US9837613B2 - Conjugated polymers - Google Patents
Conjugated polymers Download PDFInfo
- Publication number
- US9837613B2 US9837613B2 US14/731,917 US201514731917A US9837613B2 US 9837613 B2 US9837613 B2 US 9837613B2 US 201514731917 A US201514731917 A US 201514731917A US 9837613 B2 US9837613 B2 US 9837613B2
- Authority
- US
- United States
- Prior art keywords
- atoms
- group
- formula
- independently
- optionally substituted
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 0 *[Ar]C1=CC=C(*)C2=NSN=C12.C.C Chemical compound *[Ar]C1=CC=C(*)C2=NSN=C12.C.C 0.000 description 20
- OXMPRFMQSBFCKV-MNTSDGJHSA-N CC1=CC2=C(C1)CC1=C(C=C(C)C1)C2.CC1=CC2=C(C1)CC1=C(CC(C)=C1)C2.CC1=CC=C(C)[Y]1 Chemical compound CC1=CC2=C(C1)CC1=C(C=C(C)C1)C2.CC1=CC2=C(C1)CC1=C(CC(C)=C1)C2.CC1=CC=C(C)[Y]1 OXMPRFMQSBFCKV-MNTSDGJHSA-N 0.000 description 2
- IKXIMPLTUXCMOT-UHFFFAOYSA-N BC#CC#CC#CC#CC#CC#CC#CC#CC#CC#CP(C#CC#CC#CC#CC#CC#CC#CC#CC#CC#CC)C#CC#CC#CC#CC#CC#CC#CC#CC#CC#CC.COC(=O)CCCC1(C2=CC=CC=C2)C23/C=C4CC5=C/C6=C7/C8=C\5C/4=C4\C5=C/8C8=C9C%10=C5/C(=C5/C(=C\2)/CC2=C/C%11=C(C/9=C9/C(=C/87)C(=C/6)\C\C9=C/%11)\C%10=C\25)C431 Chemical compound BC#CC#CC#CC#CC#CC#CC#CC#CC#CC#CP(C#CC#CC#CC#CC#CC#CC#CC#CC#CC#CC)C#CC#CC#CC#CC#CC#CC#CC#CC#CC#CC.COC(=O)CCCC1(C2=CC=CC=C2)C23/C=C4CC5=C/C6=C7/C8=C\5C/4=C4\C5=C/8C8=C9C%10=C5/C(=C5/C(=C\2)/CC2=C/C%11=C(C/9=C9/C(=C/87)C(=C/6)\C\C9=C/%11)\C%10=C\25)C431 IKXIMPLTUXCMOT-UHFFFAOYSA-N 0.000 description 1
- CSCPPACGZOOCGX-UHFFFAOYSA-N CC(C)=O Chemical compound CC(C)=O CSCPPACGZOOCGX-UHFFFAOYSA-N 0.000 description 1
- HVXNEHHFORRSCY-UHFFFAOYSA-N CC.CC(C)(C)C.CC(C)C.CC1=CC(C)=C(C)C(C)=C1.CC1=CC(C)=C(C)C=C1.CC1=CC(C)=CC(C)=C1.CC1=CC=C(C)C=C1.CCC(C)C Chemical compound CC.CC(C)(C)C.CC(C)C.CC1=CC(C)=C(C)C(C)=C1.CC1=CC(C)=C(C)C=C1.CC1=CC(C)=CC(C)=C1.CC1=CC=C(C)C=C1.CCC(C)C HVXNEHHFORRSCY-UHFFFAOYSA-N 0.000 description 1
- MCNMITMRORNGSF-ZDXDJLDYSA-N CC1=C(C)C(=O)N(C)C1=O.COCC1(C)COC1.[2H]C1OC(C)[W]1 Chemical compound CC1=C(C)C(=O)N(C)C1=O.COCC1(C)COC1.[2H]C1OC(C)[W]1 MCNMITMRORNGSF-ZDXDJLDYSA-N 0.000 description 1
- ITYRIRXKYRRDGJ-UHFFFAOYSA-N CC1=CC2=C(C1)CC1=C(C=C(C)C1)C2 Chemical compound CC1=CC2=C(C1)CC1=C(C=C(C)C1)C2 ITYRIRXKYRRDGJ-UHFFFAOYSA-N 0.000 description 1
- CGDGMQIECUNYOF-DURVFHFYSA-N CC1=CC2=C(C1)CC1=C(CC(C)=C1)C2.CC1=CC=C(C)[Y]1 Chemical compound CC1=CC2=C(C1)CC1=C(CC(C)=C1)C2.CC1=CC=C(C)[Y]1 CGDGMQIECUNYOF-DURVFHFYSA-N 0.000 description 1
- FPUCIBZRCJOIQM-UHFFFAOYSA-N CCCCC(CC)CO.CCCCC(CC)COC(=O)C#CC(=O)OCC(CC)CCCC.O=C(O)C#CC(=O)O.O=S(=O)(O)O Chemical compound CCCCC(CC)CO.CCCCC(CC)COC(=O)C#CC(=O)OCC(CC)CCCC.O=C(O)C#CC(=O)O.O=S(=O)(O)O FPUCIBZRCJOIQM-UHFFFAOYSA-N 0.000 description 1
- VBSIWCOWPDGSJR-UHFFFAOYSA-N CCCCC(CC)COC(=O)C#CC(=O)OCC(CC)CCCC.CCCCC(CC)COC(=O)C1=C(C2=CC=CS2)C2=NSN=C2C(C2=CC=CS2)=C1C(=O)OCC(CC)CCCC.O=C(C1=CC=CS1)C1=NSN=C1C(=O)C1=CC=CS1 Chemical compound CCCCC(CC)COC(=O)C#CC(=O)OCC(CC)CCCC.CCCCC(CC)COC(=O)C1=C(C2=CC=CS2)C2=NSN=C2C(C2=CC=CS2)=C1C(=O)OCC(CC)CCCC.O=C(C1=CC=CS1)C1=NSN=C1C(=O)C1=CC=CS1 VBSIWCOWPDGSJR-UHFFFAOYSA-N 0.000 description 1
- WURKUPGBRTUNER-UHFFFAOYSA-N CCCCC(CC)COC(=O)C1=C(C2=CC=C(Br)S2)C2=NSN=C2C(C2=CC=C(Br)S2)=C1C(=O)OCC(CC)CCCC.CCCCC(CC)COC(=O)C1=C(C2=CC=CS2)C2=NSN=C2C(C2=CC=CS2)=C1C(=O)OCC(CC)CCCC Chemical compound CCCCC(CC)COC(=O)C1=C(C2=CC=C(Br)S2)C2=NSN=C2C(C2=CC=C(Br)S2)=C1C(=O)OCC(CC)CCCC.CCCCC(CC)COC(=O)C1=C(C2=CC=CS2)C2=NSN=C2C(C2=CC=CS2)=C1C(=O)OCC(CC)CCCC WURKUPGBRTUNER-UHFFFAOYSA-N 0.000 description 1
- MEGULCUFIGIHIE-UHFFFAOYSA-N CCCCC(CC)COC(=O)C1=C(C2=CC=C(Br)S2)C2=NSN=C2C(C2=CC=C(Br)S2)=C1C(=O)OCC(CC)CCCC.CCCCCCCCC1=C2/C=C(/C3=CC=C(C4=C(C(=O)OCC(CC)CCCC)C(C(=O)OCC(CC)CCCC)=C(C5=CC=C(C)S5)C5=NSN=C54)S3)SC2=C(CCCCCCCC)C2=C1SC(C)=C2.CCCCCCCCC1=C2C=C([Sn](C)(C)C)SC2=C(CCCCCCCC)C2=C1SC([Sn](C)(C)C)=C2 Chemical compound CCCCC(CC)COC(=O)C1=C(C2=CC=C(Br)S2)C2=NSN=C2C(C2=CC=C(Br)S2)=C1C(=O)OCC(CC)CCCC.CCCCCCCCC1=C2/C=C(/C3=CC=C(C4=C(C(=O)OCC(CC)CCCC)C(C(=O)OCC(CC)CCCC)=C(C5=CC=C(C)S5)C5=NSN=C54)S3)SC2=C(CCCCCCCC)C2=C1SC(C)=C2.CCCCCCCCC1=C2C=C([Sn](C)(C)C)SC2=C(CCCCCCCC)C2=C1SC([Sn](C)(C)C)=C2 MEGULCUFIGIHIE-UHFFFAOYSA-N 0.000 description 1
- KKYWCWDLNNWKCA-WNEFZCBWSA-N COCC1(C)COC1.[2H]C1OC(C)[W]1 Chemical compound COCC1(C)COC1.[2H]C1OC(C)[W]1 KKYWCWDLNNWKCA-WNEFZCBWSA-N 0.000 description 1
Classifications
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08G—MACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
- C08G61/00—Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
- C08G61/12—Macromolecular compounds containing atoms other than carbon in the main chain of the macromolecule
- C08G61/122—Macromolecular compounds containing atoms other than carbon in the main chain of the macromolecule derived from five- or six-membered heterocyclic compounds, other than imides
- C08G61/123—Macromolecular compounds containing atoms other than carbon in the main chain of the macromolecule derived from five- or six-membered heterocyclic compounds, other than imides derived from five-membered heterocyclic compounds
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08G—MACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
- C08G61/00—Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
- C08G61/12—Macromolecular compounds containing atoms other than carbon in the main chain of the macromolecule
-
- H01L51/0043—
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B82—NANOTECHNOLOGY
- B82Y—SPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
- B82Y10/00—Nanotechnology for information processing, storage or transmission, e.g. quantum computing or single electron logic
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07D—HETEROCYCLIC COMPOUNDS
- C07D285/00—Heterocyclic compounds containing rings having nitrogen and sulfur atoms as the only ring hetero atoms, not provided for by groups C07D275/00 - C07D283/00
- C07D285/01—Five-membered rings
- C07D285/02—Thiadiazoles; Hydrogenated thiadiazoles
- C07D285/14—Thiadiazoles; Hydrogenated thiadiazoles condensed with carbocyclic rings or ring systems
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07D—HETEROCYCLIC COMPOUNDS
- C07D417/00—Heterocyclic compounds containing two or more hetero rings, at least one ring having nitrogen and sulfur atoms as the only ring hetero atoms, not provided for by group C07D415/00
- C07D417/14—Heterocyclic compounds containing two or more hetero rings, at least one ring having nitrogen and sulfur atoms as the only ring hetero atoms, not provided for by group C07D415/00 containing three or more hetero rings
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08G—MACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
- C08G61/00—Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
- C08G61/12—Macromolecular compounds containing atoms other than carbon in the main chain of the macromolecule
- C08G61/122—Macromolecular compounds containing atoms other than carbon in the main chain of the macromolecule derived from five- or six-membered heterocyclic compounds, other than imides
- C08G61/123—Macromolecular compounds containing atoms other than carbon in the main chain of the macromolecule derived from five- or six-membered heterocyclic compounds, other than imides derived from five-membered heterocyclic compounds
- C08G61/126—Macromolecular compounds containing atoms other than carbon in the main chain of the macromolecule derived from five- or six-membered heterocyclic compounds, other than imides derived from five-membered heterocyclic compounds with a five-membered ring containing one sulfur atom in the ring
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08G—MACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
- C08G75/00—Macromolecular compounds obtained by reactions forming a linkage containing sulfur with or without nitrogen, oxygen, or carbon in the main chain of the macromolecule
- C08G75/32—Polythiazoles; Polythiadiazoles
-
- H01L51/0036—
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10K—ORGANIC ELECTRIC SOLID-STATE DEVICES
- H10K30/00—Organic devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation
- H10K30/30—Organic devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation comprising bulk heterojunctions, e.g. interpenetrating networks of donor and acceptor material domains
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10K—ORGANIC ELECTRIC SOLID-STATE DEVICES
- H10K30/00—Organic devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation
- H10K30/50—Photovoltaic [PV] devices
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10K—ORGANIC ELECTRIC SOLID-STATE DEVICES
- H10K85/00—Organic materials used in the body or electrodes of devices covered by this subclass
- H10K85/10—Organic polymers or oligomers
- H10K85/111—Organic polymers or oligomers comprising aromatic, heteroaromatic, or aryl chains, e.g. polyaniline, polyphenylene or polyphenylene vinylene
- H10K85/113—Heteroaromatic compounds comprising sulfur or selene, e.g. polythiophene
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10K—ORGANIC ELECTRIC SOLID-STATE DEVICES
- H10K85/00—Organic materials used in the body or electrodes of devices covered by this subclass
- H10K85/10—Organic polymers or oligomers
- H10K85/151—Copolymers
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08G—MACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
- C08G2261/00—Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
- C08G2261/10—Definition of the polymer structure
- C08G2261/12—Copolymers
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08G—MACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
- C08G2261/00—Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
- C08G2261/10—Definition of the polymer structure
- C08G2261/12—Copolymers
- C08G2261/124—Copolymers alternating
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08G—MACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
- C08G2261/00—Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
- C08G2261/10—Definition of the polymer structure
- C08G2261/14—Side-groups
- C08G2261/141—Side-chains having aliphatic units
- C08G2261/1412—Saturated aliphatic units
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08G—MACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
- C08G2261/00—Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
- C08G2261/10—Definition of the polymer structure
- C08G2261/18—Definition of the polymer structure conjugated
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08G—MACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
- C08G2261/00—Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
- C08G2261/30—Monomer units or repeat units incorporating structural elements in the main chain
- C08G2261/32—Monomer units or repeat units incorporating structural elements in the main chain incorporating heteroaromatic structural elements in the main chain
- C08G2261/322—Monomer units or repeat units incorporating structural elements in the main chain incorporating heteroaromatic structural elements in the main chain non-condensed
- C08G2261/3223—Monomer units or repeat units incorporating structural elements in the main chain incorporating heteroaromatic structural elements in the main chain non-condensed containing one or more sulfur atoms as the only heteroatom, e.g. thiophene
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08G—MACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
- C08G2261/00—Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
- C08G2261/30—Monomer units or repeat units incorporating structural elements in the main chain
- C08G2261/32—Monomer units or repeat units incorporating structural elements in the main chain incorporating heteroaromatic structural elements in the main chain
- C08G2261/324—Monomer units or repeat units incorporating structural elements in the main chain incorporating heteroaromatic structural elements in the main chain condensed
- C08G2261/3243—Monomer units or repeat units incorporating structural elements in the main chain incorporating heteroaromatic structural elements in the main chain condensed containing one or more sulfur atoms as the only heteroatom, e.g. benzothiophene
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08G—MACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
- C08G2261/00—Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
- C08G2261/30—Monomer units or repeat units incorporating structural elements in the main chain
- C08G2261/32—Monomer units or repeat units incorporating structural elements in the main chain incorporating heteroaromatic structural elements in the main chain
- C08G2261/324—Monomer units or repeat units incorporating structural elements in the main chain incorporating heteroaromatic structural elements in the main chain condensed
- C08G2261/3246—Monomer units or repeat units incorporating structural elements in the main chain incorporating heteroaromatic structural elements in the main chain condensed containing nitrogen and sulfur as heteroatoms
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08G—MACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
- C08G2261/00—Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
- C08G2261/40—Polymerisation processes
- C08G2261/41—Organometallic coupling reactions
- C08G2261/414—Stille reactions
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08G—MACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
- C08G2261/00—Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
