US9681821B2 - Methods for measuring global glymphatic flow using magnetic resonance imaging - Google Patents
Methods for measuring global glymphatic flow using magnetic resonance imaging Download PDFInfo
- Publication number
- US9681821B2 US9681821B2 US14/903,029 US201514903029A US9681821B2 US 9681821 B2 US9681821 B2 US 9681821B2 US 201514903029 A US201514903029 A US 201514903029A US 9681821 B2 US9681821 B2 US 9681821B2
- Authority
- US
- United States
- Prior art keywords
- flow
- subject
- diffusion
- glymphatic
- csf
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Images
Classifications
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B5/00—Measuring for diagnostic purposes; Identification of persons
- A61B5/05—Detecting, measuring or recording for diagnosis by means of electric currents or magnetic fields; Measuring using microwaves or radio waves
- A61B5/055—Detecting, measuring or recording for diagnosis by means of electric currents or magnetic fields; Measuring using microwaves or radio waves involving electronic [EMR] or nuclear [NMR] magnetic resonance, e.g. magnetic resonance imaging
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B5/00—Measuring for diagnostic purposes; Identification of persons
- A61B5/03—Measuring fluid pressure within the body other than blood pressure, e.g. cerebral pressure ; Measuring pressure in body tissues or organs
- A61B5/031—Intracranial pressure
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B5/00—Measuring for diagnostic purposes; Identification of persons
- A61B5/03—Measuring fluid pressure within the body other than blood pressure, e.g. cerebral pressure ; Measuring pressure in body tissues or organs
- A61B5/032—Spinal fluid pressure
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B5/00—Measuring for diagnostic purposes; Identification of persons
- A61B5/40—Detecting, measuring or recording for evaluating the nervous system
- A61B5/4058—Detecting, measuring or recording for evaluating the nervous system for evaluating the central nervous system
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B5/00—Measuring for diagnostic purposes; Identification of persons
- A61B5/40—Detecting, measuring or recording for evaluating the nervous system
- A61B5/4076—Diagnosing or monitoring particular conditions of the nervous system
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01R—MEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
- G01R33/00—Arrangements or instruments for measuring magnetic variables
- G01R33/20—Arrangements or instruments for measuring magnetic variables involving magnetic resonance
- G01R33/44—Arrangements or instruments for measuring magnetic variables involving magnetic resonance using nuclear magnetic resonance [NMR]
- G01R33/48—NMR imaging systems
- G01R33/54—Signal processing systems, e.g. using pulse sequences ; Generation or control of pulse sequences; Operator console
- G01R33/56—Image enhancement or correction, e.g. subtraction or averaging techniques, e.g. improvement of signal-to-noise ratio and resolution
- G01R33/563—Image enhancement or correction, e.g. subtraction or averaging techniques, e.g. improvement of signal-to-noise ratio and resolution of moving material, e.g. flow contrast angiography
- G01R33/56341—Diffusion imaging
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01R—MEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
- G01R33/00—Arrangements or instruments for measuring magnetic variables
- G01R33/20—Arrangements or instruments for measuring magnetic variables involving magnetic resonance
- G01R33/44—Arrangements or instruments for measuring magnetic variables involving magnetic resonance using nuclear magnetic resonance [NMR]
- G01R33/48—NMR imaging systems
- G01R33/54—Signal processing systems, e.g. using pulse sequences ; Generation or control of pulse sequences; Operator console
- G01R33/56—Image enhancement or correction, e.g. subtraction or averaging techniques, e.g. improvement of signal-to-noise ratio and resolution
- G01R33/563—Image enhancement or correction, e.g. subtraction or averaging techniques, e.g. improvement of signal-to-noise ratio and resolution of moving material, e.g. flow contrast angiography
- G01R33/56366—Perfusion imaging
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B2576/00—Medical imaging apparatus involving image processing or analysis
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B5/00—Measuring for diagnostic purposes; Identification of persons
- A61B5/48—Other medical applications
- A61B5/4806—Sleep evaluation
- A61B5/4809—Sleep detection, i.e. determining whether a subject is asleep or not
Definitions
- the field of the invention is systems and methods for magnetic resonance imaging (“MRI”). More particularly, the invention relates to systems and methods for measuring global glymphatic flow in a subject using MRI.
- MRI magnetic resonance imaging
- CSF cerebral spinal fluid
- ALS amyotropic lateral sclerosis
- the present invention overcomes the aforementioned drawbacks by providing a method for measuring glymphatic flow in a subject using magnetic resonance imaging (“MRI”).
- the method includes directing the MRI system to acquire data from a subject using a pulse sequence that induces an image contrast in the acquired data that is associated with glymphatic flow. At least one image is reconstructed from the acquired data and a measure of global glymphatic flow is estimated based on, or from, the at least one reconstructed image.
- data can be acquired following the administration of a contrast agent to the subject's cerebrospinal fluid (“CSF”), where the data can be acquired while the contrast agent is perfusing through the subject's tissues or flowing through the subject's central nervous system.
- CSF cerebrospinal fluid
- data can be acquired as control data and spin-labeled data.
- Spin-labeled data can be acquired from an imaging region in the subject by applying a radio frequency (“RF”) pulse to a labeling region in the subject that is proximal to the imaging region, such that spins associated with cerebrospinal fluid are labeled and flow into the imaging region while the spin-labeled data is acquired.
