and its life span.
- the increased capacity is created by using intermediate structures inside the bearing 15 that spread the load over substantially large areas.
- the structures are also compact enabling the overall size and shape of the bearing 15 to be relatively small and compact.
- the bearing 15 includes an outer race assembly 30 made of two half cylindrical sections 32 , 36 .
- the half cylindrical sections 32 , 36 are identical in shape and size each with two planar, longitudinally aligned abutment edges 33 , 34 and 37 , 38 , respectively that enable the two half cylindrical sections 32 , 36 to be closed tightly to form a complete cylindrical outer race assembly 30 .
- a cylindrical outer sleeve 20 slides over the two half cylindrical sections 32 , 36 to hold them tightly together.
- outer sleeve 20 includes two open ends 24 , 26 .
- each half cylindrical section 32 , 36 Formed on the inside surface of each half cylindrical section 32 , 36 is a plurality of semi-circular non-helical grooves 35 , 39 , respectively.
- the grooves 35 , 39 on the two outer sleeve sections 32 , 36 are aligned so they form a continuous set of non-helical grooves (denoted 40 ) on the inside surface of the outer race assembly 30 .
- the bearing 15 includes a small diameter, cylindrical inner race 44 is coaxially aligned and located inside the outer race assembly 30 .
- a circular gap or raceway 42 is formed between the inside surface of the outer race assembly 30 and the outside surface of the inner race 44 .
- a second set of non-helical grooves 46 aligned with and compatible in number, size and shape to the first set of non-helical grooves 40 formed on the outer race assembly 30 .
- a roller assembly Disposed inside the raceway 42 is a roller assembly that includes a plurality of longitudinally aligned rollers 80 .
- the rollers 80 are circumferentially aligned around the inner race 44 and fit inside the raceway 42 and against the grooves formed on outer race assembly 30 and the inner race 44 .
- Each roller 80 includes a set of non-helical teeth 86 similar in shape and size to the sets of non-helical grooves 40 , 46 formed on the outer race assembly 30 and on the inner race 44 , respectively.
- Each roller 80 has a sufficient diameter and length so the non-helical teeth 86 formed thereon simultaneously mesh with the non-helical grooves 40 , 46 on the outer race assembly 30 and the inner race 44 , respectively.
- the rollers 80 are offset so the tips and valleys of the non-helical teeth 86 fits within the non-helical grooves 40 , 46 formed on the outer race 30 and the inner race 44 , respectively.
- the inner race 44 mounts to a smooth bearing support area 62 formed on the shaft 60 as shown in FIGS. 5 and 6 .
- the shaft 60 also includes a threaded end section 64 .
- Formed or attached to the shaft 60 adjacent to the bearing support area 62 is an abutment edge 66 which prevents longitudinal movement of the bearing 15 over the shaft 60 .
- the threaded end section 64 is exposed and receives a threaded nut 70 that when tightened against the end of the thrust bearing 15 and presses against the inner race 44 to hold it in place on the shaft 60 .
- the threaded nut 70 could be replaced with another structure that holds the inner race 44 in place on the shaft 60 .
- FIGS. 7 and 8 show a second embodiment of the bearing, denoted 15 ′, in which the inner race 44 used in the first embodiment is eliminated and a modified shaft 60 ′ is used in place of the first shaft 60 .
- the modified shaft 60 ′ includes a bearing support region 62 ′ with the second set of non-helical grooves 65 formed thereon that are compatible in shaped and size to the set of non-helical grooves 40 formed on the outer race assembly 30 .
- the non-helical teeth 86 on the rollers 80 mesh with the non-helical grooves 40 , 65 formed on the outer race assembly 30 and on the shaft 60 ′, respectively. Because a set of non-helical grooves 65 are formed on the shaft 60 ′, the abutment edge 66 and the locking nut 70 shown in FIGS. 5 and 6 may be eliminated.
- Each roller 80 has a sufficient diameter and length so that the non-helical teeth 86 formed thereon simultaneously mesh with the non-helical grooves 40 , 46 , or 65 on the outer race 30 , the inner race 44 or the shaft 60 , respectively.
- Extending around the shaft 60 and positioned inside each end of the outer sleeve assembly 30 are two alignment rings 100 , 110 .
- the alignment rings 100 , 110 fits into are restrained by grooves 102 , 112 formed on the inside surface of the outer race assembly 30 .
- the grooves 102 , 112 prevent longitudinal movement of the alignment rings 100 , 110 and hold them circumferentially and coaxially over the shaft.
- the grooves 102 , 112 also allow the alignment rings 100 , 110 to rotate freely therein.
- each roller 80 includes two longitudinal aligned arms 82 , 84 that during assembly, are inserted into compatible holes 104 , 114 , formed on the two alignment rings 100 , 110 , respectively, that allows the rollers 80 to independently rotate on the alignment rings 100 , 110 .
- the bearing 15 or 15 ′ may be attached or coupled to a moving or stationary structure and the shaft 60 or 60 ′ may rotate freely and continuously inside the thrust bearing 15 , 15 ′.
