US9907940B2 - Autonomous fluid instillation system and method with tissue site pressure monitoring - Google Patents
Autonomous fluid instillation system and method with tissue site pressure monitoring Download PDFInfo
- Publication number
- US9907940B2 US9907940B2 US14/561,718 US201414561718A US9907940B2 US 9907940 B2 US9907940 B2 US 9907940B2 US 201414561718 A US201414561718 A US 201414561718A US 9907940 B2 US9907940 B2 US 9907940B2
- Authority
- US
- United States
- Prior art keywords
- pressure
- reduced
- fluid
- tissue site
- time
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active, expires
Links
- 239000012530 fluid Substances 0.000 title claims abstract description 375
- 238000000034 method Methods 0.000 title claims abstract description 27
- 238000012544 monitoring process Methods 0.000 title claims description 4
- 238000002560 therapeutic procedure Methods 0.000 claims abstract description 159
- 230000004044 response Effects 0.000 claims abstract description 44
- 238000012549 training Methods 0.000 claims description 18
- 230000008878 coupling Effects 0.000 claims description 10
- 238000010168 coupling process Methods 0.000 claims description 10
- 238000005859 coupling reaction Methods 0.000 claims description 10
- 210000001519 tissue Anatomy 0.000 description 134
- 230000001225 therapeutic effect Effects 0.000 description 69
- 239000000463 material Substances 0.000 description 13
- 206010052428 Wound Diseases 0.000 description 12
- 208000027418 Wounds and injury Diseases 0.000 description 12
- 230000015654 memory Effects 0.000 description 10
- 230000008901 benefit Effects 0.000 description 9
- 238000004891 communication Methods 0.000 description 8
- 230000008569 process Effects 0.000 description 8
- 238000010586 diagram Methods 0.000 description 7
- 239000006260 foam Substances 0.000 description 7
- 230000000977 initiatory effect Effects 0.000 description 7
- 238000007789 sealing Methods 0.000 description 7
- 230000007423 decrease Effects 0.000 description 6
- 210000000416 exudates and transudate Anatomy 0.000 description 5
- 230000035876 healing Effects 0.000 description 5
- 239000007788 liquid Substances 0.000 description 5
- 238000012545 processing Methods 0.000 description 5
- 238000003860 storage Methods 0.000 description 5
- 230000010261 cell growth Effects 0.000 description 4
- 239000000126 substance Substances 0.000 description 4
- 229920000089 Cyclic olefin copolymer Polymers 0.000 description 3
- 239000004713 Cyclic olefin copolymer Substances 0.000 description 3
- 229920012485 Plasticized Polyvinyl chloride Polymers 0.000 description 3
- 229920002614 Polyether block amide Polymers 0.000 description 3
- 229920000954 Polyglycolide Polymers 0.000 description 3
- NIXOWILDQLNWCW-UHFFFAOYSA-N acrylic acid group Chemical group C(C=C)(=O)O NIXOWILDQLNWCW-UHFFFAOYSA-N 0.000 description 3
- 238000009826 distribution Methods 0.000 description 3
- 229920001971 elastomer Polymers 0.000 description 3
- 239000000806 elastomer Substances 0.000 description 3
- 239000004633 polyglycolic acid Substances 0.000 description 3
- 229920002635 polyurethane Polymers 0.000 description 3
- 239000004814 polyurethane Substances 0.000 description 3
- 239000004800 polyvinyl chloride Substances 0.000 description 3
- 229920005573 silicon-containing polymer Polymers 0.000 description 3
- 239000000243 solution Substances 0.000 description 3
- 229920002725 thermoplastic elastomer Polymers 0.000 description 3
- 208000025865 Ulcer Diseases 0.000 description 2
- 238000011161 development Methods 0.000 description 2
- 210000002615 epidermis Anatomy 0.000 description 2
- 239000000499 gel Substances 0.000 description 2
- 230000012010 growth Effects 0.000 description 2
- 230000002209 hydrophobic effect Effects 0.000 description 2
- WQYVRQLZKVEZGA-UHFFFAOYSA-N hypochlorite Chemical compound Cl[O-] WQYVRQLZKVEZGA-UHFFFAOYSA-N 0.000 description 2
- 230000007246 mechanism Effects 0.000 description 2
- 239000000203 mixture Substances 0.000 description 2
- 238000009581 negative-pressure wound therapy Methods 0.000 description 2
- 230000003287 optical effect Effects 0.000 description 2
- 230000037361 pathway Effects 0.000 description 2
- 239000004626 polylactic acid Substances 0.000 description 2
- 230000008054 signal transmission Effects 0.000 description 2
- SQGYOTSLMSWVJD-UHFFFAOYSA-N silver(1+) nitrate Chemical compound [Ag+].[O-]N(=O)=O SQGYOTSLMSWVJD-UHFFFAOYSA-N 0.000 description 2
- 231100000397 ulcer Toxicity 0.000 description 2
- VAZJLPXFVQHDFB-UHFFFAOYSA-N 1-(diaminomethylidene)-2-hexylguanidine Polymers CCCCCCN=C(N)N=C(N)N VAZJLPXFVQHDFB-UHFFFAOYSA-N 0.000 description 1
- 229940123208 Biguanide Drugs 0.000 description 1
- 235000014653 Carica parviflora Nutrition 0.000 description 1
- 241000243321 Cnidaria Species 0.000 description 1
- 102000008186 Collagen Human genes 0.000 description 1
- 108010035532 Collagen Proteins 0.000 description 1
- 206010063560 Excessive granulation tissue Diseases 0.000 description 1
- 229920002413 Polyhexanide Polymers 0.000 description 1
- 239000004721 Polyphenylene oxide Substances 0.000 description 1
- 229920005830 Polyurethane Foam Polymers 0.000 description 1
- 239000004372 Polyvinyl alcohol Substances 0.000 description 1
- 239000004820 Pressure-sensitive adhesive Substances 0.000 description 1
- FAPWRFPIFSIZLT-UHFFFAOYSA-M Sodium chloride Chemical compound [Na+].[Cl-] FAPWRFPIFSIZLT-UHFFFAOYSA-M 0.000 description 1
- 239000005708 Sodium hypochlorite Substances 0.000 description 1
- NINIDFKCEFEMDL-UHFFFAOYSA-N Sulfur Chemical compound [S] NINIDFKCEFEMDL-UHFFFAOYSA-N 0.000 description 1
- 239000003522 acrylic cement Substances 0.000 description 1
- 230000009471 action Effects 0.000 description 1
- 230000001154 acute effect Effects 0.000 description 1
- 239000000654 additive Substances 0.000 description 1
- 210000000577 adipose tissue Anatomy 0.000 description 1
- 229940035676 analgesics Drugs 0.000 description 1
- 239000000730 antalgic agent Substances 0.000 description 1
- 239000003242 anti bacterial agent Substances 0.000 description 1
- 230000000843 anti-fungal effect Effects 0.000 description 1
- 230000002421 anti-septic effect Effects 0.000 description 1
- 229940088710 antibiotic agent Drugs 0.000 description 1
- 229940121375 antifungal agent Drugs 0.000 description 1
- 229940064004 antiseptic throat preparations Drugs 0.000 description 1
- 229960000686 benzalkonium chloride Drugs 0.000 description 1
- CADWTSSKOVRVJC-UHFFFAOYSA-N benzyl(dimethyl)azanium;chloride Chemical compound [Cl-].C[NH+](C)CC1=CC=CC=C1 CADWTSSKOVRVJC-UHFFFAOYSA-N 0.000 description 1
- 150000004283 biguanides Chemical class 0.000 description 1
- 230000003115 biocidal effect Effects 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 230000000903 blocking effect Effects 0.000 description 1
- 230000017531 blood circulation Effects 0.000 description 1
- 210000000988 bone and bone Anatomy 0.000 description 1
- 229910000389 calcium phosphate Inorganic materials 0.000 description 1
- 239000001506 calcium phosphate Substances 0.000 description 1
- 235000011010 calcium phosphates Nutrition 0.000 description 1
- 150000004649 carbonic acid derivatives Chemical class 0.000 description 1
- 210000000845 cartilage Anatomy 0.000 description 1
- 125000002091 cationic group Chemical group 0.000 description 1
- 238000012412 chemical coupling Methods 0.000 description 1
- 230000001684 chronic effect Effects 0.000 description 1
- 238000004140 cleaning Methods 0.000 description 1
- 229920001436 collagen Polymers 0.000 description 1
- 239000003086 colorant Substances 0.000 description 1
- 210000002808 connective tissue Anatomy 0.000 description 1
- 230000007547 defect Effects 0.000 description 1
- 230000002950 deficient Effects 0.000 description 1
- 206010012601 diabetes mellitus Diseases 0.000 description 1
- 230000002500 effect on skin Effects 0.000 description 1
- 239000013536 elastomeric material Substances 0.000 description 1
- 210000000981 epithelium Anatomy 0.000 description 1
- 239000006261 foam material Substances 0.000 description 1
- 230000006870 function Effects 0.000 description 1
- 238000005469 granulation Methods 0.000 description 1
- 230000003179 granulation Effects 0.000 description 1
- 210000001126 granulation tissue Anatomy 0.000 description 1
- 230000036541 health Effects 0.000 description 1
- 239000000416 hydrocolloid Substances 0.000 description 1
- 239000000017 hydrogel Substances 0.000 description 1
- 230000002706 hydrostatic effect Effects 0.000 description 1
- 125000002887 hydroxy group Chemical group [H]O* 0.000 description 1
- QWPPOHNGKGFGJK-UHFFFAOYSA-N hypochlorous acid Chemical compound ClO QWPPOHNGKGFGJK-UHFFFAOYSA-N 0.000 description 1
- 239000012678 infectious agent Substances 0.000 description 1
- 208000014674 injury Diseases 0.000 description 1
- 230000001788 irregular Effects 0.000 description 1
- 239000000644 isotonic solution Substances 0.000 description 1
- 210000003041 ligament Anatomy 0.000 description 1
- 239000004973 liquid crystal related substance Substances 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 230000005012 migration Effects 0.000 description 1
- 238000013508 migration Methods 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 210000003205 muscle Anatomy 0.000 description 1
- 230000001338 necrotic effect Effects 0.000 description 1
- 230000001537 neural effect Effects 0.000 description 1
- 229960001774 octenidine Drugs 0.000 description 1
- SMGTYJPMKXNQFY-UHFFFAOYSA-N octenidine dihydrochloride Chemical compound Cl.Cl.C1=CC(=NCCCCCCCC)C=CN1CCCCCCCCCCN1C=CC(=NCCCCCCCC)C=C1 SMGTYJPMKXNQFY-UHFFFAOYSA-N 0.000 description 1
- -1 organogel Substances 0.000 description 1
- 206010033675 panniculitis Diseases 0.000 description 1
- 239000006072 paste Substances 0.000 description 1
- 230000002093 peripheral effect Effects 0.000 description 1
- 229940021222 peritoneal dialysis isotonic solution Drugs 0.000 description 1
- 230000035699 permeability Effects 0.000 description 1
- 229920000747 poly(lactic acid) Polymers 0.000 description 1
- 239000004417 polycarbonate Substances 0.000 description 1
- 229920000515 polycarbonate Polymers 0.000 description 1
- 229920000570 polyether Polymers 0.000 description 1
- 229940093158 polyhexanide Drugs 0.000 description 1
- 229920001296 polysiloxane Polymers 0.000 description 1
- 239000011496 polyurethane foam Substances 0.000 description 1
- 229920002451 polyvinyl alcohol Polymers 0.000 description 1
- 239000011148 porous material Substances 0.000 description 1
- 229910001961 silver nitrate Inorganic materials 0.000 description 1
- 239000011780 sodium chloride Substances 0.000 description 1
- SUKJFIGYRHOWBL-UHFFFAOYSA-N sodium hypochlorite Chemical compound [Na+].Cl[O-] SUKJFIGYRHOWBL-UHFFFAOYSA-N 0.000 description 1
- 230000003068 static effect Effects 0.000 description 1
- 210000004304 subcutaneous tissue Anatomy 0.000 description 1
- 229940124530 sulfonamide Drugs 0.000 description 1
- 150000003456 sulfonamides Chemical class 0.000 description 1
- 239000011593 sulfur Substances 0.000 description 1
- 229910052717 sulfur Inorganic materials 0.000 description 1
- 238000001356 surgical procedure Methods 0.000 description 1
- 210000002435 tendon Anatomy 0.000 description 1
- 230000008733 trauma Effects 0.000 description 1
- 230000000472 traumatic effect Effects 0.000 description 1
- QORWJWZARLRLPR-UHFFFAOYSA-H tricalcium bis(phosphate) Chemical compound [Ca+2].[Ca+2].[Ca+2].[O-]P([O-])([O-])=O.[O-]P([O-])([O-])=O QORWJWZARLRLPR-UHFFFAOYSA-H 0.000 description 1
- 238000011144 upstream manufacturing Methods 0.000 description 1
- 230000002792 vascular Effects 0.000 description 1
- 201000002282 venous insufficiency Diseases 0.000 description 1
- 230000000007 visual effect Effects 0.000 description 1
- 239000002699 waste material Substances 0.000 description 1
Images
Classifications
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61F—FILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
- A61F13/00—Bandages or dressings; Absorbent pads
- A61F13/05—Bandages or dressings; Absorbent pads specially adapted for use with sub-pressure or over-pressure therapy, wound drainage or wound irrigation, e.g. for use with negative-pressure wound therapy [NPWT]
-
- A61F13/00068—
-
- A61M1/0084—
-
- A61M1/0088—
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61M—DEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
- A61M1/00—Suction or pumping devices for medical purposes; Devices for carrying-off, for treatment of, or for carrying-over, body-liquids; Drainage systems
- A61M1/84—Drainage tubes; Aspiration tips
- A61M1/85—Drainage tubes; Aspiration tips with gas or fluid supply means, e.g. for supplying rinsing fluids or anticoagulants
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61M—DEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
- A61M1/00—Suction or pumping devices for medical purposes; Devices for carrying-off, for treatment of, or for carrying-over, body-liquids; Drainage systems
- A61M1/90—Negative pressure wound therapy devices, i.e. devices for applying suction to a wound to promote healing, e.g. including a vacuum dressing
- A61M1/92—Negative pressure wound therapy devices, i.e. devices for applying suction to a wound to promote healing, e.g. including a vacuum dressing with liquid supply means
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61M—DEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
- A61M1/00—Suction or pumping devices for medical purposes; Devices for carrying-off, for treatment of, or for carrying-over, body-liquids; Drainage systems
- A61M1/90—Negative pressure wound therapy devices, i.e. devices for applying suction to a wound to promote healing, e.g. including a vacuum dressing
- A61M1/96—Suction control thereof
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61M—DEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
- A61M1/00—Suction or pumping devices for medical purposes; Devices for carrying-off, for treatment of, or for carrying-over, body-liquids; Drainage systems
- A61M1/90—Negative pressure wound therapy devices, i.e. devices for applying suction to a wound to promote healing, e.g. including a vacuum dressing
- A61M1/96—Suction control thereof
- A61M1/966—Suction control thereof having a pressure sensor on or near the dressing
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61M—DEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
- A61M3/00—Medical syringes, e.g. enemata; Irrigators
- A61M3/02—Enemata; Irrigators
- A61M3/0204—Physical characteristics of the irrigation fluid, e.g. conductivity or turbidity
- A61M3/022—Volume; Flow rate
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61M—DEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
- A61M35/00—Devices for applying media, e.g. remedies, on the human body
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61M—DEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
- A61M37/00—Other apparatus for introducing media into the body; Percutany, i.e. introducing medicines into the body by diffusion through the skin
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61M—DEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
- A61M39/00—Tubes, tube connectors, tube couplings, valves, access sites or the like, specially adapted for medical use
- A61M39/22—Valves or arrangement of valves
-
- A61M1/0062—
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61M—DEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
- A61M1/00—Suction or pumping devices for medical purposes; Devices for carrying-off, for treatment of, or for carrying-over, body-liquids; Drainage systems
- A61M1/71—Suction drainage systems
- A61M1/77—Suction-irrigation systems
- A61M1/772—Suction-irrigation systems operating alternately
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61M—DEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
- A61M1/00—Suction or pumping devices for medical purposes; Devices for carrying-off, for treatment of, or for carrying-over, body-liquids; Drainage systems
- A61M1/90—Negative pressure wound therapy devices, i.e. devices for applying suction to a wound to promote healing, e.g. including a vacuum dressing
- A61M1/91—Suction aspects of the dressing
- A61M1/912—Connectors between dressing and drainage tube
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61M—DEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
- A61M1/00—Suction or pumping devices for medical purposes; Devices for carrying-off, for treatment of, or for carrying-over, body-liquids; Drainage systems
- A61M1/90—Negative pressure wound therapy devices, i.e. devices for applying suction to a wound to promote healing, e.g. including a vacuum dressing
- A61M1/96—Suction control thereof
- A61M1/962—Suction control thereof having pumping means on the suction site, e.g. miniature pump on dressing or dressing capable of exerting suction
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61M—DEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
- A61M37/00—Other apparatus for introducing media into the body; Percutany, i.e. introducing medicines into the body by diffusion through the skin
- A61M2037/0007—Other apparatus for introducing media into the body; Percutany, i.e. introducing medicines into the body by diffusion through the skin having means for enhancing the permeation of substances through the epidermis, e.g. using suction or depression, electric or magnetic fields, sound waves or chemical agents
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61M—DEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
- A61M39/00—Tubes, tube connectors, tube couplings, valves, access sites or the like, specially adapted for medical use
- A61M39/22—Valves or arrangement of valves
- A61M2039/226—Spindles or actuating means
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61M—DEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
- A61M2205/00—General characteristics of the apparatus
- A61M2205/33—Controlling, regulating or measuring
- A61M2205/3331—Pressure; Flow
- A61M2205/3334—Measuring or controlling the flow rate
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61M—DEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
- A61M2205/00—General characteristics of the apparatus
- A61M2205/33—Controlling, regulating or measuring
- A61M2205/3331—Pressure; Flow
- A61M2205/3344—Measuring or controlling pressure at the body treatment site
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61M—DEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
- A61M3/00—Medical syringes, e.g. enemata; Irrigators
- A61M3/02—Enemata; Irrigators
- A61M3/0202—Enemata; Irrigators with electronic control means or interfaces
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61M—DEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
- A61M3/00—Medical syringes, e.g. enemata; Irrigators
- A61M3/02—Enemata; Irrigators
- A61M3/0233—Enemata; Irrigators characterised by liquid supply means, e.g. from pressurised reservoirs
- A61M3/0254—Enemata; Irrigators characterised by liquid supply means, e.g. from pressurised reservoirs the liquid being pumped
- A61M3/0258—Enemata; Irrigators characterised by liquid supply means, e.g. from pressurised reservoirs the liquid being pumped by means of electric pumps
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61M—DEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
- A61M3/00—Medical syringes, e.g. enemata; Irrigators
- A61M3/02—Enemata; Irrigators
- A61M3/0279—Cannula; Nozzles; Tips; their connection means
- A61M3/0283—Cannula; Nozzles; Tips; their connection means with at least two inner passageways, a first one for irrigating and a second for evacuating
Definitions
- the present invention relates generally to tissue treatment systems and more particularly, but without limitation, to a system and method for providing instillation therapy to a tissue site.