- Control data can be acquired from the imaging region in the subject, wherein an RF pulse is not applied to the labeling region prior to acquiring the control data from the imaging region.
- phase contrast pulse sequence that is configured to impart a phase contrast to cerebrospinal fluid flowing though the subject's central nervous system.
- data can be acquired as diffusion-weighted data using a pulse sequence that includes diffusion-encoding gradients that are designed to have a b-value sufficient to sensitize the diffusion-weighted data to at least one of perfusion of CSF and bulk flow of CSF.
- FIG. 1 is a flowchart setting forth the steps of an example of a method for measuring glymphatic flow based on contrast-enhanced cerebrospinal fluid (“CSF”) perfusion imaging;
- CSF cerebrospinal fluid
- FIG. 3 is a flowchart setting forth the steps of an example of a method for measuring glymphatic flow based on spin-labeled, or spin-tagged, imaging techniques
- FIG. 4 is a flowchart setting forth the steps of an example of a method for measuring glymphatic flow based on phase contrast imaging techniques
- FIG. 5 is a plot illustrating a range of b-values that is correlated with CSF perfusion and bulk flow rates rather than blood perfusion and flow or cellular diffusion;
- FIG. 6 is a flowchart setting forth the steps of an example of a method for measuring glymphatic flow based on diffusion-weighted imaging (“DWI”) techniques, including diffusion tensor imaging (“DTI”); and
- DWI diffusion-weighted imaging
- DTI diffusion tensor imaging
- FIG. 7 is a block diagram of an example of a magnetic resonance imaging (“MRI”) system.
- MRI magnetic resonance imaging
- Described here are systems and methods for providing quantitative measurements of global cerebrospinal fluid (“CSF”) flow using magnetic resonance imaging (“MRI”).
- CSF global cerebrospinal fluid
- MRI magnetic resonance imaging
- images are obtained from a subject using flow-sensitive MRI techniques that are designed to be particularly sensitive to the flow of CSF.
- Glymphatic flow generally refers to the flow of CSF through the body's glymphatic system, which is a functional waste clearance pathway for the central nervous system (“CNS”).
- the glymphatic system is responsible for removing interstitial fluid and extracellular fluid during a sleeping state.
- CNS central nervous system
- the measurements of glymphatic flow provided by the present invention are thus capable of generating imaging biomarkers for assessing neurological pathologies.
- the systems and methods described here provide flow-sensitive imaging techniques that are specifically designed to measure glymphatic flow in the central nervous system (e.g., the brain and spine) of a subject, and to quantify this glymphatic flow both in awake and asleep subjects.
- the central nervous system e.g., the brain and spine
- the systems and methods described here that can be used to measure and quantify glymphatic flow can be designed to target bulk CSF flow and/or tissue-level CSF flow (i.e., CSF perfusion), as will be described below in detail.
- data acquisition with the MRI system can be triggered by, or otherwise synchronized with, data that indicates the subject's particular sleep or rest state.
- this data can be provided using electroencephalography (“EEG”).
- EEG electroencephalography
- this data can be provided by monitoring the subject, such as by video monitoring of the subject.
- glymphatic flow can be measured using a pulse sequence that is designed to acquire data that is sensitive to tissue-level CSF flow.
- a conventional perfusion MRI technique can be specifically adapted to measure tissue-level CSF flow through the glymphatic system.
- a contrast agent is injected into the subject's blood stream, and perfusion metrics are estimated from data acquisitions that are sensitive to the contrast agent, such as T* 2 -weighted or T 1 -weighted imaging.
- the subject's blood volume can be estimated because, in healthy brain tissues, the blood brain barrier keeps the contrast agent in the intravascular space.
- glymphatic flow can also be measured using tissue-level perfusion with contrast-enhanced MRI.
- a contrast agent can be administered to a subject's CSF, such as by injecting the contrast agent into the subject's CSF.
- Contrast agent-sensitive MR imaging can then be performed at a timescale consistent with CSF flow.
- Models of perfusion contrast kinetics can then be applied to the acquired images to estimate a measure of glymphatic flow.
- a contrast agent is administered to the subject and a series of MR images are acquired as the contrast agent perfuses into the tissues-of-interest.
- contrast agents include intravenous gadolinium-based contrast agents, superparamagnetic iron oxide (“SPIO”)-based contrast agents, and other nanoparticle-based contrast agents that can naturally perfuse through the brain, including small molecule agents or nano-bubbles of oxygenation.
- SPIO superparamagnetic iron oxide
- a flowchart is illustrated as setting forth the steps of an example method for measuring glymphatic flow from tissue-level measurements of CSF perfusion.
- the method begins with the administration of a contrast agent to the subject, as indicated at step 102 .
- the contrast agent can be administered to the subject's CSF space.
- Data is then acquired as the contrast agent perfuses through the subject's tissues, as indicated at step 104 .
- this data can be acquired using a T* 2 -weighted pulse sequence using a data acquisition that is performed on a timescale that is consistent with CSF flow rather than blood flow.
- a series of images are then reconstructed from the acquired data, as indicated at step 106 . From these images, a time-varying signal intensity curve associated with the CSF-mediated perfusion of the contrast agent is generated, as indicated at step 108 .