- the load exerted from the structure to the shaft 60 is spread across the contact surfaces between the roller teeth and the race grooves enabling the thrust bearing to be used with greater loads.
- FIGS. 9 and 10 are sectional, perspective views of another embodiment of the bearing 15 ′′ showing the two alignment rings 100 , 110 being replaced by a single cylindrical cage 140 .
- the cylindrical cage 140 includes a plurality of axially aligned slots 142 each configured to hold a longitudinally aligned roller 80 .
- FIGS. 11 and 12 are perspective views of another embodiment of the bearing 15 ′ that includes an outer race assembly 170 made of two outer race sections 172 , 174 each with an outward extending, semi-circular collar 180 , 182 , respectively.
- the two collars 180 , 182 form a circular collar that fits into a gap 166 formed between two shorter outer sleeve sections 162 , 164 that after assembly form the outer sleeve 160 .
- the reason for forming a circular collar that fits into a gap 160 formed between the two outer sleeves sections 162 , 164 is to transfer the longitudinal forces exerted by the rollers 80 to the outer sleeve 160
- a modified two part outer sleeve and a modified outer race assembly are used so forces exerted between the shaft 60 and the outer race assembly 170 do not cause the outer sleeve 160 to be removed from the outer sleeve assembly.
- the outer sleeve 160 includes two outer sleeve sections 162 , 164 that are placed over the opposite ends of the outer race assembly 170 to hold the two outer sleeve sections 162 , 164 together.
- a gap 166 is formed between the two outer sleeve sections 162 , 164 .
- the modified outer race assembly 170 includes two outward extending semi-circular collars 180 , 182 that fits into a gap 166 formed between the outer sleeve sections 162 , 164 .
- FIG. 14 is an illustration showing how the net thrust force f( 1 ) exerted on the shaft creates a force f( 2 ) that is exerted against the end of the inner race.
- the forces f( 3 ) on the inner race are then transferred from the non-helical grooves on the inner race to the lower teeth on the roller.
- the force f( 4 ) is then exerted from the upper teeth of the roller to the outer race assembly.
- the collar then exerts a force f( 5 ) against the edge of the outer sleeve which in turn exerts a force against an abutment edge on the part.
- the forces f( 6 ) on the part are then exerted on the machinery or ground.
- This invention is useful in industries that use bearings that carry high capacity loads that are susceptible to wear or breakage.
Landscapes
- Engineering & Computer Science (AREA)
- General Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- Rolling Contact Bearings (AREA)
- Mounting Of Bearings Or Others (AREA)
Abstract
A high load capacity bearing that includes a cylindrical outer sleeve that fits around a separable cylindrical outer race assembly. The outer race assembly includes a set of non-helical grooves formed on its inside surface that mesh and engage teeth formed on the outside surface of a plurality of rotating rollers that are longitudinally and axially aligned inside the outer race assembly. The rollers are longitudinally aligned and evenly space apart and rotated as a unit inside the outer race assembly. Located inside the rollers is an inner race with non-helical grooves formed on its outside surface that mesh and engage the teeth on the rollers. The inner race includes a smooth inside bore that fits around the support surface on a shaft. During use, the inner race is becomes fixed on a support surface on a shaft and the outer sleeve and outer race assembly are mounted on a part.
Description
This is a continuation patent application based on U.S. Utility patent application Ser. No. 14/110,852, filed on Nov. 25, 2013 which is an application is a 371 of PCT/US2012/038445, filed on May 17, 2012 which is based and claims the priority on U.S. provisional patent application 61/486,916, filed on May 17, 2011.
1. Field of the Invention
The present invention relates generally to bearings and more particularly bearings specifically designed for high loads.
2. Description of the Related Art
The load capacity of a bearing 5 is determined by the size and number of contact points 11, 12 between the balls 8 and the bearing's inside and outside races 9 and 10, respectively. The size and number of balls 8 and the sizes of the races 9, 10 are often limited by the environment or machine where the bearing 5 is used. In environments where the load capacity is near or slightly lower than the maximum load capacity of the bearing 5, the bearings 5 frequently wear out and must be replaced.
What is needed is a bearing with high load capacity, that is relatively small and compact, has a relatively longer life span than a standard ball bearing 5 used in the prior art, and can be easily assembled.
It is an object of the present invention to provide a bearing that has a relatively high load capacity.
It is an object of the present invention to provide a bearing relatively small and compact and has a relatively long life span.
It is another object of the present invention to provide such a bearing that can be used in place of a single or multiple bearings used in the prior art.
Disclosed herein is a compact bearing with increased contact areas between opposing structures located inside the bearing that substantially increases the bearing's load capacity and increases the bearing's life span. The bearing is specifically designed so that it may be easily assembled.