- Reduced-pressure therapy may provide a number of benefits, including migration of epithelial and subcutaneous tissues, improved blood flow, and micro-deformation of tissue at a tissue site. Together, these benefits can increase development of granulation tissue and reduce healing times.
- therapeutic fluids e.g. saline or antibiotic fluids
- the delivery of therapeutic fluids can also provide benefits to healing of a tissue site.
- Treatment of tissue sites with the delivery of therapeutic fluids may also be referred to as “instillation therapy.” Instillation therapy may assist in cleaning the tissue site by aiding in the removal of infectious agents or necrotic tissue.
- the therapeutic fluids used in instillation therapy may also provide medicinal fluids, such as antibiotics, anti-fungals, antiseptics, analgesics, or other similar substances, to aid in the treatment of a tissue site.
- a method for providing fluid to a tissue site may be described.
- An instillation therapy system may be fluidly coupled to the tissue site, and a pressure supplied to the tissue site by a reduced-pressure source may be monitored with the instillation therapy system for a time period.
- Fluid may be provided to the tissue site with the instillation therapy system in response to the pressure at the tissue site during the time period.
- a method for providing fluid to a tissue site may be described.
- An instillation therapy system may be fluidly coupled to the tissue site.
- a reduced-pressure treatment system fluidly coupled to the tissue site may be operated to provide reduced-pressure therapy in an intermittent mode, and the instillation therapy system may monitor a pressure at the tissue site.
- a pressure profile of the reduced-pressure therapy at the tissue site may be determined.
- a valve fluidly coupled between the tissue site and a fluid reservoir may be opened in response to the pressure profile.
- a system for providing instillation therapy to a tissue site may be described.
- the system may include a fluid interface configured to be fluidly coupled to the tissue site and a pressure sensor fluidly coupled to the fluid interface and configured to measure a pressure proximate the tissue site.
- the system may also include a valve fluidly coupled to the fluid interface.
- the valve may have an open position configured to permit fluid communication through the valve and a closed position configured to prevent fluid communication through the valve.
- the system may have a flow meter configured to be fluidly coupled between the valve and the fluid interface and a fluid reservoir fluidly coupled to the valve.
- the system may include a controller communicatively coupled to the pressure sensor and the valve. The controller may be configured to monitor the pressure measured by the pressure sensor and a volume of fluid flow through the flow meter and, in response, operate the valve.
- a method for providing fluid to a tissue site may be described.
- An instillation therapy system may be fluidly coupled to the tissue site and operated in a training mode.
- a pressure profile of a reduced pressure source fluidly coupled to the tissue site may be determined in response to the training mode.
- the instillation therapy system may deliver fluid to the tissue site.
- a method for delivering fluid to a tissue site may be described.
- An instillation therapy system may be coupled to the tissue site, and the instillation therapy system may monitor a pressure at the tissue site. Fluids may be delivered to the tissue site if the pressure at the tissue site is about a trigger pressure, and the instillation therapy system may continue to monitor the pressure at the tissue site if the pressure at the tissue site is not about the trigger pressure.
- a fluid flow to the tissue site may be monitored in response to delivering fluids to the tissue site, and the instillation therapy system may determine if the fluid flow is about a dosage of fluids. If the fluid flow is about the dosage of fluids, the fluid flow may be stopped.
- the instillation therapy system determines if a reduced-pressure source fluidly coupled to the tissue site is about to start an on period. If the reduced-pressure source is not about to start the on period, fluids may continue to be delivered. If the reduced-pressure source is about to enter the on period, fluid may stop being delivered, and the trigger pressure may be incremented if the reduced-pressure source is about to start the on period.
- FIG. 1 is a partial sectional view of a reduced-pressure therapy system and an instillation therapy system for treating a tissue site in accordance with this specification;
- FIG. 2 is a partial sectional view of another embodiment of the reduced-pressure therapy system and the instillation therapy system for treating a tissue site in accordance with an illustrative embodiment
- FIG. 3 is a sectional view of a tube for fluidly coupling a reduced-pressure source to a reduced-pressure interface in accordance with an illustrative embodiment
- FIG. 4 is a schematic diagram of the reduced-pressure therapy system and the instillation therapy system in accordance with an illustrative embodiment
- FIG. 5 is a graphical depiction of the operation of the reduced-pressure therapy system of FIG. 4 in accordance with an illustrative embodiment
- FIG. 6A is a graphical depiction of a pressure profile of reduced-pressure provided to the tissue site by the reduced-pressure therapy system of FIG. 4 in accordance with an illustrative embodiment
- FIG. 6B is a graphical depiction of the pressure profile of FIG. 6A illustrating a training mode of the instillation therapy system of FIG. 4 ;
- FIG. 7 is a graphical depiction of the operation of a valve of the fluid source of FIG. 4 in accordance with an illustrative embodiment
- FIG. 8 is a graphical depiction of the operation of the valve of the fluid source of FIG. 4 in accordance with another illustrative embodiment
- FIG. 9 is a block diagram illustrating operative steps of the fluid source of FIG. 4 ;
- FIG. 10 is a block diagram illustrating operative steps of an intermittent mode of operation of the fluid source of FIG. 4 ;
- FIG. 11 is a block diagram illustrating operative steps of a training mode of operation of the fluid source of FIG. 4 ;
- FIG. 12 is a block diagram illustrating operative steps of a dynamic mode of operation of the fluid source of FIG. 4 ;
- FIG. 13 is a block diagram illustrating additional operative steps of the dynamic mode of operation of the fluid source of FIG. 4 .
- FIG. 1 is a partial sectional view of a therapy system 100 that may include a reduced-pressure therapy system 101 and an instillation therapy system 116 fluidly coupled to a tissue site 114 in accordance with some embodiments.
- the therapy system 100 may also include a dressing 102 coupled to a tissue site 114 .
- the dressing 102 may include a drape, such as a drape 108 , and a tissue interface, such as a manifold 110 .
- the reduced-pressure therapy system 101 may include a reduced-pressure source 104 fluidly coupled to the dressing 102 .
- the reduced-pressure therapy system 101 may also include a fluid container, such as a container 112 , fluidly coupled to the dressing 102 and the reduced-pressure source 104 by a reduced-pressure interface 105 , a tube 107 , and a tube 109 .
- the instillation therapy system 116 may include a fluid source 118 and a fluid interface 120 .
- the fluid source 118 may be fluidly coupled to the fluid interface 120 with a fluid connector 122 and one or more tubes, such as a tube 123 and a tube 124 .
- a tissue interface such as the manifold 110
- a tissue site such as the tissue site 114
- the manifold 110 may be placed against the tissue site 114
- the drape 108 may be placed over the manifold 110 and sealed to tissue proximate the tissue site 114 .
- Tissue proximate a tissue site is often undamaged epidermis peripheral to the tissue site.
- the dressing 102 can provide a sealed therapeutic environment 103 proximate a tissue site.
- the sealed therapeutic environment 103 may be substantially isolated from the external environment, and the reduced-pressure source 104 can reduce the pressure in the sealed therapeutic environment 103 .
- Reduced pressure applied uniformly through a tissue interface in the sealed therapeutic environment 103 can induce macrostrain and microstrain in a tissue site, as well as remove exudates and other fluids from the tissue site.
- the removed exudates and other fluids can be collected in the container 112 and disposed of properly.
- tissue site such as the tissue site 114
- tissue site 114 may refer to a wound or defect located on or within tissue including, but not limited to, bone tissue, adipose tissue, muscle tissue, neural tissue, dermal tissue, vascular tissue, connective tissue, cartilage, tendons, or ligaments.
- a wound may include chronic, acute, traumatic, subacute, and dehisced wounds, partial-thickness burns, ulcers (such as diabetic, pressure, or venous insufficiency ulcers), flaps, and grafts, for example.
- tissue site may also refer to areas of any tissue that are not necessarily wounded or defective, but are instead areas in which it may be desirable to add or promote the growth of additional tissue. For example, reduced pressure may be used in certain tissue areas to grow additional tissue that may be harvested and transplanted to another tissue location.
- Reduced pressure generally refers to a pressure less than a local ambient pressure, such as the ambient pressure in a local environment external to the sealed therapeutic environment 103 provided by the dressing 102 .
- the local ambient pressure may also be the atmospheric pressure at which a patient is located.
- the pressure may be less than a hydrostatic pressure associated with tissue at a tissue site. Unless otherwise indicated, values of pressure stated herein are gauge pressures.
- references to increases in reduced pressure typically refer to a decrease in absolute pressure, while decreases in reduced pressure typically refer to an increase in absolute pressure.
- the fluid mechanics of using a reduced-pressure source to reduce pressure in another component or location, such as within the sealed therapeutic environment 103 can be mathematically complex.
- the basic principles of fluid mechanics applicable to reduced-pressure therapy are generally well-known to those skilled in the art, and the process of reducing pressure may be described illustratively herein as “delivering,” “distributing,” or “generating” reduced pressure, for example.
- downstream typically implies a position in a fluid path relatively closer to a reduced-pressure source
- upstream implies a position relatively further away from a reduced-pressure source.
- fluid inlet or “outlet” in such a frame of reference. This orientation is generally presumed for purposes of describing various features and components of reduced-pressure therapy systems herein.
- the fluid path may also be reversed in some applications (such as by substituting a positive-pressure source for a reduced-pressure source) and this descriptive convention should not be construed as a limiting convention.
- a tissue interface such as the manifold 110
- a tissue interface may be partially or fully in contact with a tissue site. If a tissue site is a wound, for example, a tissue interface may partially or completely fill the wound, or may be placed over the wound.
- a tissue interface may take many forms, and may have many sizes, shapes, or thicknesses depending on a variety of factors, such as the type of treatment being implemented or the nature and size of a tissue site. For example, the size and shape of a tissue interface may be adapted to the contours of deep and irregular shaped tissue sites.
- a manifold such as the manifold 110 , for example, is a substance or structure adapted to distribute or remove fluids from a tissue site.
- a manifold may include flow channels or pathways that can distribute fluids provided to and removed from a tissue site.
- the flow channels or pathways may be interconnected to improve distribution of fluids provided to or removed from a tissue site.
- a manifold may be an open-cell, porous tissue collection, or other porous material such as gauze or felted mat that generally includes structural elements arranged to form flow channels. Liquids, gels, and other foams may also include or be cured to include flow channels.
- the manifold 110 may be a porous foam pad having interconnected cells adapted to distribute reduced pressure across a tissue site.
- the foam material may be either hydrophobic or hydrophilic.
- the manifold 110 may be reticulated polyurethane foam, such as GranuFoam® dressing available from Kinetic Concepts, Inc. of San Antonio, Tex.
- the manifold 110 may be made from a hydrophilic material, and the manifold 110 may also wick fluid away from a tissue site, while continuing to distribute reduced pressure to the tissue site.
- the wicking properties of the manifold 110 may draw fluid away from a tissue site by capillary flow or other wicking mechanisms.
- a hydrophilic foam is a polyvinyl alcohol, open-cell foam such as V.A.C. WhiteFoam® dressing available from Kinetic Concepts, Inc. of San Antonio, Tex.
- Other hydrophilic foams may include those made from polyether.
- Other foams that may exhibit hydrophilic characteristics include hydrophobic foams that have been treated or coated to provide hydrophilicity.
- a tissue interface may further promote granulation at a tissue site if pressure within a sealed therapeutic environment is reduced.
- any or all of the surfaces of the manifold 110 may have an uneven, coarse, or jagged profile that can induce microstrains and stresses at the tissue site 114 if reduced pressure is applied to the sealed therapeutic environment 103 through the manifold 110 .
- a tissue interface may be constructed from bioresorbable materials.
- Suitable bioresorbable materials may include, without limitation, a polymeric blend of polylactic acid (PLA) and polyglycolic acid (PGA).
- the polymeric blend may also include without limitation polycarbonates, polyfumarates, and capralactones.
- a tissue interface may further serve as a scaffold for new cell-growth, or a scaffold material may be used in conjunction with the tissue interface to promote cell-growth.
- a scaffold material may be a biocompatible or biodegradable substance or structure used to enhance or promote the growth of cells or formation of tissue, such as a three-dimensional porous structure that provides a template for cell growth.
- Illustrative examples of scaffold materials include calcium phosphate, collagen, PLA/PGA, coral hydroxy apatites, carbonates, or processed allograft materials.
- the drape 108 is an example of a sealing member.
- a sealing member may be constructed from a material that can provide a fluid seal between two components or two environments, such as between a therapeutic environment and a local external environment.
- a sealing member may be, for example, an impermeable or semi-permeable, elastomeric material that can provide a seal adequate to maintain a reduced pressure at a tissue site for a given reduced-pressure source.
- the permeability generally should be low enough that a desired reduced pressure may be maintained.
- An attachment device may be used to attach a sealing member to an attachment surface, such as undamaged epidermis, a gasket, or another sealing member.
- An attachment device may take many forms.
- an attachment device may be a medically-acceptable, pressure-sensitive adhesive that extends about a periphery, a portion, or an entire sealing member.
- Other example embodiments of an attachment device may include a double-sided tape, paste, hydrocolloid, hydrogel, silicone gel, organogel, or an acrylic adhesive.
- components of the reduced-pressure therapy system 101 may be coupled directly or indirectly to each other.
- the reduced-pressure source 104 may be directly coupled to the container 112 by the tube 107 and indirectly coupled to the dressing 102 through the container 112 and the tube 109 .
- Components may be fluidly coupled to each other to provide a path for transferring fluids (i.e., liquid and/or gas) between the components.
- components may be fluidly coupled with a tube, such as the tube 107 or the tube 109 , for example.
- a tube is an elongated, cylindrical structure with some flexibility, but the geometry and rigidity may vary.
- components may additionally or alternatively be coupled by virtue of physical proximity, being integral to a single structure, or being formed from the same piece of material. Coupling may also include mechanical, thermal, electrical, or chemical coupling (such as a chemical bond) in some contexts.
- a reduced-pressure interface such as the reduced-pressure interface 105 may be a device or component operable to fluidly couple the reduced-pressure source 104 to the dressing 102 .
- the reduced-pressure interface 105 may be a T.R.A.C.® Pad or Sensa T.R.A.C.® Pad available from KCI of San Antonio, Tex., modified as described in more detail below.
- the reduced-pressure interface 105 may fluidly couple the reduced pressure provided by the reduced-pressure source 104 to the manifold 110 through the drape 108 .
- the manifold 110 may distribute the fluid to the sealed therapeutic environment 103 .
- the reduced-pressure interface 105 allows reduced pressure to be delivered to the sealed therapeutic environment 103 .
- the reduced-pressure interface 105 may be made of a semi-rigid material.
- the reduced-pressure interface 105 may be made from a plasticized polyvinyl chloride (PVC), polyurethane, cyclic olefin copolymer elastomer, thermoplastic elastomer, poly acrylic, silicone polymer, or polyether block amide copolymer.
- PVC polyvinyl chloride
- polyurethane polyurethane
- cyclic olefin copolymer elastomer cyclic olefin copolymer elastomer
- thermoplastic elastomer poly acrylic, silicone polymer, or polyether block amide copolymer.
- a reduced-pressure source such as the reduced-pressure source 104
- the reduced-pressure source may be housed within or used in conjunction with other components, such as sensors, processing units, alarm indicators, memory, databases, software, display devices, or user interfaces that further facilitate reduced-pressure therapy.
- the pressure typically ranges between about ⁇ 5 mm Hg ( ⁇ 667 Pa) and about ⁇ 500 mm Hg ( ⁇ 66.7 kPa). Common therapeutic ranges are between about ⁇ 75 mm Hg ( ⁇ 9.9 kPa) and about ⁇ 300 mm Hg ( ⁇ 39.9 kPa).
- a “container,” such as the container 112 may broadly include a canister, pouch, bottle, vial, or other fluid collection apparatus.
- a container can be used to manage exudates and other fluids withdrawn from a tissue site.
- a rigid container may be preferred or required for collecting, storing, and disposing of fluids.
- fluids may be properly disposed of without rigid container storage, and a re-usable container could reduce waste and costs associated with reduced-pressure therapy.
- a fluid source such as the fluid source 118
- a fluid source may be housed within or used in conjunction with other components, such as sensors, processing units, alarm indicators, memory, databases, software, display devices, or user interfaces that further facilitate instillation therapy.
- the amount and nature of the fluid applied to a tissue site may vary according to therapeutic requirements, which may include the size of the sealed therapeutic environment, the type of fluid, and any additives to the fluid.
- the fluid may include: hypochlorite based solutions, such as hypochlorous acid and sodium hypochlorite; silver nitrate; sulfur based solutions, such as sulfonamides; biguanides, such as polyhexanide; cationic solutions, such as octenidine and benzalkonium chloride; and isotonic solutions.
- hypochlorite based solutions such as hypochlorous acid and sodium hypochlorite
- silver nitrate such as sulfur based solutions, such as sulfonamides
- biguanides such as polyhexanide
- cationic solutions such as octenidine and benzalkonium chloride
- isotonic solutions such as sodium chloride
- a fluid interface such as the fluid interface 120 may be a device or component operable to fluidly couple the fluid source 118 to the dressing 102 .
- the fluid interface 120 may fluidly couple the fluid provided by the fluid source 118 to the manifold 110 through the drape 108 .
- the manifold 110 may distribute the fluid to the sealed therapeutic environment 103 .
- the fluid interface 120 allows fluid to be delivered to the sealed therapeutic environment 103 .
- the fluid interface 120 may also fluidly couple the fluid source 118 to the manifold 110 to determine a pressure at the tissue site 114 .
- the fluid interface 120 may couple two tubes, such as the tube 124 and the tube 123 to the manifold 110 .
- the fluid interface 120 may be made of a semi-rigid material.