- C08G2261/50—Physical properties
- C08G2261/51—Charge transport
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08G—MACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
- C08G2261/00—Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
- C08G2261/90—Applications
- C08G2261/91—Photovoltaic applications
-
- H01L51/0037—
-
- H01L51/0047—
-
- H01L51/0512—
-
- H01L51/42—
-
- H01L51/4253—
-
- H01L51/5012—
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10K—ORGANIC ELECTRIC SOLID-STATE DEVICES
- H10K10/00—Organic devices specially adapted for rectifying, amplifying, oscillating or switching; Organic capacitors or resistors having potential barriers
- H10K10/40—Organic transistors
- H10K10/46—Field-effect transistors, e.g. organic thin-film transistors [OTFT]
- H10K10/462—Insulated gate field-effect transistors [IGFETs]
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10K—ORGANIC ELECTRIC SOLID-STATE DEVICES
- H10K30/00—Organic devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10K—ORGANIC ELECTRIC SOLID-STATE DEVICES
- H10K50/00—Organic light-emitting devices
- H10K50/10—OLEDs or polymer light-emitting diodes [PLED]
- H10K50/11—OLEDs or polymer light-emitting diodes [PLED] characterised by the electroluminescent [EL] layers
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10K—ORGANIC ELECTRIC SOLID-STATE DEVICES
- H10K85/00—Organic materials used in the body or electrodes of devices covered by this subclass
- H10K85/10—Organic polymers or oligomers
- H10K85/111—Organic polymers or oligomers comprising aromatic, heteroaromatic, or aryl chains, e.g. polyaniline, polyphenylene or polyphenylene vinylene
- H10K85/113—Heteroaromatic compounds comprising sulfur or selene, e.g. polythiophene
- H10K85/1135—Polyethylene dioxythiophene [PEDOT]; Derivatives thereof
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10K—ORGANIC ELECTRIC SOLID-STATE DEVICES
- H10K85/00—Organic materials used in the body or electrodes of devices covered by this subclass
- H10K85/20—Carbon compounds, e.g. carbon nanotubes or fullerenes
- H10K85/211—Fullerenes, e.g. C60
- H10K85/215—Fullerenes, e.g. C60 comprising substituents, e.g. PCBM
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E10/00—Energy generation through renewable energy sources
- Y02E10/50—Photovoltaic [PV] energy
- Y02E10/549—Organic PV cells
Definitions
- the invention relates to novel polymers containing repeating units based on benzo[2,1,3]thiadiazole-5,6-dicarboxylic acid bis-ester, monomers and methods for their preparation, their use as semiconductors in organic electronic (OE) devices, especially in organic photovoltaic (OPV) devices, and to OE and OPV devices comprising these polymers.
- OE organic electronic
- OLED organic photovoltaic
- conjugated, semiconducting polymers for electronic applications.
- One particular area of importance is organic photovoltaics (OPV).
- Conjugated polymers have found use in OPVs as they allow devices to be manufactured by solution-processing techniques such as spin casting, dip coating or ink jet printing. Solution processing can be carried out cheaper and on a larger scale compared to the evaporative techniques used to make inorganic thin film devices.
- solution-processing techniques such as spin casting, dip coating or ink jet printing.
- Solution processing can be carried out cheaper and on a larger scale compared to the evaporative techniques used to make inorganic thin film devices.
- polymer based photovoltaic devices are achieving efficiencies up to 8%.
- the conjugated polymer serves as the main absorber of the solar energy, therefore a low band gap is a basic requirement of the ideal polymer design to absorb the maximum of the solar spectrum.
- a commonly used strategy to narrow the band gap of conjugated polymers is to utilize an alternating copolymer consisting of both electron rich donor units and electron deficient acceptor units within the polymer backbone.
- An acceptor unit that is known in prior art and has shown good photovoltaic performances when used in copolymers is 2,1,3-benzothiadiazole (BTZ) (see J. Chen, Y. Cao, Acc. Chem. Res., 2009, 42 (11), 1709):
- the polymer retains the planar conformation of the back bone which is required to achieve the narrow band gaps and good charge carrier mobility required for OPV applications (see R. Qin, W. Li, C. Li, C. Du, C. Veit, H.-F. Schleierraum, M. Andersson, Z. Bo, Z. Liu, O. Inganas, U. Wuerfel, F. Zhang, J. Am. Chem. Soc., 2009, 131, 14612; M. Helgesen, S. A. Gevorgyan, F. C. Krebs, R. A. J. Janssen, Chem.
- OSC organic semiconducting
- Another aim of the invention was to extend the pool of OSC materials available to the expert.
- Other aims of the present invention are immediately evident to the expert from the following detailed description.
- E is CO—O or O—CO and R 1 and R 2 are carbyl groups like for example alkyl or aryl.
- conjugated polymers based on this unit show good processability and high solubility in organic solvents, and are thus especially suitable for large scale production using solution processing methods. At the same time, they show a low bandgap, high charge carrier mobility and high oxidative stability and are promising materials for organic electronic OE devices, especially for OPV devices. Also, the addition of two electron withdrawing ester groups onto the BTZ acceptor unit deepens the HOMO level in order to achieve a higher open circuit potential (V oc ) in an OPV bulk-heterojunction device versus a device containing a polymer based upon BTZ or (OR) 2 BTZ while maintaining the same band-gap.
- V oc open circuit potential
- the invention relates to a conjugated polymer comprising one or more identical or different repeating units of formula I:
- the invention further relates to a conjugated polymer comprising one or more repeating units which contain a unit of formula I and/or contain one or more units (hereinafter also referred to as Ar 1 , Ar 2 and Ar 3 ) selected from aryl and heteroaryl units that are optionally substituted, and wherein at least one of the repeating units in the polymer contains at least one unit of formula I.
- a conjugated polymer comprising one or more repeating units which contain a unit of formula I and/or contain one or more units (hereinafter also referred to as Ar 1 , Ar 2 and Ar 3 ) selected from aryl and heteroaryl units that are optionally substituted, and wherein at least one of the repeating units in the polymer contains at least one unit of formula I.
- R 1 and R 2 in formula I are selected from straight-chain, branched or cyclic alkyl with 1 to 35 C atoms, in which one or more non-adjacent C atoms are optionally replaced by —O—, —S—, —C(O)—, —C(O)—O—, —O—C(O)—, —O—C(O)—O—, —CR 0 ⁇ CR 00 — or —C ⁇ C— and in which one or more H atoms are optionally replaced by F, Cl, Br, I or CN, or denote aryl, heteroaryl, aryloxy, heteroaryloxy, arylcarbonyl, heteroarylcarbonyl, arylcarbonyloxy, heteroarylcarbonyloxy, aryloxycarbonyl or heteroaryloxycarbonyl having 4 to 30 ring atoms that is unsubstituted or substituted by one or more non-aromatic groups R 3 , wherein
- the conjugated polymers according to the present invention are preferably selected of formula II: —[(Ar 1 —U—Ar 2 ) x —(Ar 3 ) y ] n — II wherein
- the invention further relates to monomers containing a unit of formula I, which are suitable for the preparation of conjugated polymers as described above and below.
- the invention further relates to a mixture or blend comprising one or more polymers according to the present invention and one or more additional compounds or polymers which are preferably selected from compounds and polymers having one or more of semiconducting, charge transport, hole or electron transport, hole or electron blocking, electrically conducting, photoconducting or light emitting properties.
- the invention further relates to a formulation comprising one or more polymers, mixtures or or blends according to the present invention and optionally one or more solvents, preferably selected from organic solvents.
- the invention further relates to the use of polymers, mixtures, blends and formulations according to the present invention as charge transport, semiconducting, electrically conducting, photoconducting or light emitting material in optical, electrooptical, electronic, electroluminescent or photoluminescent components or devices.
- the invention further relates to a charge transport, semiconducting, electrically conducting, photoconducting or light emitting material or component comprising one or more polymers, polymer blends of formulations according to the present invention.
- the invention further relates to an optical, electrooptical or electronic component or device comprising one or more polymers, polymer blends, formulations, components or materials according to the present invention.
- the optical, electrooptical, electronic electroluminescent and photoluminescent components or devices include, without limitation, organic field effect transistors (OFET), thin film transistors (TFT), integrated circuits (IC), logic circuits, capacitors, radio frequency identification (RFID) tags, devices or components, organic light emitting diodes (OLED), organic light emitting transistors (OLET), flat panel displays, backlights of displays, organic photovoltaic devices (OPV), solar cells, laser diodes, photoconductors, photodetectors, electrophotographic devices, electrophotographic recording devices, organic memory devices, sensor devices, charge injection layers, charge transport layers or interlayers in polymer light emitting diodes (PLEDs), organic plasmon-emitting diodes (OPEDs), Schottky diodes, planarising layers, antistatic films, polymer electrolyte membranes (PEM), conducting substrates, conducting patterns, electrode materials in batteries, alignment layers, biosensors, biochips, security markings, security devices, and components or devices for detecting and discrimin
- the monomers and polymers of the present invention are easy to synthesize and exhibit several advantageous properties, like a low bandgap, a high charge carrier mobility, a high solubility in organic solvents, a good processability for the device manufacture process, a high oxidative stability and a long lifetime in electronic devices.
- the addition of two electron withdrawing ester groups onto the BTZ acceptor unit can modify the electronic energies (HOMO/LUMO levels) of the polymer, particularly a deepening of the HOMO level in order to achieve a higher open circuit potential (V oc ) in an OPV bulk-heterojunction device versus a device containing a polymer based upon BTZ.
- HOMO/LUMO levels electronic energies
- V oc open circuit potential
- polymer generally means a molecule of high relative molecular mass, the structure of which essentially comprises the multiple repetition of units derived, actually or conceptually, from molecules of low relative molecular mass (PAC, 1996, 68, 2291).
- oligomer generally means a molecule of intermediate relative molecular mass, the structure of which essentially comprises a small plurality of units derived, actually or conceptually, from molecules of lower relative molecular mass (PAC, 1996, 68, 2291).
- a polymer means a compound having >1, preferably ⁇ 5 repeating units
- an oligomer means a compound with >1 and ⁇ 10, preferably ⁇ 5, repeating units.
- repeating unit and “monomeric unit” mean the constitutional repeating unit (CRU), which is the smallest constitutional unit the repetition of which constitutes a regular macromolecule, a regular oligomer molecule, a regular block or a regular chain (PAC, 1996, 68, 2291).
- CRU constitutional repeating unit
- leaving group means an atom or group (charged or uncharged) that becomes detached from an atom in what is considered to be the residual or main part of the molecule taking part in a specified reaction (see also PAC, 1994, 66, 1134).
- conjugated means a compound containing mainly C atoms with sp 2 -hybridisation (or optionally also sp-hybridisation), which may also be replaced by hetero atoms. In the simplest case this is for example a compound with alternating C—C single and double (or triple) bonds, but does also include compounds with units like 1,3-phenylene. “Mainly” means in this connection that a compound with naturally (spontaneously) occurring defects, which may lead to interruption of the conjugation, is still regarded as a conjugated compound.
- the molecular weight is given as the number average molecular weight M n or weight average molecular weight M w , which is determined by gel permeation chromatography (GPC) against polystyrene standards in eluent solvents such as tetrahydrofuran, chloroform, chlorobenzene or 1,2,4-trichlorobenzene.
- carbyl group denotes any monovalent or multivalent organic radical moiety which comprises at least one carbon atom either without any non-carbon atoms (like for example —C ⁇ C—), or optionally combined with at least one non-carbon atom such as N, O, S, P, Si, Se, As, Te or Ge (for example carbonyl etc.).
- hydrocarbyl group denotes a carbyl group that does additionally contain one or more H atoms and optionally contains one or more hetero atoms like for example N, O, S, P, Si, Se, As, Te or Ge.
- a carbyl or hydrocarbyl group comprising a chain of 3 or more C atoms may also be straight-chain, branched and/or cyclic, including spiro and/or fused rings.