More specifically, the bearing includes a plurality of small diameter rollers axially and radially aligned therein. The rollers include a plurality of non-helical teeth that simultaneously engage compatible-shaped, non-helical grooves formed on the inside surface of an outer race assembly. In the embodiment presented herein, the outer race assembly is a cylindrical structure made of two half cylindrical sections joined together. When the two half cylindrical sections are joined to form a complete cylindrical structure, a cylindrical outer sleeve is positioned around the two half cylindrical sections to hold them tightly together. The two half sections include non-helical grooves that when tightly joined together, form continuous, circular aligned non-helical grooves on the inside surface of the outer race assembly.
The rollers are part of a roller assembly positioned longitudinally inside the bearing. The roller assembly includes a means for holding a plurality of longitudinally and axially aligned rollers inside the outer race assembly. Each roller includes a plurality of non-helical teeth configured to mesh and engage the non-helical grooves formed on the outer race assembly. The roller assembly includes a rotating support structure that holds the rollers longitudinally in a fixed position inside the bearing and hold the rollers in an equally spaced, radially aligned position. The rotating support structure may be two aligmnent rings or a cylindrical cage.
In one embodiment, a cylindrical inner race is disposed over the shaft and inside the roller assembly. The inner race includes a plurality of non-helical grooves configured to engage the teeth on the rollers. During assembly, the inner race is mounted and locked in position on a bearing support surface on the shaft.
The roller assembly is disposed inside a gap formed between the outer race assembly and an inner race or the shaft. The inner race is a cylindrical with a smooth center bore and a plurality of non-helical grooves designed to mesh with the teeth on the rollers. The rollers are circumferentially aligned around the inner race and fit inside the raceway and against the inner race and the outer race assembly. Each roller has a sufficient diameter and length so that the non-helical teeth simultaneously mesh with the non-helical grooves formed on the outer race assembly and the inner race.
After assembly, the bearing is placed on the bearing support surface on the shaft. In one embodiment, the shaft includes an abutment surface and external threads that extend outside the bearing. A nut is attached to the threads on the shaft which squeezes the inner race against the abutment surface to fix the inner race onto the shaft. Also during assembly, the outer sleeve and outer race assembly are mounted on a fixed location on a support surface or cavity located on a desired part. The rotation of the roller assembly and the rotation of the individual rollers between the outer race assembly and the inner race, the enable shaft and part to rotate and transfer load forces there between.
In one embodiment, the inner race is eliminated and a modified shaft is used that includes a bearing support surface region with the second set of non-helical grooves identical in shape and size to the first set of non-helical grooves formed on the outer race assembly and configured to mesh with the teeth on the rollers. During use, the non-helical teeth on the rollers mesh with the non-helical grooves formed on the outer race assembly and on the shaft. In this embodiment, the abutment edge on the shaft and the nut may be eliminated.
In another embodiment, a modified two part outer sleeve and a modified outer race assembly are used so that forces exerted between the shaft and the outer race assembly do not cause the outer sleeve to be removed from the outer sleeve assembly. The outer sleeve includes two outer sleeve sections placed over the opposite ends of the outer race assembly to hold the two outer sleeve sections together. A gap is formed between the two outer sleeve sections. The modified outer race assembly includes an outward extending circular collar that fits into a gap formed between an outer sleeve made up of two outer sleeve sections.
Referring to the FIG. 3 , there is shown a high load capacity bearing 15 mounted on a shaft 60 that has greater internally opposing contact areas that substantially increases the bearing's overall capacity and its life span. The increased capacity is created by using intermediate structures inside the bearing 15 that spread the load over substantially large areas. The structures are also compact enabling the overall size and shape of the bearing 15 to be relatively small and compact.
Referring to FIG. 4 , the bearing 15 includes an outer race assembly 30 made of two half cylindrical sections 32, 36. In the embodiment shown, the half cylindrical sections 32, 36 are identical in shape and size each with two planar, longitudinally aligned abutment edges 33, 34 and 37, 38, respectively that enable the two half cylindrical sections 32, 36 to be closed tightly to form a complete cylindrical outer race assembly 30. During assembly, a cylindrical outer sleeve 20 slides over the two half cylindrical sections 32, 36 to hold them tightly together. In the embodiment shown, outer sleeve 20 includes two open ends 24, 26.
Formed on the inside surface of each half cylindrical section 32, 36 is a plurality of semi-circular non-helical grooves 35, 39, respectively. When the two sections 32, 36 are joined to form the cylindrical outer race assembly 30, the grooves 35, 39 on the two outer sleeve sections 32, 36 are aligned so they form a continuous set of non-helical grooves (denoted 40) on the inside surface of the outer race assembly 30.
In a first embodiment shown in FIGS. 4-5 , the bearing 15 includes a small diameter, cylindrical inner race 44 is coaxially aligned and located inside the outer race assembly 30. As shown in FIG. 6 , a circular gap or raceway 42 is formed between the inside surface of the outer race assembly 30 and the outside surface of the inner race 44. Formed on the outside surface of the inner race 44 is a second set of non-helical grooves 46 aligned with and compatible in number, size and shape to the first set of non-helical grooves 40 formed on the outer race assembly 30.