- the fluid interface 120 may be made from a plasticized polyvinyl chloride (PVC), polyurethane, cyclic olefin copolymer elastomer, thermoplastic elastomer, poly acrylic, silicone polymer, or polyether block amide copolymer.
- PVC plasticized polyvinyl chloride
- polyurethane polyurethane
- cyclic olefin copolymer elastomer cyclic olefin copolymer elastomer
- thermoplastic elastomer poly acrylic, silicone polymer, or polyether block amide copolymer.
- a fluid connector such as the fluid connector 122 , may be a device or component configured to couple the tube 124 and the tube 123 to the fluid source 118 .
- a fluid connector may fluidly couple one or more tubes to one or more components of a fluid source.
- a fluid connector may fluidly couple a multi-lumen tube to one or more components of a fluid source.
- a fluid connector may also be releasably coupled to a fluid source so that the fluid connector may be discarded after use of the fluid connector 122 .
- a fluid connector may be a device permanently attached to a fluid source.
- components of the instillation therapy system 116 may be coupled directly or indirectly to each other.
- the fluid source 118 may be directly coupled to the fluid interface 120 and indirectly coupled to the dressing 102 through the fluid interface 120 .
- Components may be fluidly coupled to each other to provide a path for transferring fluids (i.e., liquid and/or gas) between the components.
- components may be fluidly coupled with a tube, for example the tube 123 or the tube 124 .
- the tube 123 and the tube 124 may be single-lumen conduits having a central flow passage extending through each tube.
- the reduced-pressure therapy system 101 may provide reduced pressure to the sealed therapeutic environment 103 through the reduced-pressure interface 105 .
- Fluid including exudates and other liquids, may be drawn from the tissue site 114 through the manifold 110 and into the reduced-pressure interface 105 .
- the instillation therapy system 116 may provide fluids to the sealed therapeutic environment 103 through the fluid interface 120 .
- Fluid, including therapeutic liquids, may flow from the fluid source 118 , through the tube 124 and into the sealed therapeutic environment 103 through the fluid interface 120 .
- the fluids may be distributed to the tissue site 114 by the manifold 110 .
- the reduced-pressure therapy system 101 and the instillation therapy system 116 may operate concurrently. If the reduced-pressure therapy system 101 and the instillation therapy system 116 operate concurrently, the fluid interface 120 and the reduced-pressure interface 105 may be positioned to maximize the distance between them. For example, if the tissue site 114 is elongated and includes two opposing ends, the fluid interface 120 and the reduced-pressure interface 105 may be positioned proximate the opposing ends. If the tissue site 114 is generally circular, the fluid interface 120 and the reduced-pressure interface 105 may be placed proximate opposing ends of a diameter of the tissue site 114 . Fluid may flow from the fluid interface 120 through the sealed therapeutic environment 103 to the reduced-pressure interface 105 . In some embodiments, the reduced pressure supplied through the reduced-pressure interface 105 may aid in the distribution of fluids provided through the fluid interface 120 .
- the reduced-pressure therapy system 101 and the instillation therapy system 116 may not operate concurrently.
- the instillation therapy system 116 may provide fluid to the sealed therapeutic environment 103 while the reduced-pressure therapy system 101 is not providing reduced pressure.
- the fluid source 118 may include a pump that may move the fluid to the manifold 110 for distribution to the tissue site 114 . The fluid may remain in the sealed therapeutic environment 103 until the operation of the reduced-pressure therapy system 101 . If the reduced-pressure therapy system 101 provides reduced pressure, the reduced-pressure therapy system 101 may draw the fluid from the sealed therapeutic environment 103 into the container 112 .
- FIG. 2 is a partial sectional view of the reduced-pressure therapy system 101 and the instillation therapy system 116 illustrating additional details that may be associated with some embodiments.
- the fluid interface 120 and the reduced-pressure interface 105 may be combined into a dressing interface 121 .
- the dressing interface 121 maybe coupled to the dressing in a manner similar to the fluid interface 120 and the reduced-pressure interface 105 .
- the dressing interface 121 may be configured to receive both the tube 123 , the tube 124 , and the tube 109 and provide a fluid coupling through the drape 108 to the tissue site 114 and the sealed therapeutic environment 103 .
- the dressing interface 121 may be similar to and operate as described in U.S. patent application Ser. No. 13/009,220, by Locke, et al., entitled “Wound-Connection Pads for Fluid Instillation and Negative Pressure Wound Therapy, and Systems and Methods,” filed Jan. 19, 2011, which is incorporated by reference herein for all purposes.
- the dressing interface 121 may fluidly couple the fluid provided by the fluid source 118 and the reduced pressure provided by the reduced-pressure source 104 to the manifold 110 through the drape 108 .
- the dressing interface 121 may be made of a semi-rigid material.
- the dressing interface 121 may be made from a plasticized polyvinyl chloride (PVC), polyurethane, cyclic olefin copolymer elastomer, thermoplastic elastomer, poly acrylic, silicone polymer, or polyether block amide copolymer.
- PVC polyvinyl chloride
- the instillation therapy system 116 may provide fluid through the dressing interface 121 while the reduced-pressure therapy system 101 is not operating, and the reduced-pressure therapy system 101 may provide reduced-pressure through the dressing interface 121 while the instillation therapy system 116 is not operating.
- FIG. 3 is a sectional view of the tube 109 illustrating additional details that may be associated with some embodiments of the reduced-pressure therapy system 101 .
- the tube 109 may be a multi-lumen tube.
- the tube 109 may include at least one primary lumen 126 and one or more secondary lumens 128 .
- the tube 109 includes four secondary lumens 128 .
- the tube 109 may have different shapes and include more or fewer primary lumens 126 and secondary lumens 128 .
- the primary lumen 126 may provide a path between the reduced-pressure source 104 and the reduced-pressure interface 105 for delivery of reduced pressure.
- the secondary lumens 128 may function as sensing lumens.
- the secondary lumens 128 may fluidly communicate pressure at a terminal end of the tube 109 within the reduced-pressure interface 105 to the reduced-pressure source 104 .
- the secondary lumens 128 may be fluidly isolated from the primary lumen 126 so as not to interfere with the process of sensing the pressure.
- the pressure communicated by the secondary lumens 128 may be representative of the pressure at the tissue site 114 . Referring back to FIG. 1 and FIG.
- the tube 123 and the tube 124 may be combined into a multi-lumen tube, similar to the tube 109 , each having at least one primary lumen, similar to the primary lumens 126 of the tube 109 , and one or more secondary lumens, similar to the secondary lumens 128 of the tube 109 .
- the secondary lumens may be fluidly coupled between the tissue site 114 and the fluid source 118 to sense pressure at the tissue site 114 .
- the primary lumens would deliver instillation fluid to the tissue site 114 .
- the pressure being sensed by the tube 123 may be replaced by the secondary lumens 128 if the tube 124 is a multi-lumen tube.
- Reduced-pressure therapy has been shown to improve healing of tissue sites.
- instillation therapy has been shown to improve the healing of tissue sites.
- tissue sites treated with both reduced-pressure therapy and instillation therapy have been shown to have improved healing over the use of reduced-pressure therapy or instillation therapy alone.
- Current systems providing both reduced-pressure therapy and instillation therapy are complex and difficult to properly administer to a tissue site.
- the systems may be quite expensive, which may pose problems for the use of such systems in some locations, in particular, in locations where health care services may not be readily available.
- Some systems provide both reduced-pressure therapy and instillation therapy without the complexity and cost involved in combined systems; however, these systems may be labor intensive and require significant clinician involvement for the proper administration of therapy.
- the reduced-pressure therapy system may be coupled to the tissue site, and a clinician may use a syringe to administer fluids to the tissue site through the dressing.
- Administering fluids with a syringe requires the clinician to actively monitor the dressing and the fluid application to prevent inadvertent over application of fluids. As it may be difficult to see the tissue site through the sealing member, a clinician may find it difficult to accurately determine the appropriate initiation and termination of instillation therapy.
- the instillation therapy system 116 can overcome these shortcomings and others by providing an instillation therapy system that may monitor the delivery of reduced pressure to a tissue site by a reduced-pressure system, and in response, the instillation therapy system may provide fluids in response to the reduced-pressure therapy.
- the instillation therapy system 116 may monitor a pressure in the sealed therapeutic environment 103 and, in response, administer fluids in accordance with the administration of reduced pressure by the reduced-pressure therapy system 101 .
- FIG. 4 is a schematic diagram of the therapy system 100 illustrating additional details that may be associated with some embodiments of the instillation therapy system 116 .
- the fluid source 118 may include a controller 202 , a user interface 204 , and a sensor 206 .
- the user interface 204 and the sensor 206 may each be communicatively coupled to the controller 202 .
- communicative coupling may refer to a coupling between components that permits the transmission of signals between the components.
- the signals may be discrete or continuous signals.
- a discrete signal may be a signal representing a value at a particular instance in a time period.
- a plurality of discrete signals may be used to represent a changing value over a time period.
- a continuous signal may be a signal that provides a value for each instance in a time period.
- the signals may also be analog signals or digital signals.
- An analog signal may be a continuous signal that includes a time varying feature that represents another time varying quantity.
- a digital signal may be a signal composed of a sequence of discrete values.
- the communicative coupling between the controller 202 , the user interface 204 , and the sensor 206 may be one-way communication. In one-way communication, signals may only be sent in one direction. For example, the sensor 206 may generate a signal that may be communicated to the controller 202 , but the controller 202 may not be capable of sending a signal to the sensor 206 .
- the communicative coupling between the controller 202 , the user interface 204 , and the sensor 206 may be two-way communication. In two-way communication, signals may be sent in both directions.
- the controller 202 and the user interface 204 may be communicatively coupled so that the controller 202 may send and receive signals from the user interface 204 .
- the user interface 204 may send and receive signals from the controller 202 .
- signal transmission between the controller 202 and another device, such as the user interface 204 may be referred to as the controller 202 operating the device.
- the controller 202 may be a computing device or system, such as a programmable logic controller, a data processing system, or the like. In other embodiments, the controller 202 may be configured to receive input from the sensor 206 . In some embodiments, the controller 202 is configured to receive input from both the user interface 204 and the sensor 206 . In some embodiments, the controller 202 may receive input, such as an electrical signal, from an alternative source, such as through an electrical port, for example. In some embodiments, the controller 202 may be a data processing system.
- a data processing system suitable for storing and/or executing program code may include at least one processor coupled directly or indirectly to memory elements through a system bus. The memory elements can include local memory employed during actual execution of the program code, bulk storage, and cache memories which provide temporary storage of at least some program code in order to reduce the number of times code is retrieved from bulk storage during execution.
- the controller 202 may be a programmable logic controller (“PLC”).
- PLC may be a digital computer configured to receive one or more inputs and send one or more outputs in response to the one or more inputs.
- a PLC may include a non-volatile memory configured to store programs or operational instructions.
- the non-volatile memory may be operationally coupled to a battery-back up so that the non-volatile memory retains the programs or operational instructions if the PLC otherwise loses power.
- a PLC may be configured to receive discrete signals and continuous signals and produce discrete and continuous signals in response.
- a user interface such as the user interface 204 , may be a device configured to allow communication between the controller 202 and an environment external (external environment) to the fluid source 118 .
- an external environment may include an operator or a computer system configured to interface with the fluid source 118 , for example.
- a user interface may receive a signal from a controller and present the signal in a manner that may be understood by an external environment.
- a user interface may receive signals from an external environment and, in response, send signals to a controller.
- a controller may process the signals received from a user interface and take further action.
- a user interface may be a graphical user interface, a touchscreen, or one or more motion tracking devices.
- a user interface may also include one or more display screens, such as a liquid crystal display (“LCD”), lighting devices, such as light emitting diodes (“LED”) of various colors, and audible indicators, such as a whistle, configured to emit a sound that may be heard by an operator.
- LCD liquid crystal display
- LED light emitting diodes
- a user interface may further include one or more devices, such as knobs, buttons, keyboards, remotes, touchscreens, ports that may be configured to receive a discrete or continuous signal from another device, or other similar devices; these devices may be configured to permit the external environment to interact with the user interface 204 .
- a pressure sensor such as the sensor 206 , may be a piezoresistive strain gauge, a capacitive sensor, an electromagnetic sensor, a piezoelectric sensor, an optical sensor, or a potentiometric sensor, for example.
- a pressure sensor can measure a strain caused by an applied pressure.
- a pressure sensor may be calibrated by relating a known amount of strain to a known pressure applied. The known relationship may be used to determine an unknown applied pressure based on a measured amount of strain.
- a pressure sensor may include a receptacle configured to receive an applied pressure.
- the sensor 206 may be fluidly coupled to the fluid interface 120 by the tube 123 to receive a pressure from the tube 123 .
- the fluid source 118 may also include a valve 208 , a flow meter 209 , and a fluid reservoir 210 .
- the valve 208 may be communicatively coupled to the controller 202 , and the valve 208 may be further fluidly coupled between the fluid reservoir 210 and the fluid interface 120 .
- a valve such as the valve 208 , may be a device configured to selectively permit fluid flow through the valve.
- a valve may be a ball valve, a gate valve, a butterfly valve, or other valve type that may be operated to prevent or permit fluid flow through the valve.
- a valve may include a valve body having a flow passage, a valve member disposed in the flow passage and operable to selectively block the flow passage, and an actuator configured to operate the valve member.
- An actuator may be configured to position the valve member in a closed position, preventing fluid flow through the flow passage of the valve, an open position, permitting fluid flow through the fluid passage of the valve, or a metering position, permitting fluid flow through the flow passage of the valve at a selected flow rate.
- the actuator may be a mechanical actuator configured to be operated by an operator.
- the actuator may be an electromechanical actuator configured to be operated in response to the receipt of a signal input.
- the actuator may include an electrical motor configured to receive a signal from a controller, such as the controller 202 . In response to the signal, the electrical motor of the actuator may move the valve member of the valve.
- the valve 208 may be configured to selectively permit fluid communication between the fluid reservoir 210 and the fluid interface 120 in response to a signal from the controller 202 .
- the controller 202 may be referred to as: operating the valve; placing the valve 208 in an open position, a closed position, or a metering position; and opening the valve 208 , closing the valve 208 , or metering the valve 208 .
- the flow meter 209 may be communicatively coupled to the controller 202 , and the flow meter 209 may be further fluidly coupled between the valve 208 and the fluid interface 120 .
- a flow meter such as the flow meter 209 , may be a device configured to determine a fluid flow rate.
- a flow meter may include a mechanical flow meter, a pressure based flow meter, an optical flow meter, an open channel flow meter, a thermal mass flow meter, a vortex flow meter, electromagnetic, ultrasonic and coriolis flow meters, and laser doppler flow meters.
- the flow meter 209 may determine a rate of fluid flow through the valve 208 and transmit a signal to the controller 202 corresponding to the determined flow rate.
- the controller 202 may receive the determined flow rate and determine a total volume of fluid delivered in response.
- a fluid reservoir such as the fluid reservoir 210
- a fluid reservoir may broadly include a canister, pouch, bottle, vial, or other fluid storage apparatus.
- a fluid reservoir can be used to manage fluid to be delivered to a tissue site.
- a rigid fluid reservoir may be preferred or required for storing and delivering of fluids.
- fluids may be properly stored and delivered without a rigid fluid reservoir.
- a fluid reservoir may be a device that is integrated into a fluid source.
- the fluid reservoir 210 may be an integral component of the fluid source 118 .
- a fluid reservoir may be a removable component of a fluid source.
- the fluid reservoir 210 may be removable from the fluid source 118 .
- a fluid reservoir may be a separate component from a fluid source that may be fluidly coupled to the fluid source.
- the fluid reservoir 210 may be a separate device that may be fluidly coupled by a tube to the fluid source 118 .
- valve 208 may be fluidly coupled to the fluid interface 120 through the tube 124 . Operation of the valve 208 may permit fluid to flow from the fluid reservoir 210 through the tube 124 into the fluid interface 120 , where the fluid may be distributed by the manifold 110 .
- the senor 206 may be fluidly coupled to the fluid interface 120 through the tube 123 .
- the tube 123 may fluidly communicate a pressure at the fluid interface 120 to the sensor 206 .
- the pressure at the fluid interface 120 may be representative of a pressure in the sealed therapeutic environment 103 .
- the sensor 206 may be an electronic strain gauge sensor that is incorporated into the fluid interface 120 .
- the strain gauge may have a thin piezoresistive film on the drape of the pad which deforms under pressure. The deformation may indicate the pressure in the sealed therapeutic environment 103 .
- the fluid interface 120 may be communicatively coupled to the controller 202 so that the controller 202 may receive a signal from the strain gauge.
- the fluid source 118 may include an instillation pump 212 .
- the instillation pump 212 may be fluidly coupled between the valve 208 and the fluid interface 120 and communicatively coupled to the controller 202 .
- the instillation pump 212 may be operated by the controller 202 in a manner similar to the operation of the valve 208 to provide fluid to the fluid interface 120 and the sealed therapeutic environment 103 .
- the instillation pump 212 may replace the valve 208 .
- the instillation pump 212 may be configured to pre-charge a dosage of fluid for delivery to the tissue site 114 .
- the instillation pump 212 may be configured to pressurize a dosage of fluid prior to delivery of fluids so that the fluids may delivered to the tissue site 114 .
- a dosage of fluid may be the volume of fluid prescribed by a caregiver to treat the tissue site 114 during a cycle of instillation therapy.
- the fluid source 118 may also include an instillation sensor 214 .
- the instillation sensor 214 may be fluidly coupled to the tube 124 and communicatively coupled to the controller 202 .
- the controller 202 may monitor pressure in the tube 124 with the instillation sensor 214 . In the event that the instillation sensor 214 sends a signal that deviates from the signal received from the sensor 206 , the controller 202 may operate the user interface 204 to indicate a blockage or a leak condition.
- the sensor 206 may determine the pressure in the fluid interface 120 .
- the pressure in the fluid interface 120 may be representative of the pressure in the sealed therapeutic environment 103 .
- the controller 202 may receive the signal sent by the sensor 206 , and in response, the controller 202 may operate the valve 208 and the user interface 204 . In some embodiments, the controller 202 may determine that the valve 208 should be in the open position in response to the signal received from the sensor 206 .
- the controller 202 may transmit a signal to the valve 208 to cause the valve 208 to actuate and move from the metering or the closed position to the open position. If the valve 208 is positioned in the open position, fluid may flow from the fluid reservoir 210 into the sealed therapeutic environment through the valve 208 , the tube 124 , and the fluid interface 120 .
- the controller 202 may also generate and send a signal to the user interface 204 in response to the signal from the sensor 206 .