- Preferred carbyl and hydrocarbyl groups include alkyl, alkoxy, alkylcarbonyl, alkoxycarbonyl, alkylcarbonyloxy and al koxycarbonyloxy, each of which is optionally substituted and has 1 to 40, preferably 1 to 25, very preferably 1 to 18 C atoms, furthermore optionally substituted aryl or aryloxy having 6 to 40, preferably 6 to 25 C atoms, furthermore alkylaryloxy, arylcarbonyl, aryloxycarbonyl, arylcarbonyloxy and aryloxycarbonyloxy, each of which is optionally substituted and has 6 to 40, preferably 7 to 40 C atoms, wherein all these groups do optionally contain one or more hetero atoms, preferably selected from N, O, S, P, Si, Se, As, Te and Ge.
- the carbyl or hydrocarbyl group may be a saturated or unsaturated acyclic group, or a saturated or unsaturated cyclic group. Unsaturated acyclic or cyclic groups are preferred, especially aryl, alkenyl and alkynyl groups (especially ethynyl). Where the C 1 -C 40 carbyl or hydrocarbyl group is acyclic, the group may be straight-chain or branched.
- the C 1 -C 40 carbyl or hydrocarbyl group includes for example: a C 1 -C 40 alkyl group, a C 1 -C 40 alkoxy or oxaalkyl group, a C 2 -C 40 alkenyl group, a C 2 -C 40 alkynyl group, a C 3 -C 40 allyl group, a C 4 -C 40 alkyldienyl group, a C 4 -C 40 polyenyl group, a C 6 -C 18 aryl group, a C 6 -C 40 alkylaryl group, a C 6 -C 40 arylalkyl group, a C 4 -C 40 cycloalkyl group, a C 4 -C 40 cycloalkenyl group, and the like.
- Preferred among the foregoing groups are a C 1 -C 20 alkyl group, a C 2 -C 20 alkenyl group, a C 2 -C 20 alkynyl group, a C 3 -C 20 allyl group, a C 4 -C 20 alkyldienyl group, a C 6 -C 12 aryl group, and a C 4 -C 20 polyenyl group, respectively.
- groups having carbon atoms and groups having hetero atoms like e.g. an alkynyl group, preferably ethynyl, that is substituted with a silyl group, preferably a trialkylsilyl group.
- Aryl and heteroaryl preferably denote a mono-, bi- or tricyclic aromatic or heteroaromatic group with 4 to 30 ring C atoms that may also comprise condensed rings and is optionally substituted with one or more groups L as defined above.
- Very preferred substituents L are selected from halogen, most preferably F, or alkyl, alkoxy, oxaalkyl, thioalkyl, fluoroalkyl and fluoroalkoxy with 1 to 12 C atoms or alkenyl, alkynyl with 2 to 12 C atoms.
- aryl and heteroaryl groups are phenyl in which, in addition, one or more CH groups may be replaced by N, naphthalene, thiophene, selenophene, thienothiophene, dithienothiophene, fluorene and oxazole, all of which can be unsubstituted, mono- or polysubstituted with L as defined above.
- Very preferred rings are selected from pyrrole, preferably N-pyrrole, pyridine, preferably 2- or 3-pyridine, pyrimidine, thiophene preferably 2-thiophene, selenophene, preferably 2-selenophene, thieno[3,2-b]thiophene, thiazole, thiadiazole, oxazole and oxadiazole, especially preferably thiophene-2-yl, 5-substituted thiophene-2-yl or pyridine-3-yl, all of which can be unsubstituted, mono- or polysubstituted with L as defined above.
- An alkyl or alkoxy radical i.e. where the terminal CH 2 group is replaced by —O—, can be straight-chain or branched. It is preferably straight-chain, has 2, 3, 4, 5, 6, 7 or 8 carbon atoms and accordingly is preferably ethyl, propyl, butyl, pentyl, hexyl, heptyl, octyl, ethoxy, propoxy, butoxy, pentoxy, hexoxy, heptoxy, or octoxy, furthermore methyl, nonyl, decyl, undecyl, dodecyl, tridecyl, tetradecyl, pentadecyl, nonoxy, decoxy, undecoxy, dodecoxy, tridecoxy or tetradecoxy, for example.
- An alkenyl group wherein one or more CH 2 groups are replaced by —CH ⁇ CH— can be straight-chain or branched. It is preferably straight-chain, has 2 to 10 C atoms and accordingly is preferably vinyl, prop-1-, or prop-2-enyl, but-1-, 2- or but-3-enyl, pent-1-, 2-, 3- or pent-4-enyl, hex-1-, 2-, 3-, 4- or hex-5-enyl, hept-1-, 2-, 3-, 4-, 5- or hept-6-enyl, oct-1-, 2-, 3-, 4-, 5-, 6- or oct-7-enyl, non-1-, 2-, 3-, 4-, 5-, 6-, 7- or non-8-enyl, dec-1-, 2-, 3-, 4-, 5-, 6-, 7-, 8- or dec-9-enyl.
- alkenyl groups are C 2 -C 7 -1E-alkenyl, C 4 -C 7 -3E-alkenyl, C 5 -C 7 -4-alkenyl, C 6 -C 7 -5-alkenyl and C 7 -6-alkenyl, in particular C 2 -C 7 -1E-alkenyl, C 4 -C 7 -3E-alkenyl and C 5 -C 7 -4-alkenyl.
- alkenyl groups are vinyl, 1E-propenyl, 1E-butenyl, 1E-pentenyl, 1E-hexenyl, 1E-heptenyl, 3-butenyl, 3E-pentenyl, 3E-hexenyl, 3E-heptenyl, 4-pentenyl, 4Z-hexenyl, 4E-hexenyl, 4Z-heptenyl, 5-hexenyl, 6-heptenyl and the like. Groups having up to 5 C atoms are generally preferred.
- these radicals are preferably neighboured. Accordingly these radicals together form a carbonyloxy group —C(O)—O— or an oxycarbonyl group —O—C(O)—.
- this group is straight-chain and has 2 to 6 C atoms.
- An alkyl group wherein two or more CH 2 groups are replaced by —O— and/or —C(O)O— can be straight-chain or branched. It is preferably straight-chain and has 3 to 12 C atoms. Accordingly it is preferably bis-carboxy-methyl, 2,2-bis-carboxy-ethyl, 3,3-bis-carboxy-propyl, 4,4-bis-carboxy-butyl, 5,5-bis-carboxy-pentyl, 6,6-bis-carboxy-hexyl, 7,7-bis-carboxy-heptyl, 8,8-bis-carboxy-octyl, 9,9-bis-carboxy-nonyl, 10,10-bis-carboxy-decyl, bis-(methoxycarbonyl)-methyl, 2,2-bis-(methoxycarbonyl)-ethyl, 3,3-bis-(methoxycarbonyl)-propyl, 4,4-bis-(methoxy
- a fluoroalkyl group is preferably straight-chain perfluoroalkyl C i F 2i+1 , wherein i is an integer from 1 to 15, in particular CF 3 , C 2 F 5 , C 3 F 7 , C 4 F 9 , C 5 F 11 , C 6 F 13 , C 7 F 15 or C 8 F 17 , very preferably C 6 F 13 .
- alkyl, alkoxy, alkenyl, oxaalkyl, thioalkyl, carbonyl and carbonyloxy groups can be achiral or chiral groups.
- R is selected from primary, secondary or tertiary alkyl or alkoxy with 1 to 30 C atoms, wherein one or more H atoms are optionally replaced by F, or aryl, aryloxy, heteroaryl or heteroaryloxy that is optionally alkylated or alkoxylated and has 4 to 30 ring atoms.
- Very preferred groups of this type are selected from the group consisting of the following formulae
- ALK denotes optionally fluorinated, preferably linear, alkyl or alkoxy with 1 to 20, preferably 1 to 12 C-atoms, in case of tertiary groups very preferably 1 to 9 C atoms, and the dashed line denotes the link to the ring to which these groups are attached.
- tertiary groups very preferably 1 to 9 C atoms
- the dashed line denotes the link to the ring to which these groups are attached.
- Especially preferred among these groups are those wherein all ALK subgroups are identical.
- CY 1 ⁇ CY 2 — is preferably —CH ⁇ CH—, —CF ⁇ CF— or —CH ⁇ C(CN)—.
- Halogen is F, Cl, Br or I, preferably F, Cl or Br.
- —CO—, —C( ⁇ O)— and —C(O)— denote a carbonyl group, i.e.
- the polymers may also be substituted with a polymerisable or crosslinkable reactive group, which is optionally protected during the process of forming the polymer.
- Particular preferred polymers of this type are those of formula I wherein R 1 denotes P-Sp. These polymers are particularly useful as semiconductors or charge transport materials, as they can be crosslinked via the groups P, for example by polymerisation in situ, during or after processing the polymer into a thin film for a semiconductor component, to yield crosslinked polymer films with high charge carrier mobility and high thermal, mechanical and chemical stability.
- the polymerisable or crosslinkable group P is selected from CH 2 ⁇ CW 1 —C(O)—O—, CH 2 ⁇ CW 1 —C(O)—,
- P is a protected derivative of these groups which is non-reactive under the conditions described for the process according to the present invention.
- Suitable protective groups are known to the ordinary expert and described in the literature, for example in Green, “Protective Groups in Organic Synthesis”, John Wiley and Sons, New York (1981), like for example acetals or ketals.
- Especially preferred groups P are CH 2 ⁇ CH—C(O)—O—, CH 2 ⁇ C(CH 3 )—C(O)—O—, CH 2 ⁇ CF—C(O)—O—, CH 2 ⁇ CH—O—, (CH 2 ⁇ CH) 2 CH—O—C(O)—, (CH 2 ⁇ CH) 2 CH—O—,
- Further preferred groups P are selected from the group consisting of vinyloxy, acrylate, methacrylate, fluoroacrylate, chloracrylate, oxetan and epoxy groups, very preferably from an acrylate or methacrylate group.
- spacer group is known in prior art and suitable spacer groups Sp are known to the ordinary expert (see e.g. Pure Appl. Chem. 73(5), 888 (2001).
- the spacer group Sp is preferably of formula Sp′-X′, such that P-Sp- is P-Sp′-X′—, wherein
- X′ is preferably —O—, —S—, —OCH 2 —, —CH 2 O—, —SCH 2 —, —CH 2 S—, —CF 2 O—, —OCF 2 —, —CF 2 S—, —SCF 2 —, —CH 2 CH 2 —, —CF 2 CH 2 —, —CH 2 CF 2 —, —CF 2 CF 2 —, —CH ⁇ N—, —N ⁇ CH—, —N ⁇ N—, —CH ⁇ CR 0 —, —CY′ ⁇ CY 2 —, —C ⁇ C— or a single bond, in particular —O—, —S—, —C ⁇ C—, —CY′ ⁇ CY 2 — or a single bond.
- X′ is a group that is able to form a conjugated system, such as —C ⁇ C— or —CY′ ⁇ CY 2 —, or a single bond.
- Typical groups Sp′ are, for example, —(CH 2 ) p —, —(CH 2 CH 2 O) q —CH 2 CH 2 —, —CH 2 CH 2 —S—CH 2 CH 2 — or —CH 2 CH 2 —NH—CH 2 CH 2 — or —(SiR 0 R 00 —O) p —, with p being an integer from 2 to 12, q being an integer from 1 to 3 and R 0 and R 00 having the meanings given above.
- Preferred groups Sp′ are ethylene, propylene, butylene, pentylene, hexylene, heptylene, octylene, nonylene, decylene, undecylene, dodecylene, octadecylene, ethyleneoxyethylene, methyleneoxybutylene, ethylene-thioethylene, ethylene-N-methyl-iminoethylene, 1-methylalkylene, ethenylene, propenylene and butenylene for example.
- the polymers containing units of formula I, especially those of formula II, are preferably selected of formula IIa R 4 —[(Ar 1 —U—Ar 2 ) x —(Ar 3 ) y ] n —R 5 IIa wherein U, Ar 1-3 , n, x and y have the meanings of formula I and II, and
- the total number of repeating units n is preferably ⁇ 5, very preferably ⁇ 10, most preferably ⁇ 50, and preferably up to 500, very preferably up to 1,000, most preferably up to 2,000, including any combination of the aforementioned lower and upper limits of n.
- the polymers of the present invention include homopolymers and copolymers, like statistical or random copolymers, alternating copolymers and block copolymers, as well as combinations thereof.
- Block copolymers may for example comprise or consist of one or more blocks formed by units of formula I and one or more blocks formed by units Ar 3 , wherein Ar 3 has one of the meanings of formula II or as described above and below.
- Another aspect of the invention relates to monomers of formula Ia R 4 —Ar 1 —U—Ar 2 —R 5 Ia wherein U, Ar 1 , Ar 2 , R 4 and R 5 have the meanings of formula II and IIa, or one of the preferred meanings as described above and below.
- R 4 and R 5 are, preferably independently of each other, selected from the group consisting of Cl, Br, I, O-tosylate, O-triflate, O-mesylate, O-nonaflate, —SiMe 2 F, —SiMeF 2 , —O—SO 2 Z 1 , —B(OZ 2 ) 2 , —CZ 3 ⁇ C(Z 3 ) 2 , —C ⁇ CH and —Sn(Z 4 ) 3 , wherein Z 1-4 are selected from the group consisting of alkyl and aryl, each being optionally substituted, and two groups Z 2 may also form a cyclic group.
- repeating units of formula I, the monomers of formula Ia, and the polymers of formula II and IIa containing them are selected from the following list of preferred embodiments:
- Preferred polymers of formula II are selected from the group consisting of the following formulae:
- Ar denotes a group of formula 1, 2 or 3
- polymers of formulae IIA-IID wherein W is S.
- polymers of formulae IIA-IID wherein X and Z are C(R x ) and Y is S or Se, most preferably S.