Disposed inside the raceway 42 is a roller assembly that includes a plurality of longitudinally aligned rollers 80. The rollers 80 are circumferentially aligned around the inner race 44 and fit inside the raceway 42 and against the grooves formed on outer race assembly 30 and the inner race 44. Each roller 80 includes a set of non-helical teeth 86 similar in shape and size to the sets of non-helical grooves 40, 46 formed on the outer race assembly 30 and on the inner race 44, respectively. Each roller 80 has a sufficient diameter and length so the non-helical teeth 86 formed thereon simultaneously mesh with the non-helical grooves 40, 46 on the outer race assembly 30 and the inner race 44, respectively. The rollers 80 are offset so the tips and valleys of the non-helical teeth 86 fits within the non-helical grooves 40, 46 formed on the outer race 30 and the inner race 44, respectively.
In the first embodiment, the inner race 44 mounts to a smooth bearing support area 62 formed on the shaft 60 as shown in FIGS. 5 and 6 . The shaft 60 also includes a threaded end section 64. Formed or attached to the shaft 60 adjacent to the bearing support area 62 is an abutment edge 66 which prevents longitudinal movement of the bearing 15 over the shaft 60. When the bearing 15 is attached to the shaft 60, the threaded end section 64 is exposed and receives a threaded nut 70 that when tightened against the end of the thrust bearing 15 and presses against the inner race 44 to hold it in place on the shaft 60. It should be understood that the threaded nut 70 could be replaced with another structure that holds the inner race 44 in place on the shaft 60.
Each roller 80 has a sufficient diameter and length so that the non-helical teeth 86 formed thereon simultaneously mesh with the non-helical grooves 40, 46, or 65 on the outer race 30, the inner race 44 or the shaft 60, respectively. Extending around the shaft 60 and positioned inside each end of the outer sleeve assembly 30 are two alignment rings 100, 110. The alignment rings 100, 110 fits into are restrained by grooves 102, 112 formed on the inside surface of the outer race assembly 30. The grooves 102, 112 prevent longitudinal movement of the alignment rings 100, 110 and hold them circumferentially and coaxially over the shaft. The grooves 102, 112 also allow the alignment rings 100, 110 to rotate freely therein. During operation, the alignment rings 100, 110 rotate which allows the rollers 80 together as a single unit. Each roller 80 includes two longitudinal aligned arms 82, 84 that during assembly, are inserted into compatible holes 104, 114, formed on the two alignment rings 100, 110, respectively, that allows the rollers 80 to independently rotate on the alignment rings 100, 110.
During operation, the bearing 15 or 15′ may be attached or coupled to a moving or stationary structure and the shaft 60 or 60′ may rotate freely and continuously inside the thrust bearing 15, 15′. The load exerted from the structure to the shaft 60 is spread across the contact surfaces between the roller teeth and the race grooves enabling the thrust bearing to be used with greater loads.
In another embodiment, shown in FIG. 13 , a modified two part outer sleeve and a modified outer race assembly are used so forces exerted between the shaft 60 and the outer race assembly 170 do not cause the outer sleeve 160 to be removed from the outer sleeve assembly. The outer sleeve 160 includes two outer sleeve sections 162, 164 that are placed over the opposite ends of the outer race assembly 170 to hold the two outer sleeve sections 162, 164 together. A gap 166 is formed between the two outer sleeve sections 162, 164. The modified outer race assembly 170 includes two outward extending semi-circular collars 180, 182 that fits into a gap 166 formed between the outer sleeve sections 162, 164.
This invention is useful in industries that use bearings that carry high capacity loads that are susceptible to wear or breakage.
In compliance with the statute, the invention described herein has been described in language more or less specific as to structural features. It should be understood, however, that the invention is not limited to the specific features shown, since the means and construction shown is comprised only of the preferred embodiments for putting the invention into effect. The invention is therefore claimed in any of its forms or modifications within the legitimate and valid scope of the amended claims, appropriately interpreted in accordance with the doctrine of equivalents.
Claims (8)
1. A high load capacity bearing configured to be mounted on a bearing support area on a shaft with an abutment edge adjacent to said load support surface, said shaft includes external threads and a nut attached thereto that when sufficiently tightened, comprising:
a. a cylindrical outer race assembly includes a plurality of inward facing, non-helical grooves;
b. a roller assembly coaxially aligned and located inside said outer race assembly, said roller assembly includes a plurality of rollers with a plurality of non-helical teeth;
c. a cylindrical outer sleeve disposed around said outer race assembly; and
d. means for transferring a load force between a load support section of said shaft and said rollers including a cylindrical inner race with a center bore that slides over said shaft, said inner race includes a plurality of non-helical grooves configured to mesh with said teeth on said rollers, said inner race fixed to said shaft by said nut.