- a measurement of glymphatic flow can then be estimated from this signal intensity curve, as indicated at step 110 .
- the glymphatic flow can be quantified using a model of perfusion contrast kinetics.
- this method can be repeated twice: once while the subject is in an awake state and once while the subject is in a sleep, or other rest, state.
- the measurements of glymphatic flow that are obtained for these two different states can then be compared to assess the neurological function or state of the subject.
- the relative change—whether an increase or a decrease—in glymphatic flow between the two states can be measured. For instance, images corresponding to the awake state and images corresponding to the sleep state can be reconstructed and used to estimate a measure of the relative change in glymphatic flow between the two states, rather than estimating the absolute flow for the two states separately.
- the absolute measures of the glymphatic flow, or the relative change in flow between the two states can be used as a biomarker that characterizes or otherwise indicates neurological function or disease.
- quantifying, or otherwise characterizing, changes in glymphatic flow can be used to assist in the evaluation of a neurological state of a subject.
- poor glymphatic flow can implicate the presence of white matter diseases; thus, the measure of glymphatic flow, or changes in glymphatic flow between awake and sleep states, can be useful as a biomarker implicating neurological disease.
- quiet MRI techniques can be used when measuring glymphatic flow during a sleep, or other rest, state.
- quiet MRI techniques involve applying pulse sequence designs in which the rate of change of the magnetic gradients used for imaging is low throughout the entire scan. As a result of this slow rate of change, the acoustic noise created by the MRI scanner is minimized.
- Quiet MRI techniques can also be achieved through hardware design of the MRI system.
- the gradient system can be designed to minimize vibration forces generated by the gradient coils, or the MRI system can generally designed to dampen acoustic transmission in the system. Applying such quiet MRI techniques to glymphatic flow characterization would enable measurement of glymphatic flow in subjects that are in a sleep state.
- the larger CSF flow volumes can be imaged, from which a measurement of bulk glymphatic flow can be estimated.
- the larger CSF volumes can be dynamically imaged over time following an administration of a contrast agent into the CSF space. Based on images acquired in this manner, the rate of enhancement within the CSF space can be directly monitored. From this rate of enhancement the relative flow rate within the CSF can be calculated. Thus, a measure of glymphatic flow can be estimated.
- a flowchart is illustrated as setting forth the steps of an example method for measuring glymphatic flow from images of bulk CSF flow.
- the method begins with the administration of a contrast agent to the subject, as indicated at step 202 .
- the contrast agent can be administered to the subject's CSF space.
- Data is then acquired as the contrast agent flows through the subject's central nervous system, as indicated at step 204 .
- this data can be acquired using a any suitable pulse sequence using a data acquisition that is performed on a timescale that is consistent with CSF flow rather than blood flow.
- a series of images are then reconstructed from the acquired data, as indicated at step 206 . From these images, a measurement of glymphatic flow can then be estimated, as indicated at step 208 .
- this method can be repeated twice: once while the subject is in an awake state and once while the subject is in a sleep, or other rest, state.
- the measurements of glymphatic flow that are obtained for these two different states can then be compared to assess the neurological function or state of the subject.
- quiet MRI techniques can be applied when acquiring data from a subject during a sleep, or other rest, state.
- the aforementioned methods for quantifying glymphatic flow are based on contrast-enhanced imaging techniques. In many instances, however, it may be advantageous to use a non-contrast-enhanced imaging technique to assess glymphatic flow.
- a non-contrast-enhanced imaging technique to assess glymphatic flow.
- subjects who have impaired kidney function may develop nephrogenic systemic fibrosis (“NSF”) as a result of exposure to gadolinium-based contrast agents. For these subjects, non-contrast-enhanced methods will be preferred.
- NSF nephrogenic systemic fibrosis
- glymphatic flow can also be measured based on images acquired using non-contrast-enhanced techniques that are specifically designed to be sensitive to glymphatic flow.
- glymphatic flow can be measured from images that are acquired using a pulse sequence that tags, or otherwise labels, spins associated with CSF that are inflowing into a target imaging region, which may be an imaging slice or an imaging volume.
- FIG. 3 a flowchart is illustrated as setting forth the steps of an example method for measuring glymphatic flow based on images acquired using a spin labeling pulse sequence.
- the method begins with the acquisition of a control image that is acquired without labeling the CSF spins, as indicated at step 302 .
- a spin-labeled image is then acquired, as generally indicated at step 304 .
- the acquisition of the spin-labeled image generally includes using a pulse sequence that labels CSF spins that are flowing into a target imaging region.
- the CSF spins can be labeled by applying an inversion or saturation radio frequency (“RF”) pulse proximal to the target imaging region.
- RF radio frequency
- the CSF spins are magnetically labeled some distance away from the imaging slice or volume.
- the inflow is detected as a modulation of the longitudinal magnetization.
- the successfulness of implementing this spin-labeling technique depends on accurately determining when the tagged CSF enters and leaves the imaging region because ill-timed image acquisitions can result in signal loss or artifacts in the reconstructed image.
- the timing of the spin-labeling RF pulse and the data acquisition can be determined based on the timescale of glymphatic flow.
- a time-resolved perfusion imaging technique can be implemented to help evaluate perfusion evolution dynamics.
