US9685732B2 - Apparatus for moving a carrier - Google Patents

Apparatus for moving a carrier Download PDF

Info

Publication number
US9685732B2
US9685732B2 US14/720,909 US201514720909A US9685732B2 US 9685732 B2 US9685732 B2 US 9685732B2 US 201514720909 A US201514720909 A US 201514720909A US 9685732 B2 US9685732 B2 US 9685732B2
Authority
US
United States
Prior art keywords
magnet
carrier
magnetic pole
pole element
latch
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
US14/720,909
Other versions
US20160352043A1 (en
Inventor
Marko Eromäki
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Microsoft Technology Licensing LLC
Original Assignee
Microsoft Technology Licensing LLC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Microsoft Technology Licensing LLC filed Critical Microsoft Technology Licensing LLC
Priority to US14/720,909 priority Critical patent/US9685732B2/en
Assigned to MICROSOFT TECHNOLOGY LICENSING, LLC reassignment MICROSOFT TECHNOLOGY LICENSING, LLC ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: Eromäki, Marko
Priority to CN201680029521.7A priority patent/CN107646097B/en
Priority to PCT/US2016/029278 priority patent/WO2016191008A1/en
Priority to EP16724154.6A priority patent/EP3304749B1/en
Publication of US20160352043A1 publication Critical patent/US20160352043A1/en
Application granted granted Critical
Publication of US9685732B2 publication Critical patent/US9685732B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01RELECTRICALLY-CONDUCTIVE CONNECTIONS; STRUCTURAL ASSOCIATIONS OF A PLURALITY OF MUTUALLY-INSULATED ELECTRICAL CONNECTING ELEMENTS; COUPLING DEVICES; CURRENT COLLECTORS
    • H01R13/00Details of coupling devices of the kinds covered by groups H01R12/70 or H01R24/00 - H01R33/00
    • H01R13/62Means for facilitating engagement or disengagement of coupling parts or for holding them in engagement
    • H01R13/6205Two-part coupling devices held in engagement by a magnet
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F1/00Details not covered by groups G06F3/00 - G06F13/00 and G06F21/00
    • G06F1/16Constructional details or arrangements
    • G06F1/1613Constructional details or arrangements for portable computers
    • G06F1/1633Constructional details or arrangements of portable computers not specific to the type of enclosures covered by groups G06F1/1615 - G06F1/1626
    • G06F1/1656Details related to functional adaptations of the enclosure, e.g. to provide protection against EMI, shock, water, or to host detachable peripherals like a mouse or removable expansions units like PCMCIA cards, or to provide access to internal components for maintenance or to removable storage supports like CDs or DVDs, or to mechanically mount accessories
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F1/00Details not covered by groups G06F3/00 - G06F13/00 and G06F21/00
    • G06F1/16Constructional details or arrangements
    • G06F1/18Packaging or power distribution
    • G06F1/181Enclosures
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F1/00Details not covered by groups G06F3/00 - G06F13/00 and G06F21/00
    • G06F1/16Constructional details or arrangements
    • G06F1/18Packaging or power distribution
    • G06F1/183Internal mounting support structures, e.g. for printed circuit boards, internal connecting means
    • G06F1/187Mounting of fixed and removable disk drives
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06KGRAPHICAL DATA READING; PRESENTATION OF DATA; RECORD CARRIERS; HANDLING RECORD CARRIERS
    • G06K13/00Conveying record carriers from one station to another, e.g. from stack to punching mechanism
    • G06K13/02Conveying record carriers from one station to another, e.g. from stack to punching mechanism the record carrier having longitudinal dimension comparable with transverse dimension, e.g. punched card
    • G06K13/08Feeding or discharging cards
    • G06K13/0806Feeding or discharging cards using an arrangement for ejection of an inserted card
    • G06K13/0831Feeding or discharging cards using an arrangement for ejection of an inserted card the ejection arrangement comprising a slide, carriage or drawer
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06KGRAPHICAL DATA READING; PRESENTATION OF DATA; RECORD CARRIERS; HANDLING RECORD CARRIERS
    • G06K13/00Conveying record carriers from one station to another, e.g. from stack to punching mechanism
    • G06K13/02Conveying record carriers from one station to another, e.g. from stack to punching mechanism the record carrier having longitudinal dimension comparable with transverse dimension, e.g. punched card
    • G06K13/08Feeding or discharging cards
    • G06K13/085Feeding or discharging cards using an arrangement for locking the inserted card
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B1/00Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission
    • H04B1/38Transceivers, i.e. devices in which transmitter and receiver form a structural unit and in which at least one part is used for functions of transmitting and receiving
    • H04B1/3816Mechanical arrangements for accommodating identification devices, e.g. cards or chips; with connectors for programming identification devices
    • H04B1/3818Arrangements for facilitating insertion or removal of identification devices
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K5/00Casings, cabinets or drawers for electric apparatus
    • H05K5/02Details
    • H05K5/0217Mechanical details of casings
    • H05K5/0221Locks; Latches
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K5/00Casings, cabinets or drawers for electric apparatus
    • H05K5/02Details
    • H05K5/0256Details of interchangeable modules or receptacles therefor, e.g. cartridge mechanisms
    • H05K5/0286Receptacles therefor, e.g. card slots, module sockets, card groundings
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K5/00Casings, cabinets or drawers for electric apparatus
    • H05K5/02Details
    • H05K5/0256Details of interchangeable modules or receptacles therefor, e.g. cartridge mechanisms
    • H05K5/0286Receptacles therefor, e.g. card slots, module sockets, card groundings
    • H05K5/0295Receptacles therefor, e.g. card slots, module sockets, card groundings having ejection mechanisms
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K7/00Constructional details common to different types of electric apparatus
    • H05K7/14Mounting supporting structure in casing or on frame or rack
    • H05K7/1401Mounting supporting structure in casing or on frame or rack comprising clamping or extracting means
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06KGRAPHICAL DATA READING; PRESENTATION OF DATA; RECORD CARRIERS; HANDLING RECORD CARRIERS
    • G06K13/00Conveying record carriers from one station to another, e.g. from stack to punching mechanism
    • G06K13/02Conveying record carriers from one station to another, e.g. from stack to punching mechanism the record carrier having longitudinal dimension comparable with transverse dimension, e.g. punched card
    • G06K13/08Feeding or discharging cards
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B17/00Guiding record carriers not specifically of filamentary or web form, or of supports therefor
    • G11B17/02Details
    • G11B17/04Feeding or guiding single record carrier to or from transducer unit
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04MTELEPHONIC COMMUNICATION
    • H04M1/00Substation equipment, e.g. for use by subscribers
    • H04M1/02Constructional features of telephone sets
    • H04M1/0202Portable telephone sets, e.g. cordless phones, mobile phones or bar type handsets
    • H04M1/026Details of the structure or mounting of specific components
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T292/00Closure fasteners
    • Y10T292/11Magnetic