2. The bearing as recited in claim 1 , a rotating cylindrical cage located inside said outer sleeve assembly with a plurality of said rollers longitudinally aligned and mounted thereon, each said roller is able to rotate freely on said cylindrical cage.
3. The bearing as recited in claim 1 , further including an outward extending collar formed on said outer race assembly and a gap formed on said outer sleeve, said gap configured to receive said collar.
4. A high load capacity bearing mounted on a bearing support area on a shaft, comprising:
a. a cylindrical outer race assembly with a plurality of inward facing, non-helical grooves;
b. a roller assembly coaxially aligned and located inside said outer race assembly, said roller assembly includes a plurality of rollers, each said roller includes a plurality of non-helical teeth;
c. a cylindrical outer sleeve disposed around said outer race assembly;
d. means for transferring a load force between said load bearing area on said shaft and said rollers; and,
e. a pair of alignment rings located inside said outer race assembly that hold said rollers in a longitudinally aligned position inside said outer race assembly, said alignment rings fit into two grooves formed on said inside surface of said outer race assembly and are able to rotate inside said grooves.
5. A shaft mounted, high load capacity bearing, comprising:
a. a cylindrical outer sleeve that includes an inner bore;
b. a shaft longitudinally aligned and extending through said inner bore on said outer sleeve;
c. a cylindrical outer race assembly located inside said inner bore on said outer sleeve, said outer race assembly includes a plurality of inward facing, non-helical grooves arcs that when said split ring components are joined to form a cylindrical outer race, a plurality of non-helical, circumferential grooves are formed;
d. a cylindrical inner race with a center bore and an outer surface with a plurality of non-helical grooves formed thereon;
e. a rotating roller assembly located between said outer race assembly and said inner race, said roller assembly includes a plurality of rollers longitudinally aligned with said outer race assembly and said inner race, each said roller includes a plurality of non-helical teeth formed thereon that simultaneously engage said non-helical grooves on said outer race assembly and said non-helical grooves on said inner race on said outer race assembly and said non-helical grooves on said set of helical grooves; and,
f. a pair of alignment rings that fit into compatible grooves formed on said outer race assembly, said alignment rings able to rotate inside said outer race assembly and said rollers extending between said alignment rings and able to rotate freely.
6. The bearing as recited in claim 5 , further including said outer race assembly includes an outward extending collar and a gap formed on said outer sleeve, said gap configured to receive said collar and transmits forces exerted on said outer race assembly from said roller assembly to said outer sleeve.
7. The bearing, as recited in claim 1 , wherein said inner race is selectively mounted at a fixed longitudinally aligned position on said shaft.
8. A shaft mounted, high load capacity bearing, comprising:
a. a cylindrical outer sleeve made up of two longitudinally aligned outer sleeve sections separated by a gap, each said outer sleeve section includes an inner bore;
b. a shaft longitudinally aligned and extending through said inner bore on said outer sleeve, said shaft includes an abutment edge, a bearing support area, and a threaded stem;
c. a cylindrical outer race assembly located inside said inner bore formed by said outer sleeve sections, said outer race assembly includes a plurality of inward facing, non-helical grooves, said outer race assembly includes an outward extend collar that fits into said gap formed between said outer sleeve sections;
d. a cylindrical inner race located inside said outer race assembly and adjacent to said shaft, said inner race includes an inner bore that enables said inner race to slide onto said bearing surface support area on of said shaft, said inner race also includes a plurality of non-helical grooves that are aligned with said non-helical grooves formed on said outer race assembly, said inner race is smaller in diameter than said outer race assembly thereby forming a circular raceway between said non-helical grooves formed on said outer race assembly and said non-helical grooves formed on said inner race;
e. a plurality of rollers disposed in said circular raceway formed between said outer race assembly and said inner race, each said roller includes a plurality of non-helical teeth configured to simultaneously engage the plurality of said non-helical grooves on said outer race assembly and with said plurality of said non-helical grooves inner race, said rollers being mounted on a rotating spacing structure that prevents longitudinal movement of said rollers and maintains said rollers in an evenly spaced apart position around said inner race and inside said outer race, said rotating spacing structure is a rotating cylindrical cage located inside said outer sleeve assembly with said rollers longitudinally aligned and mounted thereon, said cage able to rotate freely inside said outer sleeve assembly and each said roller is able to rotate freely on said cylindrical cage, and,
f. a lock nut attached to said threaded stem to hold said inner race in place on said shaft.