- the controller 202 may receive a signal from the sensor 206 corresponding to a particular pressure in the fluid interface 120 .
- the controller 202 may generate and send a signal to the user interface 204 .
- the user interface 204 may receive the signal and, in response, provide a visual or auditory output that may be understood by the external environment.
- the user interface 204 may be an LCD.
- the user interface 204 may receive a signal corresponding to a particular pressure in the fluid interface 120 from the controller 202 .
- the user interface 204 may display the signal on the LCD as a numerical representation of the particular pressure at the fluid interface 120 .
- the controller 202 may include operational instructions permitting the controller 202 to operate the valve 208 to provide instillation therapy.
- the controller 202 may operate the valve 208 in a constant mode.
- the fluid source 118 may deliver fluids to the fluid interface 120 without adjustment in response to conditions external to the fluid source 118 .
- the controller 202 may receive a signal from the user interface 204 that corresponds to a selection of the constant mode.
- the controller 202 may send a signal to the valve 208 , placing the valve 208 in the open position. Fluid may flow freely from the fluid reservoir 210 to the fluid interface 120 .
- the controller 202 may receive a signal from the user interface 204 that corresponds to a selection of the constant mode at a selected flow rate. In response, the controller 202 may send a signal to the valve 208 instructing the valve 208 to move to a metering position corresponding to the selected flow rate. Fluid may flow from the fluid reservoir 210 to the fluid interface 120 at the selected flow rate.
- the controller 202 may operate the valve 208 in an intermittent mode.
- the fluid source 118 may deliver fluid to the tissue site 114 in discrete time periods independent of conditions external to the fluid source 118 .
- the fluid source 118 may provide fluids for a period of one minute followed by a period of one minute where the fluid source 118 provides no fluids.
- the controller 202 may receive a signal from the user interface 204 corresponding to a selection of the intermittent mode.
- the controller 202 may include pre-determined time periods for a duration of fluid delivery and an interval between fluid delivery for the intermittent mode.
- the signal from the user interface 204 may also provide a duration of fluid delivery and a duration of no delivery.
- the controller 202 may send a signal to the valve 208 to move the valve 208 to the open position, providing fluids and initiating the duration of fluid delivery.
- the controller 202 may send a signal to the valve 208 to move the valve 208 to the closed position, blocking fluid flow and initiating the interval between fluid delivery.
- the controller 202 may send a signal to the valve 208 to move the valve 208 to the open position, providing fluid and initiating the duration of fluid delivery. Opening and closing of the valve 208 may repeat until the instillation therapy concludes.
- the controller 202 may receive a signal from the user interface 204 corresponding to a selection of the intermittent mode and a selected flow rate.
- the controller 202 may send a signal to the valve 208 to move the valve to a metering position corresponding to the selected flow rate during the duration of fluid delivery.
- the controller 202 may operate the instillation pump 212 to control the delivery of fluids during the duration of fluid delivery and the interval between fluid delivery.
- the controller 202 may monitor the flow rate through the valve 208 with the flow meter 209 .
- the controller 202 may operate the valve 208 in response to a total volume of fluid flow through the valve 208 .
- the controller 202 may operate the valve 208 , placing the valve 208 in an open position.
- the controller 202 may monitor the flow rate with the flow meter 209 , determining the total volume of fluid delivered while the valve 208 is in the open position. If the total volume of fluid delivered reaches a predetermined total volume of fluid to be delivered, also referred to as a dosage of fluid, the controller 202 may operate the valve 208 , moving the valve 208 to the closed position.
- the controller 202 may operate the valve 208 in a dynamic mode.
- the controller 202 may coordinate the delivery of instillation fluid with the delivery of reduced pressure by a reduced-pressure source.
- the controller 202 may open the valve 208 when reduced pressure is still present in the sealed therapeutic environment 103 , which draws fluid from the fluid reservoir 210 , through the valve 208 and into the sealed therapeutic environment 103 .
- Using the reduced pressure in a sealed therapeutic environment to draw fluid from the fluid reservoir 210 may simultaneously decrease the reduced pressure in the sealed therapeutic environment 103 .
- the rate of fluid flow from the fluid reservoir 210 may also slow down.
- the controller 202 may monitor the volume of fluid flow through the valve 208 with the flow meter 209 . If a predetermined dosage of fluid has been delivered prior to the sealed therapeutic environment 103 reaching ambient pressure, the controller 202 may close the valve 208 .
- the fluid source 118 may provide fluids to the fluid interface 120 in response to operation of the reduced-pressure therapy source 104 .
- the controller 202 may be programmed to open the valve 208 in response to a particular pressure that may be detected by the sensor 206 .
- the particular pressure may also be referred to as a trigger pressure (P t ).
- P t trigger pressure
- the controller 202 may open the valve 208 in response.
- the controller 202 may position the valve 208 in a metering position in response to the trigger pressure (P t ), permitting fluid flow at predefined flow rates.
- FIG. 5 is a graphical representation of the operation of the reduced-pressure therapy system 101 that may be associated with some embodiments.
- the y-axis represents the operating state of the reduced-pressure therapy system 101 , which may be either in an “on-state” or an “off-state,” and the x-axis represents time.
- FIG. 6A is a graphical representation of a pressure profile 301 (P s ) of the sealed therapeutic environment 103 as measured at the sensor 206 that may be associated with some embodiments.
- P s pressure profile 301
- the y-axis represents the absolute value of the reduced pressure measured by the sensor 206 at the fluid interface 120
- the x-axis represents time.
- the reduced pressure measured at the fluid interface 120 may be representative of the reduced pressure in the sealed therapeutic environment 103 formed by the tissue site 114 and the drape 108 .
- FIG. 7 is a graphical representation of the operation of the valve 208 that may be associated with some embodiments.
- the y-axis represents the position of a valve member of the valve 208 , which may be in an open position or a closed position in response to the pressure profile 301 (P s ), and the x-axis represents time.
- P s pressure profile 301
- FIG. 8 is a graphical representation of the operation of the valve 208 that may be associated with other embodiments.
- the y-axis represents the position of a valve member of the valve 208 , which may be in an open position or a closed position in response to the pressure profile 301 (P s ), and the x-axis represents time.
- FIGS. 5, 6A, 7, and 8 include a reference line 302 , a reference line 304 , a reference line 306 , a reference line 308 , a reference line 310 , a reference line 312 , and a reference line 314 .
- the reference lines 302 - 314 are positioned at the same location of the x-axis in each figure in which the reference lines appear.
- the reference lines 302 , 304 , 306 , 308 , 310 , 312 , and 314 align FIG. 5 , FIG. 6A , FIG. 7 , and FIG. 8 to relate the operation of the reduced-pressure source 104 and the fluid source 118 based on the conditions in the sealed therapeutic environment 103 .
- the reduced-pressure therapy system 101 may be operating in an intermittent mode so that reduced-pressure may be supplied to the sealed therapeutic environment 103 in discrete time increments.
- the reduced-pressure source 104 may have a time period in which the reduced-pressure source 104 is operating to provide reduced pressure, such as during “on-state.”
- the reduced-pressure source 104 may also have a time period in which the reduced-pressure source 104 is not providing reduced pressure, such as during an “off-state.”
- the on-state represents operation of a pump or other device in the reduced-pressure source 104 to provide reduced pressure to the sealed therapeutic environment 103 .
- the off-state represents a time period in which the reduced-pressure source 104 may be powered on, but it is not providing reduced-pressure to the sealed therapeutic environment 103 .
- the reduced-pressure source 104 may be turned on at the reference line 302 .
- the reduced-pressure source 104 may be turned off at the reference line 304 .
- the reduced-pressure source 104 is in an “on-state” 320 between the reference line 302 and the reference line 304 and in an “off-state” 322 between the reference line 304 and the reference line 312 .
- the reduced-pressure source 104 may be turned on at the reference line 312 .
- the reduced-pressure source 104 may be turned off at the reference line 314 .
- the reduced-pressure source 104 is in an “on-state” 324 between the reference line 312 and the reference line 314 and in an “off-state” 326 after the reference line 314 .
- the graph representing operation of the reduced-pressure source 104 forms a square wave having a duty cycle represented as the ratio between the off-state 322 and the on-state 320 .
- the off-state 322 may be twice as long as the on-state 320 , that is, a duty cycle or ratio of the off-state 322 to the on-state 320 is 2/1.
- the duty cycle may be 1/1, 3/1, 4/1, or other similar ratios.
- FIG. 6A may illustrate the pressure profile 301 (P s ) associated with the pressure at the fluid interface 120 .
- the absolute value of the pressure may range from about 0 mm Hg to about 120 mm Hg gauge pressure.
- pressure at about 0 mm Hg may be referred to as an atmospheric pressure or minimum pressure (P min ), as shown by the dashed line 329 .
- Reduced-pressure at about 120 mm Hg may be referred to as a therapy pressure.
- the therapy pressure may be set by a caregiver for a maximum pressure (P max ), as shown by the dashed line 327 .
- the pressure profile 301 (P s ) may be about 0 mm Hg.
- the pressure profile 301 (P s ) increases to a value of about 120 mm Hg during the on-state 320 .
- a slope of the pressure profile 301 (P s ) between the reference line 302 and the reference line 304 as the pressure profile 301 (P s ) increases from about 0 mm Hg to about 120 mm Hg may be referred to as a reduced-pressure ramp-up period 328 .
- the reduced-pressure ramp-up period 328 corresponds to a time interval during which the pressure profile 301 (P s ) increases within the sealed therapeutic environment 103 from an ambient pressure (P min ) at an inflection point 303 to the maximum pressure (P max ) at an inflection point 305 .
- the inflection point 303 is located at the intersection of the reference line 302 , the dashed line 329 , and pressure profile 301 (P s ).
- the inflection point 305 is located at the intersection of the pressure profile 301 (P s ) and the dashed line 327 between the reference line 302 and the reference line 304 .
- the reduced-pressure therapy system 101 may be programmed to maintain the therapy pressure (P max ) for a predetermined period of time. While the reduced-pressure therapy system 101 maintains the therapy pressure (P max ), the pressure profile 301 (P s ) may have a substantially flat slope for a reduced-pressure therapy period 330 . The reduced-pressure therapy period 330 may continue until the reduced-pressure source 104 switches to the off-state 322 at the reference line 304 . The reduced-pressure therapy period 330 may be a time interval of steady-state reduced pressure in the sealed therapeutic environment 103 . As shown, the reduced-pressure therapy period 330 may extend from the inflection point 305 to the inflection point 307 .
- the inflection point 307 is located at the intersection of the reference line 304 , the dashed line 327 , and the pressure profile 301 (P s ).
- the reduced-pressure source 104 may be operating to maintain the reduced-pressure at about the therapy pressure (P max ), for example, at about 120 mm Hg.
- the pressure profile 301 (P s ) may enter a reduced-pressure ramp-down period 332 , as shown in FIG. 6A .
- the reduced-pressure ramp-down period 332 corresponds to a time interval during which the pressure profile 301 (P s ) decreases within the sealed therapeutic environment 103 from the maximum pressure (P max ) to the minimum pressure (P min ).
- the reduced-pressure ramp-down period 332 is a portion of the pressure profile 301 (P s ) beginning at the inflection point 307 and ending at an inflection point 309 .
- the inflection point 309 is located at the intersection of the pressure profile 301 (P s ) and the dashed line 329 .
- the pressure profile 301 (P s ) may reach the trigger pressure (P t ).
- the trigger pressure (P t ) represented by the dashed line 334 . If the pressure profile 301 (P s ) reaches the trigger pressure (P t ), instillation of fluids may commence as shown by the reference line 306 .
- the trigger pressure (P t ) may be set during the manufacturing process.
- the slope of the pressure profile 301 (P s ) may remain substantially flat in a soak period 336 .
- the soak period 336 may correspond with a time interval during which there is no reduced-pressure therapy.
- the soak period 336 extends from the inflection point 309 to an inflection point 311 .
- the inflection point 311 is located at the intersection of the reference line 312 , the dashed line 329 and the pressure profile 301 (P s ).
- the reduced-pressure therapy may resume at the inflection point 311 when the reduced-pressure source 104 returns to the on-state 324 . Instillation of fluids, which commenced at the reference line 306 may continue to the reference line 308 as described below with respect to FIG. 7 .
- a second cycle may commence with the on-state 324 of the reduced-pressure source 104 initiating a reduced-pressure ramp-up period 341 and a reduced-pressure therapy period 343 .
- the second cycle may have an off-state 326 , initiating a reduced-pressure ramp-down period 345 and concluding at the end of a soak period 349 .
- the pressure profile 301 (P s ) of FIG. 6A appears to lag relative to the operation of the reduce-pressure source 104 illustrated in FIG. 5 .
- the lag may occur due to a period of time required for the pressure in the sealed therapeutic environment 103 to respond to the operation of the reduced-pressure source 104 .
- the pressure profile 301 (P s ) of FIG. 6A may not lag the operation of the reduced-pressure source 104 .
- the dynamic mode of the instillation therapy system 116 and the fluid source 118 may be configured to operate in coordination with the operation of the reduced-pressure therapy system 101 and the reduced-pressure source 104 .
- the controller 202 may know the pressure profile 301 (P s ) and the trigger pressure (P t ) as illustrated in FIG. 6A .
- the controller 202 may determine the pressure profile 301 (P s ) and the trigger pressure (P t ) in a training mode.
- a caregiver may provide the pressure profile 301 (P s ) and the trigger pressure (P t ) through the user interface 204 .
- the controller 202 may monitor the pressure profile 301 (P s ) through the sensor 206 to provide instillation therapy. In some embodiments, the controller 202 may close the valve 208 until the pressure profile 301 (P s ) reaches the trigger pressure (P t ) following the reduced-pressure therapy period 330 . When the pressure profile 301 (P s ) reaches the trigger pressure (P t ) the controller 202 may open the valve 208 , as shown by reference line 306 . The controller 202 may then monitor the fluid flow through the valve 208 with the flow meter 209 . When the dosage has passed through the valve 208 , the controller 202 may close the valve 208 as shown at the reference line 308 .
- the dosage of fluid may remain within the sealed therapeutic environment 103 until the reduced-pressure ramp-up period 341 begins at the inflection point 309 .
- the on-state 324 of the reduced-pressure source 104 causes the pressure profile 301 (P s ) to increase, the fluid delivered during the instillation of fluids may be removed through the tube 109 to the container 112 .
- the flow rate through the valve 208 may not be sufficient to deliver the dosage of fluid prior to the repetition of the duty cycle of the reduced-pressure source 104 .
- the controller 202 may close the valve 208 prior to the repetition of the duty cycle of the reduced-pressure source 104 . For example, if the valve 208 is still open, the controller 202 may close the valve 208 at the reference line 312 . If the dosage of fluid is not fully delivered based on the initial trigger pressure (P t ), the controller 202 may adjust the trigger pressure (P t ) to increase the time for fluid flow.
- the controller 202 may reset the trigger pressure (P t ) to 80 mm Hg reduced pressure as indicated by the dashed line 334 a .
- the pressure profile 301 (P s ) reaches the trigger pressure (P t ) 334 a sooner than the trigger pressure (P t ) 334 .
- the controller 202 may open the valve 208 sooner as indicated by the reference line 310 , increasing the dosage period. In this manner, the controller 202 may adjust instillation to provide a complete dosage of fluid to the sealed therapeutic environment 103 .
- FIG. 6B is a graphical representation of the pressure profile 301 (P s ) of the sealed therapeutic environment 103 that may be associated with some embodiments.
- the y-axis represents the absolute value of the reduced pressure measured by the sensor 206 at the fluid interface 120
- the x-axis represents time.
- the controller 202 may operate in a training mode to determine the pressure profile 301 (P s ) and the duty cycle of the reduced-pressure source 104 . In the training mode, the controller 202 may send a signal to the valve 208 to move the valve 208 to the closed position. The controller 202 may monitor a signal received from the sensor 206 .
- the senor 206 may send a continuing signal that corresponds to an instantaneous pressure in the sealed therapeutic environment 103 .
- An instantaneous pressure may refer to a pressure at the moment at which the pressure is measured.
- the signal sent by the sensor 206 may reflect the pressure profile 301 (P s ) displayed graphically in FIG. 6B .
- the controller 202 may monitor the signal from the sensor 206 for at least one duty cycle of the reduced-pressure source 104 .
- the controller 202 may store the signal received from the sensor 206 at the initiation of the dynamic mode.
- the controller 202 may monitor the signal from the sensor 206 and compare pressures to determine the pressure profile 301 (P s ). For example, the controller 202 may record a reduced pressure received from the sensor 206 at a first instant in time, such as a time 402 . The controller 202 may then record a reduced pressure received from the sensor 206 at a second instant in time, such as a time 404 . The controller 202 may compare the reduced pressure at the time 402 and the time 404 . If the reduced pressure at the time 404 is greater than the reduced pressure at the time 402 , the controller 202 may store the reduced pressure at time 404 as the maximum reduced pressure (P max ).
- P max maximum reduced pressure
- the reduced pressure at the time 404 may then be compared to a reduced pressure at a third instant in time, for example, a time 406 .
- the process may repeat until a reduced pressure at a later instant in time is not greater than the reduced pressure at the previous instant in time. If a subsequent reduced pressure is greater than an immediately prior reduced pressure, the controller 202 may determine that the pressure profile 301 (P s ) is in the reduced-pressure ramp-up period 328 of FIG. 6B . In some embodiments, comparisons between pressures may occur at multiple instances between each time shown.
- the controller 202 may determine that the pressure profile 301 (P s ) is in the reduced-pressure therapy period 330 or the soak period 336 .
- the reduced pressure at the time 406 and the time 408 may then be compared to the maximum reduced pressure (P max ), and if the reduced pressure at the time 406 and the time 408 is about the same as the maximum reduced pressure (P max ), the controller 202 may determine that the reduced pressure profile 301 (P s ) is in the reduced-pressure therapy period 330 .
- the controller 202 may store the reduced pressure at the time 410 as the minimum reduced pressure (P min ).
- the reduced pressure at the time 410 may then be compared to a reduced pressure at a third instant in time, repeating the process until a reduced pressure at a later instant in time is not less than the reduced pressure at the previous instant in time. If a subsequent reduced pressure is less than an immediately prior reduced pressure, such as at the time 410 and a time 412 , the controller 202 may determine that the pressure profile 301 (P s ) is in the reduced-pressure ramp-down period 332 of FIG. 6B .
- the controller 202 may determine that the pressure profile 301 (P s ) is in the reduced-pressure therapy period 330 or the soak period 336 .