Definitions

  • Many pieces of existing electronic equipment that people use may comprise an apparatus for moving a removable data storage medium.
  • the apparatus may also move some other type of device, which is needed to be hidden or out of the way during normal operation of the electronic equipment.
  • An apparatus comprises a housing, a carrier having a retracted closed position and an ejected open position with respect to the housing, wherein the carrier comprises a first magnet and a second magnet. Further, the apparatus comprises a latch having two states and having a third magnet located between the first magnet and the second magnet, wherein in a first state the carrier is in the retracted closed position due to a magnetic coupling between the first magnet and the third magnet, and in a second state the carrier is in the ejected open position due to a magnetic coupling between the second magnet and the third magnet.
  • FIG. 1A is a schematical example illustration of an apparatus where a carrier is in a retracted closed position and where a latch is in a first state.
  • FIG. 1B is a schematical example illustration of an apparatus where a carrier is in a retracted closed position and where a latch has moved to a second state.
  • FIG. 2A is a schematical example illustration of an apparatus where a carrier is moving to an ejected open position.
  • FIG. 2B is a schematical example illustration of an apparatus where a carrier is in an ejected open position.
  • FIG. 3 is a schematical example illustration of an apparatus where a carrier is in an ejected open position and where a latch has moved to a second state.
  • FIG. 4 is a schematical example illustration of an apparatus where a carrier is in an ejected open position.
  • FIG. 5 is a schematical example illustration of an apparatus where a carrier is moving to an ejected open position.
  • FIG. 6 is a schematical example illustration of an apparatus where a carrier is in a retracted closed position and where a latch is in a first state.
  • FIG. 7 is a schematical example illustration of an apparatus where two carriers are in a retracted closed position.
  • Mobile wireless devices such as mobile phones, laptops, tablets, smart watches and other smart wearables or cars with an on-board navigational system may need a removable data storage medium, such as an integrated circuit card.
  • a removable data storage medium such as an integrated circuit card.
  • an integrated circuit card is called a smart card, such as a Subscriber Identity Module card (SIM card), a memory card, such as a Secure Digital card (SD card), an identity card or a card which is suitable for paying purchases.
  • SIM card Subscriber Identity Module card
  • SD card Secure Digital card
  • the removable data storage medium may be a compact disc (CD) or a digital versatile disc (DVD).
  • CD compact disc
  • DVD digital versatile disc
  • Some pieces of electronic equipment using a removable data storage medium may also accept more than one removable data storage medium.
  • an auxiliary device such as a flash
  • the flash would be hidden when no camera is needed.
  • the ejecting flash would also operate as a flashlight when continuous operation of the light of the flash is enabled.
  • electric signals are needed for moving the removable data storage medium or the auxiliary device.
  • FIG. 1A is a schematical example illustration of an apparatus 1 a where a carrier 5 is in a retracted closed position and where a latch 6 is in a first state.
  • FIG. 1A shows a view from the top of the apparatus 1 a .
  • the apparatus 1 a comprises a housing 4 .
  • the apparatus 1 a further comprises a carrier 5 having a retracted closed position and an ejected open position with respect to the housing 4 .
  • the carrier 5 comprises a first magnet 1 and a second magnet 2 .
  • the apparatus 1 a further comprises a latch 6 having two states.
  • the latch 6 comprises also a third magnet 3 .
  • the third magnet 3 is attached to the latch 6 and arranged between the first magnet 1 and the second magnet 2 . As disclosed in FIG.
  • the first magnet 1 of the carrier 5 is magnetically coupled with the third magnet 3 of the latch 6 .
  • the latch 6 is configured to move transversely in relation to the reciprocating direction of motion of the carrier 5 between the first state and the second state.
  • the latch 6 is configured to cause ejection of the carrier 5 to the ejected open position when the similar poles of the first magnet 1 and the third magnet 3 are caused to face each other, and the latch 6 is configured to cause retraction of the carrier 5 when the similar poles of the second magnet 2 and the third magnet 3 are caused to face each other.
  • the carrier 5 may comprise a rectangular structure 57 . In this case the carrier 5 is a card carrier.
  • the carrier 5 may be structured substantially circular to receive the CD or the DVD (not illustrated in FIG. 1A ).
  • the first magnet 1 comprises a first magnetic pole element 101 and a second magnetic pole element 102 .
  • the first magnet 1 may be attached to a front portion 51 of the carrier 5 .
  • the second magnetic pole element 102 may be located between the carrier 5 and the first magnetic pole element 101 .
  • the second magnetic pole 102 is formed as the magnetic north pole N and the first magnetic pole element 101 is formed as the magnetic south pole S.
  • the latch 6 comprises an arm 62 , which comprises an extension 63 .
  • the third magnet 3 may be attached to the extension 63 of the latch 6 .
  • the third magnet 3 comprises a fifth magnetic pole element 305 and a sixth magnetic pole element 306 .
  • the fifth magnetic pole element 305 is arranged closer to the front portion 51 than the sixth magnetic pole element 306 .
  • FIG. 1A illustrates an example where the fifth magnetic pole element 305 is the magnetic south pole S and the sixth magnetic pole element 306 is the magnetic north pole N.
  • the fifth magnetic pole element 305 and sixth magnetic pole element 306 may be attached side by side to the latch 6 .
  • the second magnet 2 is arranged similarly as the first magnet 1 .
  • the second magnet 2 comprises a third magnetic pole element 203 and a fourth magnetic pole element 204 .
  • the fourth magnetic pole element 204 being the magnetic north pole N, is located between the third magnetic pole element 203 , being the magnetic south pole S, and the carrier 5 .
  • FIG. 1A discloses the first state of the latch 6 .
  • the fifth magnetic pole element 305 is coupled with the second magnetic pole element 102 due to the attractive magnetic force Fa.
  • both the carrier 5 and the latch 6 are in an unmoved position.
  • the position of the apparatus 1 a illustrated in FIG. 1A is an initial position where the carrier 5 remains unmoved and a removable data storage medium 9 or an auxiliary device (not illustrated in FIG. 1A ) also remains unmoved inside the apparatus 1 a .
  • the carrier 5 may be structured to releasably receive at least one removable data storage medium 9 , such as an integrated circuit card.
  • the housing 4 comprises at least one guide element 7 configured to connect the carrier 5 to the housing 4 in a slidable manner.
  • the housing 4 may comprise a stationary guide 8 that limits the transverse movement of the carrier 5 in relation to the reciprocating direction of motion of the carrier 5 . If the movement of the carrier 5 is limited only to the opening and closing direction of the carrier 5 by other means, the stationary guide 8 may be left out from the structure of the apparatus 1 a.
  • FIG. 1B is a schematical example illustration of the apparatus 1 a where the carrier 5 is in a retracted closed position and the latch 6 has moved to the second state.
  • FIG. 2A is a schematical example illustration of the apparatus 1 a where the carrier 5 is moving to the ejected open position.
  • the latch 6 comprises an operating element 61 which enables the latch 6 to be moved between the first state and the second state due to an external force Fe 1 applied to the operating element.
  • the arm portion 62 extends from the operating element 61 inside the housing 4 in parallel to the carrier 5 .
  • the latch 6 comprises an operating element 61 which enables the latch 6 to be moved between the first state and the second state due to an external force Fe 1 applied to the operating element 61 .
  • FIG. 1B and FIG. 2A the latch 6 has been moved in the second state by a user pushing the operating element 61 with the external force Fe 1 in the direction of the arrow 15 .
  • FIG. 1B illustrates an example where the latch 6 has been switched from the first state to the second state.
  • the fifth magnetic pole element 305 is first caused to face the first magnetic pole element 101 causing ejection of the carrier 5 due to a repelling magnetic force Fr between the fifth magnetic pole element 305 and the first magnetic pole element 101 .
  • This substantially strong repelling magnetic force Fr ejects the carrier 5 outwards.
  • FIG. 2A illustrates the carrier 5 in motion. After a certain travel, for example 50% of the total stroke, the second magnet 2 on the carrier 5 starts to attract the third magnet 3 on the latch 6 and generate an attractive magnetic force for the carrier 5 .
  • FIG. 2B is a schematical example illustration of the apparatus 1 a where the carrier 5 is in an ejected open position.
  • the carrier 5 is caused to move to the ejected open position due to an attractive magnetic force Fa between the third magnetic pole element 203 and the sixth magnetic pole element 306 .
  • Fa an attractive magnetic force between the third magnetic pole element 203 and the sixth magnetic pole element 306 .
  • the movement is finished and the carrier 5 is locked to the ejected open position.
  • FIG. 3 is a schematical example illustration of the apparatus 1 a where a carrier 5 is in the ejected open position and where the latch 6 has been moved from the second state to the first state.
  • the latch 6 has been moved to the second state by a user pushing the operating element 61 with an external force Fe 2 in the direction of the arrow 15 .
  • the sixth magnetic pole element 306 is caused to face the fourth magnetic pole element 204 causing retraction of the carrier 5 due to a repelling magnetic force Fr between the sixth magnetic pole element 306 and the fourth magnetic pole element 204 .
  • the carrier 5 then moves back to the retracted closed position illustrated in FIG. 1A .
  • the carrier 5 is caused to move to the retracted closed position due to an attractive magnetic force Fa between the fifth magnetic pole element 305 and the second magnetic pole element 102 as disclosed in FIG. 1A .
  • FIG. 4 is a schematical example illustration of an apparatus 1 b where a carrier 5 b is in an ejected open position.
  • the apparatus 1 b in FIG. 4 is similar to the apparatus 1 a in FIG. 3 with the exception that no external force of a user is needed for moving the latch 6 b from the second state back to the first state.
  • the latch 6 b is returned back to the first state by a spring 10 .
  • the latch 6 b of the apparatus 1 b comprises an operating element 61 b , which enable the latch 6 b to be moved to the second state by an external force applied to the operating element 61 b .
  • the latch 6 b is returned back to the first state with the spring force Fs of the spring 10 .
  • the apparatus 1 b is thereby spring assisted.
  • FIG. 5 is a schematical example illustration of an apparatus 1 c where a carrier 5 c is moving to an ejected open position.
  • the apparatus 1 c in FIG. 5 is similar to the apparatus 1 a in FIG. 2A with the exception that the apparatus 1 c is equipped with roller elements 71 , 72 , 73 , 74 instead of at least one guide.
  • the roller elements 71 , 72 , 73 , 74 may be attached to the sides 55 , 56 of the carrier 5 c by shafts.
  • the roller elements 71 , 72 , 73 , 74 may be structured below the carrier 5 c (not illustrated in FIG. 5 ).
  • roller elements 71 , 72 , 73 , 74 enable the carrier 5 c to be connected to the housing 4 c in a movable manner.
  • the apparatus 1 c may comprise only one wider roller element, and the wider roller element may be attached below and in the middle of the carrier 5 c (not illustrated in FIG. 5 ).
  • FIG. 6 is a schematical example illustration of an apparatus 1 d where a carrier 5 d is in a retracted closed position and where a latch 6 d is in a first state.