Priority Applications (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| US15/256,713 US9951812B2 (en) | 2011-05-17 | 2016-09-05 | High capacity bearing |
Applications Claiming Priority (4)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| US201161486916P | 2011-05-17 | 2011-05-17 | |
| PCT/US2012/038445 WO2012158974A1 (en) | 2011-05-17 | 2012-05-17 | High capacity bearing |
| US201314110852A | 2013-11-25 | 2013-11-25 | |
| US15/256,713 US9951812B2 (en) | 2011-05-17 | 2016-09-05 | High capacity bearing |
Related Parent Applications (2)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| US14/110,852 Continuation US9435377B2 (en) | 2011-05-17 | 2012-05-17 | High-capacity bearing |
| PCT/US2012/038445 Continuation WO2012158974A1 (en) | 2011-05-17 | 2012-05-17 | High capacity bearing |
Publications (2)
| Publication Number | Publication Date |
|---|---|
| US20170058953A1 US20170058953A1 (en) | 2017-03-02 |
| US9951812B2 true US9951812B2 (en) | 2018-04-24 |
Family
ID=47177352
Family Applications (2)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| US14/110,852 Expired - Fee Related US9435377B2 (en) | 2011-05-17 | 2012-05-17 | High-capacity bearing |
| US15/256,713 Active US9951812B2 (en) | 2011-05-17 | 2016-09-05 | High capacity bearing |
Family Applications Before (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| US14/110,852 Expired - Fee Related US9435377B2 (en) | 2011-05-17 | 2012-05-17 | High-capacity bearing |
Country Status (3)
| Country | Link |
|---|---|
| US (2) | US9435377B2 (en) |
| CA (1) | CA2873181A1 (en) |
| WO (1) | WO2012158974A1 (en) |
Families Citing this family (10)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| WO2012158974A1 (en) | 2011-05-17 | 2012-11-22 | Creative Motion Control, Inc. | High capacity bearing |
| DE102012222530A1 (en) * | 2012-12-07 | 2014-06-12 | Schaeffler Technologies Gmbh & Co. Kg | Rolling bearing with a profiled rolling element |
| DE102013215962A1 (en) * | 2013-08-13 | 2015-03-12 | Schaeffler Technologies AG & Co. KG | Rotary table bearings |
| DE102014212029A1 (en) | 2014-06-24 | 2015-12-24 | Schaeffler Technologies AG & Co. KG | planetary roller bearings |
| US10465462B2 (en) | 2014-10-24 | 2019-11-05 | Magnum Oil Tools International, Ltd. | Electrically powered setting tool and perforating gun |
| CN107110213A (en) * | 2014-10-29 | 2017-08-29 | 创造性运动控制公司 | The high carrying capacity roller bearing of small―gap suture |
| WO2018184026A1 (en) * | 2017-03-31 | 2018-10-04 | Creative Motion Control, Inc. | Improved linear drive actuator |
| FR3074549B1 (en) | 2017-12-04 | 2021-07-16 | Jerome Dubus | CHEVRONS ROLLER BEARING |
| CN108302118A (en) * | 2018-03-23 | 2018-07-20 | 扬州众孚传动科技有限公司 | A kind of threaded rollers planetary bearing |
| US20210025483A1 (en) * | 2018-04-06 | 2021-01-28 | Creative Motion Control | Linear Drive Actuator |
Citations (29)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US1930190A (en) | 1929-10-23 | 1933-10-10 | Becker Heinrich | Roller bearing |
| US2251555A (en) | 1939-05-25 | 1941-08-05 | Nathan H Schermer | Frictionless roller bearing |
| US2682435A (en) | 1953-07-17 | 1954-06-29 | Walter G Rien | Split roller bearing assembly |
| US2683379A (en) * | 1949-07-13 | 1954-07-13 | Strandgren Carl Bruno | Screw-threaded mechanism |
| US3301615A (en) * | 1964-09-10 | 1967-01-31 | Skf Ind Inc | Rolling bearings |
| US3734584A (en) | 1971-05-17 | 1973-05-22 | Secr Defence Brit | Roller bearing |
| US3824420A (en) * | 1970-03-04 | 1974-07-16 | Honeywell Bull Nv | Device for transforming a rotational motion into a translational motion |
| US3963286A (en) | 1974-03-11 | 1976-06-15 | Stanley Richard B | Antifriction roller bearing |
| US3965761A (en) * | 1974-03-21 | 1976-06-29 | Stanley Richard B | Linear actuator |
| DE2601493A1 (en) * | 1975-01-21 | 1976-07-22 | Tech Integrale | STORAGE ARRANGEMENT |
| US4033194A (en) * | 1975-06-12 | 1977-07-05 | Stanley Richard B | Synchronized linear actuator |
| US4040689A (en) | 1974-03-11 | 1977-08-09 | Stanley Richard B | Antifriction roller bearing |
| US4050319A (en) * | 1976-01-16 | 1977-09-27 | Stanley Richard B | Linear actuator |
| US5370012A (en) | 1993-03-08 | 1994-12-06 | Stanley; Richard B. | Linear actuation roller bearing nut |