- Using a time-resolved imaging technique also has the benefit of reducing the sensitivity of the imaging technique to exact prescription of timing parameters.
- a time-resolved method can be used to acquire multiple imaging volumes, each representing the location of the tagged CSF at a different delay time relative to the application of the spin-labeling RF pulse.
- an imaging protocol can be established in which areas having low-flow are locally tagged to identify regions that may have flow issues. Regions that are identified as such can then be systematically imaged and evaluated.
- a perfusion-weighted image can then be generated by subtracting the control image and the spin-labeled image, as indicated at step 306 . Based on this perfusion-weighted image, glymphatic flow can be measured or otherwise quantified, as indicated at step 308 .
- this method can be repeated twice: once while the subject is in an awake state and once while the subject is in a sleep, or other rest, state.
- the measurements of glymphatic flow that are obtained for these two different states can then be compared to assess the neurological function or state of the subject.
- quiet MRI techniques can be applied when acquiring data from a subject during a sleep, or other rest, state.
- phase contrast imaging can be used to acquire images, from which glymphatic flow can be measured.
- phase contrast imaging techniques encode spin motion into the phase of the acquired signal. These imaging techniques derive contrast between flowing spins and stationary tissues by manipulating the phase of the magnetization, such that the phase of the magnetization from the stationary spins is zero and the phase of the magnetization from the moving spins is non-zero.
- FIG. 4 a flowchart is illustrated as setting forth the steps of an example method for measuring glymphatic flow based on a phase contrast imaging technique.
- the method begins with the acquisition of control data, in which no motion encoding gradients are applied, as indicated at step 402 .
- flow-sensitized data is acquired using a pulse sequence in which motion encoding gradients are applied, as indicated at step 404 .
- stationary tissues will not experience a phase change from the motion encoding gradients, but spins moving along the direction of the motion encoding gradients will experience a phase shift.
- step 404 can be repeated while changing the direction of the motion encoding gradients for each repetition.
- Step 404 can also be repeated to acquire data that is sensitive to different flow rates by suitably changing the motion encoding gradients to be sensitive to different flow rates, such as by changing a user-selected velocity-encoding (“VENC”) value.
- VENC velocity-encoding
- phase difference images are produced, as indicated at step 408 .
- Each phase difference, or phase contrast, image can be generated by first computing phase difference data by subtracting one set of flow-sensitized data and the control data. From the phase difference data, a phase difference, or phase contrast, image can then be reconstructed.
- the phase difference data can be computed using a phase difference or complex difference technique, as is known in the art.
- Quantitative diffusion measurements with diffusion encoding applied at a level that would be most sensitive to water motion associated with these CSF perfusion and bulk flow rates can therefore provide for the characterization and quantification of glymphatic flow.
- directional diffusion measurements e.g., those obtained using diffusion tenor imaging
- a flowchart is illustrated as setting forth the steps of an example method for measuring glymphatic flow based on a diffusion imaging technique.
- the method begins by selecting a b-value, or otherwise designing diffusion gradients, that will result in sensitizing flow specific to CSF perfusion and bulk flow rates, as indicated at step 602 .
- the b-value can be selected in a range of about 100 s 2 /mm to about 1000 s 2 /mm. In some embodiments, multiple different b-values can be selected across a range of values.
- Non-diffusion-weighted images are acquired, as indicated at step 604 .
- the non-diffusion-weighted images are acquired using the same pulse sequence that will be used to acquire diffusion-weighted images, but with the b-value set to zero (i.e., without diffusion encoding gradients).
- Diffusion-weighted images are then acquired using a pulse sequence that includes diffusion-encoding gradients that are designed according to the selected b-value, as indicated at step 606 .
- blood signals can be saturated before acquiring the non-diffusion-weighted data, the diffusion-weighted data, or both, thereby improving the acquired CSF signal.
- multiple sets of diffusion-weighted images can be acquired by using a different b-value for each set of images.
- different image sets can be acquired using b-values over a range of relatively small b-values (e.g., 0 s 2 /mm to about 100 s 2 /mm) to characterize “fast” moving water. If signals from blood have been saturated, as described above, then it is contemplated that the contribution of perfusion effects to the diffusion curve will be indicative of CSF flow rather than blood flow. Because the CSF flow should be slower than blood flow, a larger range of relatively small b-values can be used to gather information about this effect.
- diffusion parameters are computed, as indicated at step 610 .
- the diffusion parameter can include the apparent diffusion coefficient (“ADC”).
- the diffusion parameter can include those computed from a diffusion tensor, including mean diffusivity and fractional anisotropy.
- the computed diffusion parameters can then be used to estimate or otherwise characterize the glymphatic flow, as indicated at step 612 .
- this method can be repeated twice: once while the subject is in an awake state and once while the subject is in a sleep, or other rest, state.
- the measurements of glymphatic flow that are obtained for these two different states can then be compared to assess the neurological function or state of the subject.
- quiet MRI techniques can be applied when acquiring data from a subject during a sleep, or other rest, state.
- the small volume can include a cylindrical volume that encompasses a region where CSF resides within the CNS at a given time.
- a small cylindrical volume within the brainstem can be selectively excited.
- a high-temporal resolution data set can be acquired, from which an estimate of how long it takes for the excited, or otherwise labeled, signal to travel to a desired imaging region. Based on this information, a flow rate for the CSF can be determined.