- polymers of formulae IIA-IID wherein Ar is a group of formula 1 or 2 in which u is 1, in particular those selected from the following groups:
- polymers of formulae IIA-IID wherein Ar is a group of formula 1 or 2 in which u is 0, very preferably wherein X, Z and Z′ denote C(R x ) and Y and Y′ denote S or Se, most preferably S.
- polymers of formulae IIA-IID preferably those of formula IIC or IID, wherein Ar is a group of formula 3, X and Z are C(R x ) and Y is S or Se, very preferably S.
- Very preferred polymers of formulae II and IIA-IID are selected from the group consisting of the following formulae:
- R 1 , R 2 , R x , R y and n have the meanings as given in formula I, II and IIA, or one of the preferred meanings given above and below.
- Preferred polymers of formula IIa are selected of the formula R 4 -chain-R 5 wherein “chain” is a polymer chain selected from above formulae IIA-IID and II1-15, and R 4 and R 5 have one of the meanings given in formula IIa or one of the preferred meanings given above and below.
- the polymers of the present invention can be synthesized according to or in analogy to methods that are known to the skilled person and are described in the literature. Other methods of preparation can be taken from the examples. For example, they can be suitably prepared by aryl-aryl coupling reactions, such as Yamamoto coupling, Suzuki coupling, Stille coupling, Sonogashira coupling, Heck coupling or Buchwald coupling. Suzuki coupling and Yamamoto coupling are especially preferred.
- the monomers which are polymerised to form the repeat units of the polymers can be prepared according to methods which are known to the person skilled in the art.
- polymers are prepared from monomers of formula Ia or its preferred embodiments as described above and below.
- Another aspect of the invention is a process for preparing a polymer by coupling one or more identical or different monomeric units of formula I or monomers of formula Ia with each other and/or with one or more comonomers in a polymerisation reaction, preferably in an aryl-aryl coupling reaction.
- Suitable and preferred comonomers are those of the formula R 4 —Ar 3 —R 5 wherein R 4 and R 5 have one of the meanings of formula IIa or one of the preferred meanings given above and below, and Ar 3 has one of the meanings of formula IIa or of Ar in formula IIa, or one of the preferred meanings given above and below.
- Preferred methods for polymerisation are those leading to C—C-coupling or C—N-coupling, like Suzuki polymerisation, as described for example in WO 00/53656, Yamamoto polymerisation, as described in for example in T. Yamamoto et al., Progress in Polymer Science 1993, 17, 1153-1205 or in WO 2004/022626 A1, and Stille coupling.
- monomers as described above having two reactive halide groups R 2 and R 3 is preferably used.
- a monomer as described above is used wherein at least one reactive group R 2 or R 3 is a boronic acid or boronic acid derivative group.
- Suzuki polymerisation may be used to prepare homopolymers as well as statistical, alternating and block random copolymers.
- Statistical or block copolymers can be prepared for example from the above monomers of formula Ia wherein one of the reactive groups R 2 and R 3 is halogen and the other reactive group is a boronic acid or boronic acid derivative group.
- Suzuki polymerisation employs a Pd(O) complex or a Pd(II) salt.
- Preferred Pd(O) complexes are those bearing at least one phosphine ligand such as Pd(Ph 3 P) 4 .
- Another preferred phosphine ligand is tris(ortho-tolyl)phosphine, i.e. Pd(o-Tol) 4 .
- Preferred Pd(II) salts include palladium acetate, i.e. Pd(OAc) 2 .
- Suzuki polymerisation is performed in the presence of a base, for example sodium carbonate, potassium phosphate or an organic base such as tetraethylammonium carbonate.
- Yamamoto polymerisation employs a Ni(0) complex, for example bis(1,5-cyclooctadienyl) nickel(0).
- leaving groups of formula —O—SO 2 Z 1 can be used wherein Z 1 is as described above.
- Particular examples of such leaving groups are tosylate, mesylate and triflate.
- the polymers according to the present invention can also be used in mixtures or polymer blends, for example together with monomeric compounds or together with other polymers having charge-transport, semiconducting, electrically conducting, photoconducting and/or light emitting semiconducting properties, or for example with polymers having hole blocking or electron blocking properties for use as interlayers or charge blocking layers in OLED devices.
- another aspect of the invention relates to a polymer blend comprising one or more polymers according to the present invention and one or more further polymers having one or more of the above-mentioned properties.
- These blends can be prepared by conventional methods that are described in prior art and known to the skilled person. Typically the polymers are mixed with each other or dissolved in suitable solvents and the solutions combined.
- Another aspect of the invention relates to a formulation comprising one or more polymers, mixtures or polymer blends as described above and below and one or more organic solvents.
- Preferred solvents are aliphatic hydrocarbons, chlorinated hydrocarbons, aromatic hydrocarbons, ketones, ethers and mixtures thereof. Additional solvents which can be used include 1,2,4-trimethylbenzene, 1,2,3,4-tetramethyl benzene, pentylbenzene, mesitylene, cumene, cymene, cyclohexylbenzene, diethylbenzene, tetralin, decalin, 2,6-lutidine, 2-fluoro-m-xylene, 3-fluoro-o-xylene, 2-chlorobenzotrifluoride, dimethylformamide, 2-chloro-6fluorotoluene, 2-fluoroanisole, anisole, 2,3-dimethylpyrazine, 4-fluoroanisole, 3-fluoroanisole, 3-trifluoro-methylanisole, 2-methylanisole, phenetol, 4-methylanisole, 3-methylanisole, 4-fluoro-3-methylanisole
- solvents include, without limitation, dichloromethane, trichloromethane, monochlorobenzene, o-dichlorobenzene, tetrahydrofuran, anisole, morpholine, toluene, o-xylene, m-xylene, p-xylene, 1,4-dioxane, acetone, methylethylketone, 1,2-dichloroethane, 1,1,1-trichloroethane, 1,1,2,2-tetrachloroethane, ethyl acetate, n-butyl acetate, dimethylformamide, dimethylacetamide, dimethylsulfoxide, tetraline, decaline, indane, methyl benzoate, ethyl benzoate, mesitylene and/or mixtures thereof.
- the concentration of the polymers in the solution is preferably 0.1 to 10% by weight, more preferably 0.5 to 5% by weight.
- the solution also comprises one or more binders to adjust the rheological properties, as described for example in WO 2005/055248 A1.
- solutions are evaluated as one of the following categories: complete solution, borderline solution or insoluble.
- the contour line is drawn to outline the solubility parameter-hydrogen bonding limits dividing solubility and insolubility. ‘Complete’ solvents falling within the solubility area can be chosen from literature values such as published in “Crowley, J. D., Teague, G. S. Jr and Lowe, J. W. Jr., Journal of Paint Technology, 38, No 496, 296 (1966)”. Solvent blends may also be used and can be identified as described in “Solvents, W. H. Ellis, Federation of Societies for Coatings Technology, p 9-10, 1986”.
- Such a procedure may lead to a blend of ‘non’ solvents that will dissolve both the polymers of the present invention, although it is desirable to have at least one true solvent in a blend.
- the polymers according to the present invention can also be used in patterned OSC layers in the devices as described above and below. For applications in modern microelectronics it is generally desirable to generate small structures or patterns to reduce cost (more devices/unit area), and power consumption. Patterning of thin layers comprising a polymer according to the present invention can be carried out for example by photolithography, electron beam lithography or laser patterning.
- the polymers, polymer blends or formulations of the present invention may be deposited by any suitable method.
- Liquid coating of devices is more desirable than vacuum deposition techniques.
- Solution deposition methods are especially preferred.
- the formulations of the present invention enable the use of a number of liquid coating techniques.
- Preferred deposition techniques include, without limitation, dip coating, spin coating, ink jet printing, letter-press printing, screen printing, doctor blade coating, roller printing, reverse-roller printing, offset lithography printing, flexographic printing, web printing, spray coating, brush coating or pad printing.
- Ink-jet printing is particularly preferred as it allows high resolution layers and devices to be prepared.
- Selected formulations of the present invention may be applied to prefabricated device substrates by ink jet printing or microdispensing.
- industrial piezoelectric print heads such as but not limited to those supplied by Aprion, Hitachi-Koki, InkJet Technology, On Target Technology, Picojet, Spectra, Trident, Xaar may be used to apply the organic semiconductor layer to a substrate.
- semi-industrial heads such as those manufactured by Brother, Epson, Konica, Seiko Instruments Toshiba TEC or single nozzle microdispensers such as those produced by Microdrop and Microfab may be used.
- the polymers In order to be applied by ink jet printing or microdispensing, the polymers should be first dissolved in a suitable solvent. Solvents must fulfil the requirements stated above and must not have any detrimental effect on the chosen print head. Additionally, solvents should have boiling points >100° C., preferably >140° C. and more preferably >150° C. in order to prevent operability problems caused by the solution drying out inside the print head.
- suitable solvents include substituted and non-substituted xylene derivatives, di-C 1-2 -alkyl formamide, substituted and non-substituted anisoles and other phenol-ether derivatives, substituted heterocycles such as substituted pyridines, pyrazines, pyrimidines, pyrrolidinones, substituted and non-substituted N,N-di-C 1-2 -alkylanilines and other fluorinated or chlorinated aromatics.
- a preferred solvent for depositing a polymer according to the present invention by ink jet printing comprises a benzene derivative which has a benzene ring substituted by one or more substituents wherein the total number of carbon atoms among the one or more substituents is at least three.
- the benzene derivative may be substituted with a propyl group or three methyl groups, in either case there being at least three carbon atoms in total.
- Such a solvent enables an ink jet fluid to be formed comprising the solvent with the polymer, which reduces or prevents clogging of the jets and separation of the components during spraying.
- the solvent(s) may include those selected from the following list of examples: dodecylbenzene, 1-methyl-4-tert-butylbenzene, terpineol limonene, isodurene, terpinolene, cymene, diethylbenzene.
- the solvent may be a solvent mixture, that is a combination of two or more solvents, each solvent preferably having a boiling point >100° C., more preferably >140° C. Such solvent(s) also enhance film formation in the layer deposited and reduce defects in the layer.
- the ink jet fluid (that is mixture of solvent, binder and semiconducting compound) preferably has a viscosity at 20° C. of 1-100 mPa ⁇ s, more preferably 1-50 mPa ⁇ s and most preferably 1-30 mPa ⁇ s.
- the polymers or formulations according to the present invention can additionally comprise one or more further components or additives selected for for example from surface-active compounds, lubricating agents, wetting agents, dispersing agents, hydrophobing agents, adhesive agents, flow improvers, defoaming agents, deaerators, diluents which may be reactive or non-reactive, auxiliaries, colourants, dyes or pigments, sensitizers, stabilizers, nanoparticles or inhibitors.
- surface-active compounds lubricating agents, wetting agents, dispersing agents, hydrophobing agents, adhesive agents, flow improvers, defoaming agents, deaerators, diluents which may be reactive or non-reactive, auxiliaries, colourants, dyes or pigments, sensitizers, stabilizers, nanoparticles or inhibitors.
- the polymers according to the present invention are useful as charge transport, semiconducting, electrically conducting, photoconducting or light mitting materials in optical, electrooptical, electronic, electroluminescent or photoluminescent components or devices.
- the polymers of the present invention are typically applied as thin layers or films.
- the present invention also provides the use of the semiconducting polymer, polymer blend, formulation or layer in an electronic device.
- the formulation may be used as a high mobility semiconducting material in various devices and apparatus.
- the formulation may be used, for example, in the form of a semiconducting layer or film.
- the present invention provides a semiconducting layer for use in an electronic device, the layer comprising a polymer, polymer blend or formulation according to the invention.
- the layer or film may be less than about 30 microns.
- the thickness may be less than about 1 micron thick.
- the layer may be deposited, for example on a part of an electronic device, by any of the aforementioned solution coating or printing techniques.
- the invention additionally provides an electronic device comprising a polymer, polymer blend, formulation or organic semiconducting layer according to the present invention.
- Especially preferred devices are OFETs, TFTs, ICs, logic circuits, capacitors, RFID tags, OLEDs, OLETs, OPEDs, OPVs, solar cells, laser diodes, photoconductors, photodetectors, electrophotographic devices, electrophotographic recording devices, organic memory devices, sensor devices, charge injection layers, Schottky diodes, planarising layers, antistatic films, conducting substrates and conducting patterns.
- Especially preferred electronic device are OFETs, OLEDs and OPV devices, in particular bulk heterojunction (BHJ) OPV devices.
- the active semiconductor channel between the drain and source may comprise the layer of the invention.
- the charge (hole or electron) injection or transport layer may comprise the layer of the invention.
- the polymer according to the present invention is preferably used in a formulation that comprises or contains, more preferably consists essentially of, very preferably exclusively of, a p-type (electron donor) semiconductor and an n-type (electron acceptor) semiconductor.
- the p-type semiconductor is constituted by a polymer according to the present invention.
- the n-type semiconductor can be an inorganic material such as zinc oxide or cadmium selenide, or an organic material such as a fullerene derivate, for example (6,6)-phenyl C61-butyric acid methyl ester, also known as “PCBM” or “PC 61 BM”, as disclosed for example in G. Yu, J. Gao, J. C.
- a preferred material of this type is a blend or mixture of a polymer according to the present invention with a C 60 or C 70 fullerene or modified C 60 fullerene like PC 61 BM or PC 71 BM.
- the ratio polymer:fullerene is from 2:1 to 1:2 by weight, more preferably from 1.2:1 to 1:1.2 by weight, most preferably 1:1 by weight.
- an optional annealing step may be necessary to optimize blend morphology and consequently OPV device performance.
- the OPV device can for example be of any type known from the literature [see e.g. Waldauf et al., Appl. Phys. Lett. 89, 233517 (2006)].
- a first preferred OPV device comprises:
- a second preferred OPV device is an inverted OPV device and comprises:
- the p-type and n-type semiconductor materials are preferably selected from the materials, like the polymer/fullerene systems, as described above. If the bilayer is a blend an optional annealing step may be necessary to optimize device performance.