| US5853294A (en) | 1996-12-16 | 1998-12-29 | Rehder; Robert Henry | Anti-friction rotating contact assembly |
| US6015238A (en) | 1997-08-07 | 2000-01-18 | Ina Walzlager Schaeffler Ohg | Rolling bearing for rotary movements |
| US6149312A (en) | 1997-12-22 | 2000-11-21 | Skf Nova Ab | Roller bearing |
| US6158558A (en) | 1996-07-17 | 2000-12-12 | Continental Teaves Ag & Co. Ohg | Electromechanical disc brake |
| US6318516B1 (en) | 1997-10-24 | 2001-11-20 | Ina Walzlager Schaeffler Ohg | Bearing arrangement for actuating a brake in a brake system |
| US20040244520A1 (en) | 2003-06-09 | 2004-12-09 | Cornelius Charles C. | Roller screw system |
| US20050160856A1 (en) | 2003-04-24 | 2005-07-28 | Toyota Jidosha Kabushiki Kaisha | Planetary differential screw type rotary/linear motion converter |
| JP2007120659A (en) | 2005-10-28 | 2007-05-17 | Hitachi Ltd | Manufacturing method of meshing element of rotation / linear motion conversion mechanism |
| US20090003750A1 (en) | 2007-06-27 | 2009-01-01 | Chen No | Roller bearing |
| US7589445B2 (en) * | 2002-03-05 | 2009-09-15 | Moving Magnet Technologies, M.M.T. | Linear actuator comprising a brushless polyphase electric motor |
| US20100269616A1 (en) | 2007-12-19 | 2010-10-28 | Sagem Defense Securite | Rotolinear Actuator with Satellite Rollers |
| JP2011074982A (en) | 2009-09-30 | 2011-04-14 | Hitachi Ltd | Mechanism for converting rotary motion into linear motion |
| JP4967036B2 (en) * | 2010-02-05 | 2012-07-04 | 株式会社日立製作所 | Rotational linear motion conversion mechanism and lift device |
| US8220132B2 (en) | 2006-06-22 | 2012-07-17 | Toyota Jidosha Kabushiki Kaisha | Method of producing mechanism for converting rotational motion to linear motion and jig for executing the method |
| WO2012158974A1 (en) | 2011-05-17 | 2012-11-22 | Creative Motion Control, Inc. | High capacity bearing |
Family Cites Families (1)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US2266888A (en) * | 1939-08-29 | 1941-12-23 | Oscar S Mccurdy | Antifriction bearing |
-
2012
- 2012-05-17 WO PCT/US2012/038445 patent/WO2012158974A1/en active Application Filing
- 2012-05-17 CA CA2873181A patent/CA2873181A1/en not_active Abandoned
- 2012-05-17 US US14/110,852 patent/US9435377B2/en not_active Expired - Fee Related
-
2016
- 2016-09-05 US US15/256,713 patent/US9951812B2/en active Active
Patent Citations (30)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US1930190A (en) | 1929-10-23 | 1933-10-10 | Becker Heinrich | Roller bearing |
| US2251555A (en) | 1939-05-25 | 1941-08-05 | Nathan H Schermer | Frictionless roller bearing |
| US2683379A (en) * | 1949-07-13 | 1954-07-13 | Strandgren Carl Bruno | Screw-threaded mechanism |
| US2682435A (en) | 1953-07-17 | 1954-06-29 | Walter G Rien | Split roller bearing assembly |
| US3301615A (en) * | 1964-09-10 | 1967-01-31 | Skf Ind Inc | Rolling bearings |
| US3824420A (en) * | 1970-03-04 | 1974-07-16 | Honeywell Bull Nv | Device for transforming a rotational motion into a translational motion |
| US3734584A (en) | 1971-05-17 | 1973-05-22 | Secr Defence Brit | Roller bearing |
| US3963286A (en) | 1974-03-11 | 1976-06-15 | Stanley Richard B | Antifriction roller bearing |
| US4040689A (en) | 1974-03-11 | 1977-08-09 | Stanley Richard B | Antifriction roller bearing |
| US3965761A (en) * | 1974-03-21 | 1976-06-29 | Stanley Richard B | Linear actuator |
| DE2601493A1 (en) * | 1975-01-21 | 1976-07-22 | Tech Integrale | STORAGE ARRANGEMENT |
| US4033194A (en) * | 1975-06-12 | 1977-07-05 | Stanley Richard B | Synchronized linear actuator |
| US4050319A (en) * | 1976-01-16 | 1977-09-27 | Stanley Richard B | Linear actuator |
| US5370012A (en) | 1993-03-08 | 1994-12-06 | Stanley; Richard B. | Linear actuation roller bearing nut |
| US6158558A (en) | 1996-07-17 | 2000-12-12 | Continental Teaves Ag & Co. Ohg | Electromechanical disc brake |
| US5853294A (en) | 1996-12-16 | 1998-12-29 | Rehder; Robert Henry | Anti-friction rotating contact assembly |
| US6015238A (en) | 1997-08-07 | 2000-01-18 | Ina Walzlager Schaeffler Ohg | Rolling bearing for rotary movements |
| US6318516B1 (en) | 1997-10-24 | 2001-11-20 | Ina Walzlager Schaeffler Ohg | Bearing arrangement for actuating a brake in a brake system |