- the reduced pressure at the time 414 and the time 416 may then be compared to the minimum reduced pressure (P min ), and if the reduced pressure at the time 414 and the time 416 is about the same as the minimum reduced pressure (P min ), the controller 202 may determine that the pressure profile 301 (P s ) is in the soak period 336 of FIG. 6B .
- the controller 202 may continue to monitor the signal from the sensor 206 , following the process previously described. If the controller 202 determines that the pressure profile 301 (P s ) is repeating, for example, the controller 202 repeatedly identifies the same maximum reduced pressure (P max ) and minimum reduced pressure (P min ) at about the same time intervals, the controller 202 may exit the training mode.
- the controller 202 may store the pressure profile 301 (P s ) in a memory of the controller 202 .
- the controller 202 may also store time intervals between the maximum reduced pressure (P max ) and minimum reduced pressure (P min ) to determine the on-state 320 , the on-state 324 , the off state 322 , and the off-state 326 of the reduced-pressure source 104 .
- the controller 202 may then determine one or more parameters of the reduced-pressure therapy as described above.
- the parameters may include the maximum pressure (P max ) in the sealed therapeutic environment 103 and the minimum pressure (P min ) in the sealed therapeutic environment 103 .
- the controller 202 may calculate an expected trigger pressure (P t ) based on the measured time intervals between the on-states 320 / 324 of the reduced-pressure source 104 and an expected flow rate through the valve 208 .
- the controller 202 may provide a signal to the user interface 204 so that the parameters may be displayed on the user interface 204 .
- the external environment may interact with the user interface 204 to override and replace the parameters determined from the training mode.
- the controller 202 may store an expected reduced-pressure ramp-down period 332 .
- the controller 202 may determine an expected slope of the pressure profile 301 (P s ) during the reduced-pressure ramp-down period 332 when fluid is being supplied to the sealed therapeutic environment 103 .
- the controller 202 may monitor the signal from the sensor 206 during the reduced-pressure ramp-down period 332 .
- the actual reduced-pressure ramp-down period 332 may deviate from the expected reduced-pressure ramp-down period 332 while providing a dosage of fluid.
- a deviation of the reduced-pressure ramp-down period 332 may indicate that the fluid flow through the fluid interface 120 consists of an unexpected fluid, for example a gas rather than an instillation fluid.
- the fluid reservoir 210 may be empty. If the actual reduced-pressure ramp-down period 332 deviates from the expected reduced-pressure ramp-down period 332 , the controller 202 may signal the user interface 204 to display an alarm indicating that the fluid reservoir 210 may be empty.
- FIG. 9 illustrates a flow chart 900 that depicts logical operational steps performed by, for example, the instillation therapy system 116 of FIG. 1 , which may be implemented in accordance with an embodiment.
- the system receives a signal from a user interface at block 902 .
- the controller 202 may receive a signal from the user interface 204 .
- the system may determine whether the signal represents a selection of a constant mode.
- the controller 202 may determine if the signal represents a selection of the constant mode. If the system determines that the signal represents a selection of the constant mode at block 904 (YES), the system operates in the constant mode to deliver fluids for a predetermined period of time at block 906 .
- the controller 202 may open the valve 208 , permitting fluid flow from the fluid reservoir 210 to the sealed therapeutic environment 103 .
- the system determines if the signal represents a selection of the intermittent mode. For example, the controller 202 determines if the signal represents a selection of the intermittent mode. If the system determines that the signal represents a selection of the intermittent mode at block 908 (YES), the system operates in the intermittent mode such that a predetermined number of dosages may be delivered to the sealed therapeutic environment 103 over a predetermined period of time at block 909 . If the system determines that the signal does not represent a selection of the intermittent mode at block 908 (NO), the system determines if the signal represents a selection of the dynamic mode at block 910 .
- the system determines the signal represents a selection of the dynamic mode at block 910 (YES)
- the system operates in the training mode at block 912 after which the system operates in the dynamic mode to deliver fluids at block 914 for a predetermined period of time.
- the controller 202 may operate in the training mode and then the controller 202 may deliver fluids in accordance with the pressure profile 301 (P s ) determined in the training mode of block 912 .
- FIG. 10 illustrates a flow chart 1000 that depicts logical operational steps performed by, for example, the instillation therapy system 116 of FIG. 1 during the intermittent mode, which may be implemented in accordance with an embodiment.
- the system determines if the system received a selection of a duration of fluid delivery at block 1002 .
- the controller 202 may determine if the user interface 204 received a selection of a duration of fluid delivery. If the system determines that no duration of fluid delivery was selected at block 1002 , the system delivers fluids for a pre-determined duration of fluid delivery at block 1004 .
- the controller 202 may open the valve 208 for a predetermined duration of fluid delivery, such as one minute.
- the system stops delivering fluids for a predetermined interval between fluid delivery at block 1006 .
- the controller 202 may close the valve 208 for a predetermined interval between fluid delivery, such as 1 minute.
- the system determines whether a predetermined number of on-off cycles has occurred at block 1007 . If a predetermined number of on-off cycles has not occurred at block 1007 (NO), the system repeats beginning at block 1004 . If a predetermined number of on-off cycles has occurred at block 1007 (YES), the intermittent mode ends.
- the system determines if an interval between fluid delivery was selected at block 1008 . If the system determines that an interval between fluid delivery was selected at block 1008 (YES), the system delivers fluids for the selected duration of fluid delivery at block 1010 and stops delivering fluids for the interval between fluid delivery at block 1012 . For example, the controller 202 may open the valve 208 for a selected duration of fluid delivery received through the user interface 204 , such as two minutes and the controller 202 may close the valve 208 for a selected interval between fluid delivery, such as three minutes. The system then determines whether a predetermined number of on-off cycles has occurred at block 1014 . If a predetermined number of on-off cycles has not occurred at block 1014 (NO), the system repeats beginning at block 1010 . If a predetermined number of on-off cycles has occurred at block 1014 (YES), the intermittent mode ends.
- the system determines that no interval between fluid delivery was selected at block 1008 (NO)
- the system delivers fluids for the selected duration of fluid delivery at block 1016 and stops delivering fluids for a predetermined interval between fluid delivery at block 1018 .
- the controller 202 may open the valve 208 for a selected duration of fluid delivery received through the user interface 204 , such as two minutes, and the controller 202 may close the valve 208 for a predetermined interval between fluid delivery, such as two minutes.
- the system determines whether a predetermined number of on-off cycles has occurred at block 1020 . If a predetermined number of on-off cycles has not occurred at block 1020 (NO), the system repeats beginning at block 1016 . If a predetermined number of on-off cycles has occurred at block 1020 (YES), the intermittent mode ends.
- FIG. 11 illustrates a flow chart 1100 that depicts logical operational steps performed by, for example, the instillation therapy system 116 of FIG. 1 during the training mode, which may be implemented in accordance with an embodiment.
- the system closes a valve at block 1102 .
- the controller 202 may close the valve 208 .
- the system monitors the pressure at the tissue site at block 1104 .
- the controller 202 monitors the signal representing the pressure from the sensor 206 .
- the system determines a cyclical pressure profile at the tissue site at block 1106 .
- the controller 202 may determine the pressure profile 301 .
- the system may determine a maximum pressure, a minimum pressure, and the time intervals for the on period and the off period of the duty cycle of the reduced-pressure source at block 1108 .
- the controller 202 may determine a maximum pressure (P max ), a minimum pressure (P min ), and the time interval of the on-states 320 / 324 and the off-states 322 / 326 of the reduced-pressure source 104 .
- FIG. 12 illustrates a flow chart 1200 that depicts logical operational steps performed by, for example, the instillation therapy system 116 of FIG. 1 during fluid delivery in the dynamic mode, which may be implemented in accordance with an embodiment.
- the system monitors the pressure at the tissue site at block 1202 .
- the controller 202 monitors the signal from the sensor 206 representing the pressure in the sealed therapeutic environment 103 .
- the system determines if the trigger pressure has been reached at block 1204 .
- the controller 202 may determine if the trigger pressure 334 (P t ) has been reached by the pressure profile 301 (P s ). If the system determines that the trigger pressure has not been reached at block 1204 (NO), the system continues to monitor the pressure at the tissue site.
- the system delivers fluids at block 1206 .
- the controller 202 opens the valve 208 to permit fluid flow to the sealed therapeutic environment 103 .
- the system monitors fluid flow at block 1208 .
- the controller 202 monitors the signal from the flow meter 209 representing the fluid flow through the valve 208 .
- the system determines if a full fluid dosage has been delivered at block 1209 .
- the controller 202 determines if the full dosage of fluid has passed through the valve 208 .
- the system determines whether the reduced-pressure source is entering an on period at block 1210 . For example, the controller 202 may monitor how long the reduced-pressure source 104 has been in the off-state 322 to determine if the reduced-pressure source 104 is about to enter the on-state 324 . If the system determines that the reduced-pressure source is not entering an on-state at block 1210 (NO), the system continues delivering fluids at block 1206 . If the system determines that the reduced-pressure source is entering an on-state at block 1210 (YES), the system increments the trigger pressure at block 1211 , and the system stops delivering fluids at block 1212 . For example, the controller 202 may adjust the trigger pressure to begin fluid delivery at a higher reduced pressure and close the valve 208 .
- the system stops delivering fluids at block 1212 .
- the controller 202 may close the valve 208 , stopping fluid delivery.
- the system determines whether a predetermined number of on-off cycles of fluid delivery has been completed at block 1214 . If the system determines that a predetermined number of on-off cycles of fluid delivery has been completed at block 1214 (YES), the process ends. If the system determines that a predetermined number of on-off cycles of fluid delivery has not been completed at block 1214 (NO), the system repeats beginning at block 1202 .
- FIG. 13 illustrates a flow chart 1300 that depicts logical operational steps performed by, for example, the instillation therapy system 116 of FIG. 1 during fluid delivery, which may be implemented in accordance with an embodiment.
- the instillation therapy system 116 may determine if the fluid reservoir 210 is empty.
- the system monitors the pressure at the tissue site at block 1302 .
- the controller 202 monitors the signal from the sensor 206 representing the pressure in the sealed therapeutic environment 103 .
- the system determines if a reduced-pressure ramp-down period is the expected reduced-pressure ramp-down period at block 1304 .
- the controller 202 may determine if a reduced-pressure ramp-down period is the expected reduced-pressure ramp-down period 332 .
- the system determines that the reduced-pressure ramp-down period is the expected reduced-pressure ramp-down period at block 1304 (YES). If the system determines that the reduced-pressure ramp-down period is not the expected reduced-pressure ramp-down period 332 , the system indicates an empty fluid reservoir at block 1306 and ends. For example, the controller 202 may activate an alarm on the user interface 204 indicating an empty fluid reservoir 210 .
- the instillation therapy system may provide a combined reduced-pressure therapy and instillation therapy system that may be simple to set-up.
- the instillation therapy system may also provide an instillation system that may be used with an independent reduced-pressure system that may be capable of intermittent therapy.
- the instillation therapy system may also use the reduced-pressure source as the mechanism to draw the fluid to the sealed therapeutic environment, allowing the instillation therapy system to use simpler components.
- the instillation therapy system may also overcome a head pressure differential.
- the instillation therapy system may provide feedback on critical parameters related to the performance of a reduced-pressure source regarding the level of reduced-pressure delivered to a sealed therapeutic environment.
- the instillation therapy system may be configured manually, or through a training mode.
- the instillation therapy system can also deliver fluid in sync with an intermittent reduced-pressure cycle or in a continuous manner or variations in between.
Landscapes
- Health & Medical Sciences (AREA)
- Heart & Thoracic Surgery (AREA)
- Engineering & Computer Science (AREA)
- Public Health (AREA)
- Veterinary Medicine (AREA)
- Biomedical Technology (AREA)
- Life Sciences & Earth Sciences (AREA)
- Animal Behavior & Ethology (AREA)
- General Health & Medical Sciences (AREA)
- Hematology (AREA)
- Anesthesiology (AREA)
- Vascular Medicine (AREA)
- Pulmonology (AREA)
- Physics & Mathematics (AREA)
- Fluid Mechanics (AREA)
- Oral & Maxillofacial Surgery (AREA)
- Surgery (AREA)
- Dermatology (AREA)
- Medical Informatics (AREA)
- Media Introduction/Drainage Providing Device (AREA)
Abstract
Description
Claims (3)
Priority Applications (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US14/561,718 US9907940B2 (en) | 2013-12-18 | 2014-12-05 | Autonomous fluid instillation system and method with tissue site pressure monitoring |
US15/874,749 US11266821B2 (en) | 2013-12-18 | 2018-01-18 | Autonomous fluid instillation system and method with tissue site pressure monitoring |
US17/587,395 US20220152370A1 (en) | 2013-12-18 | 2022-01-28 | Autonomous fluid instillation system and method with tissue site pressure monitoring |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US201361917773P | 2013-12-18 | 2013-12-18 | |
US14/561,718 US9907940B2 (en) | 2013-12-18 | 2014-12-05 | Autonomous fluid instillation system and method with tissue site pressure monitoring |
Related Child Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US15/874,749 Continuation US11266821B2 (en) | 2013-12-18 | 2018-01-18 | Autonomous fluid instillation system and method with tissue site pressure monitoring |
Publications (2)
Publication Number | Publication Date |
---|---|
US20150165182A1 US20150165182A1 (en) | 2015-06-18 |
US9907940B2 true US9907940B2 (en) | 2018-03-06 |
Family
ID=52144914
Family Applications (3)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US14/561,718 Active 2036-05-31 US9907940B2 (en) | 2013-12-18 | 2014-12-05 | Autonomous fluid instillation system and method with tissue site pressure monitoring |
US15/874,749 Active 2036-10-29 US11266821B2 (en) | 2013-12-18 | 2018-01-18 | Autonomous fluid instillation system and method with tissue site pressure monitoring |
US17/587,395 Pending US20220152370A1 (en) | 2013-12-18 | 2022-01-28 | Autonomous fluid instillation system and method with tissue site pressure monitoring |
