US9644639B2 - Shroud treatment for a centrifugal compressor - Google Patents

Shroud treatment for a centrifugal compressor Download PDF

Info

Publication number
US9644639B2
US9644639B2 US14/164,494 US201414164494A US9644639B2 US 9644639 B2 US9644639 B2 US 9644639B2 US 201414164494 A US201414164494 A US 201414164494A US 9644639 B2 US9644639 B2 US 9644639B2
Authority
US
United States
Prior art keywords
groove
shroud
impeller
centrifugal compressor
shroud surface
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active, expires
Application number
US14/164,494
Other languages
English (en)
Other versions
US20150211545A1 (en
Inventor
Hien Duong
Vijay Kandasamy
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Pratt and Whitney Canada Corp
Original Assignee
Pratt and Whitney Canada Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Pratt and Whitney Canada Corp filed Critical Pratt and Whitney Canada Corp
Priority to US14/164,494 priority Critical patent/US9644639B2/en
Assigned to PRATT & WHITNEY CANADA CORP. reassignment PRATT & WHITNEY CANADA CORP. ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: DUONG, HIEN, Kandasamy, Vijay
Priority to CA2879923A priority patent/CA2879923C/fr
Priority to EP15152571.4A priority patent/EP2899407B1/fr
Publication of US20150211545A1 publication Critical patent/US20150211545A1/en
Application granted granted Critical
Publication of US9644639B2 publication Critical patent/US9644639B2/en
Active legal-status Critical Current
Adjusted expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/40Casings; Connections of working fluid
    • F04D29/42Casings; Connections of working fluid for radial or helico-centrifugal pumps
    • F04D29/44Fluid-guiding means, e.g. diffusers
    • F04D29/441Fluid-guiding means, e.g. diffusers especially adapted for elastic fluid pumps
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D17/00Radial-flow pumps, e.g. centrifugal pumps; Helico-centrifugal pumps
    • F04D17/08Centrifugal pumps
    • F04D17/10Centrifugal pumps for compressing or evacuating
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D23/00Other rotary non-positive-displacement pumps
    • F04D23/008Regenerative pumps
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/40Casings; Connections of working fluid
    • F04D29/42Casings; Connections of working fluid for radial or helico-centrifugal pumps
    • F04D29/4206Casings; Connections of working fluid for radial or helico-centrifugal pumps especially adapted for elastic fluid pumps
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/66Combating cavitation, whirls, noise, vibration or the like; Balancing
    • F04D29/68Combating cavitation, whirls, noise, vibration or the like; Balancing by influencing boundary layers
    • F04D29/681Combating cavitation, whirls, noise, vibration or the like; Balancing by influencing boundary layers especially adapted for elastic fluid pumps
    • F04D29/685Inducing localised fluid recirculation in the stator-rotor interface

Definitions

  • the present invention relates generally to centrifugal compressors, and more particularly, to a shroud treatment for a centrifugal compressor and a corresponding method.
  • Centrifugal compressors designed for aerospace applications are required to operate over a wide range of flow, speed and power conditions.
  • the acceleration rates required to go from a low to a high power engine state are significant, and as a result, compressors used in aero gas turbine engines require a significant surge margin. This is particularly true for turboshaft engines.
  • the flow through the inlet of the compressor can become choked, while stalling can occur in a downstream diffuser.
  • the impeller exit known as the “exducer”
  • the separated airflow can form a large vortex creating flow blockage areas with high pressure losses. Large flow blockages can imposes high incidence on the diffuser, and reduce engine stall margin at high compressor speeds.