| US6149312A (en) | 1997-12-22 | 2000-11-21 | Skf Nova Ab | Roller bearing |
| US7589445B2 (en) * | 2002-03-05 | 2009-09-15 | Moving Magnet Technologies, M.M.T. | Linear actuator comprising a brushless polyphase electric motor |
| US20050160856A1 (en) | 2003-04-24 | 2005-07-28 | Toyota Jidosha Kabushiki Kaisha | Planetary differential screw type rotary/linear motion converter |
| US20040244520A1 (en) | 2003-06-09 | 2004-12-09 | Cornelius Charles C. | Roller screw system |
| JP2007120659A (en) | 2005-10-28 | 2007-05-17 | Hitachi Ltd | Manufacturing method of meshing element of rotation / linear motion conversion mechanism |
| US8220132B2 (en) | 2006-06-22 | 2012-07-17 | Toyota Jidosha Kabushiki Kaisha | Method of producing mechanism for converting rotational motion to linear motion and jig for executing the method |
| US20090003750A1 (en) | 2007-06-27 | 2009-01-01 | Chen No | Roller bearing |
| US20100269616A1 (en) | 2007-12-19 | 2010-10-28 | Sagem Defense Securite | Rotolinear Actuator with Satellite Rollers |
| JP2011074982A (en) | 2009-09-30 | 2011-04-14 | Hitachi Ltd | Mechanism for converting rotary motion into linear motion |
| JP4967036B2 (en) * | 2010-02-05 | 2012-07-04 | 株式会社日立製作所 | Rotational linear motion conversion mechanism and lift device |
| US8581527B2 (en) * | 2010-02-05 | 2013-11-12 | Hitachi, Ltd. | Mechanism for converting rotary motion into linear motion and lifting device |
| WO2012158974A1 (en) | 2011-05-17 | 2012-11-22 | Creative Motion Control, Inc. | High capacity bearing |
Also Published As
| Publication number | Publication date |
|---|---|
| US9435377B2 (en) | 2016-09-06 |
| US20140301686A1 (en) | 2014-10-09 |
| CA2873181A1 (en) | 2012-11-22 |
| WO2012158974A1 (en) | 2012-11-22 |
| US20170058953A1 (en) | 2017-03-02 |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| US9951812B2 (en) | High capacity bearing | |
| US20130315521A1 (en) | Rolling bearing cage, and rolling bearing including the same | |
| CN107429746B (en) | Device for retaining lubricant in a rolling bearing, rolling bearing assembly and method for assembling a rolling bearing assembly | |
| US20170074322A1 (en) | Rolling bearing | |
| WO2017164325A8 (en) | Double-row self-aligning roller bearing | |
| US20110317952A1 (en) | Tandem angular contact roller bearing with concave roller profile for improved roller guidance | |
| US10156257B2 (en) | Low clearance high capacity roller bearing | |
| EP2390520A3 (en) | Roller bearing | |
| US20150049977A1 (en) | Two piece cage for a needle bearing | |
| CN109210074B (en) | Segmented cages for rolling bearings | |
| JP2009299874A5 (en) | ||
| RU155178U1 (en) | DOUBLE-ROW RADIALLY STOP BALL BEARING | |
| US20180080498A1 (en) | Pre-set rolling element bearing | |
| JP2013087797A (en) | Rolling bearing | |
| CN106481665B (en) | Bearings with spacers between two ring parts | |
| KR20150106510A (en) | Taper roller bearing | |
| JP2021121753A (en) | bearing | |
| RU2634610C1 (en) | Cageless ball rolling bearing | |
| WO2014189042A1 (en) | Conical roller bearing | |
| JP2014202315A (en) | Cage for roller bearing, roller bearing including the same, and wind power generator | |
| RU2484320C2 (en) | Spherical antifriction bearing (versions) | |
| RU2498124C1 (en) | Antifriction bearing | |
| KR101585798B1 (en) | A Low Torque Hybrid Bearing | |
| CN108799338A (en) | Cage and double-row or multi-row cylindrical roller bearing having the same | |
| RU2638892C1 (en) | Two-row antifriction ball bearing |
Legal Events
| Date | Code | Title | Description |
|---|---|---|---|
| STCF | Information on status: patent grant |
Free format text: PATENTED CASE |
|
| FEPP | Fee payment procedure |
Free format text: MAINTENANCE FEE REMINDER MAILED (ORIGINAL EVENT CODE: REM.); ENTITY STATUS OF PATENT OWNER: SMALL ENTITY |
|
| FEPP | Fee payment procedure |
Free format text: SURCHARGE FOR LATE PAYMENT, SMALL ENTITY (ORIGINAL EVENT CODE: M2554); ENTITY STATUS OF PATENT OWNER: SMALL ENTITY |
|
| MAFP | Maintenance fee payment |
Free format text: PAYMENT OF MAINTENANCE FEE, 4TH YR, SMALL ENTITY (ORIGINAL EVENT CODE: M2551); ENTITY STATUS OF PATENT OWNER: SMALL ENTITY Year of fee payment: 4 |