Family Applications After (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US15/874,749 Active 2036-10-29 US11266821B2 (en) | 2013-12-18 | 2018-01-18 | Autonomous fluid instillation system and method with tissue site pressure monitoring |
US17/587,395 Pending US20220152370A1 (en) | 2013-12-18 | 2022-01-28 | Autonomous fluid instillation system and method with tissue site pressure monitoring |
Country Status (3)
Country | Link |
---|---|
US (3) | US9907940B2 (en) |
EP (4) | EP3235526B1 (en) |
WO (1) | WO2015094724A1 (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20210001022A1 (en) * | 2017-07-29 | 2021-01-07 | Edward D. Lin | Apparatus and methods for pressure management within a wound chamber |
US11896756B2 (en) | 2020-03-03 | 2024-02-13 | Deroyal Industries, Inc. | Negative pressure wound therapy instillation system |
Families Citing this family (30)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
GB0409446D0 (en) | 2004-04-28 | 2004-06-02 | Smith & Nephew | Apparatus |
US8529548B2 (en) | 2004-04-27 | 2013-09-10 | Smith & Nephew Plc | Wound treatment apparatus and method |
AU2014266943B2 (en) | 2013-05-10 | 2018-03-01 | Smith & Nephew Plc | Fluidic connector for irrigation and aspiration of wounds |
JP6725528B2 (en) | 2014-12-22 | 2020-07-22 | スミス アンド ネフュー ピーエルシーSmith & Nephew Public Limited Company | Device and method for negative pressure wound therapy |
EP3377130B1 (en) | 2015-11-17 | 2019-04-24 | KCI Licensing, Inc. | Ambulatory therapy system incorporating activity and environmental sensing capability |
JP1586116S (en) | 2016-02-29 | 2017-09-19 | ||
WO2017213752A1 (en) * | 2016-06-06 | 2017-12-14 | Kci Licensing, Inc. | Pressure sensing dressing interface |
CN106236535B (en) * | 2016-08-31 | 2019-02-26 | 合肥京东方光电科技有限公司 | A kind of sha-syndrome scraping plate |
CA3046127A1 (en) | 2017-01-10 | 2018-07-19 | Medela Holding Ag | Appliance and method for wound therapy by means of negative pressure and delivery of a substance |
CN110382013B (en) * | 2017-03-06 | 2022-08-30 | 3M创新知识产权公司 | System and method for improving battery life for portable negative pressure therapy through hysteresis control |
EP3595736A1 (en) * | 2017-03-15 | 2020-01-22 | Smith & Nephew, Inc | Pressure control in negative pressure wound therapy systems |
EP3743127A1 (en) * | 2018-01-26 | 2020-12-02 | Westfälische Wilhelms-Universität Münster | Combination of a wound-rinsing solution and cold plasma for the treatment of wounds |
EP4331481A3 (en) * | 2018-03-29 | 2024-04-03 | 3M Innovative Properties Co. | Wound therapy system with wound volume estimation |
WO2019226454A1 (en) * | 2018-05-22 | 2019-11-28 | Kci Licensing, Inc. | Systems and methods for managing pneumatic pathways in integrated multilayer wound dressings |
US11701264B2 (en) | 2018-06-27 | 2023-07-18 | Kci Licensing, Inc. | Wound therapy system with wound volume estimation using geometric approximation |
US11628094B2 (en) * | 2018-06-27 | 2023-04-18 | Kci Licensing, Inc. | Wound dressing for wound volume estimation |
EP3823685B1 (en) * | 2018-07-16 | 2023-03-15 | KCI Licensing, Inc. | Wound therapy system with conduit blockage detection |
WO2020018300A1 (en) * | 2018-07-16 | 2020-01-23 | Kci Licensing, Inc. | Fluid instillation apparatus for use with negative-pressure system incorporating wireless therapy monitoring |
WO2020040816A1 (en) * | 2018-08-21 | 2020-02-27 | Kci Licensing, Inc. | System and method for utilizing pressure decay to determine available fluid capacity in a negative pressure dressing |
EP3873551A1 (en) * | 2018-11-02 | 2021-09-08 | KCI Licensing, Inc. | Wound therapy tubeset system for wound volume estimation |
GB2579368B (en) * | 2018-11-29 | 2022-11-09 | Nexa Medical Ltd | Wound-dressing conditioning device |
US20220096731A1 (en) * | 2019-01-28 | 2022-03-31 | Kci Licensing, Inc. | Control algorithm for negative pressure wound therapy devices |
EP3920991A1 (en) * | 2019-02-06 | 2021-12-15 | KCI Licensing, Inc. | Wound therapy system with internal alternating orifice |
EP3946492A1 (en) * | 2019-03-27 | 2022-02-09 | KCI Licensing, Inc. | Wound therapy system with wound volume estimation |
US11471573B2 (en) * | 2019-03-27 | 2022-10-18 | Kci Licensing, Inc. | Wound therapy system with wound volume estimation |
US11925746B2 (en) * | 2019-05-07 | 2024-03-12 | 3M Innovative Properties Company | Negative pressure wound therapy system with dynamic fluid delivery |
CN110101932A (en) * | 2019-05-29 | 2019-08-09 | 王洪芬 | One kind being directed to obstetrics and adds birth canal double-purpose care device |
EP4017551A1 (en) * | 2019-08-20 | 2022-06-29 | KCI Licensing, Inc. | System and method to clear conduits of fluids after instillation to a wound |
EP3878486A1 (en) | 2020-03-13 | 2021-09-15 | Medela Holding AG | Device for vacuum treatment and instillation of wounds |
WO2022170163A1 (en) * | 2021-02-07 | 2022-08-11 | Life Sciences Llc | Apparatus and method for wound care device |
Citations (131)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US1355846A (en) | 1920-02-06 | 1920-10-19 | David A Rannells | Medical appliance |
US2547758A (en) | 1949-01-05 | 1951-04-03 | Wilmer B Keeling | Instrument for treating the male urethra |
US2632443A (en) | 1949-04-18 | 1953-03-24 | Eleanor P Lesher | Surgical dressing |
GB692578A (en) | 1949-09-13 | 1953-06-10 | Minnesota Mining & Mfg | Improvements in or relating to drape sheets for surgical use |
US2682873A (en) | 1952-07-30 | 1954-07-06 | Johnson & Johnson | General purpose protective dressing |
US2910763A (en) | 1955-08-17 | 1959-11-03 | Du Pont | Felt-like products |
US2969057A (en) | 1957-11-04 | 1961-01-24 | Brady Co W H | Nematodic swab |
US3066672A (en) | 1960-09-27 | 1962-12-04 | Jr William H Crosby | Method and apparatus for serial sampling of intestinal juice |
US3367332A (en) | 1965-08-27 | 1968-02-06 | Gen Electric | Product and process for establishing a sterile area of skin |
US3520300A (en) | 1967-03-15 | 1970-07-14 | Amp Inc | Surgical sponge and suction device |
US3568675A (en) | 1968-08-30 | 1971-03-09 | Clyde B Harvey | Fistula and penetrating wound dressing |
US3648692A (en) | 1970-12-07 | 1972-03-14 | Parke Davis & Co | Medical-surgical dressing for burns and the like |
US3682180A (en) | 1970-06-08 | 1972-08-08 | Coilform Co Inc | Drain clip for surgical drain |
US3826254A (en) | 1973-02-26 | 1974-07-30 | Verco Ind | Needle or catheter retaining appliance |
DE2640413A1 (en) | 1976-09-08 | 1978-03-09 | Wolf Gmbh Richard | CATHETER MONITORING DEVICE |
US4080970A (en) | 1976-11-17 | 1978-03-28 | Miller Thomas J | Post-operative combination dressing and internal drain tube with external shield and tube connector |
US4096853A (en) | 1975-06-21 | 1978-06-27 | Hoechst Aktiengesellschaft | Device for the introduction of contrast medium into an anus praeter |
US4139004A (en) | 1977-02-17 | 1979-02-13 | Gonzalez Jr Harry | Bandage apparatus for treating burns |
US4165748A (en) | 1977-11-07 | 1979-08-28 | Johnson Melissa C | Catheter tube holder |
US4184510A (en) | 1977-03-15 | 1980-01-22 | Fibra-Sonics, Inc. | Valued device for controlling vacuum in surgery |
WO1980002182A1 (en) | 1979-04-06 | 1980-10-16 | J Moss | Portable suction device for collecting fluids from a closed wound |
US4233969A (en) | 1976-11-11 | 1980-11-18 | Lock Peter M | Wound dressing materials |
US4245630A (en) | 1976-10-08 | 1981-01-20 | T. J. Smith & Nephew, Ltd. | Tearable composite strip of materials |
US4256109A (en) | 1978-07-10 | 1981-03-17 | Nichols Robert L | Shut off valve for medical suction apparatus |
US4261363A (en) | 1979-11-09 | 1981-04-14 | C. R. Bard, Inc. | Retention clips for body fluid drains |
US4275721A (en) | 1978-11-28 | 1981-06-30 | Landstingens Inkopscentral Lic, Ekonomisk Forening | Vein catheter bandage |
US4284079A (en) | 1979-06-28 | 1981-08-18 | Adair Edwin Lloyd | Method for applying a male incontinence device |
US4297995A (en) | 1980-06-03 | 1981-11-03 | Key Pharmaceuticals, Inc. | Bandage containing attachment post |
US4333468A (en) | 1980-08-18 | 1982-06-08 | Geist Robert W | Mesentery tube holder apparatus |
US4373519A (en) | 1981-06-26 | 1983-02-15 | Minnesota Mining And Manufacturing Company | Composite wound dressing |
US4382441A (en) | 1978-12-06 | 1983-05-10 | Svedman Paul | Device for treating tissues, for example skin |
US4392858A (en) | 1981-07-16 | 1983-07-12 | Sherwood Medical Company | Wound drainage device |
US4392853A (en) | 1981-03-16 | 1983-07-12 | Rudolph Muto | Sterile assembly for protecting and fastening an indwelling device |
US4419097A (en) | 1981-07-31 | 1983-12-06 | Rexar Industries, Inc. | Attachment for catheter tube |
EP0100148A1 (en) | 1982-07-06 | 1984-02-08 | Dow Corning Limited | Medical-surgical dressing and a process for the production thereof |
US4465485A (en) | 1981-03-06 | 1984-08-14 | Becton, Dickinson And Company | Suction canister with unitary shut-off valve and filter features |
EP0117632A2 (en) | 1983-01-27 | 1984-09-05 | Johnson & Johnson Products Inc. | Adhesive film dressing |
US4475909A (en) | 1982-05-06 | 1984-10-09 | Eisenberg Melvin I | Male urinary device and method for applying the device |
US4480638A (en) | 1980-03-11 | 1984-11-06 | Eduard Schmid | Cushion for holding an element of grafted skin |
US4525374A (en) | 1984-02-27 | 1985-06-25 | Manresa, Inc. | Treating hydrophobic filters to render them hydrophilic |
US4525166A (en) | 1981-11-21 | 1985-06-25 | Intermedicat Gmbh | Rolled flexible medical suction drainage device |
US4540412A (en) | 1983-07-14 | 1985-09-10 | The Kendall Company | Device for moist heat therapy |
US4543100A (en) | 1983-11-01 | 1985-09-24 | Brodsky Stuart A | Catheter and drain tube retainer |
US4548202A (en) | 1983-06-20 | 1985-10-22 | Ethicon, Inc. | Mesh tissue fasteners |
US4551139A (en) | 1982-02-08 | 1985-11-05 | Marion Laboratories, Inc. | Method and apparatus for burn wound treatment |
EP0161865A2 (en) | 1984-05-03 | 1985-11-21 | Smith and Nephew Associated Companies p.l.c. | Adhesive wound dressing |
US4569348A (en) | 1980-02-22 | 1986-02-11 | Velcro Usa Inc. | Catheter tube holder strap |
AU550575B2 (en) | 1981-08-07 | 1986-03-27 | Richard Christian Wright | Wound drainage device |
US4605399A (en) | 1984-12-04 | 1986-08-12 | Complex, Inc. | Transdermal infusion device |
US4608041A (en) | 1981-10-14 | 1986-08-26 | Frese Nielsen | Device for treatment of wounds in body tissue of patients by exposure to jets of gas |
US4640688A (en) | 1985-08-23 | 1987-02-03 | Mentor Corporation | Urine collection catheter |
US4655754A (en) | 1984-11-09 | 1987-04-07 | Stryker Corporation | Vacuum wound drainage system and lipids baffle therefor |
US4664662A (en) | 1984-08-02 | 1987-05-12 | Smith And Nephew Associated Companies Plc | Wound dressing |
WO1987004626A1 (en) | 1986-01-31 | 1987-08-13 | Osmond, Roger, L., W. | Suction system for wound and gastro-intestinal drainage |
US4710165A (en) | 1985-09-16 | 1987-12-01 | Mcneil Charles B | Wearable, variable rate suction/collection device |
US4733659A (en) | 1986-01-17 | 1988-03-29 | Seton Company | Foam bandage |
GB2195255A (en) | 1986-09-30 | 1988-04-07 | Vacutec Uk Limited | Method and apparatus for vacuum treatment of an epidermal surface |
US4743232A (en) | 1986-10-06 | 1988-05-10 | The Clinipad Corporation | Package assembly for plastic film bandage |
GB2197789A (en) | 1986-11-28 | 1988-06-02 | Smiths Industries Plc | Anti-foaming disinfectants used in surgical suction apparatus |
US4758220A (en) | 1985-09-26 | 1988-07-19 | Alcon Laboratories, Inc. | Surgical cassette proximity sensing and latching apparatus |
US4787888A (en) | 1987-06-01 | 1988-11-29 | University Of Connecticut | Disposable piezoelectric polymer bandage for percutaneous delivery of drugs and method for such percutaneous delivery (a) |
US4826494A (en) | 1984-11-09 | 1989-05-02 | Stryker Corporation | Vacuum wound drainage system |
US4838883A (en) | 1986-03-07 | 1989-06-13 | Nissho Corporation | Urine-collecting device |
US4840187A (en) | 1986-09-11 | 1989-06-20 | Bard Limited | Sheath applicator |
US4863449A (en) | 1987-07-06 | 1989-09-05 | Hollister Incorporated | Adhesive-lined elastic condom cathether |
US4872450A (en) | 1984-08-17 | 1989-10-10 | Austad Eric D | Wound dressing and method of forming same |
US4878901A (en) | 1986-10-10 | 1989-11-07 | Sachse Hans Ernst | Condom catheter, a urethral catheter for the prevention of ascending infections |
GB2220357A (en) | 1988-05-28 | 1990-01-10 | Smiths Industries Plc | Medico-surgical containers |
US4897081A (en) | 1984-05-25 | 1990-01-30 | Thermedics Inc. | Percutaneous access device |
US4906240A (en) | 1988-02-01 | 1990-03-06 | Matrix Medica, Inc. | Adhesive-faced porous absorbent sheet and method of making same |
US4906233A (en) | 1986-05-29 | 1990-03-06 | Terumo Kabushiki Kaisha | Method of securing a catheter body to a human skin surface |
US4919654A (en) | 1988-08-03 | 1990-04-24 | Kalt Medical Corporation | IV clamp with membrane |
CA2005436A1 (en) | 1988-12-13 | 1990-06-13 | Glenda G. Kalt | Transparent tracheostomy tube dressing |
US4941882A (en) | 1987-03-14 | 1990-07-17 | Smith And Nephew Associated Companies, P.L.C. | Adhesive dressing for retaining a cannula on the skin |
US4953565A (en) | 1986-11-26 | 1990-09-04 | Shunro Tachibana | Endermic application kits for external medicines |
WO1990010424A1 (en) | 1989-03-16 | 1990-09-20 | Smith & Nephew Plc | Absorbent devices and precursors therefor |
US4969880A (en) | 1989-04-03 | 1990-11-13 | Zamierowski David S | Wound dressing and treatment method |
US4985019A (en) | 1988-03-11 | 1991-01-15 | Michelson Gary K | X-ray marker |
GB2235877A (en) | 1989-09-18 | 1991-03-20 | Antonio Talluri | Closed wound suction apparatus |
US5037397A (en) | 1985-05-03 | 1991-08-06 | Medical Distributors, Inc. | Universal clamp |
US5086170A (en) | 1989-01-16 | 1992-02-04 | Roussel Uclaf | Process for the preparation of azabicyclo compounds |
US5092858A (en) | 1990-03-20 | 1992-03-03 | Becton, Dickinson And Company | Liquid gelling agent distributor device |
US5100396A (en) | 1989-04-03 | 1992-03-31 | Zamierowski David S | Fluidic connection system and method |
JPH04129536A (en) | 1990-09-19 | 1992-04-30 | Terumo Corp | Balance device |
US5134994A (en) | 1990-02-12 | 1992-08-04 | Say Sam L | Field aspirator in a soft pack with externally mounted container |
US5149331A (en) | 1991-05-03 | 1992-09-22 | Ariel Ferdman | Method and device for wound closure |
US5167613A (en) | 1992-03-23 | 1992-12-01 | The Kendall Company | Composite vented wound dressing |
US5176663A (en) | 1987-12-02 | 1993-01-05 | Pal Svedman | Dressing having pad with compressibility limiting elements |
WO1993009727A1 (en) | 1991-11-14 | 1993-05-27 | Wake Forest University | Method and apparatus for treating tissue damage |
US5215522A (en) | 1984-07-23 | 1993-06-01 | Ballard Medical Products | Single use medical aspirating device and method |
US5232453A (en) | 1989-07-14 | 1993-08-03 | E. R. Squibb & Sons, Inc. | Catheter holder |
US5261893A (en) | 1989-04-03 | 1993-11-16 | Zamierowski David S | Fastening system and method |
US5278100A (en) | 1991-11-08 | 1994-01-11 | Micron Technology, Inc. | Chemical vapor deposition technique for depositing titanium silicide on semiconductor wafers |
US5279550A (en) | 1991-12-19 | 1994-01-18 | Gish Biomedical, Inc. | Orthopedic autotransfusion system |
US5298015A (en) | 1989-07-11 | 1994-03-29 | Nippon Zeon Co., Ltd. | Wound dressing having a porous structure |
US5342376A (en) | 1993-05-03 | 1994-08-30 | Dermagraphics, Inc. | Inserting device for a barbed tissue connector |
US5344415A (en) | 1993-06-15 | 1994-09-06 | Deroyal Industries, Inc. | Sterile system for dressing vascular access site |
DE4306478A1 (en) | 1993-03-02 | 1994-09-08 | Wolfgang Dr Wagner | Drainage device, in particular pleural drainage device, and drainage method |
WO1994020041A1 (en) | 1993-03-09 | 1994-09-15 | Wake Forest University | Wound treatment employing reduced pressure |
US5358494A (en) | 1989-07-11 | 1994-10-25 | Svedman Paul | Irrigation dressing |
US5437651A (en) | 1993-09-01 | 1995-08-01 | Research Medical, Inc. | Medical suction apparatus |
US5437622A (en) | 1992-04-29 | 1995-08-01 | Laboratoire Hydrex (Sa) | Transparent adhesive dressing with reinforced starter cuts |
DE29504378U1 (en) | 1995-03-15 | 1995-09-14 | MTG Medizinisch, technische Gerätebau GmbH, 66299 Friedrichsthal | Electronically controlled low-vacuum pump for chest and wound drainage |
WO1996005873A1 (en) | 1994-08-22 | 1996-02-29 | Kinetic Concepts Inc. | Wound drainage equipment |
US5527293A (en) | 1989-04-03 | 1996-06-18 | Kinetic Concepts, Inc. | Fastening system and method |
US5549584A (en) | 1994-02-14 | 1996-08-27 | The Kendall Company | Apparatus for removing fluid from a wound |
US5556375A (en) | 1994-06-16 | 1996-09-17 | Hercules Incorporated | Wound dressing having a fenestrated base layer |