  • a centrifugal compressor comprising: an impeller mounted to a shaft and rotatable about a shaft axis, the impeller having a plurality of impeller vanes; and an impeller shroud enclosing the impeller, the impeller shroud having a shroud surface having inducer and exducer portions, the shroud surface surrounding and radially spaced apart from the impeller vanes to define a fluid flow path between the shroud surface and the impeller vanes, at least one groove defined by opposed wall segments which extend into the shroud surface and are inclined at a nonzero angle relative to a normal of the shroud surface at the at least one groove in a direction opposite the fluid flow path along the shroud surface
  • a method of improving aerodynamic performance of a centrifugal compressor by reducing flow blockage of a compressible fluid at an exit of an impeller of the centrifugal compressor the compressor having an impeller shroud enclosing the impeller so as to define a fluid flow path between a curved shroud surface and the impeller, the fluid flow path extending between an inducer portion and an exducer portion of the shroud surface
  • the method comprising: conveying the compressible fluid substantially parallel to the shaft axis along the fluid flow path through the inducer portion of the centrifugal compressor; conveying the compressible fluid radially away from the shaft axis along the fluid flow path through the exducer portion; and recirculating the compressible fluid between the fluid flow path and at least one circumferential groove extending into a body of the shroud surface within the exducer portion, the at least one groove defined by opposed wall segments which extend into the shroud surface and are inclined at a nonzero angle relative to a normal of the shroud surface
  • FIG. 1 is a schematic cross-sectional view of a gas turbine engine
  • FIG. 2 is a partially-sectioned view of a centrifugal compressor of such a gas turbine engine, according to an embodiment of the present disclosure
  • FIG. 2A is a cross-sectional view of portions of an impeller shroud surface of a centrifugal compressor such as the one shown in FIG. 2 ;
  • FIG. 3 is a perspective view of an impeller shroud for the centrifugal compressor of FIG. 2 ;
  • FIG. 4 is a partial cross-sectional view of an impeller shroud of the centrifugal compressor of FIG. 2 , taken through the line IV-IV of FIG. 3 , showing a circumferential groove configuration;
  • FIG. 5 is a partial cross-sectional view of an impeller shroud in accordance with an alternate embodiment of the present disclosure, showing an alternate circumferential groove configuration
  • FIG. 6 is an end view of an impeller shroud for a centrifugal compressor in accordance with another embodiment of the present disclosure, the impeller shroud having at least partially circumferentially extending grooves and groove partitions;
  • FIG. 6A is a cross-sectional view of one of the groove partitions shown in FIG. 6 , taken along the line VI-VI;
  • FIGS. 7 a -7 b show graphs comparing the overall pressure ratio and the overall efficiency of the compressor for a baseline impeller shroud versus a treated impeller shroud;
  • FIGS. 8 a -8 b show graphs comparing the impeller exit total temperature and the impeller exit velocity for a baseline impeller shroud versus a treated impeller shroud
  • FIG. 9 is a block diagram of a method of reducing flow blockage of a compressible fluid, according to another embodiment.
  • FIG. 1 illustrates a turbofan gas turbine engine 10 of a type preferably provided for use in subsonic flight, generally comprising in serial flow communication a fan 12 through which ambient air is propelled, a multistage compressor 14 for pressurizing the air having an axial low pressure compressor (LPC) 13 and a centrifugal high pressure compressor (HPC) 15 , a combustor 16 in which the compressed air is mixed with fuel and ignited for generating an annular stream of hot combustion gases, and a turbine section 18 for extracting energy from the combustion gases.
  • LPC axial low pressure compressor
  • HPC centrifugal high pressure compressor
  • combustor 16 in which the compressed air is mixed with fuel and ignited for generating an annular stream of hot combustion gases
  • turbine section 18 for extracting energy from the combustion gases.
  • the center axis 11 of the engine 10 is also illustrated.
  • centrifugal HPC 15 Of particular interest in the present disclosure is the centrifugal HPC 15 , although it is to be understood that the impeller shroud treatment as will be described herein can be applicable to any centrifugal compressor of an aero gas turbine engine.
  • FIG. 2 shows a centrifugal compressor 15 (or simply “compressor” 15 ) of the present disclosure in partial cross-section.
  • the compressor 15 axially receives a compressible fluid, increases the pressure of the compressible fluid, and conveys it in a substantially radial direction.
  • the working or compressible fluid can be any fluid which can experience significant variations in density, and in most instances is air or another gas.
  • the compressor 15 comprises at least: an impeller 20 , which increases the pressure of the compressible fluid before conveying it downstream; and a surrounding impeller shroud 30 , which houses the impeller 20 and provides structure to the compressor 15 . Both will now be discussed in greater detail.
  • the impeller 20 of the compressor 15 can be any device which can rotate about a central axis so as to increase the pressure of the compressible fluid.
  • the impeller 20 has multiple impeller vanes 22 , and is mounted to a shaft 24 which rotates, along with the impeller 20 , about a shaft axis 26 .
  • the centrifugal compressor 15 also has an impeller shroud 30 .
  • the impeller shroud 30 (or simply “shroud 30 ”) houses or encloses the impeller 20 , thereby forming a substantially closed system whereby the compressible fluid enters the shroud 30 , is processed, and exits the shroud 30 .
  • the shroud 30 has a shroud body 34 , which makes up the corpus of the shroud 30 and provides it with its structure and its ability to resist the loads generated by the compressor 15 when in operation.
  • the shroud 30 also has a shroud surface 32 , which is the face of the shroud 30 that is exposed to the compressible fluid, and which surrounds the impeller vanes 22 .
  • the shroud surface 32 is radially spaced apart from the impeller vanes, thereby defining a gap therebetween. This gap extends along the length of the shroud surface 32 .