  • the apparatus 1 d in FIG. 6 is similar to the apparatus 1 a in FIG. 1A with the exception that a pivoting member 11 is configured to function as the latch 6 d .
  • the latch 6 d comprises the pivoting member 11 which enables the latch 6 d to be moved between the first state and the second state due to an external force Fe 3 applied to the pivoting member 11 .
  • the pivoting member 11 comprises at least one joint 110 , 111 , which enables the rotation of the pivoting member 11 .
  • the pivoting member 11 may comprise a first joint 110 and a second joint 111 that enable the movement of the third magnet 3 in the transversal direction in relation to the reciprocating direction of motion of the carrier 5 d .
  • the first joint 110 enables the rotation of an arm 112 of the pivoting member 11 .
  • the arm 112 comprises a first end 113 and a second end 114 .
  • an operating element 61 a is attached at the first end 113 .
  • a second joint 111 is attached.
  • the third magnet 3 moves in the direction of the second arrow 13 .
  • FIG. 7 is a schematical example illustration of an apparatus 1 e where two carriers 5 e , 5 ′ are in a retracted closed position.
  • the apparatus 1 e in FIG. 7 is similar to the apparatus 1 a in FIG. 1A with the exception that there is a second carrier 5 ′ in addition to a first carrier 5 e and with another exception that a latch 6 e is equipped with a fourth magnet 3 ′ in addition to the third magnet 3 .
  • the fourth magnet 3 ′ is connected to the latch 6 e with an extension 65 . For example, when the latch 6 e is moved to the second state, also the fourth magnet 3 ′ is moved because it is attached to the latch 6 e via the extension 65 .
  • the fourth magnet 3 ′ moves.
  • the polarity of the fourth magnet 3 ′ is opposite to that of the third magnet 3 .
  • both carriers 5 e , 5 ′ are ejected.
  • the carriers 5 e , 5 ′ may also be interconnected in the middle 14 .
  • the apparatus 1 a , 1 b , 1 c , 1 d disclosed in the above examples has a simple and reliable structure.
  • the magnets 1 , 2 , 3 , 3 ′ used in the apparatus 1 a , 1 b , 1 c , 1 d , 1 e may be neodymium magnets.
  • the neodymium is an alloy made of iron and boron. Because the neodymium magnet has greater strength in the magnetic force, it allows the use of smaller, lighter magnets for a given application, for example in the examples presented above.
  • Some existing solutions require electric signals for moving the carrier. These solutions may require an electric motor or a complicated spring mechanism in order to eject the carrier. Electric motors or other electric ejecting mechanisms are expensive to manufacture and in course of time may require maintenance. In the examples presented above, no electric signals are needed for ejecting the carrier 5 , 5 b , 5 c , 5 d , 5 e , 5 ′. Further, the magnets 1 , 2 , 3 , 3 ′ are reliable and easy to operate.
  • the apparatus 1 a , 1 b , 1 c , 1 d , 1 e disclosed in the examples above is useful in a solution where the apparatus 1 a , 1 b , 1 c , 1 d , 1 e is used as a card connector for an electronic communication device, such as a smart phone or a tablet computer.
  • FIGS. 1A-7 describe that the apparatus 1 a , 1 b , 1 c , 1 d , 1 e is equipped with the stationary guide 8 , it may be left out from the structure of the apparatus 1 a , 1 b , 1 c , 1 d , 1 e if the guide function is arranged in some other way.
  • the at least one guide element 7 , 7 ′ may be structured in such a way that it enables the reciprocating movement of the carrier 5 , 5 b , 5 d , 5 e , 5 ′ but limits the movement in other directions, in which case the stationary guide 8 may be left out from the structure of the apparatus 1 a , 1 b , 1 d , 1 e.
  • the apparatus 1 a , 1 b , 1 c , 1 d , 1 e disclosed in the examples above may be used when the electronic communication device utilizes a removable data storage medium.
  • the removable data storage medium 9 , 9 ′ may be a subscriber identity module card (SIM card), a full-size SIM 1 st form factor (IFF) card, a mini-SIM 2nd form factor (2FF) card, a micro-SIM 3rd form-factor (3FF) card, a nano-SIM 4th form-factor (4FF) card, a secure digital card (SD card), a mini secure digital card (miniSD card), a micro secure digital card (microSD card), a memory card, a storage card, an expanded external memory card, a compact disc, a digital versatile disc or a Blue-ray Disc.
  • SIM card subscriber identity module card
  • IFF full-size SIM 1 st form factor
  • (2FF) mini-SIM 2nd form factor
  • (2FF) mini-SIM 3rd form
  • FIGS. 1A-7 describe that the apparatus 1 a , 1 b , 1 c , 1 d , 1 e is suitable for receiving a data storage medium 7
  • the apparatus 1 a , 1 b , 1 c , 1 d , 1 e may be used to eject also other types of devices additionally or alternatively.
  • the apparatus 1 a , 1 b , 1 c , 1 d , 1 e disclosed in the examples above may be used to eject a flash of an electronic apparatus, for example, a digital camera or a smart phone.
  • FIGS. 1A-7 describe the apparatus 1 a , 1 b , 1 c , 1 d , 1 e equipped with one magnet in three locations of the apparatus 1 a , 1 b , 1 c , 1 d , 1 e
  • the apparatus 1 a , 1 b , 1 c , 1 d , 1 e may have a set of magnets in each three locations of the apparatus 1 a , 1 b , 1 c , 1 d , 1 e to increase the magnetic force.
  • An embodiment of an apparatus comprises a housing; a carrier having a retracted closed position and an ejected open position with respect to the housing, wherein the carrier comprises a first magnet and a second magnet; and a latch having two states and having a third magnet located between the first magnet and the second magnet; wherein in a first state of the latch the carrier is in the retracted closed position due to a magnetic coupling between the first magnet and the third magnet, and in a second state of the latch the carrier is in the ejected open position due to a magnetic coupling between the second magnet and the third magnet.
  • the housing comprises at least one guide element configured to connect the carrier to the housing in a slidable manner.
  • the apparatus comprises at least one roller element configured to connect the carrier to the housing in a movable manner.
  • the carrier comprises a front portion and a back portion, wherein a first magnet is located in the front portion, the first magnet comprising a first magnetic pole element and a second magnetic pole element, wherein the first magnetic pole element has an adverse magnetic polarity to that of the second magnetic pole element, wherein the second magnetic pole element is located between the first magnetic pole element and the carrier, wherein the second magnet is located in the back portion, the second magnet comprising a third magnetic pole element and a fourth magnetic pole element, wherein the third magnetic pole element has an adverse magnetic polarity to that of the fourth magnetic pole element, wherein the fourth magnetic pole element is located between the third magnetic pole element and the carrier; and wherein the third magnet comprises a fifth magnetic pole element and a sixth magnetic pole element, wherein the fifth magnetic pole element has an adverse magnetic polarity to that of the sixth magnetic pole element, wherein the fifth magnetic pole element and the sixth magnetic pole element are attached side by side to the latch.
  • the second magnetic pole element, the fourth magnetic pole element and the sixth magnetic pole element are magnetic north poles.
  • the first magnetic pole element, the third magnetic pole element and the fifth magnetic pole element are magnetic north poles.
  • the fifth magnetic pole element when the latch switches from the first state to the second state, the fifth magnetic pole element is caused to face the first magnetic pole element causing ejection of the carrier due to a repelling magnetic force between the fifth magnetic pole element and the first magnetic pole element, and the carrier is caused to move to the ejected open position due to an attractive magnetic force between the third magnetic pole element and the sixth magnetic pole element.
  • the fifth magnetic pole element is coupled to the first magnetic pole element causing ejection of the carrier due to a repelling magnetic force, wherein at the end of the ejected open position the third magnetic pole element is coupled to the sixth magnetic pole element due to an attractive magnetic force.
  • the sixth magnetic pole element is caused to face the fourth magnetic pole element causing retracting of the carrier due to a repelling magnetic force between the sixth magnetic pole element and the fourth magnetic pole element, and the carrier is caused to move to the retracted closed position due to an attractive magnetic force between the fifth magnetic pole element and the second magnetic pole element.
  • the latch is configured to move transversely in relation to the reciprocating direction of motion of the carrier between the first state and the second state causing the carrier to move to the retracted closed position or to the ejected open position due to a magnetic force.
  • the latch comprises an operating element which enables the latch to be moved between the first state and the second state due to an external force applied to the operating element.
  • the latch is configured to move sideways between the first state and the second state causing the carrier to move into the retracted closed position or into the extracted open position due to a repelling magnetic force.
  • the latch is configured to lock the carrier into the retracted closed position or into the ejected open position due to an attractive magnetic force.
  • the latch comprises an arm portion extending from the operating element inside the housing in parallel to the carrier, wherein the third magnet is attached to the arm portion.
  • the latch comprises an operating element and a spring which enable the latch to be moved to the second state by an external force applied to the operating element and returned to the first state by the spring force of the spring.
  • the latch comprises a pivoting member which enables the latch to be moved between the first state and the second state due to an external force applied to the pivoting member.
  • the carrier comprises a card carrier.
  • the carrier is structured to releasably receive at least one removable data storage medium.
  • the carrier is structured to releasably receive at least one of an integrated circuit card, a subscriber identity module card, a secure digital card, a memory card, a storage card, an expanded external memory card, a compact disc, a digital versatile disc and a Blue-ray Disc.
  • the apparatus is a card connector for an electronic communication device.
  • an electronic device comprises the apparatus.
  • the apparatus further comprises an electronic device, the electronic device comprising the carrier, the latch, the first magnet, the second magnet and the third magnet.
  • An embodiment of an electronic apparatus comprises a housing.
  • the electronic apparatus comprises a carrier configured to carry at least one removable data storage medium, the carrier having a retracted closed position and an ejected open position with respect to the housing, wherein the carrier comprises a first magnet and a second magnet; and a latch having two states and having a third magnet located between the first magnet and the second magnet; wherein in a first state of the latch the carrier is in the retracted closed position due to a magnetic coupling between the first magnet and the third magnet, and in a second state of the latch the carrier is in the ejected open position due to a magnetic coupling between the second magnet and the third magnet.
  • An embodiment of an apparatus comprises: a housing; a carrier having a retracted closed position and an ejected open position with respect to the housing, wherein the carrier comprises a first magnet and a second magnet; and a latch having a third magnet located between the first magnet and the second magnet, wherein the latch is configured to cause ejection of the carrier to the ejected open position when causing the similar poles of the first magnet and the third magnet to face each other, and the latch is configured to cause retraction of the carrier when causing the similar poles of the second magnet and the third magnet to face each other.