US5607388A (en) | 1994-06-16 | 1997-03-04 | Hercules Incorporated | Multi-purpose wound dressing |
WO1997018007A1 (en) | 1995-11-14 | 1997-05-22 | Kci Medical Limited | Portable wound treatment apparatus |
EP0880953A2 (en) | 1997-05-27 | 1998-12-02 | Fleischmann, Wilhelm, Dr. med. | Device for the application of active agents to a wound surface |
WO1999013793A1 (en) | 1997-09-12 | 1999-03-25 | Kci Medical Limited | Surgical drape and suction head for wound treatment |
US6071267A (en) | 1998-02-06 | 2000-06-06 | Kinetic Concepts, Inc. | Medical patient fluid management interface system and method |
US6135116A (en) | 1997-07-28 | 2000-10-24 | Kci Licensing, Inc. | Therapeutic method for treating ulcers |
US6241747B1 (en) | 1993-05-03 | 2001-06-05 | Quill Medical, Inc. | Barbed Bodily tissue connector |
US6287316B1 (en) | 1999-03-26 | 2001-09-11 | Ethicon, Inc. | Knitted surgical mesh |
US20020077661A1 (en) | 2000-12-20 | 2002-06-20 | Vahid Saadat | Multi-barbed device for retaining tissue in apposition and methods of use |
US20020115951A1 (en) | 2001-02-22 | 2002-08-22 | Core Products International, Inc. | Ankle brace providing upper and lower ankle adjustment |
US20020120185A1 (en) | 2000-05-26 | 2002-08-29 | Kci Licensing, Inc. | System for combined transcutaneous blood gas monitoring and vacuum assisted wound closure |
US20020143286A1 (en) | 2001-03-05 | 2002-10-03 | Kci Licensing, Inc. | Vacuum assisted wound treatment apparatus and infection identification system and method |
US6488643B1 (en) | 1998-10-08 | 2002-12-03 | Kci Licensing, Inc. | Wound healing foot wrap |
US6493568B1 (en) | 1994-07-19 | 2002-12-10 | Kci Licensing, Inc. | Patient interface system |
AU755496B2 (en) | 1997-09-12 | 2002-12-12 | Kci Licensing, Inc. | Surgical drape and suction head for wound treatment |
US20060079852A1 (en) | 2002-12-31 | 2006-04-13 | Bubb Stephen K | Externally-applied patient interface system and method |
JP4129536B2 (en) | 2000-02-24 | 2008-08-06 | ヴェネテック インターナショナル,インコーポレイテッド | Highly compatible catheter anchoring system |
US20100262078A1 (en) * | 2009-03-31 | 2010-10-14 | Smiths Medical Asd, Inc. | Systems and methods to address air, leaks and occlusions in an insulin pump system |
WO2012166428A1 (en) | 2011-05-27 | 2012-12-06 | Kci Licensing, Inc. | Systems and methods for delivering fluid to a wound therapy dressing |
US20130085462A1 (en) * | 2011-09-30 | 2013-04-04 | Kenneth Kei-ho Nip | Electrokinetic pump based wound treatment system and methods |
WO2013116158A2 (en) | 2012-02-02 | 2013-08-08 | Kci Licensing, Inc. | Systems and methods for delivering fluid to a wound therapy dressing |
WO2013117318A1 (en) | 2012-02-11 | 2013-08-15 | Paul Hartmann Ag | Wound therapy device |
US20130248446A1 (en) * | 2012-03-21 | 2013-09-26 | Gambro Lundia Ab | Extracorporeal blood treatment apparatus with multiple treatment solution reservoirs |
US20140107613A1 (en) * | 2012-10-12 | 2014-04-17 | Becton, Dickinson And Company | System and method for detecting occlusions in a medication infusion system using pulsewise pressure signals |
Family Cites Families (17)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US7846141B2 (en) | 2002-09-03 | 2010-12-07 | Bluesky Medical Group Incorporated | Reduced pressure treatment system |
GB0224986D0 (en) | 2002-10-28 | 2002-12-04 | Smith & Nephew | Apparatus |
GB0325120D0 (en) | 2003-10-28 | 2003-12-03 | Smith & Nephew | Apparatus with actives |
GB0325126D0 (en) | 2003-10-28 | 2003-12-03 | Smith & Nephew | Apparatus with heat |
US7909805B2 (en) | 2004-04-05 | 2011-03-22 | Bluesky Medical Group Incorporated | Flexible reduced pressure treatment appliance |
US8529548B2 (en) | 2004-04-27 | 2013-09-10 | Smith & Nephew Plc | Wound treatment apparatus and method |
US9408954B2 (en) * | 2007-07-02 | 2016-08-09 | Smith & Nephew Plc | Systems and methods for controlling operation of negative pressure wound therapy apparatus |
US8021347B2 (en) | 2008-07-21 | 2011-09-20 | Tyco Healthcare Group Lp | Thin film wound dressing |
WO2009137194A2 (en) * | 2008-04-01 | 2009-11-12 | Ohio Medical Corporation | Wound treatment system |
US8007481B2 (en) | 2008-07-17 | 2011-08-30 | Tyco Healthcare Group Lp | Subatmospheric pressure mechanism for wound therapy system |
AU2009251242B2 (en) * | 2008-05-30 | 2013-08-15 | Solventum Intellectual Properties Company | Super-absorbent, reduced-pressure wound dressing and systems |
US8251979B2 (en) | 2009-05-11 | 2012-08-28 | Tyco Healthcare Group Lp | Orientation independent canister for a negative pressure wound therapy device |
US8216198B2 (en) | 2009-01-09 | 2012-07-10 | Tyco Healthcare Group Lp | Canister for receiving wound exudate in a negative pressure therapy system |
KR20110102931A (en) * | 2008-12-31 | 2011-09-19 | 케이씨아이 라이센싱 인코포레이티드 | Manifolds, systems, and methods for administering reduced pressure to a subcutaneous tissue site |
FR2961713B1 (en) * | 2010-06-23 | 2012-08-10 | Millipore Corp | POCKET FOR CIRCUIT OF A BIOLOGICAL LIQUID TREATMENT FACILITY |
US9144644B2 (en) * | 2011-08-02 | 2015-09-29 | Baxter International Inc. | Infusion pump with independently controllable valves and low power operation and methods thereof |
CA2864419C (en) * | 2012-02-13 | 2020-04-28 | Integrated Healing Technologies | Multi-modal wound treatment apparatus |
-
2014
- 2014-12-05 EP EP17174147.3A patent/EP3235526B1/en active Active
- 2014-12-05 EP EP14816544.2A patent/EP3082893B8/en active Active
- 2014-12-05 WO PCT/US2014/068892 patent/WO2015094724A1/en active Application Filing
- 2014-12-05 US US14/561,718 patent/US9907940B2/en active Active
- 2014-12-05 EP EP19192925.6A patent/EP3590553B1/en active Active
- 2014-12-05 EP EP20210429.5A patent/EP3804777B1/en active Active
-
2018
- 2018-01-18 US US15/874,749 patent/US11266821B2/en active Active
-
2022
- 2022-01-28 US US17/587,395 patent/US20220152370A1/en active Pending
Patent Citations (140)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US1355846A (en) | 1920-02-06 | 1920-10-19 | David A Rannells | Medical appliance |
US2547758A (en) | 1949-01-05 | 1951-04-03 | Wilmer B Keeling | Instrument for treating the male urethra |
US2632443A (en) | 1949-04-18 | 1953-03-24 | Eleanor P Lesher | Surgical dressing |
GB692578A (en) | 1949-09-13 | 1953-06-10 | Minnesota Mining & Mfg | Improvements in or relating to drape sheets for surgical use |
US2682873A (en) | 1952-07-30 | 1954-07-06 | Johnson & Johnson | General purpose protective dressing |
US2910763A (en) | 1955-08-17 | 1959-11-03 | Du Pont | Felt-like products |
US2969057A (en) | 1957-11-04 | 1961-01-24 | Brady Co W H | Nematodic swab |
US3066672A (en) | 1960-09-27 | 1962-12-04 | Jr William H Crosby | Method and apparatus for serial sampling of intestinal juice |
US3367332A (en) | 1965-08-27 | 1968-02-06 | Gen Electric | Product and process for establishing a sterile area of skin |
US3520300A (en) | 1967-03-15 | 1970-07-14 | Amp Inc | Surgical sponge and suction device |
US3568675A (en) | 1968-08-30 | 1971-03-09 | Clyde B Harvey | Fistula and penetrating wound dressing |
US3682180A (en) | 1970-06-08 | 1972-08-08 | Coilform Co Inc | Drain clip for surgical drain |
US3648692A (en) | 1970-12-07 | 1972-03-14 | Parke Davis & Co | Medical-surgical dressing for burns and the like |
US3826254A (en) | 1973-02-26 | 1974-07-30 | Verco Ind | Needle or catheter retaining appliance |
US4096853A (en) | 1975-06-21 | 1978-06-27 | Hoechst Aktiengesellschaft | Device for the introduction of contrast medium into an anus praeter |
DE2640413A1 (en) | 1976-09-08 | 1978-03-09 | Wolf Gmbh Richard | CATHETER MONITORING DEVICE |
US4245630A (en) | 1976-10-08 | 1981-01-20 | T. J. Smith & Nephew, Ltd. | Tearable composite strip of materials |
US4233969A (en) | 1976-11-11 | 1980-11-18 | Lock Peter M | Wound dressing materials |
US4080970A (en) | 1976-11-17 | 1978-03-28 | Miller Thomas J | Post-operative combination dressing and internal drain tube with external shield and tube connector |
US4139004A (en) | 1977-02-17 | 1979-02-13 | Gonzalez Jr Harry | Bandage apparatus for treating burns |
US4184510A (en) | 1977-03-15 | 1980-01-22 | Fibra-Sonics, Inc. | Valued device for controlling vacuum in surgery |
US4165748A (en) | 1977-11-07 | 1979-08-28 | Johnson Melissa C | Catheter tube holder |
US4256109A (en) | 1978-07-10 | 1981-03-17 | Nichols Robert L | Shut off valve for medical suction apparatus |
US4275721A (en) | 1978-11-28 | 1981-06-30 | Landstingens Inkopscentral Lic, Ekonomisk Forening | Vein catheter bandage |
US4382441A (en) | 1978-12-06 | 1983-05-10 | Svedman Paul | Device for treating tissues, for example skin |
WO1980002182A1 (en) | 1979-04-06 | 1980-10-16 | J Moss | Portable suction device for collecting fluids from a closed wound |
US4284079A (en) | 1979-06-28 | 1981-08-18 | Adair Edwin Lloyd | Method for applying a male incontinence device |
US4261363A (en) | 1979-11-09 | 1981-04-14 | C. R. Bard, Inc. | Retention clips for body fluid drains |
US4569348A (en) | 1980-02-22 | 1986-02-11 | Velcro Usa Inc. | Catheter tube holder strap |
US4480638A (en) | 1980-03-11 | 1984-11-06 | Eduard Schmid | Cushion for holding an element of grafted skin |
US4297995A (en) | 1980-06-03 | 1981-11-03 | Key Pharmaceuticals, Inc. | Bandage containing attachment post |
US4333468A (en) | 1980-08-18 | 1982-06-08 | Geist Robert W | Mesentery tube holder apparatus |
US4465485A (en) | 1981-03-06 | 1984-08-14 | Becton, Dickinson And Company | Suction canister with unitary shut-off valve and filter features |
US4392853A (en) | 1981-03-16 | 1983-07-12 | Rudolph Muto | Sterile assembly for protecting and fastening an indwelling device |
US4373519A (en) | 1981-06-26 | 1983-02-15 | Minnesota Mining And Manufacturing Company | Composite wound dressing |
US4392858A (en) | 1981-07-16 | 1983-07-12 | Sherwood Medical Company | Wound drainage device |
US4419097A (en) | 1981-07-31 | 1983-12-06 | Rexar Industries, Inc. | Attachment for catheter tube |
AU550575B2 (en) | 1981-08-07 | 1986-03-27 | Richard Christian Wright | Wound drainage device |
US4608041A (en) | 1981-10-14 | 1986-08-26 | Frese Nielsen | Device for treatment of wounds in body tissue of patients by exposure to jets of gas |
US4525166A (en) | 1981-11-21 | 1985-06-25 | Intermedicat Gmbh | Rolled flexible medical suction drainage device |
US4551139A (en) | 1982-02-08 | 1985-11-05 | Marion Laboratories, Inc. | Method and apparatus for burn wound treatment |
US4475909A (en) | 1982-05-06 | 1984-10-09 | Eisenberg Melvin I | Male urinary device and method for applying the device |
EP0100148A1 (en) | 1982-07-06 | 1984-02-08 | Dow Corning Limited | Medical-surgical dressing and a process for the production thereof |
EP0117632A2 (en) | 1983-01-27 | 1984-09-05 | Johnson & Johnson Products Inc. | Adhesive film dressing |
US4548202A (en) | 1983-06-20 | 1985-10-22 | Ethicon, Inc. | Mesh tissue fasteners |
US4540412A (en) | 1983-07-14 | 1985-09-10 | The Kendall Company | Device for moist heat therapy |
US4543100A (en) | 1983-11-01 | 1985-09-24 | Brodsky Stuart A | Catheter and drain tube retainer |
US4525374A (en) | 1984-02-27 | 1985-06-25 | Manresa, Inc. | Treating hydrophobic filters to render them hydrophilic |
EP0161865A2 (en) | 1984-05-03 | 1985-11-21 | Smith and Nephew Associated Companies p.l.c. | Adhesive wound dressing |
US4897081A (en) | 1984-05-25 | 1990-01-30 | Thermedics Inc. | Percutaneous access device |
US5215522A (en) | 1984-07-23 | 1993-06-01 | Ballard Medical Products | Single use medical aspirating device and method |
US4664662A (en) | 1984-08-02 | 1987-05-12 | Smith And Nephew Associated Companies Plc | Wound dressing |
US4872450A (en) | 1984-08-17 | 1989-10-10 | Austad Eric D | Wound dressing and method of forming same |
US4655754A (en) | 1984-11-09 | 1987-04-07 | Stryker Corporation | Vacuum wound drainage system and lipids baffle therefor |
US4826494A (en) | 1984-11-09 | 1989-05-02 | Stryker Corporation | Vacuum wound drainage system |
US4605399A (en) | 1984-12-04 | 1986-08-12 | Complex, Inc. | Transdermal infusion device |
US5037397A (en) | 1985-05-03 | 1991-08-06 | Medical Distributors, Inc. | Universal clamp |
US4640688A (en) | 1985-08-23 | 1987-02-03 | Mentor Corporation | Urine collection catheter |
US4710165A (en) | 1985-09-16 | 1987-12-01 | Mcneil Charles B | Wearable, variable rate suction/collection device |
US4758220A (en) | 1985-09-26 | 1988-07-19 | Alcon Laboratories, Inc. | Surgical cassette proximity sensing and latching apparatus |
US4733659A (en) | 1986-01-17 | 1988-03-29 | Seton Company | Foam bandage |
WO1987004626A1 (en) | 1986-01-31 | 1987-08-13 | Osmond, Roger, L., W. | Suction system for wound and gastro-intestinal drainage |
US4838883A (en) | 1986-03-07 | 1989-06-13 | Nissho Corporation | Urine-collecting device |
US4906233A (en) | 1986-05-29 | 1990-03-06 | Terumo Kabushiki Kaisha | Method of securing a catheter body to a human skin surface |
US4840187A (en) | 1986-09-11 | 1989-06-20 | Bard Limited | Sheath applicator |
GB2195255A (en) | 1986-09-30 | 1988-04-07 | Vacutec Uk Limited | Method and apparatus for vacuum treatment of an epidermal surface |
US4743232A (en) | 1986-10-06 | 1988-05-10 | The Clinipad Corporation | Package assembly for plastic film bandage |
US4878901A (en) | 1986-10-10 | 1989-11-07 | Sachse Hans Ernst | Condom catheter, a urethral catheter for the prevention of ascending infections |
US4953565A (en) | 1986-11-26 | 1990-09-04 | Shunro Tachibana | Endermic application kits for external medicines |
GB2197789A (en) | 1986-11-28 | 1988-06-02 | Smiths Industries Plc | Anti-foaming disinfectants used in surgical suction apparatus |
US4941882A (en) | 1987-03-14 | 1990-07-17 | Smith And Nephew Associated Companies, P.L.C. | Adhesive dressing for retaining a cannula on the skin |
US4787888A (en) | 1987-06-01 | 1988-11-29 | University Of Connecticut | Disposable piezoelectric polymer bandage for percutaneous delivery of drugs and method for such percutaneous delivery (a) |
US4863449A (en) | 1987-07-06 | 1989-09-05 | Hollister Incorporated | Adhesive-lined elastic condom cathether |
US5176663A (en) | 1987-12-02 | 1993-01-05 | Pal Svedman | Dressing having pad with compressibility limiting elements |
US4906240A (en) | 1988-02-01 | 1990-03-06 | Matrix Medica, Inc. | Adhesive-faced porous absorbent sheet and method of making same |
US4985019A (en) | 1988-03-11 | 1991-01-15 | Michelson Gary K | X-ray marker |
GB2220357A (en) | 1988-05-28 | 1990-01-10 | Smiths Industries Plc | Medico-surgical containers |
EP0358302A2 (en) | 1988-05-28 | 1990-03-14 | Smiths Industries Public Limited Company | Medico-surgical suction container |
US4919654A (en) | 1988-08-03 | 1990-04-24 | Kalt Medical Corporation | IV clamp with membrane |
CA2005436A1 (en) | 1988-12-13 | 1990-06-13 | Glenda G. Kalt | Transparent tracheostomy tube dressing |
US5086170A (en) | 1989-01-16 | 1992-02-04 | Roussel Uclaf | Process for the preparation of azabicyclo compounds |
WO1990010424A1 (en) | 1989-03-16 | 1990-09-20 | Smith & Nephew Plc | Absorbent devices and precursors therefor |
US4969880A (en) | 1989-04-03 | 1990-11-13 | Zamierowski David S | Wound dressing and treatment method |
US5527293A (en) | 1989-04-03 | 1996-06-18 | Kinetic Concepts, Inc. | Fastening system and method |
US5100396A (en) | 1989-04-03 | 1992-03-31 | Zamierowski David S | Fluidic connection system and method |
US5261893A (en) | 1989-04-03 | 1993-11-16 | Zamierowski David S | Fastening system and method |
US5358494A (en) | 1989-07-11 | 1994-10-25 | Svedman Paul | Irrigation dressing |
US5298015A (en) | 1989-07-11 | 1994-03-29 | Nippon Zeon Co., Ltd. | Wound dressing having a porous structure |
US5232453A (en) | 1989-07-14 | 1993-08-03 | E. R. Squibb & Sons, Inc. | Catheter holder |
GB2235877A (en) | 1989-09-18 | 1991-03-20 | Antonio Talluri | Closed wound suction apparatus |
US5134994A (en) | 1990-02-12 | 1992-08-04 | Say Sam L | Field aspirator in a soft pack with externally mounted container |
US5092858A (en) | 1990-03-20 | 1992-03-03 | Becton, Dickinson And Company | Liquid gelling agent distributor device |
JPH04129536A (en) | 1990-09-19 | 1992-04-30 | Terumo Corp | Balance device |
US5149331A (en) | 1991-05-03 | 1992-09-22 | Ariel Ferdman | Method and device for wound closure |
US5278100A (en) | 1991-11-08 | 1994-01-11 | Micron Technology, Inc. | Chemical vapor deposition technique for depositing titanium silicide on semiconductor wafers |
WO1993009727A1 (en) | 1991-11-14 | 1993-05-27 | Wake Forest University | Method and apparatus for treating tissue damage |
US5636643A (en) | 1991-11-14 | 1997-06-10 | Wake Forest University | Wound treatment employing reduced pressure |
US5645081A (en) | 1991-11-14 | 1997-07-08 | Wake Forest University | Method of treating tissue damage and apparatus for same |