- a high-temporal resolution acquisition that can be used in these instances includes a magic angle radial acquisition scheme. This procedure can be repeated over a long period of time to track changes in CSF flow and, therefore, in glymphatic flow.
- the methods for quantifying glymphatic flow described here can be used to map the volume of the interstitial space in the subject's brain and how it varies over the sleep pattern of the subject. It is contemplated that a long term measurement of changes in how the volume of the interstitial space varies over the sleep pattern of the subject can be used as a precursor to different neurological diseases.
- the MRI system 700 includes an operator workstation 702 , which will typically include a display 704 ; one or more input devices 706 , such as a keyboard and mouse; and a processor 708 .
- the processor 708 may include a commercially available programmable machine running a commercially available operating system.
- the operator workstation 702 provides the operator interface that enables scan prescriptions to be entered into the MRI system 700 .
- the operator workstation 702 may be coupled to four servers: a pulse sequence server 710 ; a data acquisition server 712 ; a data processing server 714 ; and a data store server 716 .
- the operator workstation 702 and each server 710 , 712 , 714 , and 716 are connected to communicate with each other.
- the servers 710 , 712 , 714 , and 716 may be connected via a communication system 740 , which may include any suitable network connection, whether wired, wireless, or a combination of both.
- the communication system 740 may include both proprietary or dedicated networks, as well as open networks, such as the internet.
- the pulse sequence server 710 functions in response to instructions downloaded from the operator workstation 702 to operate a gradient system 718 and a radiofrequency (“RF”) system 720 .
- Gradient waveforms necessary to perform the prescribed scan are produced and applied to the gradient system 718 , which excites gradient coils in an assembly 722 to produce the magnetic field gradients G x , G y , and G z used for position encoding magnetic resonance signals.
- the gradient coil assembly 722 forms part of a magnet assembly 724 that includes a polarizing magnet 726 and a whole-body RF coil 728 .
- the gradient system 718 is preferably capable of achieving high gradient power.
- the gradient system 718 is capable of operating in a quiet MRI mode, such as by slowly varying the magnetic field gradients to minimize acoustic noise generated by the gradient coil assembly 722 during imaging.
- RF waveforms are applied by the RF system 720 to the RF coil 728 , or a separate local coil (not shown FIG. 7 ), in order to perform the prescribed magnetic resonance pulse sequence.
- Responsive magnetic resonance signals detected by the RF coil 728 , or a separate local coil (not shown in FIG. 7 ) are received by the RF system 720 , where they are amplified, demodulated, filtered, and digitized under direction of commands produced by the pulse sequence server 710 .
- the RF system 720 includes an RF transmitter for producing a wide variety of RF pulses used in MRI pulse sequences.
- the RF transmitter is responsive to the scan prescription and direction from the pulse sequence server 710 to produce RF pulses of the desired frequency, phase, and pulse amplitude waveform.
- the generated RF pulses may be applied to the whole-body RF coil 728 or to one or more local coils or coil arrays (not shown in FIG. 7 ).
- the RF system 720 also includes one or more RF receiver channels.
- Each RF receiver channel includes an RF preamplifier that amplifies the magnetic resonance signal received by the coil 728 to which it is connected, and a detector that detects and digitizes the I and Q quadrature components of the received magnetic resonance signal.
- phase of the received magnetic resonance signal may also be determined according to the following relationship:
- the pulse sequence server 710 also optionally receives patient data from a physiological acquisition controller 730 .
- the physiological acquisition controller 730 may receive signals from a number of different sensors connected to the patient, such as electrocardiograph (“ECG”) signals from electrodes, or respiratory signals from a respiratory bellows or other respiratory monitoring device.
- ECG electrocardiograph
- Such signals are typically used by the pulse sequence server 710 to synchronize, or “gate,” the performance of the scan with the subject's heart beat or respiration.
- the pulse sequence server 710 also connects to a scan room interface circuit 732 that receives signals from various sensors associated with the condition of the patient and the magnet system. It is also through the scan room interface circuit 732 that a patient positioning system 734 receives commands to move the patient to desired positions during the scan.
- the digitized magnetic resonance signal samples produced by the RF system 720 are received by the data acquisition server 712 .
- the data acquisition server 712 operates in response to instructions downloaded from the operator workstation 702 to receive the real-time magnetic resonance data and provide buffer storage, such that no data is lost by data overrun. In some scans, the data acquisition server 712 does little more than pass the acquired magnetic resonance data to the data processor server 714 . However, in scans that require information derived from acquired magnetic resonance data to control the further performance of the scan, the data acquisition server 712 is programmed to produce such information and convey it to the pulse sequence server 710 . For example, during prescans, magnetic resonance data is acquired and used to calibrate the pulse sequence performed by the pulse sequence server 710 .
- navigator signals may be acquired and used to adjust the operating parameters of the RF system 720 or the gradient system 718 , or to control the view order in which k-space is sampled.
- the data acquisition server 712 may also be employed to process magnetic resonance signals used to detect the arrival of a contrast agent in a magnetic resonance angiography (“MRA”) scan.
- MRA magnetic resonance angiography
- the data acquisition server 712 acquires magnetic resonance data and processes it in real-time to produce information that is used to control the scan.