- the compound, formulation and layer of the present invention are also suitable for use in an OFET as the semiconducting channel.
- the invention also provides an OFET comprising a gate electrode, an insulating (or gate insulator) layer, a source electrode, a drain electrode and an organic semiconducting channel connecting the source and drain electrodes, wherein the organic semiconducting channel comprises a polymer, polymer blend, formulation or organic semiconducting layer according to the present invention.
- an OFET comprising a gate electrode, an insulating (or gate insulator) layer, a source electrode, a drain electrode and an organic semiconducting channel connecting the source and drain electrodes, wherein the organic semiconducting channel comprises a polymer, polymer blend, formulation or organic semiconducting layer according to the present invention.
- Other features of the OFET are well known to those skilled in the art.
- OFETs where an OSC material is arranged as a thin film between a gate dielectric and a drain and a source electrode are generally known, and are described for example in U.S. Pat. No. 5,892,244, U.S. Pat. No. 5,998,804, U.S. Pat. No. 6,723,394 and in the references cited in the background section. Due to the advantages, like low cost production using the solubility properties of the compounds according to the invention and thus the processability of large surfaces, preferred applications of these FETs are such as integrated circuitry, TFT displays and security applications.
- the gate, source and drain electrodes and the insulating and semiconducting layer in the OFET device may be arranged in any sequence, provided that the source and drain electrode are separated from the gate electrode by the insulating layer, the gate electrode and the semiconductor layer both contact the insulating layer, and the source electrode and the drain electrode both contact the semiconducting layer.
- An OFET device preferably comprises:
- the OFET device can be a top gate device or a bottom gate device. Suitable structures and manufacturing methods of an OFET device are known to the skilled in the art and are described in the literature, for example in US 2007/0102696 A1.
- the gate insulator layer preferably comprises a fluoropolymer, like e.g. the commercially available Cytop 809M® or Cytop 107M® (from Asahi Glass).
- the gate insulator layer is deposited, e.g. by spin-coating, doctor blading, wire bar coating, spray or dip coating or other known methods, from a formulation comprising an insulator material and one or more solvents with one or more fluoro atoms (fluorosolvents), preferably a perfluorosolvent.
- fluorosolvents e.g. FC75® (available from Acros, catalogue number 12380).
- fluoropolymers and fluorosolvents are known in prior art, like for example the perfluoropolymers Teflon AF® 1600 or 2400 (from DuPont) or Fluoropel® (from Cytonix) or the perfluorosolvent FC 43® (Acros, No. 12377).
- OFETs and other devices with semiconducting materials according to the present invention can be used for RFID tags or security markings to authenticate and prevent counterfeiting of documents of value like banknotes, credit cards or ID cards, national ID documents, licenses or any product with monetry value, like stamps, tickets, shares, cheques etc.
- the materials according to the invention can be used in OLEDs, e.g. as the active display material in a flat panel display applications, or as backlight of a flat panel display like e.g. a liquid crystal display.
- OLEDs are realized using multilayer structures.
- An emission layer is generally sandwiched between one or more electron-transport and/or hole-transport layers.
- the inventive compounds, materials and films may be employed in one or more of the charge transport layers and/or in the emission layer, corresponding to their electrical and/or optical properties.
- the compounds, materials and films according to the invention show electroluminescent properties themselves or comprise electroluminescent groups or compounds.
- the selection, characterization as well as the processing of suitable monomeric, oligomeric and polymeric compounds or materials for the use in OLEDs is generally known by a person skilled in the art, see, e.g., Meerholz, Synthetic Materials, 111-112, 2000, 31-34, Alcala, J. Appl. Phys., 88, 2000, 7124-7128 and the literature cited therein.
- the materials according to this invention may be employed as materials of light sources, e.g. in display devices, as described in EP 0 889 350 A1 or by C. Weder et al., Science, 279, 1998, 835-837.
- a further aspect of the invention relates to both the oxidised and reduced form of the compounds according to this invention. Either loss or gain of electrons results in formation of a highly delocalised ionic form, which is of high conductivity. This can occur on exposure to common dopants. Suitable dopants and methods of doping are known to those skilled in the art, e.g. from EP 0 528 662, U.S. Pat. No. 5,198,153 or WO 96/21659.
- the doping process typically implies treatment of the semiconductor material with an oxidating or reducing agent in a redox reaction to form delocalised ionic centres in the material, with the corresponding counterions derived from the applied dopants.
- Suitable doping methods comprise for example exposure to a doping vapor in the atmospheric pressure or at a reduced pressure, electrochemical doping in a solution containing a dopant, bringing a dopant into contact with the semiconductor material to be thermally diffused, and ion-implantation of the dopant into the semiconductor material.
- suitable dopants are for example halogens (e.g., I 2 , Cl 2 , Br 2 , ICl, ICl 3 , IBr and IF), Lewis acids (e.g., PF 5 , AsF 5 , SbF 5 , BF 3 , BCl 3 , SbCl 5 , BBr 3 and SO 3 ), protonic acids, organic acids, or amino acids (e.g., HF, HCl, HNO 3 , H 2 SO 4 , HClO 4 , FSO 3 H and ClSO 3 H), transition metal compounds (e.g., FeCl 3 , FeOCl, Fe(ClO 4 ) 3 , Fe(4-CH 3 C 6 H 4 SO 3 ) 3 , TiCl 4 , ZrCl 4 , HfCl 4 , NbF 5 , NbCl 5 , TaCl 5 , MoF 5 , MoCl 5 , WF 5
- halogens
- examples of dopants are cations (e.g., H + , Li + , Na + , K + , Rb + and Cs + ), alkali metals (e.g., Li, Na, K, Rb, and Cs), alkaline-earth metals (e.g., Ca, Sr, and Ba), O 2 , XeOF 4 , (NO 2 + ) (SbF 6 ⁇ ), (NO 2 + ) (SbCl 6 ⁇ ), (NO 2 + ) (BF 4 ⁇ ), AgClO 4 , H 2 IrCl 6 , La(NO 3 ) 3 .6H 2 O, FSO 2 OOSO 2 F, Eu, acetylcholine, R 4 N + , (R is an alkyl group), R 4 P + (R is an alkyl group), R 6 As + (R is an alkyl group), and R 3 S + (R is an alkyl group).
- dopants are c
- the conducting form of the compounds of the present invention can be used as an organic “metal” in applications including, but not limited to, charge injection layers and ITO planarising layers in OLED applications, films for flat panel displays and touch screens, antistatic films, printed conductive substrates, patterns or tracts in electronic applications such as printed circuit boards and condensers.
- the compounds and formulations according to the present invention any also be suitable for use in organic plasmon-emitting diodes (OPEDs), as described for example in Koller et al., Nature Photonics 2008 (published online Sep. 28, 2008).
- OPEDs organic plasmon-emitting diodes
- the materials according to the present invention can be used alone or together with other materials in or as alignment layers in LCD or OLED devices, as described for example in US 2003/0021913.
- the use of charge transport compounds according to the present invention can increase the electrical conductivity of the alignment layer.
- this increased electrical conductivity can reduce adverse residual dc effects in the switchable LCD cell and suppress image sticking or, for example in ferroelectric LCDs, reduce the residual charge produced by the switching of the spontaneous polarisation charge of the ferroelectric LCs.
- this increased electrical conductivity can enhance the electroluminescence of the light emitting material.
- the compounds or materials according to the present invention having mesogenic or liquid crystalline properties can form oriented anisotropic films as described above, which are especially useful as alignment layers to induce or enhance alignment in a liquid crystal medium provided onto said anisotropic film.
- the materials according to the present invention may also be combined with photoisomerisable compounds and/or chromophores for use in or as photoalignment layers, as described in US 2003/0021913.
- the materials according to the present invention can be employed as chemical sensors or materials for detecting and discriminating DNA sequences.
- Such uses are described for example in L. Chen, D. W. McBranch, H. Wang, R. Helgeson, F. Wudl and D. G. Whitten, Proc. Natl. Acad. Sci. U.S.A. 1999, 96, 12287; D. Wang, X. Gong, P. S. Heeger, F. Rininsland, G. C. Bazan and A. J. Heeger, Proc. Natl. Acad. Sci. U.S.A.
- Acetone 50 cm 3
- the mixture pre-absorbed onto silica and purified by column chromatography (40-60 petrol:ethyl acetate; 1:0 to 3:1) to give 4,7-di-thiophen-2-yl-benzo[2,1,3]thiadiazole-5,6-dicarboxylic acid bis-(2-ethyl-hexyl) ester as a yellow/green oil (380 mg, 11%).
- degassed anhydrous toluene (5 cm 3 ) and degassed anhydrous N,N-dimethylformamide (1 cm 3 ).
- the mixture is then heated at 110° C. for 17 hours.
- the mixture is allowed to cool and poured into stirring acidified methanol (10% hydrochloric acid, 50 cm 3 ) and the precipitate stirred for 30 minutes.
- the solid is then collected by filtration, washed with methanol (100 cm 3 ) to give a black solid.
- the crude polymer is washed via Soxhlet extraction with acetone, 40-60 petrol and chloroform.
- the chloroform extract is concentrated in vacuo and precipitated into stirred methanol (50 cm 3 ).
- OLED Organic photovoltaic
- ITO-glass substrates 13 ⁇ /sq.
- Substrates were cleaned using common solvents (acetone, iso-propanol, deionized-water) in an ultrasonic bath prior to a conventional photolithography process that was carried out to define the bottom electrodes (anodes).
- a conducting polymer poly(ethylene dioxythiophene) doped with poly(styrene sulfonic acid) [Clevios VPAI 4083 (H. C. Starck)] was mixed in a 1:1 ratio with deionized-water.
Landscapes
- Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Engineering & Computer Science (AREA)
- Medicinal Chemistry (AREA)
- Polymers & Plastics (AREA)
- Health & Medical Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Materials Engineering (AREA)
- Nanotechnology (AREA)
- Physics & Mathematics (AREA)
- Mathematical Physics (AREA)
- Theoretical Computer Science (AREA)
- Crystallography & Structural Chemistry (AREA)
- Electromagnetism (AREA)
- Polyoxymethylene Polymers And Polymers With Carbon-To-Carbon Bonds (AREA)
- Electroluminescent Light Sources (AREA)
- Heterocyclic Carbon Compounds Containing A Hetero Ring Having Oxygen Or Sulfur (AREA)
- Nitrogen And Oxygen Or Sulfur-Condensed Heterocyclic Ring Systems (AREA)
- Photovoltaic Devices (AREA)
Abstract
Description
- W is S, Se, O or NRx,
- E1, E2 are —O—C(O)— or —C(O)—O—,
- Rx is H or straight-chain, branched or cyclic alkyl with 1 to 30 C atoms, in which one or more non-adjacent C atoms are optionally replaced by —O—, —S—, —C(O)—, —C(O)—O—, —O—C(O)—, O—C(O)—O—, —CH═CH— or —C≡C— and in which one or more H atoms are optionally replaced by F, Cl, Br, I or CN,
- R1, R2 are, each independently of one another, an optionally substituted C1-40 carbyl or hydrocarbyl group.
- R0 and R00 are independently of each other H or optionally substituted C1-40 carbyl or hydrocarbyl,
- R3 is on each occurrence identically or differently F, Br, Cl, —CN, —NC, —NCO, —NCS, —OCN, —SCN, —C(O)NR0R00, —C(O)X0, —C(O)R0, —NH2, —NR0R00, —SH, —SR0, —SO3H, —SO2R0, —OH, —NO2, —CF3, —SF5, optionally substituted silyl, carbyl or hydrocarbyl with 1 to 40 C atoms that is optionally substituted and optionally comprises one or more hetero atoms, or P-Sp-,
- P is a polymerisable or crosslinkable group,
- Sp is a spacer group or a single bond, and
- X0 is halogen.
—[(Ar1—U—Ar2)x—(Ar3)y]n— II
wherein
- U is on each occurrence identically or differently a unit of formula I as described above and below,
- Ar1, Ar2, Ar3 are, on each occurrence identically or differently, and independently of each other, aryl or heteroaryl that is optionally substituted, preferably by one or more groups R3 as defined above, and one or both of Ar1 and Ar2 may also denote a single bond,
- Y1 and Y2 are independently of each other H, F, Cl or CN,
- x is on each occurrence identically or differently 0, 1 or 2, wherein in at least one repeating unit, i.e. in at least one unit —[(Ar1—U—Ar2)x—(Ar3)y]—, x is 1,
- y is on each occurrence identically or differently 0, 1 or 2,
- n is an integer >1.
wherein “ALK” denotes optionally fluorinated, preferably linear, alkyl or alkoxy with 1 to 20, preferably 1 to 12 C-atoms, in case of tertiary groups very preferably 1 to 9 C atoms, and the dashed line denotes the link to the ring to which these groups are attached. Especially preferred among these groups are those wherein all ALK subgroups are identical.
CH2═CW2—(O)k1—, CW1═CH—C(O)—(O)k3—, CW1═CH—C(O)—NH—, CH2═CW1—C(O)—NH—, CH3—CH═CH—O—, (CH2═CH)2CH—OC(O)—, (CH2═CH—(CH2)2CH—O—C(O)—, (CH2═CH)2CH—O—, (CH2═CH—(CH2)2N—, (CH2═CH—(CH2)2N—C(O)—, HO—CW2W3—, HS—CW2W3—, HW2N—, HO—CW2W3—NH—, CH2═CH—(C(O)—O)k1-Phe-(O)k2—, CH2═CH—(C(O))k1-Phe-(O)k2—, Phe-CH═CH—, HOOC—, OCN—, and W4W5W6Si—, with W1 being H, F, Cl, CN, CF3, phenyl or alkyl with 1 to 5 C-atoms, in particular H, Cl or CH3, W2 and W3 being independently of each other H or alkyl with 1 to 5 C-atoms, in particular H, methyl, ethyl or n-propyl, W4, W5 and W6 being independently of each other Cl, oxaalkyl or oxacarbonylalkyl with 1 to 5 C-atoms, W7 and W8 being independently of each other H, Cl or alkyl with 1 to 5 C-atoms, Phe being 1,4-phenylene that is optionally substituted by one or more groups L as defined above, k1, k2 and k3 being independently of each other 0 or 1, k3 preferably being 1, and k4 being an integer from 1 to 10.
or protected derivatives thereof. Further preferred groups P are selected from the group consisting of vinyloxy, acrylate, methacrylate, fluoroacrylate, chloracrylate, oxetan and epoxy groups, very preferably from an acrylate or methacrylate group.