US5279550A (en) | 1991-12-19 | 1994-01-18 | Gish Biomedical, Inc. | Orthopedic autotransfusion system |
US5167613A (en) | 1992-03-23 | 1992-12-01 | The Kendall Company | Composite vented wound dressing |
US5437622A (en) | 1992-04-29 | 1995-08-01 | Laboratoire Hydrex (Sa) | Transparent adhesive dressing with reinforced starter cuts |
DE4306478A1 (en) | 1993-03-02 | 1994-09-08 | Wolfgang Dr Wagner | Drainage device, in particular pleural drainage device, and drainage method |
WO1994020041A1 (en) | 1993-03-09 | 1994-09-15 | Wake Forest University | Wound treatment employing reduced pressure |
US5342376A (en) | 1993-05-03 | 1994-08-30 | Dermagraphics, Inc. | Inserting device for a barbed tissue connector |
US6241747B1 (en) | 1993-05-03 | 2001-06-05 | Quill Medical, Inc. | Barbed Bodily tissue connector |
US5344415A (en) | 1993-06-15 | 1994-09-06 | Deroyal Industries, Inc. | Sterile system for dressing vascular access site |
US5437651A (en) | 1993-09-01 | 1995-08-01 | Research Medical, Inc. | Medical suction apparatus |
US5549584A (en) | 1994-02-14 | 1996-08-27 | The Kendall Company | Apparatus for removing fluid from a wound |
US5556375A (en) | 1994-06-16 | 1996-09-17 | Hercules Incorporated | Wound dressing having a fenestrated base layer |
US5607388A (en) | 1994-06-16 | 1997-03-04 | Hercules Incorporated | Multi-purpose wound dressing |
US6493568B1 (en) | 1994-07-19 | 2002-12-10 | Kci Licensing, Inc. | Patient interface system |
WO1996005873A1 (en) | 1994-08-22 | 1996-02-29 | Kinetic Concepts Inc. | Wound drainage equipment |
DE29504378U1 (en) | 1995-03-15 | 1995-09-14 | MTG Medizinisch, technische Gerätebau GmbH, 66299 Friedrichsthal | Electronically controlled low-vacuum pump for chest and wound drainage |
WO1997018007A1 (en) | 1995-11-14 | 1997-05-22 | Kci Medical Limited | Portable wound treatment apparatus |
EP0880953A2 (en) | 1997-05-27 | 1998-12-02 | Fleischmann, Wilhelm, Dr. med. | Device for the application of active agents to a wound surface |
US6135116A (en) | 1997-07-28 | 2000-10-24 | Kci Licensing, Inc. | Therapeutic method for treating ulcers |
US6814079B2 (en) | 1997-09-12 | 2004-11-09 | Kci Licensing, Inc. | Surgical drape and suction head for wound treatment |
AU755496B2 (en) | 1997-09-12 | 2002-12-12 | Kci Licensing, Inc. | Surgical drape and suction head for wound treatment |
US6345623B1 (en) | 1997-09-12 | 2002-02-12 | Keith Patrick Heaton | Surgical drape and suction head for wound treatment |
GB2329127B (en) | 1997-09-12 | 2000-08-16 | Kci Medical Ltd | Surgical drape and suction head for wound treatment |
WO1999013793A1 (en) | 1997-09-12 | 1999-03-25 | Kci Medical Limited | Surgical drape and suction head for wound treatment |
EP1018967B1 (en) | 1997-09-12 | 2004-08-18 | KCI Licensing, Inc. | Suction head for wound treatment and combination with a surgical drape |
US6553998B2 (en) | 1997-09-12 | 2003-04-29 | Kci Licensing, Inc. | Surgical drape and suction head for wound treatment |
GB2333965A (en) | 1997-09-12 | 1999-08-11 | Kci Medical Ltd | Surgical drape |
US6071267A (en) | 1998-02-06 | 2000-06-06 | Kinetic Concepts, Inc. | Medical patient fluid management interface system and method |
US6488643B1 (en) | 1998-10-08 | 2002-12-03 | Kci Licensing, Inc. | Wound healing foot wrap |
US6287316B1 (en) | 1999-03-26 | 2001-09-11 | Ethicon, Inc. | Knitted surgical mesh |
JP4129536B2 (en) | 2000-02-24 | 2008-08-06 | ヴェネテック インターナショナル,インコーポレイテッド | Highly compatible catheter anchoring system |
US20020120185A1 (en) | 2000-05-26 | 2002-08-29 | Kci Licensing, Inc. | System for combined transcutaneous blood gas monitoring and vacuum assisted wound closure |
US20020077661A1 (en) | 2000-12-20 | 2002-06-20 | Vahid Saadat | Multi-barbed device for retaining tissue in apposition and methods of use |
US20020115951A1 (en) | 2001-02-22 | 2002-08-22 | Core Products International, Inc. | Ankle brace providing upper and lower ankle adjustment |
US20020143286A1 (en) | 2001-03-05 | 2002-10-03 | Kci Licensing, Inc. | Vacuum assisted wound treatment apparatus and infection identification system and method |
US20060079852A1 (en) | 2002-12-31 | 2006-04-13 | Bubb Stephen K | Externally-applied patient interface system and method |
US20100262078A1 (en) * | 2009-03-31 | 2010-10-14 | Smiths Medical Asd, Inc. | Systems and methods to address air, leaks and occlusions in an insulin pump system |
WO2012166428A1 (en) | 2011-05-27 | 2012-12-06 | Kci Licensing, Inc. | Systems and methods for delivering fluid to a wound therapy dressing |
US20130085462A1 (en) * | 2011-09-30 | 2013-04-04 | Kenneth Kei-ho Nip | Electrokinetic pump based wound treatment system and methods |
WO2013116158A2 (en) | 2012-02-02 | 2013-08-08 | Kci Licensing, Inc. | Systems and methods for delivering fluid to a wound therapy dressing |
WO2013117318A1 (en) | 2012-02-11 | 2013-08-15 | Paul Hartmann Ag | Wound therapy device |
US20130248446A1 (en) * | 2012-03-21 | 2013-09-26 | Gambro Lundia Ab | Extracorporeal blood treatment apparatus with multiple treatment solution reservoirs |
US20140107613A1 (en) * | 2012-10-12 | 2014-04-17 | Becton, Dickinson And Company | System and method for detecting occlusions in a medication infusion system using pulsewise pressure signals |
Non-Patent Citations (43)
Title |
---|
A.A. Safronov, Dissertation Abstract, Vacuum Therapy of Trophic Ulcers of the Lower Leg with Simultaneous Autoplasty of the Skin (Central Scientific Research Institute of Traumatology and Orthopedics, Moscow, U.S.S.R. 1967) (copy and certified translation). |
Arnljots, Björn et al.: "Irrigation Treatment in Split-Thickness Skin Grafting of Intractable Leg Ulcers", Scand J. Plast Reconstr. Surg., vol. 19, 1985, pp. 211-213. |
C.E. Tennant, "The Use of Hypermia in the Postoperative Treatment of Lesions of the Extremities and Thorax," Journal of the American Medical Association 64 (1915), pp. 1548-1549. |
Chariker, Mark E., M.D., et al; "Effective Management of incisional and cutaneous fistulae with closed suction wound drainage"; Contemporary Surgery, vol. 34, Jun. 1989, pp. 59-63. |
Chinn, Steven D. et al.: "Closed Wound Suction Drainage", The Journal of Foot Surgery, vol. 24, No. 1, 1985, pp. 76-81. |
D.E. Tribble, "An Improved Sump Drain-Irrigation Device of Simple Construction," Archives of Surgery 105 (1972) pp. 511-513. |
Dattilo, Philip P., Jr., et al; "Medical Textiles: Application of an Absorbable Barbed Bi-directional Surgical Suture"; Journal of Textile and Apparel, Technology and Management, vol. 2, Issue 2, Spring 2002, pp. 1-5. |
Davydov, Yu. A., et al; "Bacteriological and Cytological Assessment of Vacuum Therapy for Purulent Wounds"; Vestnik Khirurgi, Oct. 1988, pp. 48-52, and 8 page English translation thereof. |
Davydov, Yu. A., et al; "Concepts for the Clinical-Biological Management of the Wound Process in the Treatment of Purulent Wounds by Means of Vacuum Therapy"; Vestnik Khirurgi, Jul. 7, 1980, pp. 132-136, and 8 page English translation thereof. |
Davydov, Yu. A., et al; "Vacuum Therapy in the Treatment of Purulent Lactation Mastitis"; Vestnik Khirurgi, May 14, 1986, pp. 66-70, and 9 page English translation thereof. |
Egnell Minor, Instruction Book, First Edition, 300 7502, Feb. 1975, pp. 24. |
Egnell Minor: Addition to the Users Manual Concerning Overflow Protection-Concerns all Egnell Pumps, Feb. 3, 1983, p. 1. |
Egnell Minor: Addition to the Users Manual Concerning Overflow Protection—Concerns all Egnell Pumps, Feb. 3, 1983, p. 1. |
F.E. Johnson, "An Improved Technique for Skin Graft Placement Using a Suction Drain," Surgery, Gynecology, and Obstetrics 159 (1984), pp. 584-585. |
G. {hacek over (Z)}ivadinovic, V. ukić, {hacek over (Z)}. Maksimović, . Radak, and P. Pe{hacek over (s)}ka, "Vacuum Therapy in the Treatment of Peripheral Blood Vessels," Timok Medical Journal 11 (1986), pp. 161-164 (copy and certified translation). |
George V. Letsou, MD., et al; "Stimulation of Adenylate Cyclase Activity in Cultured Endothelial Cells Subjected to Cyclic Stretch"; Journal of Cardiovascular Surgery, vol. 31, 1990, pp. 634-639. |
International Search Report and Written Opinion for PCT/US2014/068892, dated Mar. 25, 2015. |
International Search Report for PCT International Application PCT/GB95/01983; dated Nov. 23, 1995. |
James H. Blackburn, II, MD, et al; "Negative-Pressure Dressings as a Bolster for Skin Grafts"; Annals of Plastic Surgery, vol. 40, No. 5, May 1998, pp. 453-457. |
John Masters; "Reliable, Inexpensive and Simple Suction Dressings"; Letters to the Editor, British Journal of Plastic Surgery, 1998, vol. 51 (3), p. 267; Elsevier Science/The British Association of Plastic Surgeons, UK. |
K.F. Jeter, T.E. Tintle, and M. Chariker, "Managing Draining Wounds and Fistulae: New and Established Methods," Chronic Wound Care, edited by D. Krasner (Health Management Publications, Inc., King of Prussia, PA 1990), pp. 240-246. |
Kostyuchenok, B.M., et al; "Vacuum Treatment in the Surgical Management of Purulent Wounds"; Vestnik Khirurgi, Sep. 1986, pp. 18-21 and 6 page English translation thereof. |
Louis C. Argenta, MD and Michael J. Morykwas, PhD; "Vacuum-Assisted Closure: A New Method for Wound Control and Treatment: Animal Studies & Basic Foundation"; Annals of Plastic Surgery, vol. 38, No. 6, Jun. 1997; pp. 553-562. |
M. Schein, R. Saadia, J.R. Jamieson, and G.A.G. Decker, "The 'Sandwich Technique' in the Management of the Open Abdomen," British Journal of Surgery 73 (1986), pp. 369-370. |
M. Schein, R. Saadia, J.R. Jamieson, and G.A.G. Decker, "The ‘Sandwich Technique’ in the Management of the Open Abdomen," British Journal of Surgery 73 (1986), pp. 369-370. |
N.A. Bagautdinov, "Variant of External Vacuum Aspiration in the Treatment of Purulent Diseases of the Soft Tissues," Current Problems in Modern Clinical Surgery: Interdepartmental Collection, edited by V. Ye Volkov et al. (Chuvashia State University, Cheboksary, U.S.S.R. 1986);pp. 94-96 (copy and certified translation). |
Orringer, Jay, et al; "Management of Wounds in Patients with Complex Enterocutaneous Fistulas"; Surgery, Gynecology & Obstetrics, Jul. 1987, vol. 165, pp. 79-80. |
PCT International Examination and Search Report, PCT International Application PCT/GB96/02802; dated Jan. 15, 1998 & Apr. 29, 1997. |
PCT International Search Report for PCT International Application PCT/GB98/02713; dated Jan. 8, 1999. |
PCT Written Opinion, PCT International Application PCT/GB96/02802; dated Sep. 3, 1997. |
PCT Written Opinion; PCT International Application PCT/GB98/02713; dated Jun. 8, 1999. |
Rycerz et al. "V.A.C.UltaTM NPWT System Made Easy", Wounds International vol. 3, No. 3, Sep. 1, 2012, pp. 1-6. |
S.E. Greer, et al "The Use of Subatmospheric Pressure Dressing Therapy to Close Lymphocutaneous Fistulas of the Groin" British Journal of Plastic Surgery (2000), vol. 53, pp. 484-487. |
Selections from W. Meyer and V. Schmieden, Bier's Hyperemic Treatment in Surgery, Medicine, and the Specialties: A Manual of Its Practical Application, (W.B. Saunders Co., Philadelphia, PA 1909), pp. 17-25, 44-64, 90-96, 167-170, and 210-211. |
Susan Mendez-Eastmen, RN; "When Wounds Won't Heal" RN Jan. 1998, vol. 61 (1); Medical Economics Company, Inc., Montvale, NJ, USA; pp. 20-24. |
Svedman, P. et al.: "A Dressing System Providing Fluid Supply and Suction Drainage Used for Continuous or Intermittent Irrigation", Annals of Plastic Surgery, vol. 17, No. 2, Aug. 1986, pp. 125-133. |
Svedman, P.: "A Dressing Allowing Continuous Treatment of a Biosurface", IRCS Medical Science: Biomedical Technology, Clinical Medicine, Surgery and Transplantation, vol. 7, 1979, p. 221. |
Svedman, P.: "Irrigation Treatment of Leg Ulcers", The Lancet, Sep. 3, 1983, pp. 532-534. |
V.A. Kuznetsov & N.A. Bagautdinov, "Vacuum and Vacuum-Sorption Treatment of Open Septic Wounds," in II All-Union Conference on Wounds and Wound Infections: Presentation Abstracts, edited by B.M. Kostyuchenok et al. (Moscow, U.S.S.R. Oct. 28-29, 1986) pp. 91-92 ("Bagautdinov II"). |
V.A. Solovev et al., Guidelines, the Method of Treatment of Immature External Fistulas in the Upper Gastrointestinal Tract, editor-in-chief Prov. V.I. Parahonyak (S.M. Kirov Gorky State Medical Institute, Gorky, U.S.S.R. 1987) ("Solovev Guidelines"). |
V.A. Solovev, Dissertation Abstract, Treatment and Prevention of Suture Failures after Gastric Resection (S.M. Kirov Gorky State Medical Institute, Gorky, U.S.S.R. 1988) ("Solovev Abstract"). |
V.A.C.® Therapy Clinical Guidelines: A Reference Source for Clinicians (Jul. 2007). |
Yusupov. Yu. N., et al; "Active Wound Drainage", Vestnik Khirurgi, vol. 138, Issue 4, 1987, and 7 page English translation thereof. |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20210001022A1 (en) * | 2017-07-29 | 2021-01-07 | Edward D. Lin | Apparatus and methods for pressure management within a wound chamber |
US12036353B2 (en) * | 2017-07-29 | 2024-07-16 | Edward D. Lin | Apparatus and methods for pressure management within a wound chamber |
US11896756B2 (en) | 2020-03-03 | 2024-02-13 | Deroyal Industries, Inc. | Negative pressure wound therapy instillation system |
Also Published As
Publication number | Publication date |
---|---|
EP3804777B1 (en) | 2023-01-25 |
EP3590553A1 (en) | 2020-01-08 |
EP3804777A1 (en) | 2021-04-14 |
EP3235526B1 (en) | 2019-09-18 |
EP3082893B8 (en) | 2017-09-13 |
EP3235526A1 (en) | 2017-10-25 |
US20180140814A1 (en) | 2018-05-24 |
EP3590553B1 (en) | 2021-01-27 |
US11266821B2 (en) | 2022-03-08 |
EP3082893A1 (en) | 2016-10-26 |
US20150165182A1 (en) | 2015-06-18 |
WO2015094724A1 (en) | 2015-06-25 |
US20220152370A1 (en) | 2022-05-19 |
EP3082893B1 (en) | 2017-07-12 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US20220152370A1 (en) | Autonomous fluid instillation system and method with tissue site pressure monitoring | |
US11771816B2 (en) | Instillation cartridge for vacuum actuated fluid delivery | |
US20240115797A1 (en) | Disposable cartridge for vacuum actuated fluid delivery | |
AU2019204533B2 (en) | Combined solution pump and storage system for use with a reduced-pressure treatment system | |
EP3424544B1 (en) | Instillation cartridge and therapy system for negative-pressure therapy and instillation therapy |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
AS | Assignment |
Owner name: KCI LICENSING, INC., TEXAS Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:PRATT, BENJAMIN ANDREW;LOCKE, CHRISTOPHER BRIAN;SIGNING DATES FROM 20141111 TO 20141114;REEL/FRAME:034391/0715 |
|
AS | Assignment |
Owner name: WILMINGTON TRUST, NATIONAL ASSOCIATION, AS COLLATERAL AGENT, MINNESOTA Free format text: SECOND LIEN SECURITY AGREEMENT;ASSIGNORS:KCI USA, INC.;LIFECELL CORPORATION;KCI LICENSING, INC.;REEL/FRAME:040098/0268 Effective date: 20160920 Owner name: WILMINGTON TRUST, NATIONAL ASSOCIATION, AS COLLATE Free format text: SECOND LIEN SECURITY AGREEMENT;ASSIGNORS:KCI USA, INC.;LIFECELL CORPORATION;KCI LICENSING, INC.;REEL/FRAME:040098/0268 Effective date: 20160920 |
|
AS | Assignment |
Owner name: WILMINGTON TRUST, NATIONAL ASSOCIATION, AS COLLATERAL AGENT, MINNESOTA Free format text: LIMITED THIRD LIEN INTELLECTUAL PROPERTY SECURITY AGREEMENT;ASSIGNORS:KCI USA, INC.;LIFECELL CORPORATION;KCI LICENSING, INC.;REEL/FRAME:040291/0237 Effective date: 20161006 Owner name: WILMINGTON TRUST, NATIONAL ASSOCIATION, AS COLLATE Free format text: LIMITED THIRD LIEN INTELLECTUAL PROPERTY SECURITY AGREEMENT;ASSIGNORS:KCI USA, INC.;LIFECELL CORPORATION;KCI LICENSING, INC.;REEL/FRAME:040291/0237 Effective date: 20161006 |
|
AS | Assignment |
Owner name: KCI USA, INC., TEXAS Free format text: RELEASE OF SECURITY INTEREST REEL/FRAME 040098/0268;ASSIGNOR:WILMINGTON TRUST;REEL/FRAME:041666/0320 Effective date: 20170203 |
|
STCF | Information on status: patent grant |
Free format text: PATENTED CASE |
|
AS | Assignment |
Owner name: KCI USA, INC., TEXAS Free format text: RELEASE OF SECURITY INTEREST IN PATENTS;ASSIGNOR:WILMINGTON TRUST, NATIONAL ASSOCIATION;REEL/FRAME:050966/0547 Effective date: 20191011 Owner name: KCI LICENSING, INC., TEXAS Free format text: RELEASE OF SECURITY INTEREST IN PATENTS;ASSIGNOR:WILMINGTON TRUST, NATIONAL ASSOCIATION;REEL/FRAME:050966/0547 Effective date: 20191011 |
|
MAFP | Maintenance fee payment |
Free format text: PAYMENT OF MAINTENANCE FEE, 4TH YEAR, LARGE ENTITY (ORIGINAL EVENT CODE: M1551); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY Year of fee payment: 4 |
|
AS | Assignment |
Owner name: 3M INNOVATIVE PROPERTIES COMPANY, MINNESOTA Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:KCI LICENSING, INC.;REEL/FRAME:064730/0636 Effective date: 20230824 |
|
AS | Assignment |
Owner name: SOLVENTUM INTELLECTUAL PROPERTIES COMPANY, MINNESOTA Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:3M INNOVATIVE PROPERTIES COMPANY;REEL/FRAME:066432/0345 Effective date: 20240201 |