- the data processing server 714 receives magnetic resonance data from the data acquisition server 712 and processes it in accordance with instructions downloaded from the operator workstation 702 .
- processing may, for example, include one or more of the following: reconstructing two-dimensional or three-dimensional images by performing a Fourier transformation of raw k-space data; performing other image reconstruction algorithms, such as iterative or backprojection reconstruction algorithms; applying filters to raw k-space data or to reconstructed images; generating functional magnetic resonance images; calculating motion or flow images; and so on.
- Images reconstructed by the data processing server 714 are conveyed back to the operator workstation 702 where they are stored.
- Real-time images are stored in a data base memory cache (not shown in FIG. 7 ), from which they may be output to operator display 712 or a display 736 that is located near the magnet assembly 724 for use by attending physicians.
- Batch mode images or selected real time images are stored in a host database on disc storage 738 .
- the data processing server 714 notifies the data store server 716 on the operator workstation 702 .
- the operator workstation 702 may be used by an operator to archive the images, produce films, or send the images via a network to other facilities.
- the MRI system 700 may also include one or more networked workstations 742 .
- a networked workstation 742 may include a display 744 ; one or more input devices 746 , such as a keyboard and mouse; and a processor 748 .
- the networked workstation 742 may be located within the same facility as the operator workstation 702 , or in a different facility, such as a different healthcare institution or clinic.
- the networked workstation 742 may gain remote access to the data processing server 714 or data store server 716 via the communication system 740 . Accordingly, multiple networked workstations 742 may have access to the data processing server 714 and the data store server 716 . In this manner, magnetic resonance data, reconstructed images, or other data may be exchanged between the data processing server 714 or the data store server 716 and the networked workstations 742 , such that the data or images may be remotely processed by a networked workstation 742 . This data may be exchanged in any suitable format, such as in accordance with the transmission control protocol (“TCP”), the internet protocol (“IP”), or other known or suitable protocols.
- TCP transmission control protocol
- IP internet protocol
Landscapes
- Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Physics & Mathematics (AREA)
- Engineering & Computer Science (AREA)
- General Health & Medical Sciences (AREA)
- Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
- Neurology (AREA)
- Animal Behavior & Ethology (AREA)
- Pathology (AREA)
- Biomedical Technology (AREA)
- Heart & Thoracic Surgery (AREA)
- Medical Informatics (AREA)
- Molecular Biology (AREA)
- Surgery (AREA)
- Biophysics (AREA)
- Public Health (AREA)
- Veterinary Medicine (AREA)
- Neurosurgery (AREA)
- High Energy & Nuclear Physics (AREA)
- Radiology & Medical Imaging (AREA)
- Physiology (AREA)
- Vascular Medicine (AREA)
- Signal Processing (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- General Physics & Mathematics (AREA)
- Hematology (AREA)
- Orthopedic Medicine & Surgery (AREA)
- Magnetic Resonance Imaging Apparatus (AREA)
Abstract
Description
M=√{square root over (I 2 +Q 2)} (1);
Claims (10)
Applications Claiming Priority (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| PCT/IB2015/051285 WO2016132176A1 (en) | 2015-02-19 | 2015-02-19 | Systems and methods for measuring global glymphatic flow using magnetic resonance imaging |
Related Parent Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| PCT/IB2015/051285 A-371-Of-International WO2016132176A1 (en) | 2015-02-19 | 2015-02-19 | Systems and methods for measuring global glymphatic flow using magnetic resonance imaging |
Related Child Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| US15/599,817 Continuation US20170251950A1 (en) | 2015-02-19 | 2017-05-19 | Systems and Methods for Measuring Global Glymphatic Flow Using Magnetic Resonance Imaging |
Publications (2)
| Publication Number | Publication Date |
|---|---|
| US20160367166A1 US20160367166A1 (en) | 2016-12-22 |
| US9681821B2 true US9681821B2 (en) | 2017-06-20 |
Family
ID=56692014
Family Applications (2)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| US14/903,029 Expired - Fee Related US9681821B2 (en) | 2015-02-19 | 2015-02-19 | Methods for measuring global glymphatic flow using magnetic resonance imaging |
| US15/599,817 Abandoned US20170251950A1 (en) | 2015-02-19 | 2017-05-19 | Systems and Methods for Measuring Global Glymphatic Flow Using Magnetic Resonance Imaging |
Family Applications After (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| US15/599,817 Abandoned US20170251950A1 (en) | 2015-02-19 | 2017-05-19 | Systems and Methods for Measuring Global Glymphatic Flow Using Magnetic Resonance Imaging |