- Sp′ is alkylene with up to 30 C atoms which is unsubstituted or mono- or polysubstituted by F, Cl, Br, I or CN, it being also possible for one or more non-adjacent CH2 groups to be replaced, in each case independently from one another, by —O—, —S—, —NH—, —NR0—, —SiR0R00—, —C(O)—, —C(O)O—, —OC(O)—, —OC(O)—O—, —S—C(O)—, —C(O)—S—, —CH═CH— or —C≡C— in such a manner that O and/or S atoms are not linked directly to one another,
- X′ is —O—, —S—, —C(O)—, —C(O)O—, —OC(O)—, —O—C(O)O—, —C(O)—NR0—, —NR0—C(O)—, —NR0—C(O)—NR00—, —OCH2—, —CH2O—, —SCH2—, —CH2S—, —CF2O—, —OCF2—, —CF2S—, —SCF2—, —CF2CH2—, —CH2CF2—, —CF2CF2—, —CH═N—, —N═CH—, —N═N—, —CH═CR0—, —CY1═CY2—, —C≡C—, —CH═CH—C(O)O—, —OC(O)—CH═CH— or a single bond,
- R0 and R00 are independently of each other H or alkyl with 1 to 12 C-atoms, and
- Y1 and Y2 are independently of each other H, F, Cl or CN.
R4—[(Ar1—U—Ar2)x—(Ar3)y]n—R5 IIa
wherein U, Ar1-3, n, x and y have the meanings of formula I and II, and
- R3 and R5 have independently of each other one of the meanings of R3, preferably F, Br or Cl, or denote H, —CH2Cl, —CHO, —CH═CH2, —SiR′R″R′″, —SnR′R″R′″, —BR′R″, —B(OR′)(OR″), —B(OH)2, or P-Sp, wherein P and Sp are as defined above, and R′, R″ and R′″ have independently of each other one of the meanings of R0 defined above, and two of R′, R″ and R′″ may also form a ring together with the hetero atom to which they are attached.
R4—Ar1—U—Ar2—R5 Ia
wherein U, Ar1, Ar2, R4 and R5 have the meanings of formula II and IIa, or one of the preferred meanings as described above and below.
-
- W is S,
- W is Se,
- W is O,
- W is NRx,
- E1 is —O—C(O)— and E2 is —C(O)—O, i.e. both ester groups are attached to the benzene ring in formula I via the carbonyl C-atom,
- E1 is —C(O)—O— and E2 is O—C(O)—, i.e. both ester groups are attached to the benzene ring in formula I via the O-atom,
- one of Ar1 and Ar2 is a single bond,
- both Ar1 and Ar2 are a single bond,
- both Ar1 and Ar2 are not a single bond,
- Ar1 and Ar2, when being different from a single bond, are selected from the group consisting of thiophene-2,5-diyl, thiazole-2,5-diyl, selenophene-2,5-diyl, furan-2,5-diyl, thieno[3,2-b]thiophene-2,5-diyl, thieno[2,3-b]thiophene-2,5-diyl, selenopheno[3,2-b]selenophene-2,5-diyl, selenopheno[2,3-b]selenophene-2,5-diyl, selenopheno[3,2-b]thiophene-2,5-diyl, or selenopheno[2,3-b]thiophene-2,5-diyl, all of which are unsubstituted, or mono- or polysubstituted, preferably with R3 as defined above and below,
- Ar3 is selected from the group consisting of 1,4-phenylene, 2,3-dicyano-1,4-phenylene, 2,5-dicyano, 2,3-difluro-1,4-phenylene, 2,5-difluoro-1,4-phenylene, 2,3,5,6-tetrafluoro, 3,4-difluorothiophene-2,5-diyl, pyridine-2,5-diyl, pyrimidine-2,5-diyl, naphthalene-2,6-diyl, thiophene-2,5-diyl, selenophene-2,5-diyl, thieno[3,2-b]thiophene-2,5-diyl, thieno[2,3-b]thiophene-2,5-diyl, selenopheno[3,2-b]selenophene-2,5-diyl, selenopheno[2,3-b]selenophene-2,5-diyl, selenopheno[3,2-b]thiophene-2,5-diyl, selenopheno[2,3-b]thiophene-2,5-diyl, benzo[1,2-b:4,5-b′]di-thiophene-2,6-diyl, 2,2-dithiophene, 2,2-diselenophene, dithieno[3,2-b:2′,3′-d]silole-5,5-diyl, dithieno[3,2-b;2′,3′-d]pyrrole-5,5-diyl, 4H-cyclopenta[2,1-b:3,4-b′]dithiophene-2,6-diyl, carbazole-2,7-diyl, fluorene-2,7-diyl, indaceno[1,2-b:5,6-b]dithiophene-2,7-diyl, benzo[1″,2″:4,5;4″,5″:4′,5′]bis(silolo[3,2-b:3′,2′-b]thiophene)-2,7-diyl, phenanthro[1,10,9,8-c,d,e,f,g]carbazole-2,7-diyl, benzo[2,1,3]thia-diazole-4,7-diyl, benzo[2,1,3]selenadiazole-4,7-diyl, benzo[2,1,3]oxa-diazole-4,7-diyl, 2H-benzotriazole-4,7-diyl, 3,4-difluorothiophene-2,5-diyl, quinoxaline-5,8-diyl, thieno[3,4-b]pyrazine-2,5-diyl, thieno[3,4-b]thiophene-4,6-diyl, thieno[3,4-b]thiophene-6,4-diyl, 3,6-di-thien-2-yl-pyrrolo[3,4-c]pyrrole-1,4-dione, or [1,3]thiazolo[5,4-d][1,3]thiazole-2,5-diyl, all of which are unsubstituted, or mono- or polysubstituted, preferably with R3 as defined above and below,
- n is at least 5, preferably at least 10, very preferably at least 50, and up to 2,000, preferably up to 500.
- Mw is at least 5,000, preferably at least 8,000, very preferably at least 10,000, and preferably up to 300,000, very preferably up to 100,000,
- R1 and R2 are selected from the group consisting of primary alkyl or alkoxy with 1 to 30 C atoms, secondary alkyl or alkoxy with 3 to 30 C atoms, and tertiary alkyl or alkoxy with 4 to 30 C atoms, wherein in all these groups one or more H atoms are optionally replaced by F,
- R1 and R2 are selected from the group consisting of aryl, heteroaryl, aryloxy, heteroaryloxy, each of which is optionally alkylated or alkoxylated and has 4 to 30 ring atoms,
- R3 is F, Cl, Br, I, CN, R6, —C(O)—R6, —C(O)—O—R6, or —O—C(O)—R6, wherein R6 is straight-chain, branched or cyclic alkyl with 1 to 30 C atoms, in which one or more non-adjacent C atoms are optionally replaced by —O—, —S—, —C(O)—, —C(O)—O—, —O—C(O)—, —O—C(O)—O—, —CR0═CR00— or —C≡C— and in which one or more H atoms are optionally replaced by F, Cl, Br, I or CN, or R3 is aryl, aryloxy, heteroaryl or heteroaryloxy having 4 to 30 ring atoms which is unsubstituted or which is substituted by one or more halogen atoms or by one or more groups R6, —C(O)—R6, —C(O)—O—R6, or —O—C(O)—R6 as defined above,
- R6 is primary alkyl with 1 to 30 C atoms, very preferably with 1 to 15 C atoms, secondary alkyl with 3 to 30 C atoms, or tertiary alkyl with 4 to 30 C atoms, wherein in all these groups one or more H atoms are optionally replaced by F,
- R0 and R00 are selected from H or C1-C10-alkyl,
- R4 and R5 are selected from H, halogen, —CH2Cl, —CHO, —CH═CH2—SiR′R″R′″, —SnR′R″R′″, —BR′R″, —B(OR′)(OR″), —B(OH)2, P-Sp, C1-C20-alkyl, C1-C20-alkoxy, C2-C20-alkenyl, C1-C20-fluoroalkyl and optionally substituted aryl or heteroaryl,
- R4 and R5 are, preferably independently of each other, selected from the group consisting of Cl, Br, I, O-tosylate, O-triflate, O-mesylate, O-nonaflate, —SiMe2F, —SiMeF2, —O—SO2Z′, —B(OZ2)2, —CZ3═C(Z4)2, —C≡CH and —Sn(Z4)3, wherein Z1-4 are selected from the group consisting of alkyl and aryl, each being optionally substituted, and two groups Z2 may also form a cyclic group, very preferably from Br,
- Rx is H, alkyl, alkoxy, alkylcarbonyl, alkylcarbonyloxy or alkoxycarbonyl with 1 to 30 C atoms, wherein one or more H atoms are optionally replaced by F.
- X is C(Rx) or N,
- Y is O, S, Se or N(Rx),
- Z is C(Rx) or N,
- Y1 is O, S, Se, N(Rx), or —CH═CH—,
- Z′ is C(Rx) or N,
- W and Rx have the meanings of formula I or one of the preferred meanings given above and below,
- U1 and U2 are each, independently of one another, —C(Rx)═, —C(RxRy)—, —S(iRxRy)—, —N(Rx)—, —S—, —Se—, —O— or a single bond, wherein U1 and U2 are not both a single bond,
- Ry has one of the meanings given for Rx,
- u is 0 or 1,
- n has the meaning of formula II or one of the preferred meanings given above and below.
-
- the group consisting of polymers wherein Z is C(Rx) and Y is S or Se, very preferably S, and/or wherein W is S,
- the group consisting of polymers wherein U1 and U2 are —C(Rx)═,
- the group consisting of polymers wherein one of U1 and U2 is a single bond and the other is —C(RxRy)—, —S(iRxRy)— or —N(Rx)—,
- the group consisting of polymers wherein Ar is of formula 1, U′ is a single bond and U2 is —C(RxRy)—, —S(iRxRy)— or —N(Rx)—, very preferably wherein X, Z and Z′ denote C(Rx) and Y and Y′ denote S or Se, most preferably S,
- the group consisting of polymers wherein Ar is formula 1, Y′ is —CH═CH— and Z′ is C(Rx), and preferably X and Z are C(Rx) and Y is S or Se, most preferably S,
- the group consisting of polymers wherein Ar is of formula 1, Y′ is —CH═CH—, Z′ is C(Rx), U1 is a single bond, and U2 is —C(RxRy)—, —S(iRxRy)— or —N(Rx)—, and preferably wherein X and Z are C(Rx) and Y is S or Se, most preferably S,
- the group consisting of polymers wherein Ar is of formula 2, U1 and U2 are —C(Rx)═, and preferably wherein X, Z and Z′ denote C(Rx) and Y and Y′ denote S or Se, most preferably S.
wherein R1, R2, Rx, Ry and n have the meanings as given in formula I, II and IIA, or one of the preferred meanings given above and below.
R4-chain-R5
wherein “chain” is a polymer chain selected from above formulae IIA-IID and II1-15, and R4 and R5 have one of the meanings given in formula IIa or one of the preferred meanings given above and below.
R4—Ar3—R5
wherein R4 and R5 have one of the meanings of formula IIa or one of the preferred meanings given above and below, and Ar3 has one of the meanings of formula IIa or of Ar in formula IIa, or one of the preferred meanings given above and below.
-
- a low work function electrode (11) (for example a metal, such as aluminum), and a high work function electrode (12) (for example ITO), one of which is transparent,
- a layer (13) (also referred to as “active layer”) comprising a hole transporting material and an electron transporting material, preferably selected from OSC materials, situated between the electrodes (11,12); the active layer can exist for example as a bilayer or two distinct layers or blend or mixture of p-type and n-type semiconductor, forming a bulk heterjunction (BHJ) (see for example Coakley, K. M. and McGehee, M. D. Chem. Mater. 2004, 16, 4533),
- an optional conducting polymer layer (14), for example comprising a blend of PEDOT:PSS (poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate)), situated between the active layer (13) and the high work function electrode (12), to modify the work function of the high work function electrode to provide an ohmic contact for holes,
- an optional coating (15) (for example of LiF) on the side of the low workfunction electrode (11) facing the active layer (13), to provide an ohmic contact for electrons.
-
- a low work function electrode (21) (for example a metal, such as gold), and a high work function electrode (22) (for example ITO), one of which is transparent,
- a layer (23) (also referred to as “active layer”) comprising a hole transporting material and an electron transporting material, preferably selected from OSC materials, situated between the electrodes (21,22); the active layer can exist for example as a bilayer or two distinct layers or blend or mixture of p-type and n-type semiconductor, forming a BHJ,
- an optional conducting polymer layer (24), for example comprising a blend of PEDOT:PSS, situated between the active layer (23) and the low work function electrode (21) to provide an ohmic contact for electrons,
- an optional coating (25) (for example of TiOx) on the side of the high workfunction electrode (22) facing the active layer (23), to provide an ohmic contact for holes.