  • the shroud surface 32 has a curved profile, which may match the profile of the impeller vanes 22 , and which extends between an inducer portion 36 and an exducer portion 38 of the shroud surface 32 . Both of these will now be discussed in greater detail.
  • the inducer portion 36 can be any part of the shroud surface 32 which is upstream of the bend portion 33
  • the exducer portion 38 can be any part of the shroud surface 32 which is downstream of the bend portion 33 .
  • the exducer portion 38 corresponds to the part of the shroud surface 32 in proximity to the exit of the impeller 20 .
  • the exducer portion 38 is a substantially straight-line segment extending from the end of the curve of the shroud surface 32 .
  • the exducer portion 38 extends radially with respect to the shaft axis 26 , and away therefrom. It will be appreciated that the exducer portion 38 is not limited to this configuration.
  • the exducer portion 38 can be a curved-line segment extending from the end of the bend portion 33 of the shroud surface 32 .
  • the exducer portion 38 helps to convey the compressible fluid downstream from the exit of the impeller 20 , such as towards a diffuser system.
  • the movement of the compressible fluid through the compressor 15 can be described as follows.
  • the compressible fluid is conveyed through impeller 20 and is bounded by the shroud surface 32 of the shroud 30 , along a fluid flow path C.
  • the fluid flow path C begins in the shroud 30 at the inducer portion 36 and extends toward or through the exducer portion 38 .
  • the fluid flow path C is located between the exterior faces of the impeller vanes 22 and the shroud surface 32 . As such, the fluid flow path C follows the contour of the shroud surface 32 .
  • the rotation of the impeller 20 causes the compressible fluid to be drawn axially into the inducer portion 36 , and further causes the compressible fluid to change direction along the fluid flow path C such that the compressible fluid is conveyed radially through the exducer portion 38 .
  • the shroud 30 also has one or more circumferentially extending grooves 40 located within the exducer portion 38 of the shroud, examples of which are shown in FIGS. 2 to 3 .
  • the term “circumferential” refers to the direction and/or orientation of the grooves 40 in that they extend along either the entire length, or just a section, of the annular shroud surface 32 .
  • Each groove 40 extends into the shroud body 34 from the shroud surface 32 , thereby forming a depression or cavity extending into the shroud body 34 . While a single circumferentially extending groove 40 may be provided in the exducer portion 38 of the shroud 30 , when two or more such grooves 40 are provided, as depicted in FIGS.
  • the circumferentially extending grooves 40 may be substantially concentric relative to each other and thus form substantially concentric rings in the shroud surface 32 .
  • These groove rings 40 need not be annularly uninterrupted, however, and therefore may be comprised of a number of arcuate groove segments which together make up each of the grooves 40 .
  • the grooves 40 are located within the exducer portion 38 .
  • the term “within” when used to describe the location of the grooves 40 refers to the disposition of each groove 40 , in that each groove 40 is located at a point on the substantially straight or radial line segment extending from the end of the bend portion 33 of the shroud surface 32 . Many other possible locations of the grooves 40 within the exducer portion 38 fall within the scope of the present disclosure.
  • the number of grooves 40 in the shroud 30 can vary. In most embodiments, the number of grooves 40 will not exceed six. In some embodiments, an example of which is provided in FIG. 2 , the shroud 30 can have a first circumferential groove 40 a and a second circumferential groove 40 b . In addition to the number of grooves 40 , their location relative to one another can also vary. For example, the second groove 40 b can be disposed within the exducer portion 38 downstream of the first groove 40 a in the direction of the fluid flow path C. The spacing of the first and second grooves 40 a , 40 b from each other along the shroud surface can vary, and in some instances, can depend on the width of the grooves 40 themselves.
  • each groove 40 has opposed wall segments, shown as a first wall segment 42 extending from the shroud surface 32 into the shroud body 34 , and a second wall segment 44 extending from the shroud surface 32 into the shroud body 34 .
  • the first and second wall segments 42 , 44 of each groove 40 can be substantially flat or level lines defining the extent or width W of each groove 40 .
  • the relationship of the first wall segment 42 with the second wall segment 44 is one that is “opposed and spaced apart”, meaning that the first and second wall segments 42 , 44 face one another across a gap, and define the opposed sides of each groove 40 .
  • the first and second wall segments 42 , 44 of each groove 40 are linked together by a groove bottom segment 46 .
  • the groove bottom segment 46 forms the bottom or end of each groove 40 , and defines its width W.
  • the groove bottom segment 46 can take many different profiles.
  • the groove bottom segment 46 is substantially flat.
  • the groove bottom segment 46 is substantially curvilinear or rounded.