Landscapes

  • Engineering & Computer Science (AREA)
  • Theoretical Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • General Engineering & Computer Science (AREA)
  • Human Computer Interaction (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Power Engineering (AREA)
  • Casings For Electric Apparatus (AREA)
  • Lock And Its Accessories (AREA)

Abstract

An apparatus for moving a carrier includes a housing and a carrier having a retracted closed position and an ejected open position with respect to the housing. The carrier includes a first magnet and a second magnet. A latch is provided having two states and having a third magnet located between the first magnet and the second magnet. In a first state, the carrier is in the retracted closed position due to a magnetic coupling between the first magnet and the third magnet. In a second state, the carrier is in the ejected open position due to a magnetic coupling between the second magnet and the third magnet.

Description

BACKGROUND
Many pieces of existing electronic equipment that people use, for example for interactions, navigation, identification, etc., may comprise an apparatus for moving a removable data storage medium. The apparatus may also move some other type of device, which is needed to be hidden or out of the way during normal operation of the electronic equipment.
SUMMARY
This Summary is provided to introduce a selection of concepts in a simplified form that are further described below in the Detailed Description. This summary is not intended to identify key features or essential features of the claimed subject matter, nor is it intended to be used to limit the scope of the claimed subject matter.
An apparatus comprises a housing, a carrier having a retracted closed position and an ejected open position with respect to the housing, wherein the carrier comprises a first magnet and a second magnet. Further, the apparatus comprises a latch having two states and having a third magnet located between the first magnet and the second magnet, wherein in a first state the carrier is in the retracted closed position due to a magnetic coupling between the first magnet and the third magnet, and in a second state the carrier is in the ejected open position due to a magnetic coupling between the second magnet and the third magnet.
Many of the attendant features will be more readily appreciated as they become better understood by reference to the following detailed description considered in connection with the accompanying drawings.
DESCRIPTION OF THE DRAWINGS
The present description will be better understood from the following detailed description read in light of the accompanying drawings, wherein:
FIG. 1A is a schematical example illustration of an apparatus where a carrier is in a retracted closed position and where a latch is in a first state.
FIG. 1B is a schematical example illustration of an apparatus where a carrier is in a retracted closed position and where a latch has moved to a second state.
FIG. 2A is a schematical example illustration of an apparatus where a carrier is moving to an ejected open position.
FIG. 2B is a schematical example illustration of an apparatus where a carrier is in an ejected open position.
FIG. 3 is a schematical example illustration of an apparatus where a carrier is in an ejected open position and where a latch has moved to a second state.
FIG. 4 is a schematical example illustration of an apparatus where a carrier is in an ejected open position.
FIG. 5 is a schematical example illustration of an apparatus where a carrier is moving to an ejected open position.
FIG. 6 is a schematical example illustration of an apparatus where a carrier is in a retracted closed position and where a latch is in a first state.
FIG. 7 is a schematical example illustration of an apparatus where two carriers are in a retracted closed position.
Like reference numerals are used to designate like parts in the accompanying drawings.
DETAILED DESCRIPTION
The detailed description provided below in connection with the appended drawings is intended as a description of the present examples and is not intended to represent the only forms in which the present example may be constructed or utilized. However, the same or equivalent functions and sequences may be accomplished by different examples.
Mobile wireless devices, such as mobile phones, laptops, tablets, smart watches and other smart wearables or cars with an on-board navigational system may need a removable data storage medium, such as an integrated circuit card. Sometimes an integrated circuit card is called a smart card, such as a Subscriber Identity Module card (SIM card), a memory card, such as a Secure Digital card (SD card), an identity card or a card which is suitable for paying purchases. In some electronic equipment, such as in games consoles, the removable data storage medium may be a compact disc (CD) or a digital versatile disc (DVD). Some pieces of electronic equipment using a removable data storage medium may also accept more than one removable data storage medium. In smart phones, equipped with (a) camera(s), it may be advantageous that an auxiliary device, such as a flash, can be ejected outwards from the smart phone when a picture is needed to be taken. Correspondingly, the flash would be hidden when no camera is needed. The ejecting flash would also operate as a flashlight when continuous operation of the light of the flash is enabled. In some devices, electric signals are needed for moving the removable data storage medium or the auxiliary device.
FIG. 1A is a schematical example illustration of an apparatus 1 a where a carrier 5 is in a retracted closed position and where a latch 6 is in a first state. FIG. 1A shows a view from the top of the apparatus 1 a. The apparatus 1 a comprises a housing 4. The apparatus 1 a further comprises a carrier 5 having a retracted closed position and an ejected open position with respect to the housing 4. The carrier 5 comprises a first magnet 1 and a second magnet 2. The apparatus 1 a further comprises a latch 6 having two states. The latch 6 comprises also a third magnet 3. The third magnet 3 is attached to the latch 6 and arranged between the first magnet 1 and the second magnet 2. As disclosed in FIG. 1A, the first magnet 1 of the carrier 5 is magnetically coupled with the third magnet 3 of the latch 6. The latch 6 is configured to move transversely in relation to the reciprocating direction of motion of the carrier 5 between the first state and the second state. The latch 6 is configured to cause ejection of the carrier 5 to the ejected open position when the similar poles of the first magnet 1 and the third magnet 3 are caused to face each other, and the latch 6 is configured to cause retraction of the carrier 5 when the similar poles of the second magnet 2 and the third magnet 3 are caused to face each other. If the carrier 5 carries a card, the carrier 5 may comprise a rectangular structure 57. In this case the carrier 5 is a card carrier. If the carrier 5 carries a CD or a DVD, the carrier 5 may be structured substantially circular to receive the CD or the DVD (not illustrated in FIG. 1A).
The first magnet 1 comprises a first magnetic pole element 101 and a second magnetic pole element 102. The first magnet 1 may be attached to a front portion 51 of the carrier 5. The second magnetic pole element 102 may be located between the carrier 5 and the first magnetic pole element 101. In one example the second magnetic pole 102 is formed as the magnetic north pole N and the first magnetic pole element 101 is formed as the magnetic south pole S. The latch 6 comprises an arm 62, which comprises an extension 63. The third magnet 3 may be attached to the extension 63 of the latch 6. The third magnet 3 comprises a fifth magnetic pole element 305 and a sixth magnetic pole element 306. In one example the fifth magnetic pole element 305 is arranged closer to the front portion 51 than the sixth magnetic pole element 306. FIG. 1A illustrates an example where the fifth magnetic pole element 305 is the magnetic south pole S and the sixth magnetic pole element 306 is the magnetic north pole N. The fifth magnetic pole element 305 and sixth magnetic pole element 306 may be attached side by side to the latch 6. In a back portion 52 of the carrier 5 the second magnet 2 is arranged similarly as the first magnet 1. The second magnet 2 comprises a third magnetic pole element 203 and a fourth magnetic pole element 204. The fourth magnetic pole element 204, being the magnetic north pole N, is located between the third magnetic pole element 203, being the magnetic south pole S, and the carrier 5. Naturally, it is also possible to configure the polarity of the magnets 1, 2, 3 in the opposite way than what is illustrated in FIG. 1A.
FIG. 1A discloses the first state of the latch 6. In the first state, the fifth magnetic pole element 305 is coupled with the second magnetic pole element 102 due to the attractive magnetic force Fa. In FIG. 1A, both the carrier 5 and the latch 6 are in an unmoved position. The position of the apparatus 1 a illustrated in FIG. 1A is an initial position where the carrier 5 remains unmoved and a removable data storage medium 9 or an auxiliary device (not illustrated in FIG. 1A) also remains unmoved inside the apparatus 1 a. The carrier 5 may be structured to releasably receive at least one removable data storage medium 9, such as an integrated circuit card. The housing 4 comprises at least one guide element 7 configured to connect the carrier 5 to the housing 4 in a slidable manner. The housing 4 may comprise a stationary guide 8 that limits the transverse movement of the carrier 5 in relation to the reciprocating direction of motion of the carrier 5. If the movement of the carrier 5 is limited only to the opening and closing direction of the carrier 5 by other means, the stationary guide 8 may be left out from the structure of the apparatus 1 a.