-
- a source electrode,
- a drain electrode,
- a gate electrode,
- a semiconducting layer,
- one or more gate insulator layers,
- optionally a substrate.
wherein the semiconductor layer preferably comprises a polymer, polymer blend or formulation as described above and below.
| TABLE 1 |
| Photovoltaic cell characteristics |
| Example | η (%) | FF | Voc (mV) | Jsc (mA/cm2) |
| (1) | 0.33 | 29 | 627 | −1.77 |
| (2) | 0.33 | 34 | 774 | −1.25 |
| (3) | 0.39 | 33 | 769 | −1.54 |
| (4) | 0.33 | 29 | 863 | −1.35 |
| (5) | 0.26 | 32 | 750 | −1.06 |
Claims (17)
R4—Ar1—U—Ar2—R5 Ia
R4—Ar3—R5
Priority Applications (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| US14/731,917 US9837613B2 (en) | 2010-09-04 | 2015-06-05 | Conjugated polymers |
Applications Claiming Priority (6)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| EP10009200 | 2010-09-04 | ||
| EP10009200 | 2010-09-04 | ||
| EP10009200.6 | 2010-09-04 | ||
| PCT/EP2011/003952 WO2012028246A1 (en) | 2010-09-04 | 2011-08-05 | Conjugated polymers |
| US201313820310A | 2013-03-01 | 2013-03-01 | |
| US14/731,917 US9837613B2 (en) | 2010-09-04 | 2015-06-05 | Conjugated polymers |
Related Parent Applications (2)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| PCT/EP2011/003952 Division WO2012028246A1 (en) | 2010-09-04 | 2011-08-05 | Conjugated polymers |
| US13/820,310 Division US9153784B2 (en) | 2010-09-04 | 2011-08-05 | Conjugated polymers |
Publications (2)
| Publication Number | Publication Date |
|---|---|
| US20150270490A1 US20150270490A1 (en) | 2015-09-24 |
| US9837613B2 true US9837613B2 (en) | 2017-12-05 |
Family
ID=44629911
Family Applications (2)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| US13/820,310 Expired - Fee Related US9153784B2 (en) | 2010-09-04 | 2011-08-05 | Conjugated polymers |
| US14/731,917 Active US9837613B2 (en) | 2010-09-04 | 2015-06-05 | Conjugated polymers |
Family Applications Before (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| US13/820,310 Expired - Fee Related US9153784B2 (en) | 2010-09-04 | 2011-08-05 | Conjugated polymers |
Country Status (11)
| Country | Link |
|---|---|
| US (2) | US9153784B2 (en) |
| EP (1) | EP2611851B1 (en) |
| JP (1) | JP5941467B2 (en) |
| KR (1) | KR20140009134A (en) |
| CN (1) | CN103097430B (en) |
| DE (1) | DE112011102915T5 (en) |
| GB (1) | GB2496565B (en) |
| RU (1) | RU2013114919A (en) |
| SG (1) | SG187968A1 (en) |
| TW (1) | TWI535751B (en) |
| WO (1) | WO2012028246A1 (en) |
Cited By (2)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US10340457B2 (en) * | 2014-04-10 | 2019-07-02 | Merck Patent Gmbh | Organic semiconducting compounds |
| US10790461B2 (en) * | 2016-11-22 | 2020-09-29 | Toray Industries, Inc. | Field-effect transistor, method for manufacturing the same, and wireless communication device and goods tag including the same |
Families Citing this family (18)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| RU2013114919A (en) * | 2010-09-04 | 2014-10-10 | Мерк Патент Гмбх | MATCHED POLYMERS |
| EP2897183B1 (en) | 2010-10-22 | 2020-04-29 | Raynergy Tek Inc. | Conjugated polymers and their use in optoelectronic devices |
| TW201245359A (en) * | 2011-03-17 | 2012-11-16 | Sumitomo Chemical Co | Metal complex composition and its mixture |
| RU2014105870A (en) * | 2011-07-19 | 2015-08-27 | Мерк Патент Гмбх | ORGANIC SEMICONDUCTORS |
| EP2650938A1 (en) * | 2012-04-13 | 2013-10-16 | Acreo Swedish ICT AB | Organic Field-Effect Transistor Device |
| KR101982746B1 (en) * | 2012-06-27 | 2019-05-28 | 덕산네오룩스 주식회사 | Compound for organic electronic element, organic electronic element using the same, and a electronic device thereof |
| US10547004B2 (en) * | 2012-10-05 | 2020-01-28 | Merck Patent Gmbh | Organic semiconductors |
| DE102013206586A1 (en) | 2013-04-12 | 2014-10-16 | Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. | Semiconducting copolymer and process for its preparation, mixture, electrical or electronic component and process for its preparation |
| JP6051102B2 (en) * | 2013-05-23 | 2016-12-27 | 富士フイルム株式会社 | Organic photoelectric conversion element and organic thin film solar cell |
| CN104177343A (en) * | 2013-05-27 | 2014-12-03 | 海洋王照明科技股份有限公司 | Organic semiconductor material containing benzotriazole unit and preparation method thereof, and solar cell device |
| CN104177592A (en) * | 2013-05-28 | 2014-12-03 | 海洋王照明科技股份有限公司 | Dithiazole benzo triazolyl-containing polymer and preparation method thereof and organic solar energy cell device |
| EP3116863A4 (en) * | 2014-03-14 | 2017-11-08 | Hitachi Chemical Co. America, Ltd. | Benzothiadiazole-based conjugated molecules capable of forming films on conductive surfaces by electrochemical method |
| CN104744675B (en) * | 2015-03-30 | 2017-10-20 | 华南理工大学 | Conjugated polymer containing 6H-pyrrolo [3, 4-f ] benzotriazole-5, 7-dione and application thereof |
| EP3151297A1 (en) * | 2015-09-30 | 2017-04-05 | InnovationLab GmbH | Conjugated polymers with thermally splittable oxalate side groups |
| KR101990300B1 (en) * | 2017-01-10 | 2019-09-30 | 경상대학교산학협력단 | Novel polymer and organic electronic device containing the same |
| US10787538B2 (en) * | 2018-01-29 | 2020-09-29 | Phillips 66 Company | Polymers for organic photovoltaics |
| CN109320693B (en) * | 2018-09-13 | 2021-03-30 | 南方科技大学 | Conjugated polymer dots, preparation method and application thereof, saturable absorber, preparation method and application thereof |
| WO2020161052A1 (en) * | 2019-02-06 | 2020-08-13 | Merck Patent Gmbh | Organic semiconducting polymers |
Citations (32)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US5523311A (en) * | 1987-08-21 | 1996-06-04 | Ciba-Geigy Corporation | Process and a composition for immunizing plants against disease |
| US5766833A (en) * | 1994-07-29 | 1998-06-16 | Dainippon Ink And Chemicals Inc. | Process of forming super high-contrast negative images and silver halide photographic material and developer being used therefor |
| US20040002576A1 (en) | 2002-03-15 | 2004-01-01 | Sumitomo Chemical Company, Limited | Polymer compound and polymer light emitting device using the same |
| JP2004002703A (en) | 2002-03-15 | 2004-01-08 | Sumitomo Chem Co Ltd | Polymer compound and polymer light emitting device using the same |
| WO2004092246A1 (en) | 2003-04-18 | 2004-10-28 | Hitachi Chemical Co., Ltd. | Polyquinoline copolymer and organic electroluminescent device using same |
| US6854544B2 (en) | 2001-07-02 | 2005-02-15 | Avl List Gmbh | Shutter for closing openings with pivotal shutter elements |
| JP2006077171A (en) | 2004-09-10 | 2006-03-23 | Tokyo Institute Of Technology | Benzotriazole structure-containing polymer, method for producing the same, charge transport material, and organic electronic device |
| WO2008016067A1 (en) | 2006-08-01 | 2008-02-07 | Sumitomo Chemical Company, Limited | Polymer compound and polymer light-emitting device |
| WO2008093822A1 (en) | 2007-02-01 | 2008-08-07 | Sumitomo Chemical Company, Limited | Block copolymer and polymer light-emitting device |
| WO2009139339A1 (en) | 2008-05-12 | 2009-11-19 | 東レ株式会社 | Carbon nanotube composite, organic semiconductor composite, and field-effect transistor |
| WO2009151144A1 (en) | 2008-06-13 | 2009-12-17 | 住友化学株式会社 | Copolymer and polymer light-emitting element using the same |
| US20100006154A1 (en) * | 2006-10-11 | 2010-01-14 | Daisuke Kitazawa | Electron donating organic material for photovoltaic devices, material for photovoltaic devices, and photovoltaic device |
| US20100024860A1 (en) * | 2007-11-02 | 2010-02-04 | Jin-An He | Organic Photovoltaic Cells |
| JP2010507233A (en) | 2006-10-11 | 2010-03-04 | コナルカ テクノロジーズ インコーポレイテッド | Photovoltaic cell using silole-containing polymer |
| JP2010084131A (en) | 2008-09-03 | 2010-04-15 | Sumitomo Chemical Co Ltd | Polymer compound and polymer light-emitting device using the same |
| US7772485B2 (en) | 2005-07-14 | 2010-08-10 | Konarka Technologies, Inc. | Polymers with low band gaps and high charge mobility |
| JP2010507233A5 (en) | 2007-10-01 | 2010-09-09 | ||
| US20100243352A1 (en) | 2009-03-25 | 2010-09-30 | Aisin Seiki Kabushiki Kaisha | Movable grille shutter device for vehicle |
| EP2248693A2 (en) | 2009-05-07 | 2010-11-10 | Aisin Seiki Kabushiki Kaisha | Radiator grille for a vehicle |
| US20100307594A1 (en) * | 2009-05-21 | 2010-12-09 | Zhengguo Zhu | Conjugated Polymers and Their Use in Optoelectronic Devices |
| CN101928382A (en) | 2009-06-25 | 2010-12-29 | 中国科学院化学研究所 | A kind of block conjugated polymer and its preparation method and application |
| US20110178236A1 (en) * | 2008-09-19 | 2011-07-21 | Steven Tierney | Polymers derived from bis(thienocyclopenta) benzothiadiazole and their use as organic semiconductors |
| WO2011131280A1 (en) | 2010-04-19 | 2011-10-27 | Merck Patent Gmbh | Polymers of benzodithiophene and their use as organic semiconductors |
| CN101875716B (en) | 2009-04-30 | 2012-01-11 | 中国科学院化学研究所 | Block conjugated polymer, preparation method thereof and use thereof |
| CN101875717B (en) | 2010-07-20 | 2012-01-25 | 中南大学 | Copolymer of bithiophene diazosulfide and dibenzothiophene (BDT) and application thereof |
| US20130032791A1 (en) * | 2011-06-24 | 2013-02-07 | Bazan Guillermo C | Conjugated polymers having an imine group at the intrachain electron donor bridgehead position useful in electronic devices |
| US20130090446A1 (en) * | 2010-06-23 | 2013-04-11 | Mingjie Zhou | Polymer containing units of fluorene, anthracene and benzothiadiazole, preparation method thereof and application thereof |
| US20140084220A1 (en) * | 2011-03-11 | 2014-03-27 | Kuraray Co., Ltd. | Pi-electron conjugated block copolymer and photoelectric conversion element |
| US20140166942A1 (en) * | 2011-03-31 | 2014-06-19 | Takafumi Izawa | Block copolymer and photoelectric conversion element |
| US20140231791A1 (en) * | 2011-09-26 | 2014-08-21 | Hitachi Chemical Company, Ltd. | Composition capable of changing its solubility, hole transport material composition, and organic electronic element using the same |
| US8968885B2 (en) * | 2009-09-04 | 2015-03-03 | Solvay Usa, Inc. | Organic electronic devices and polymers, including photovoltaic cells and diketone-based polymers |
| US9153784B2 (en) * | 2010-09-04 | 2015-10-06 | Merck Patent Gmbh | Conjugated polymers |
Family Cites Families (16)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US5892244A (en) | 1989-01-10 | 1999-04-06 | Mitsubishi Denki Kabushiki Kaisha | Field effect transistor including πconjugate polymer and liquid crystal display including the field effect transistor |
| US5198153A (en) | 1989-05-26 | 1993-03-30 | International Business Machines Corporation | Electrically conductive polymeric |
| JP3224829B2 (en) | 1991-08-15 | 2001-11-05 | 株式会社東芝 | Organic field effect device |
| WO1996021659A1 (en) | 1995-01-10 | 1996-07-18 | University Of Technology, Sydney | Organic semiconductor |
| EP0889350A1 (en) | 1997-07-03 | 1999-01-07 | ETHZ Institut für Polymere | Photoluminescent display devices (I) |
| US5998804A (en) | 1997-07-03 | 1999-12-07 | Hna Holdings, Inc. | Transistors incorporating substrates comprising liquid crystal polymers |
| AU2926400A (en) | 1999-03-05 | 2000-09-28 | Cambridge Display Technology Limited | Polymer preparation |
| WO2000079617A1 (en) | 1999-06-21 | 2000-12-28 | Cambridge University Technical Services Limited | Aligned polymers for an organic tft |
| GB0028867D0 (en) | 2000-11-28 | 2001-01-10 | Avecia Ltd | Field effect translators,methods for the manufacture thereof and materials therefor |
| US20030021913A1 (en) | 2001-07-03 | 2003-01-30 | O'neill Mary | Liquid crystal alignment layer |
| DE10159946A1 (en) | 2001-12-06 | 2003-06-18 | Covion Organic Semiconductors | Process for the production of aryl-aryl coupled compounds |
| US6723934B2 (en) | 2002-03-04 | 2004-04-20 | Marybeth Enright | Method and apparatus for assisting left-handed manipulation of a vehicle ignition switch |