Country Status (2)
| Country | Link |
|---|---|
| US (2) | US9681821B2 (en) |
| WO (1) | WO2016132176A1 (en) |
Cited By (3)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US20200297211A1 (en) * | 2019-03-21 | 2020-09-24 | Synaptec Network, Inc | Diffusion tensor mr to monitor glymphatic system |
| US11340323B2 (en) | 2020-01-06 | 2022-05-24 | General Electric Company | Low acoustic noise magnetic resonance image acquisition |
| US12329508B2 (en) | 2022-02-10 | 2025-06-17 | Canon Medical Systems Corporation | MRI apparatus |
Families Citing this family (11)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US20170245817A1 (en) * | 2016-02-10 | 2017-08-31 | The Charles Stark Draper Laboratory, Inc. | Systems and methods for imaging |
| WO2018174721A2 (en) | 2017-03-23 | 2018-09-27 | Brainwidesolutions As | Indicator fluids, systems, and methods for assessing movement of substances within, to or from a cerebrospinal fluid, brain or spinal cord compartment of a cranio-spinal cavity of a human |
| WO2019241266A1 (en) * | 2018-06-11 | 2019-12-19 | University Of Southern California | Black-box assessment of disease and response-to-therapy by t1 or t2* weighted dce-mri |
| US20220183561A1 (en) * | 2019-04-11 | 2022-06-16 | The General Hospital Corporation | Generating imaging-based neurological state biomarkers and estimating cerebrospinal fluid (csf) dynamics based on coupled neural and csf oscillations during sleep |
| US11454689B2 (en) * | 2019-09-05 | 2022-09-27 | Canon Medical Systems Corporation | Magnetic resonance imaging apparatus, image processing apparatus, and image processing method |
| WO2021201753A1 (en) * | 2020-03-28 | 2021-10-07 | Oezarslan Evren | A magnetic resonance method, software product, and system for determining a diffusion propagator or related diffusion parameters for spin-labelled particles |
| EP3973864A1 (en) * | 2020-09-28 | 2022-03-30 | Koninklijke Philips N.V. | Scan sequencing in magnetic resonance imaging |
| EP4221801A4 (en) * | 2020-09-29 | 2024-11-06 | Enclear Therapies, Inc. | METHOD AND SYSTEM FOR MANAGING SUBARACHNOID FLUID |
| JP2024535131A (en) * | 2021-09-14 | 2024-09-26 | アプライド・コグニション・インコーポレーテッド | Non-invasive assessment of glymphatic flow and neurodegeneration from a wearable device |
| WO2024081779A2 (en) * | 2022-10-12 | 2024-04-18 | The General Hospital Corporation | Imaging slow flow dynamics of cerebrospinal fluid using magnetic resonance imaging |
| US12004874B2 (en) * | 2022-10-24 | 2024-06-11 | Applied Cognition, Inc. | Wearable device and method for non-invasive assessment of glymphatic flow |
Citations (5)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US6076006A (en) | 1997-04-17 | 2000-06-13 | U.S. Philips Corporation | Diffusion-weighted MRI method |
| US20090024181A1 (en) | 2007-05-18 | 2009-01-22 | Raghu Raghavan | Treatment simulator for brain diseases and method of use thereof |
| US8315450B2 (en) | 2004-11-24 | 2012-11-20 | Wisconsin Alumni Research Foundation | Method and system for display of medical image data |
| WO2014130777A1 (en) | 2013-02-21 | 2014-08-28 | University Of Rochester | Methods for evaluating brain-wide paravascular pathway for waste clearance function and methods for treating neurodegenerative disorders based thereon |
| US8903469B2 (en) | 2008-10-03 | 2014-12-02 | Tokai University Educational Systems | Determining velocity of cerebrospinal fluid by magnetic resonance imaging |
-
2015
- 2015-02-19 WO PCT/IB2015/051285 patent/WO2016132176A1/en not_active Ceased
- 2015-02-19 US US14/903,029 patent/US9681821B2/en not_active Expired - Fee Related
-
2017
- 2017-05-19 US US15/599,817 patent/US20170251950A1/en not_active Abandoned
Patent Citations (5)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US6076006A (en) | 1997-04-17 | 2000-06-13 | U.S. Philips Corporation | Diffusion-weighted MRI method |
| US8315450B2 (en) | 2004-11-24 | 2012-11-20 | Wisconsin Alumni Research Foundation | Method and system for display of medical image data |
| US20090024181A1 (en) | 2007-05-18 | 2009-01-22 | Raghu Raghavan | Treatment simulator for brain diseases and method of use thereof |
| US8903469B2 (en) | 2008-10-03 | 2014-12-02 | Tokai University Educational Systems | Determining velocity of cerebrospinal fluid by magnetic resonance imaging |
| WO2014130777A1 (en) | 2013-02-21 | 2014-08-28 | University Of Rochester | Methods for evaluating brain-wide paravascular pathway for waste clearance function and methods for treating neurodegenerative disorders based thereon |
Non-Patent Citations (3)
| Title |
|---|
| Kozak, LR et al., "Using diffusion MRI for measuring the temperature of cerebrospinal fluid within the lateral ventricles", Acta Paediatrica 2010, vol. 99, pp. 237-243. |
| The International Search Report and Written Opinion with a mailing date of Jul. 8, 2015 for International Application No. PCT/IB2015/051285. |
| Tofts, PS et al., "Estimating Kinetic Parameters From Dynamic Contrast-Enhanced T1-Weighted MRI of Diffusable Tracer: Standardized Quantities and Symbols" Journal of MRI, vol. 10, p. 1. |