FIG. 1B is a schematical example illustration of the apparatus 1 a where the carrier 5 is in a retracted closed position and the latch 6 has moved to the second state. FIG. 2A is a schematical example illustration of the apparatus 1 a where the carrier 5 is moving to the ejected open position.
The latch 6 comprises an operating element 61 which enables the latch 6 to be moved between the first state and the second state due to an external force Fe1 applied to the operating element. The arm portion 62 extends from the operating element 61 inside the housing 4 in parallel to the carrier 5. The latch 6 comprises an operating element 61 which enables the latch 6 to be moved between the first state and the second state due to an external force Fe1 applied to the operating element 61. In the examples in FIG. 1B and FIG. 2A the latch 6 has been moved in the second state by a user pushing the operating element 61 with the external force Fe1 in the direction of the arrow 15. FIG. 1B illustrates an example where the latch 6 has been switched from the first state to the second state. The fifth magnetic pole element 305 is first caused to face the first magnetic pole element 101 causing ejection of the carrier 5 due to a repelling magnetic force Fr between the fifth magnetic pole element 305 and the first magnetic pole element 101. This substantially strong repelling magnetic force Fr ejects the carrier 5 outwards. FIG. 2A illustrates the carrier 5 in motion. After a certain travel, for example 50% of the total stroke, the second magnet 2 on the carrier 5 starts to attract the third magnet 3 on the latch 6 and generate an attractive magnetic force for the carrier 5.
FIG. 2B is a schematical example illustration of the apparatus 1 a where the carrier 5 is in an ejected open position. The carrier 5 is caused to move to the ejected open position due to an attractive magnetic force Fa between the third magnetic pole element 203 and the sixth magnetic pole element 306. In the ejected open position the movement is finished and the carrier 5 is locked to the ejected open position.
FIG. 3 is a schematical example illustration of the apparatus 1 a where a carrier 5 is in the ejected open position and where the latch 6 has been moved from the second state to the first state. In the example of FIG. 3, the latch 6 has been moved to the second state by a user pushing the operating element 61 with an external force Fe2 in the direction of the arrow 15. After switching from the second state to the first state, the sixth magnetic pole element 306 is caused to face the fourth magnetic pole element 204 causing retraction of the carrier 5 due to a repelling magnetic force Fr between the sixth magnetic pole element 306 and the fourth magnetic pole element 204. The carrier 5 then moves back to the retracted closed position illustrated in FIG. 1A. The carrier 5 is caused to move to the retracted closed position due to an attractive magnetic force Fa between the fifth magnetic pole element 305 and the second magnetic pole element 102 as disclosed in FIG. 1A.
FIG. 4 is a schematical example illustration of an apparatus 1 b where a carrier 5 b is in an ejected open position. The apparatus 1 b in FIG. 4 is similar to the apparatus 1 a in FIG. 3 with the exception that no external force of a user is needed for moving the latch 6 b from the second state back to the first state. In the example of FIG. 4 the latch 6 b is returned back to the first state by a spring 10. The latch 6 b of the apparatus 1 b comprises an operating element 61 b, which enable the latch 6 b to be moved to the second state by an external force applied to the operating element 61 b. When the user stops applying the external force on the operating element 61, the latch 6 b is returned back to the first state with the spring force Fs of the spring 10. The apparatus 1 b is thereby spring assisted.
FIG. 5 is a schematical example illustration of an apparatus 1 c where a carrier 5 c is moving to an ejected open position. The apparatus 1 c in FIG. 5 is similar to the apparatus 1 a in FIG. 2A with the exception that the apparatus 1 c is equipped with roller elements 71, 72, 73, 74 instead of at least one guide. The roller elements 71, 72, 73, 74 may be attached to the sides 55, 56 of the carrier 5 c by shafts. In another example, the roller elements 71, 72, 73, 74 may be structured below the carrier 5 c (not illustrated in FIG. 5). The roller elements 71, 72, 73, 74 enable the carrier 5 c to be connected to the housing 4 c in a movable manner. Further, in another example, the apparatus 1 c may comprise only one wider roller element, and the wider roller element may be attached below and in the middle of the carrier 5 c (not illustrated in FIG. 5).
FIG. 6 is a schematical example illustration of an apparatus 1 d where a carrier 5 d is in a retracted closed position and where a latch 6 d is in a first state. The apparatus 1 d in FIG. 6 is similar to the apparatus 1 a in FIG. 1A with the exception that a pivoting member 11 is configured to function as the latch 6 d. The latch 6 d comprises the pivoting member 11 which enables the latch 6 d to be moved between the first state and the second state due to an external force Fe3 applied to the pivoting member 11. The pivoting member 11 comprises at least one joint 110, 111, which enables the rotation of the pivoting member 11. The pivoting member 11 may comprise a first joint 110 and a second joint 111 that enable the movement of the third magnet 3 in the transversal direction in relation to the reciprocating direction of motion of the carrier 5 d. The first joint 110 enables the rotation of an arm 112 of the pivoting member 11. The arm 112 comprises a first end 113 and a second end 114. At the first end 113, an operating element 61 a is attached. At the second end 114, a second joint 111 is attached. For example, when the user moves the pivoting member 11 in the direction of the first arrow 17, the third magnet 3 moves in the direction of the second arrow 13.
FIG. 7 is a schematical example illustration of an apparatus 1 e where two carriers 5 e, 5′ are in a retracted closed position. The apparatus 1 e in FIG. 7 is similar to the apparatus 1 a in FIG. 1A with the exception that there is a second carrier 5′ in addition to a first carrier 5 e and with another exception that a latch 6 e is equipped with a fourth magnet 3′ in addition to the third magnet 3. The fourth magnet 3′ is connected to the latch 6 e with an extension 65. For example, when the latch 6 e is moved to the second state, also the fourth magnet 3′ is moved because it is attached to the latch 6 e via the extension 65. When the third magnet 3 is moved to the second state, also the fourth magnet 3′ moves. The polarity of the fourth magnet 3′ is opposite to that of the third magnet 3. When the third magnet 3 of the latch 6 e moves to the second state, both carriers 5 e, 5′ are ejected. The carriers 5 e, 5′ may also be interconnected in the middle 14.
The apparatus 1 a, 1 b, 1 c, 1 d disclosed in the above examples has a simple and reliable structure. For example, the magnets 1, 2, 3, 3′ used in the apparatus 1 a, 1 b, 1 c, 1 d, 1 e may be neodymium magnets. The neodymium is an alloy made of iron and boron. Because the neodymium magnet has greater strength in the magnetic force, it allows the use of smaller, lighter magnets for a given application, for example in the examples presented above.
Some existing solutions require electric signals for moving the carrier. These solutions may require an electric motor or a complicated spring mechanism in order to eject the carrier. Electric motors or other electric ejecting mechanisms are expensive to manufacture and in course of time may require maintenance. In the examples presented above, no electric signals are needed for ejecting the carrier 5, 5 b, 5 c, 5 d, 5 e, 5′. Further, the magnets 1, 2, 3, 3′ are reliable and easy to operate.
The apparatus 1 a, 1 b, 1 c, 1 d, 1 e disclosed in the examples above is useful in a solution where the apparatus 1 a, 1 b, 1 c, 1 d, 1 e is used as a card connector for an electronic communication device, such as a smart phone or a tablet computer.
Although FIGS. 1A-7 describe that the apparatus 1 a, 1 b, 1 c, 1 d, 1 e is equipped with the stationary guide 8, it may be left out from the structure of the apparatus 1 a, 1 b, 1 c, 1 d, 1 e if the guide function is arranged in some other way. The at least one guide element 7, 7′ may be structured in such a way that it enables the reciprocating movement of the carrier 5, 5 b, 5 d, 5 e, 5′ but limits the movement in other directions, in which case the stationary guide 8 may be left out from the structure of the apparatus 1 a, 1 b, 1 d, 1 e.
The apparatus 1 a, 1 b, 1 c, 1 d, 1 e disclosed in the examples above may be used when the electronic communication device utilizes a removable data storage medium. The removable data storage medium 9, 9′ may be a subscriber identity module card (SIM card), a full-size SIM 1st form factor (IFF) card, a mini-SIM 2nd form factor (2FF) card, a micro-SIM 3rd form-factor (3FF) card, a nano-SIM 4th form-factor (4FF) card, a secure digital card (SD card), a mini secure digital card (miniSD card), a micro secure digital card (microSD card), a memory card, a storage card, an expanded external memory card, a compact disc, a digital versatile disc or a Blue-ray Disc.
Although FIGS. 1A-7 describe that the apparatus 1 a, 1 b, 1 c, 1 d, 1 e is suitable for receiving a data storage medium 7, the apparatus 1 a, 1 b, 1 c, 1 d, 1 e may be used to eject also other types of devices additionally or alternatively. For example, the apparatus 1 a, 1 b, 1 c, 1 d, 1 e disclosed in the examples above may be used to eject a flash of an electronic apparatus, for example, a digital camera or a smart phone.