| DE10241814A1 (en) | 2002-09-06 | 2004-03-25 | Covion Organic Semiconductors Gmbh | Process for the preparation of aryl-aryl coupled compounds |
| DE10337077A1 (en) | 2003-08-12 | 2005-03-10 | Covion Organic Semiconductors | Conjugated copolymers, their preparation and use |
| EP1808866A1 (en) | 2003-11-28 | 2007-07-18 | Merck Patent GmbH | Organic semiconducting layer formulations comprising polyacenes and organic binder polymers |
| CN101671428B (en) * | 2008-09-09 | 2011-08-03 | 中国科学院化学研究所 | Conjugated polymer based on thiophene-containing condensed ring and benzothiadiazole and its preparation method and application |
-
2011
- 2011-08-05 RU RU2013114919/04A patent/RU2013114919A/en not_active Application Discontinuation
- 2011-08-05 DE DE112011102915T patent/DE112011102915T5/en not_active Withdrawn
- 2011-08-05 EP EP11741132.2A patent/EP2611851B1/en active Active
- 2011-08-05 WO PCT/EP2011/003952 patent/WO2012028246A1/en active Application Filing
- 2011-08-05 US US13/820,310 patent/US9153784B2/en not_active Expired - Fee Related
- 2011-08-05 KR KR1020137008471A patent/KR20140009134A/en not_active Ceased
- 2011-08-05 JP JP2013526339A patent/JP5941467B2/en active Active
- 2011-08-05 GB GB1303605.8A patent/GB2496565B/en not_active Expired - Fee Related
- 2011-08-05 SG SG2013014469A patent/SG187968A1/en unknown
- 2011-08-05 CN CN201180042230.9A patent/CN103097430B/en active Active
- 2011-09-02 TW TW100131819A patent/TWI535751B/en not_active IP Right Cessation
-
2015
- 2015-06-05 US US14/731,917 patent/US9837613B2/en active Active
Patent Citations (45)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US5523311A (en) * | 1987-08-21 | 1996-06-04 | Ciba-Geigy Corporation | Process and a composition for immunizing plants against disease |
| US5766833A (en) * | 1994-07-29 | 1998-06-16 | Dainippon Ink And Chemicals Inc. | Process of forming super high-contrast negative images and silver halide photographic material and developer being used therefor |
| US6854544B2 (en) | 2001-07-02 | 2005-02-15 | Avl List Gmbh | Shutter for closing openings with pivotal shutter elements |
| US20040002576A1 (en) | 2002-03-15 | 2004-01-01 | Sumitomo Chemical Company, Limited | Polymer compound and polymer light emitting device using the same |
| JP2004002703A (en) | 2002-03-15 | 2004-01-08 | Sumitomo Chem Co Ltd | Polymer compound and polymer light emitting device using the same |
| WO2004092246A1 (en) | 2003-04-18 | 2004-10-28 | Hitachi Chemical Co., Ltd. | Polyquinoline copolymer and organic electroluminescent device using same |
| US20070003783A1 (en) | 2003-04-18 | 2007-01-04 | Hitachi Chemical Co Ltd | Quinoline copolymer and organic electroluminescent device employing same |
| JP2006077171A (en) | 2004-09-10 | 2006-03-23 | Tokyo Institute Of Technology | Benzotriazole structure-containing polymer, method for producing the same, charge transport material, and organic electronic device |
| US7772485B2 (en) | 2005-07-14 | 2010-08-10 | Konarka Technologies, Inc. | Polymers with low band gaps and high charge mobility |
| US20090302748A1 (en) | 2006-08-01 | 2009-12-10 | Sumitomo Chemical Company, Limited | Polymer compound and polymer light emitting device |
| WO2008016067A1 (en) | 2006-08-01 | 2008-02-07 | Sumitomo Chemical Company, Limited | Polymer compound and polymer light-emitting device |
| US8269099B2 (en) * | 2006-10-11 | 2012-09-18 | Toray Industries, Inc. | Electron donating organic material for photovoltaic devices, material for photovoltaic devices, and photovoltaic device |
| US20100006154A1 (en) * | 2006-10-11 | 2010-01-14 | Daisuke Kitazawa | Electron donating organic material for photovoltaic devices, material for photovoltaic devices, and photovoltaic device |
| JP2010507233A (en) | 2006-10-11 | 2010-03-04 | コナルカ テクノロジーズ インコーポレイテッド | Photovoltaic cell using silole-containing polymer |
| US8298685B2 (en) | 2007-02-01 | 2012-10-30 | Sumitomo Chemical Company, Limited | Block copolymer and polymer light-emitting device |
| WO2008093822A1 (en) | 2007-02-01 | 2008-08-07 | Sumitomo Chemical Company, Limited | Block copolymer and polymer light-emitting device |
| JP2010507233A5 (en) | 2007-10-01 | 2010-09-09 | ||
| US20100024860A1 (en) * | 2007-11-02 | 2010-02-04 | Jin-An He | Organic Photovoltaic Cells |
| US20110121273A1 (en) * | 2008-05-12 | 2011-05-26 | Yukari Jo | Carbon nanotube composite, organic semiconductor composite, and field-effect transistor |
| WO2009139339A1 (en) | 2008-05-12 | 2009-11-19 | 東レ株式会社 | Carbon nanotube composite, organic semiconductor composite, and field-effect transistor |
| US8530889B2 (en) | 2008-05-12 | 2013-09-10 | Toray Industries, Inc. | Carbon nanotube composite, organic semiconductor composite, and field-effect transistor |
| US20110127512A1 (en) | 2008-06-13 | 2011-06-02 | Sumitomo Chemical Company, Limited | Copolymer and polymer light emitting device using the same |
| WO2009151144A1 (en) | 2008-06-13 | 2009-12-17 | 住友化学株式会社 | Copolymer and polymer light-emitting element using the same |
| JP2010084131A (en) | 2008-09-03 | 2010-04-15 | Sumitomo Chemical Co Ltd | Polymer compound and polymer light-emitting device using the same |
| US20110156018A1 (en) | 2008-09-03 | 2011-06-30 | Sumitomo Chemical Company, Limited | Polymer compound and polymer light-emitting device using the same |
| US8173766B2 (en) * | 2008-09-19 | 2012-05-08 | Merck Patent Gesellschaft Mit Beschrankter Haftung | Polymers derived from bis(thienocyclopenta) benzothiadiazole and their use as organic semiconductors |
| US20110178236A1 (en) * | 2008-09-19 | 2011-07-21 | Steven Tierney | Polymers derived from bis(thienocyclopenta) benzothiadiazole and their use as organic semiconductors |
| US20100243352A1 (en) | 2009-03-25 | 2010-09-30 | Aisin Seiki Kabushiki Kaisha | Movable grille shutter device for vehicle |
| CN101875716B (en) | 2009-04-30 | 2012-01-11 | 中国科学院化学研究所 | Block conjugated polymer, preparation method thereof and use thereof |
| US20100282533A1 (en) | 2009-05-07 | 2010-11-11 | Aisin Seiki Kabushiki Kaisha | Grille device for vehicle |
| EP2248693A2 (en) | 2009-05-07 | 2010-11-10 | Aisin Seiki Kabushiki Kaisha | Radiator grille for a vehicle |
| US20100307594A1 (en) * | 2009-05-21 | 2010-12-09 | Zhengguo Zhu | Conjugated Polymers and Their Use in Optoelectronic Devices |
| US20120187385A1 (en) * | 2009-05-21 | 2012-07-26 | Hualong Pan | Conjugated Polymers and Their Use in Optoelectronic Devices |
| US8334456B2 (en) * | 2009-05-21 | 2012-12-18 | Polyera Corporation | Conjugated polymers and their use in optoelectronic devices |
| CN101928382A (en) | 2009-06-25 | 2010-12-29 | 中国科学院化学研究所 | A kind of block conjugated polymer and its preparation method and application |
| US8968885B2 (en) * | 2009-09-04 | 2015-03-03 | Solvay Usa, Inc. | Organic electronic devices and polymers, including photovoltaic cells and diketone-based polymers |
| WO2011131280A1 (en) | 2010-04-19 | 2011-10-27 | Merck Patent Gmbh | Polymers of benzodithiophene and their use as organic semiconductors |
| US20130043434A1 (en) * | 2010-04-19 | 2013-02-21 | Merck Patent Gesellschaft Mit Beschrankter Haftung | Polymers of benzodithiophene and their use as organic semiconductors |
| US20130090446A1 (en) * | 2010-06-23 | 2013-04-11 | Mingjie Zhou | Polymer containing units of fluorene, anthracene and benzothiadiazole, preparation method thereof and application thereof |
| CN101875717B (en) | 2010-07-20 | 2012-01-25 | 中南大学 | Copolymer of bithiophene diazosulfide and dibenzothiophene (BDT) and application thereof |
| US9153784B2 (en) * | 2010-09-04 | 2015-10-06 | Merck Patent Gmbh | Conjugated polymers |
| US20140084220A1 (en) * | 2011-03-11 | 2014-03-27 | Kuraray Co., Ltd. | Pi-electron conjugated block copolymer and photoelectric conversion element |
| US20140166942A1 (en) * | 2011-03-31 | 2014-06-19 | Takafumi Izawa | Block copolymer and photoelectric conversion element |
| US20130032791A1 (en) * | 2011-06-24 | 2013-02-07 | Bazan Guillermo C | Conjugated polymers having an imine group at the intrachain electron donor bridgehead position useful in electronic devices |
| US20140231791A1 (en) * | 2011-09-26 | 2014-08-21 | Hitachi Chemical Company, Ltd. | Composition capable of changing its solubility, hole transport material composition, and organic electronic element using the same |
Non-Patent Citations (2)
| Title |
|---|
| English Machine Translation of JP2006077171A. |
| International Search Repo0rt corresponding to PCT/EP2011/003952, dated Jun. 12, 2011. |
Cited By (2)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US10340457B2 (en) * | 2014-04-10 | 2019-07-02 | Merck Patent Gmbh | Organic semiconducting compounds |
| US10790461B2 (en) * | 2016-11-22 | 2020-09-29 | Toray Industries, Inc. | Field-effect transistor, method for manufacturing the same, and wireless communication device and goods tag including the same |
Also Published As
| Publication number | Publication date |
|---|---|
| US20130161567A1 (en) | 2013-06-27 |
| EP2611851A1 (en) | 2013-07-10 |
| GB2496565B (en) | 2017-05-17 |
| US9153784B2 (en) | 2015-10-06 |
| EP2611851B1 (en) | 2014-10-29 |
| HK1184480A1 (en) | 2014-01-24 |
| JP5941467B2 (en) | 2016-06-29 |
| US20150270490A1 (en) | 2015-09-24 |
| JP2013536882A (en) | 2013-09-26 |
| GB2496565A (en) | 2013-05-15 |
| RU2013114919A (en) | 2014-10-10 |
| WO2012028246A1 (en) | 2012-03-08 |
| TWI535751B (en) | 2016-06-01 |
| GB201303605D0 (en) | 2013-04-10 |
| CN103097430B (en) | 2016-01-20 |
| KR20140009134A (en) | 2014-01-22 |
| SG187968A1 (en) | 2013-04-30 |
| CN103097430A (en) | 2013-05-08 |
| TW201213386A (en) | 2012-04-01 |
| DE112011102915T5 (en) | 2013-07-11 |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| US9837613B2 (en) | Conjugated polymers | |
| US9287504B2 (en) | Semiconducting polymers | |
| US10155774B2 (en) | Semiconducting polymers | |
| US9048433B2 (en) | Conjugated polymers | |
| US10050201B2 (en) | Polymers of benzodithiophene and their use as organic semiconductors | |
| US9455059B2 (en) | Phenanthro [1,10,9,8-c,d,e,f,g]carbazole polymers and their use as organic semiconductors | |
| US10547004B2 (en) | Organic semiconductors | |
| US9212260B2 (en) | Polymers of 8,9-dihydrobenzo[def]carbazole and their use as organic semiconductors | |
| US9287505B2 (en) | Semiconducting polymers | |
| US10134994B2 (en) | Polycyclic polymer comprising thiophene units, a method of producing and uses of such polymer | |
| US20140042371A1 (en) | Conjugated polymers | |
| EP2760909B1 (en) | Conjugated polymers | |
| US20140061538A1 (en) | Conjugated polymers | |
| US20140001411A1 (en) | Conjugated polymers | |
| US20140034880A1 (en) | Conjugated polymers | |
| US9559303B2 (en) | Conjugated polymers |
Legal Events
| Date | Code | Title | Description |
|---|---|---|---|
| AS | Assignment |
Owner name: MERCK PAGENT GMBH, GERMANY Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:MITCHELL, WILLIAM;TIERNEY, STEVEN;BLOUIN, NICOLAS;AND OTHERS;SIGNING DATES FROM 20150703 TO 20150904;REEL/FRAME:036659/0652 |
|
| STCF | Information on status: patent grant |
Free format text: PATENTED CASE |
|
| AS | Assignment |
Owner name: RAYNERGY TEK INCORPORATION, TAIWAN Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:MERCK PATENT GMBH;REEL/FRAME:053283/0990 Effective date: 20200716 |
|
| FEPP | Fee payment procedure |
Free format text: ENTITY STATUS SET TO SMALL (ORIGINAL EVENT CODE: SMAL); ENTITY STATUS OF PATENT OWNER: SMALL ENTITY |
|
| MAFP | Maintenance fee payment |
Free format text: PAYMENT OF MAINTENANCE FEE, 4TH YR, SMALL ENTITY (ORIGINAL EVENT CODE: M2551); ENTITY STATUS OF PATENT OWNER: SMALL ENTITY Year of fee payment: 4 |
|
| FEPP | Fee payment procedure |
Free format text: MAINTENANCE FEE REMINDER MAILED (ORIGINAL EVENT CODE: REM.); ENTITY STATUS OF PATENT OWNER: SMALL ENTITY |




