Cited By (4)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US20200297211A1 (en) * | 2019-03-21 | 2020-09-24 | Synaptec Network, Inc | Diffusion tensor mr to monitor glymphatic system |
| US12144583B2 (en) * | 2019-03-21 | 2024-11-19 | Synaptec Network, Inc. | Diffusion tensor MR to monitor glymphatic system |
| US11340323B2 (en) | 2020-01-06 | 2022-05-24 | General Electric Company | Low acoustic noise magnetic resonance image acquisition |
| US12329508B2 (en) | 2022-02-10 | 2025-06-17 | Canon Medical Systems Corporation | MRI apparatus |
Also Published As
| Publication number | Publication date |
|---|---|
| WO2016132176A1 (en) | 2016-08-25 |
| US20160367166A1 (en) | 2016-12-22 |
| US20170251950A1 (en) | 2017-09-07 |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| US9681821B2 (en) | Methods for measuring global glymphatic flow using magnetic resonance imaging | |
| Maknojia et al. | Resting state fMRI: Going through the motions | |
| Eippert et al. | Denoising spinal cord fMRI data: Approaches to acquisition and analysis | |
| CN101354433B (en) | Method for recording and processing sequence of temporally consecutive image datasets as well as device | |
| Huang et al. | The impact of gradient strength on in vivo diffusion MRI estimates of axon diameter | |
| US7174200B2 (en) | Optimized high-speed magnetic resonance imaging method and system using hyperpolarized noble gases | |
| US8332010B2 (en) | Method for non-contrast enhanced magnetic resonance angiography | |
| US20190365230A1 (en) | Functional Magnetic Resonance Imaging (fMRI) Methodology Using Transverse Relaxation Preparation and Non-Echo-Planar Imaging (EPI) Pulse Sequences | |
| JP4613065B2 (en) | Magnetic resonance imaging of blood volume in microvessels | |
| JP6679467B2 (en) | Magnetic resonance imaging apparatus and method for calculating oxygen uptake rate | |
| US8099149B2 (en) | MRI method for quantification of cerebral perfusion | |
| US20100030062A1 (en) | System and method to analyze blood parameters using magnetic resonance imaging | |
| JP2003325472A (en) | MRI apparatus, flow quantification apparatus, and flow quantification method in ASL imaging | |
| JP6549612B2 (en) | Improved multiphase dynamic contrast magnetic resonance imaging method | |
| US8872515B2 (en) | System and method for diffusion-modulated relaxation magnetic resonance imaging | |
| JP6533571B2 (en) | Magnetic resonance imaging apparatus and imaging method | |
| US20120179028A1 (en) | System and method for determining blood-brain barrier permeability to water | |
| US20220179023A1 (en) | System and Method for Free-Breathing Quantitative Multiparametric MRI | |
| Seginer et al. | Phase-based fast 3D high-resolution quantitative T2 MRI in 7 T human brain imaging | |
| US10362961B2 (en) | System and method for neutral contrast magnetic resonance imaging of calcifications | |
| JP2012505708A (en) | Time-of-arrival mapping in magnetic resonance imaging | |
| Stabinska et al. | Investigation of diffusion time dependence of apparent diffusion coefficient and intravoxel incoherent motion parameters in the human kidney | |
| US10859659B2 (en) | Motion monitoring method during MR imaging, computer process, and storage device | |
| US11241163B2 (en) | Measuring blood vessel characteristics with MRI | |
| Wurnig et al. | In vivo magnetization transfer imaging of the lung using a zero echo time sequence at 4.7 Tesla in mice: initial experience |
Legal Events
| Date | Code | Title | Description |
|---|---|---|---|
| AS | Assignment |
Owner name: SYNAPTIVE MEDICAL (BARBADOS) INC., BARBADOS Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:STAINSBY, JEFF A.;PIRON, CAMERON A.;HARRIS, CHAD T.;REEL/FRAME:041578/0017 Effective date: 20150330 |
|
| STCF | Information on status: patent grant |
Free format text: PATENTED CASE |
|
| AS | Assignment |
Owner name: SYNAPTIVE MEDICAL INC., CANADA Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:SYNAPTIVE MEDICAL (BARBADOS) INC.;REEL/FRAME:054251/0139 Effective date: 20200902 |
|
| MAFP | Maintenance fee payment |
Free format text: PAYMENT OF MAINTENANCE FEE, 4TH YR, SMALL ENTITY (ORIGINAL EVENT CODE: M2551); ENTITY STATUS OF PATENT OWNER: SMALL ENTITY Year of fee payment: 4 |
|
| AS | Assignment |
Owner name: ESPRESSO CAPITAL LTD., CANADA Free format text: SECURITY INTEREST;ASSIGNOR:SYNAPTIVE MEDICAL INC.;REEL/FRAME:054922/0791 Effective date: 20201223 |
|
| FEPP | Fee payment procedure |
Free format text: MAINTENANCE FEE REMINDER MAILED (ORIGINAL EVENT CODE: REM.); ENTITY STATUS OF PATENT OWNER: SMALL ENTITY |
|
| LAPS | Lapse for failure to pay maintenance fees |
Free format text: PATENT EXPIRED FOR FAILURE TO PAY MAINTENANCE FEES (ORIGINAL EVENT CODE: EXP.); ENTITY STATUS OF PATENT OWNER: SMALL ENTITY |
|
| STCH | Information on status: patent discontinuation |
Free format text: PATENT EXPIRED DUE TO NONPAYMENT OF MAINTENANCE FEES UNDER 37 CFR 1.362 |
|
| FP | Lapsed due to failure to pay maintenance fee |
Effective date: 20250620 |