Although FIGS. 1A-7 describe the apparatus 1 a, 1 b, 1 c, 1 d, 1 e equipped with one magnet in three locations of the apparatus 1 a, 1 b, 1 c, 1 d, 1 e, the apparatus 1 a, 1 b, 1 c, 1 d, 1 e may have a set of magnets in each three locations of the apparatus 1 a, 1 b, 1 c, 1 d, 1 e to increase the magnetic force.
An embodiment of an apparatus comprises a housing; a carrier having a retracted closed position and an ejected open position with respect to the housing, wherein the carrier comprises a first magnet and a second magnet; and a latch having two states and having a third magnet located between the first magnet and the second magnet; wherein in a first state of the latch the carrier is in the retracted closed position due to a magnetic coupling between the first magnet and the third magnet, and in a second state of the latch the carrier is in the ejected open position due to a magnetic coupling between the second magnet and the third magnet.
In one example, the housing comprises at least one guide element configured to connect the carrier to the housing in a slidable manner.
In one example, the apparatus comprises at least one roller element configured to connect the carrier to the housing in a movable manner.
In one example, the carrier comprises a front portion and a back portion, wherein a first magnet is located in the front portion, the first magnet comprising a first magnetic pole element and a second magnetic pole element, wherein the first magnetic pole element has an adverse magnetic polarity to that of the second magnetic pole element, wherein the second magnetic pole element is located between the first magnetic pole element and the carrier, wherein the second magnet is located in the back portion, the second magnet comprising a third magnetic pole element and a fourth magnetic pole element, wherein the third magnetic pole element has an adverse magnetic polarity to that of the fourth magnetic pole element, wherein the fourth magnetic pole element is located between the third magnetic pole element and the carrier; and wherein the third magnet comprises a fifth magnetic pole element and a sixth magnetic pole element, wherein the fifth magnetic pole element has an adverse magnetic polarity to that of the sixth magnetic pole element, wherein the fifth magnetic pole element and the sixth magnetic pole element are attached side by side to the latch.
In one example, the second magnetic pole element, the fourth magnetic pole element and the sixth magnetic pole element are magnetic north poles.
In one example, the first magnetic pole element, the third magnetic pole element and the fifth magnetic pole element are magnetic north poles.
In one example, when the latch switches from the first state to the second state, the fifth magnetic pole element is caused to face the first magnetic pole element causing ejection of the carrier due to a repelling magnetic force between the fifth magnetic pole element and the first magnetic pole element, and the carrier is caused to move to the ejected open position due to an attractive magnetic force between the third magnetic pole element and the sixth magnetic pole element.
In one example, after the state transition from the first state to the second state of the latch, the fifth magnetic pole element is coupled to the first magnetic pole element causing ejection of the carrier due to a repelling magnetic force, wherein at the end of the ejected open position the third magnetic pole element is coupled to the sixth magnetic pole element due to an attractive magnetic force.
In one example, wherein when the latch is switched from the second state to the first state, the sixth magnetic pole element is caused to face the fourth magnetic pole element causing retracting of the carrier due to a repelling magnetic force between the sixth magnetic pole element and the fourth magnetic pole element, and the carrier is caused to move to the retracted closed position due to an attractive magnetic force between the fifth magnetic pole element and the second magnetic pole element.
In one example, the latch is configured to move transversely in relation to the reciprocating direction of motion of the carrier between the first state and the second state causing the carrier to move to the retracted closed position or to the ejected open position due to a magnetic force.
In one example, the latch comprises an operating element which enables the latch to be moved between the first state and the second state due to an external force applied to the operating element.
In one example, the latch is configured to move sideways between the first state and the second state causing the carrier to move into the retracted closed position or into the extracted open position due to a repelling magnetic force.
In one example, the latch is configured to lock the carrier into the retracted closed position or into the ejected open position due to an attractive magnetic force.
In one example, the latch comprises an arm portion extending from the operating element inside the housing in parallel to the carrier, wherein the third magnet is attached to the arm portion.
In one example, the latch comprises an operating element and a spring which enable the latch to be moved to the second state by an external force applied to the operating element and returned to the first state by the spring force of the spring.
In one example, the latch comprises a pivoting member which enables the latch to be moved between the first state and the second state due to an external force applied to the pivoting member.
In one example, the carrier comprises a card carrier.
In one example, the carrier is structured to releasably receive at least one removable data storage medium.
In one example, the carrier is structured to releasably receive at least one of an integrated circuit card, a subscriber identity module card, a secure digital card, a memory card, a storage card, an expanded external memory card, a compact disc, a digital versatile disc and a Blue-ray Disc.
In one example, the apparatus is a card connector for an electronic communication device.
In one example, an electronic device comprises the apparatus.
In one example, the apparatus further comprises an electronic device, the electronic device comprising the carrier, the latch, the first magnet, the second magnet and the third magnet.
An embodiment of an electronic apparatus comprises a housing. The electronic apparatus comprises a carrier configured to carry at least one removable data storage medium, the carrier having a retracted closed position and an ejected open position with respect to the housing, wherein the carrier comprises a first magnet and a second magnet; and a latch having two states and having a third magnet located between the first magnet and the second magnet; wherein in a first state of the latch the carrier is in the retracted closed position due to a magnetic coupling between the first magnet and the third magnet, and in a second state of the latch the carrier is in the ejected open position due to a magnetic coupling between the second magnet and the third magnet.
An embodiment of an apparatus comprises: a housing; a carrier having a retracted closed position and an ejected open position with respect to the housing, wherein the carrier comprises a first magnet and a second magnet; and a latch having a third magnet located between the first magnet and the second magnet, wherein the latch is configured to cause ejection of the carrier to the ejected open position when causing the similar poles of the first magnet and the third magnet to face each other, and the latch is configured to cause retraction of the carrier when causing the similar poles of the second magnet and the third magnet to face each other.
Although the subject matter has been described in language specific to structural features and/or acts, it is to be understood that the subject matter defined in the appended claims is not necessarily limited to the specific features or acts described above. Rather, the specific features and acts described above are disclosed as examples of implementing the claims and other equivalent features and acts are intended to be within the scope of the claims.
It will be understood that the benefits and advantages described above may relate to one embodiment or may relate to several embodiments. The embodiments are not limited to those that solve any or all of the stated problems or those that have any or all of the stated benefits and advantages.
Aspects of any of the examples described above may be combined with aspects of any of the other examples described to form further examples without losing the effect sought.
The term ‘comprising’ is used herein to mean including the method blocks or elements identified, but that such blocks or elements do not comprise an exclusive list and a method or apparatus may contain additional blocks or elements.
It will be understood that the above description is given by way of example only and that various modifications may be made by those skilled in the art. The above specification, examples and data provide a complete description of the structure and use of exemplary embodiments. Although various embodiments have been described above with a certain degree of particularity, or with reference to one or more individual embodiments, those skilled in the art could make numerous alterations to the disclosed embodiments without departing from the spirit or scope of this specification. In particular, the individual features, elements, or parts described in the context of one example may also be connected in any combination to any other example.

Claims (19)

The invention claimed is:
1. An apparatus comprising:
a housing;
a carrier having a retracted closed position and an ejected open position with respect to the housing, wherein the carrier comprises a first magnet and a second magnet; and
a latch having two states and having a third magnet located between the first magnet and the second magnet, the latch and the third magnet, together, configured to move transversely in relation to a reciprocating direction of motion of the carrier;
wherein in a first state of the two states of the latch the carrier is in the retracted closed position due to a magnetic coupling between the first magnet and the third magnet, and in a second state of the two states of the latch the carrier is in the ejected open position due to a magnetic coupling between the second magnet and the third magnet.
2. The apparatus according to claim 1, wherein the carrier comprises a front portion and a back portion, wherein the first magnet is located in the front portion, the first magnet comprising a first magnetic pole element and a second magnetic pole element, wherein the first magnetic pole element has an adverse magnetic polarity to that of the second magnetic pole element, wherein the second magnetic pole element is located between the first magnetic pole element and the carrier, wherein the second magnet is located in the back portion, the second magnet comprising a third magnetic pole element and a fourth magnetic pole element, wherein the third magnetic pole element has an adverse magnetic polarity to that of the fourth magnetic pole element, wherein the fourth magnetic pole element is located between the third magnetic pole element and the carrier; and
wherein the third magnet comprises a fifth magnetic pole element and a sixth magnetic pole element, wherein the fifth magnetic pole element has an adverse magnetic polarity to that of the sixth magnetic pole element, wherein the fifth magnetic pole element and the sixth magnetic pole element are attached side by side to the latch.
3. The apparatus according to claim 2, wherein responsive to the latch being switched from the first state to the second state, the fifth magnetic pole element is caused to face the first magnetic pole element causing ejection of the carrier due to a repelling magnetic force between the fifth magnetic pole element and the first magnetic pole element, and the carrier is caused to move to the ejected open position due to an attractive magnetic force between the third magnetic pole element and the sixth magnetic pole element.
4. The apparatus according to claim 3, wherein responsive to the latch being switched from the second state to the first state, the sixth magnetic pole element is caused to face the fourth magnetic pole element causing retracting of the carrier due to a repelling magnetic force between the sixth magnetic pole element and the fourth magnetic pole element, and the carrier is caused to move to the retracted closed position due to an attractive magnetic force between the fifth magnetic pole element and the second magnetic pole element.
5. The apparatus according to claim 2, wherein the second magnetic pole element, the fourth magnetic pole element and the sixth magnetic pole element are magnetic north poles.
6. The apparatus according to claim 2, wherein the first magnetic pole element, the third magnetic pole element and the fifth magnetic pole element are magnetic north poles.
7. The apparatus according to claim 1, wherein the carrier is structured to releasably receive at least one removable data storage medium.
8. The apparatus according to claim 7, wherein the carrier is structured to releasably receive at least one of an integrated circuit card, a subscriber identity module card, a secure digital card, a memory card, a storage card, an expanded external memory card, a compact disc, a digital versatile disc and a Blue-ray Disc.
9. The apparatus according to claim 1, wherein the housing comprises at least one guide element configured to connect the carrier to the housing in a slidable manner.
10. The apparatus according to claim 1, wherein the apparatus comprises at least one roller element configured to connect the carrier to the housing in a movable manner.
11. The apparatus according to claim 1, wherein the transverse movement of the latch in relation to the reciprocating direction of motion of the carrier between the first state and the second state causes the carrier to move to the retracted closed position or to the ejected open position due to a magnetic force.
12. The apparatus according to claim 1, wherein the latch comprises an operating element which enables the latch to be moved between the first state and the second state due to an external force applied to the operating element.
13. The apparatus according to claim 1, wherein the latch comprises an operating element and a spring which enable the latch to be moved to the second state by an external force applied to the operating element and returned to the first state by the spring force of the spring.
14. The apparatus according to claim 1, wherein the carrier comprises a card carrier.
15. The apparatus according to claim 1, wherein the carrier comprises a flash.
16. The apparatus according to claim 1, wherein the apparatus is a card connector for an electronic communication device.
17. The apparatus according to claim 1, further comprising an electronic device, the electronic device comprising the carrier, the latch, the first magnet, the second magnet and the third magnet.
18. An electronic apparatus comprising:
a housing;
a carrier configured to carry at least one removable data storage medium, the carrier having a retracted closed position and an ejected open position with respect to the housing, wherein the carrier comprises a first magnet and a second magnet; and
a latch having two states and having a third magnet located between the first magnet and the second magnet, the latch and the third magnet, together, configured to move transversely in relation to a reciprocating direction of motion of the carrier;
wherein in a first state of the two states of the latch the carrier is in the retracted closed position due to a magnetic coupling between the first magnet and the third magnet, and in a second state of the two states of the latch the carrier is in the ejected open position due to a magnetic coupling between the second magnet and the third magnet.
19. An apparatus comprising:
a housing;
a carrier having a retracted closed position and an ejected open position with respect to the housing, wherein the carrier comprises a first magnet and a second magnet; and
a latch having a third magnet located between the first magnet and the second magnet, wherein the latch is configured to cause ejection of the carrier to the ejected open position responsive to similar poles of the first magnet and the third magnet facing each other, and the latch is configured to cause retraction of the carrier responsive to similar poles of the second magnet and the third magnet facing each other, the latch and the third magnet, together, configured to move transversely in relation to a reciprocating direction of motion of the carrier.
US14/720,909 2015-05-25 2015-05-25 Apparatus for moving a carrier Active US9685732B2 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
US14/720,909 US9685732B2 (en) 2015-05-25 2015-05-25 Apparatus for moving a carrier
CN201680029521.7A CN107646097B (en) 2015-05-25 2016-04-26 Device for moving a carrier
PCT/US2016/029278 WO2016191008A1 (en) 2015-05-25 2016-04-26 Apparatus for moving a carrier
EP16724154.6A EP3304749B1 (en) 2015-05-25 2016-04-26 Apparatus for moving a carrier

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US14/720,909 US9685732B2 (en) 2015-05-25 2015-05-25 Apparatus for moving a carrier

Publications (2)

Publication Number Publication Date
US20160352043A1 US20160352043A1 (en) 2016-12-01
US9685732B2 true US9685732B2 (en) 2017-06-20

Family

ID=56027158

Family Applications (1)

Application Number Title Priority Date Filing Date
US14/720,909 Active US9685732B2 (en) 2015-05-25 2015-05-25 Apparatus for moving a carrier

Country Status (4)

Country Link
US (1) US9685732B2 (en)
EP (1) EP3304749B1 (en)
CN (1) CN107646097B (en)
WO (1) WO2016191008A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11169573B2 (en) * 2019-12-23 2021-11-09 Microsoft Technology Licensing, Llc Display positioning assembly

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3364332B1 (en) * 2015-11-23 2020-10-28 Huawei Technologies Co., Ltd. Electronic device
CN108712181B (en) * 2018-04-23 2019-10-18 Oppo广东移动通信有限公司 Electronic equipment
CN109151107B (en) * 2018-08-01 2020-03-06 Oppo广东移动通信有限公司 Sliding control method and device for sliding assembly, electronic device and storage medium
CN109888556B (en) * 2019-01-21 2020-11-13 上海摩软通讯技术有限公司 Card support locking and ejecting mechanism, card support fixing device and electronic equipment
KR102625394B1 (en) * 2019-02-01 2024-01-17 현대자동차주식회사 Inlet device of electric vehicle and control method thereof
CN111857284B (en) 2019-04-24 2023-10-27 伊姆西Ip控股有限责任公司 Device for accommodating storage processor and storage server
CN112185737B (en) * 2020-09-29 2022-10-14 南昌黑鲨科技有限公司 Flexible button subassembly and be equipped with intelligent terminal of this flexible button subassembly
CN112071687B (en) * 2020-09-29 2022-10-18 南昌黑鲨科技有限公司 Pop out formula button and be equipped with this intelligent terminal who pops out formula button

Citations (28)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3790197A (en) * 1972-06-22 1974-02-05 Gen Electric Magnetic latch
US6366440B1 (en) * 1999-12-29 2002-04-02 Compal Electronics, Inc. Magnetic closure mechanism for a portable computer
WO2002054713A2 (en) 2000-12-29 2002-07-11 Vertu Ltd A switch for an electronic device
US6561851B2 (en) 2001-04-27 2003-05-13 Sierra Wireless Inc. Module interface for PC card
US6974338B1 (en) 2000-06-12 2005-12-13 Mitsubishi Denki Kabushiki Kaisha Card attachment/detachment device
US20060006674A1 (en) * 2004-06-25 2006-01-12 Asustek Computer Inc. Electronic apparatus and magnetic lock device thereof
US20070133156A1 (en) * 2005-12-13 2007-06-14 Chris Ligtenberg Electronic device having magnetic latching mechanism
US20080061565A1 (en) * 2006-09-12 2008-03-13 Jarllytec Co., Ltd. Magnetic switch with auto-release function
US7442086B1 (en) 2007-11-02 2008-10-28 Chi Mei Communication Systems, Inc. Chip card retaining mechanism
US7661732B2 (en) * 2007-06-13 2010-02-16 Shenzhen Futaihong Precision Industry Co., Ltd. Switch assembly and foldable portable electronic device using same
US20100194503A1 (en) * 2009-02-05 2010-08-05 Nokia Corporation Magnetic actuation mechanism
US20100309627A1 (en) 2009-06-08 2010-12-09 Kabushiki Kaisha Toshiba Portable terminal
CN102709746A (en) 2012-05-09 2012-10-03 广东欧珀移动通信有限公司 Novel card locking and card returning device on handheld communication product
US20130063910A1 (en) 2011-09-09 2013-03-14 Hon Hai Precision Industry Co., Ltd. Card holding mechanism and electronic device
US20130258605A1 (en) 2012-04-03 2013-10-03 Chi Mei Communication Systems, Inc. Portable electronic device with chip card holder
US8553419B2 (en) 2010-12-28 2013-10-08 Fu Tai Hua Industry (Shenzhen) Co., Ltd. Card tray ejection mechanism and electronic device using the same
US8591240B2 (en) 2012-04-04 2013-11-26 Apple Inc. Systems and methods for ejecting removable modules from electronic devices
WO2013182106A2 (en) 2013-04-27 2013-12-12 中兴通讯股份有限公司 Sim card drawer tray and sim card tray
US20130334948A1 (en) 2012-06-18 2013-12-19 Fih (Hong Kong) Limited Surface contact card holder for electronic device
US8625287B2 (en) 2011-03-04 2014-01-07 Shenzhen Futaihong Precision Industry Co., Ltd. Portable electronic device with chip card ejecting mechanism
CN203574181U (en) 2013-10-16 2014-04-30 深圳市欧珀通信软件有限公司 SIM card tray automatic ejection device and electronic device thereof
US20140177144A1 (en) * 2012-12-22 2014-06-26 Hon Hai Precision Industry Co., Ltd. Electronic device with ejection mechanism
US8777645B2 (en) 2012-09-20 2014-07-15 Fu Tai Hua Industry (Shenzhen) Co., Ltd. Card accommodating and ejecting device
US20140306463A1 (en) * 2013-04-10 2014-10-16 Li-Yin Ho Device having opening structure and opening structure thereof
US20150004818A1 (en) 2013-06-27 2015-01-01 Chiun Mai Communication Systems, Inc. Chip card ejecting mechanism
US20150118884A1 (en) * 2013-10-31 2015-04-30 Hon Hai Precision Industry Co., Ltd. Electronic device having electronic card connector
US9101052B2 (en) * 2012-09-29 2015-08-04 Fu Tai Hua Industry (Shenzhen) Co., Ltd. Sliding mechanism and electronic apparatus having same
US9337575B1 (en) * 2014-11-26 2016-05-10 Hon Hai Precision Industry Co., Ltd. Electronic device including electronic card connector

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7775567B2 (en) * 2005-12-13 2010-08-17 Apple Inc. Magnetic latching mechanism
CN102984307A (en) * 2012-10-25 2013-03-20 赛龙通信技术(深圳)有限公司 Tray module and electronic device provided with tray module and pop-up control method

Patent Citations (28)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3790197A (en) * 1972-06-22 1974-02-05 Gen Electric Magnetic latch
US6366440B1 (en) * 1999-12-29 2002-04-02 Compal Electronics, Inc. Magnetic closure mechanism for a portable computer
US6974338B1 (en) 2000-06-12 2005-12-13 Mitsubishi Denki Kabushiki Kaisha Card attachment/detachment device
WO2002054713A2 (en) 2000-12-29 2002-07-11 Vertu Ltd A switch for an electronic device
US6561851B2 (en) 2001-04-27 2003-05-13 Sierra Wireless Inc. Module interface for PC card
US20060006674A1 (en) * 2004-06-25 2006-01-12 Asustek Computer Inc. Electronic apparatus and magnetic lock device thereof
US20070133156A1 (en) * 2005-12-13 2007-06-14 Chris Ligtenberg Electronic device having magnetic latching mechanism
US20080061565A1 (en) * 2006-09-12 2008-03-13 Jarllytec Co., Ltd. Magnetic switch with auto-release function
US7661732B2 (en) * 2007-06-13 2010-02-16 Shenzhen Futaihong Precision Industry Co., Ltd. Switch assembly and foldable portable electronic device using same
US7442086B1 (en) 2007-11-02 2008-10-28 Chi Mei Communication Systems, Inc. Chip card retaining mechanism
US20100194503A1 (en) * 2009-02-05 2010-08-05 Nokia Corporation Magnetic actuation mechanism
US20100309627A1 (en) 2009-06-08 2010-12-09 Kabushiki Kaisha Toshiba Portable terminal
US8553419B2 (en) 2010-12-28 2013-10-08 Fu Tai Hua Industry (Shenzhen) Co., Ltd. Card tray ejection mechanism and electronic device using the same
US8625287B2 (en) 2011-03-04 2014-01-07 Shenzhen Futaihong Precision Industry Co., Ltd. Portable electronic device with chip card ejecting mechanism
US20130063910A1 (en) 2011-09-09 2013-03-14 Hon Hai Precision Industry Co., Ltd. Card holding mechanism and electronic device
US20130258605A1 (en) 2012-04-03 2013-10-03 Chi Mei Communication Systems, Inc. Portable electronic device with chip card holder
US8591240B2 (en) 2012-04-04 2013-11-26 Apple Inc. Systems and methods for ejecting removable modules from electronic devices
CN102709746A (en) 2012-05-09 2012-10-03 广东欧珀移动通信有限公司 Novel card locking and card returning device on handheld communication product
US20130334948A1 (en) 2012-06-18 2013-12-19 Fih (Hong Kong) Limited Surface contact card holder for electronic device
US8777645B2 (en) 2012-09-20 2014-07-15 Fu Tai Hua Industry (Shenzhen) Co., Ltd. Card accommodating and ejecting device
US9101052B2 (en) * 2012-09-29 2015-08-04 Fu Tai Hua Industry (Shenzhen) Co., Ltd. Sliding mechanism and electronic apparatus having same
US20140177144A1 (en) * 2012-12-22 2014-06-26 Hon Hai Precision Industry Co., Ltd. Electronic device with ejection mechanism
US20140306463A1 (en) * 2013-04-10 2014-10-16 Li-Yin Ho Device having opening structure and opening structure thereof
WO2013182106A2 (en) 2013-04-27 2013-12-12 中兴通讯股份有限公司 Sim card drawer tray and sim card tray
US20150004818A1 (en) 2013-06-27 2015-01-01 Chiun Mai Communication Systems, Inc. Chip card ejecting mechanism
CN203574181U (en) 2013-10-16 2014-04-30 深圳市欧珀通信软件有限公司 SIM card tray automatic ejection device and electronic device thereof
US20150118884A1 (en) * 2013-10-31 2015-04-30 Hon Hai Precision Industry Co., Ltd. Electronic device having electronic card connector
US9337575B1 (en) * 2014-11-26 2016-05-10 Hon Hai Precision Industry Co., Ltd. Electronic device including electronic card connector

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
"International Search Report and Written Opinion Issued in PCT Application No. PCT/US2016/029278", Mailed Date: Aug. 30, 2016, 11 Pages.
"Sim Card Reader, With Removable Tray", Published on: Jul. 20, 2014 Available at: http://www.yamaichi.de/products/connector-solutions/card-connectors/sim/sim-card-reader-with-removable-tray.html.

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11169573B2 (en) * 2019-12-23 2021-11-09 Microsoft Technology Licensing, Llc Display positioning assembly

Also Published As

Publication number Publication date
WO2016191008A1 (en) 2016-12-01
EP3304749A1 (en) 2018-04-11
EP3304749B1 (en) 2020-05-13
CN107646097B (en) 2020-08-25
US20160352043A1 (en) 2016-12-01
CN107646097A (en) 2018-01-30

Similar Documents

Publication Publication Date Title
US9685732B2 (en) Apparatus for moving a carrier
US9106727B2 (en) SIM card seat and mobile terminal
US10340634B2 (en) Apparatus for ejecting at least one integrated circuit card
US9106310B2 (en) Apparatus for securing memory modules and/or subscriber identity module in an electronic device
US20170192470A1 (en) Apparatus for receiving at least one integrated circuit card
CN205071050U (en) Cell -phone protective housing subassembly
CN103887653A (en) Electronic device
CN104953400A (en) SIM (subscriber identity module) card connector having automatic software driver ejection function and terminal device comprising SIM card connector
US8902602B2 (en) Communication device and ejection mechanism
CN104126253B (en) Device including user input equipment
CN204929454U (en) Card fixing device and have electronic equipment of this calorie of fixing device
GB2445598A (en) Securing a portable device in a receptacle by magnetic means
US9270317B2 (en) Chip card ejecting mechanism
US8608072B2 (en) Memory card socket and data processing device including the same
EP3010210B1 (en) Card slot structure
US11349519B2 (en) Fan-out phone case wallet
US9300340B2 (en) Communication terminal compatible with multiple smart cards
CN108270897A (en) Communicating terminal
CN203277696U (en) Elastic press-in locking device
CN220711477U (en) A pop-up device and electronic equipment for electronic equipment's function card
CN213242977U (en) IC card seat data safety protection device
CN101775921A (en) Radio frequency identification key
CN105762551A (en) Push type portable storage device
KR101263311B1 (en) Small-sized multi smart card reader housing
US8848355B2 (en) Communication device and method for combining and separating housings

Legal Events

Date Code Title Description
AS Assignment

Owner name: MICROSOFT TECHNOLOGY LICENSING, LLC, WASHINGTON

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:EROMAEKI, MARKO;REEL/FRAME:035709/0833

Effective date: 20150521

STCF Information on status: patent grant

Free format text: PATENTED CASE

MAFP Maintenance fee payment

Free format text: PAYMENT OF MAINTENANCE FEE, 4TH YEAR, LARGE ENTITY (ORIGINAL EVENT CODE: M1551); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY

Year of fee payment: 4