  • the compressible fluid first enters the grooves 40 , reverses direction, and is ejected from the grooves 40 .
  • Such a curved groove bottom segment 46 may facilitate this reversal of direction and ejection of the compressible fluid from groove 40 . It can thus be appreciated that many possible shapes and configurations of the groove bottom segment 46 are possible.
  • first wall, second wall, and groove bottom segments 42 , 44 , 46 define the contour and shape of each groove 40 .
  • the first and second wall segments 42 , 44 extend into the shroud body 34 to a groove depth D, and are spaced apart from one another by a groove width W.
  • Many possible groove depth D and groove width W values are possible, and may depend upon numerous factors such as the desired surge margin of the engine 10 and the efficiency of the compressor 15 . For example, the greater the groove depth D, the higher likelihood that the surge margin will increase, but at the expense of compressor efficiency. Similarly, a greater groove width W may improve communication between the flow of the compressible fluid in the groove 40 and the fluid flow path C, but may also affect the performance of the compressor 15 . It can thus be appreciated that selecting the values of groove depth D and groove width W can involve a trade-off between different engine parameters.
  • both of the first and second wall segments 42 , 44 are inclined at a nonzero groove angle ⁇ with respect to a normal N of the shroud surface 32 .
  • the term “both” encompasses the groove angle ⁇ of the first wall segment 42 and the second wall segment 44 , in that these two segments 42 , 44 are each inclined at the same nonzero groove angle ⁇ with respect to the normal N.
  • the expression “nonzero” refers to the value of the groove angle ⁇ . This value can be any number other than zero, meaning that the first and second wall segments 42 , 44 are not substantially normal to the shroud surface 32 .
  • the groove angle ⁇ can be measured in different ways, provided that it is measured relative to the normal N at that point on the shroud surface 32 . This is more easily understood by comparing the groove angles ⁇ shown in FIGS. 4 and 5 . As can be seen, the groove angles ⁇ in both figures may have the same absolute value, but their real values may differ.
  • the normal N of the shroud surface 32 at any given point along the shroud surface 32 is determined by taking the tangent to the shroud surface 32 at that point, and drawing a line perpendicularly to the tangent at that point.
  • Such an inclination of the first and second wall segments 42 , 44 may advantageously help better direct the compressible fluid downstream and away from the exducer of the impeller 20 . This may result in less disruption to the main flow of the compressible fluid, may also lower the losses caused by flow mixing, and may increase overall efficiency. Furthermore, the use of inclined first and second wall segments 42 , 44 may reduce the number of grooves 40 which might be needed for a given shroud 30 , thereby further advantageously improving machining and manufacturing costs.
  • the nonzero groove angle ⁇ at which the grooves 40 are inclined allows for a more uniform reintroduction of the compressible fluid into the fluid flow path C as the compressible fluid is ejected from the groove 40 .
  • the compressible fluid is able to re-enter the fluid flow path C along a direction that is substantially parallel to the fluid flow path C.
  • conventional grooves having wall segments inclined normal to the surface of the impeller shroud reintroduce the compressible fluid perpendicularly to the flow path, and can thus interfere with the flow of the compressible fluid.
  • the first and second wall segments 42 , 44 are inclined in a direction against, or opposite, the fluid flow path C. Such an orientation of the first and second wall segments 42 , 44 allows the compressible fluid to eject from the groove 40 in a direction aligned with the direction of the fluid flow path C.
  • each of the grooves 40 may be circumferentially discontinuous, and as such can have one or more groove partitions 48 .
  • Each groove partition 48 can be a block or other similar obstruction which is located within the groove 40 in question, thereby occupying the width W and some or all of the depth D of the groove 40 .
  • the optional groove partitions 48 can block the flow of the compressible fluid inside the same groove 40 , thus preventing the compressible fluid from flowing inside the groove 40 from one side of each groove partition 48 to its other side. In so doing, each groove partition 48 may advantageously force the compressible fluid to exit the groove 40 faster than it might otherwise have done so, thus helping to overcome some of the problems described above.
  • the groove partitions 48 may also advantageously reduce the temperature rise which can occur in the grooves 40 when the compressible fluid circulates in the grooves 40 .
  • Each groove partition 48 can take different shapes and configurations.
  • one or more groove partitions 48 can consist of a block extending across the width W of the groove 40 , and extending from the groove bottom segment 46 so as to arrive substantially flush with the shroud surface 32 .
  • the groove partition 48 advantageously does not significantly interfere with the fluid properties of the shroud surface 32 .
  • one or more groove partitions 48 can consist of a block extending across the width W of the groove 40 .
  • Such a groove partition 48 can vary in height, such that it begins within the groove 30 at a height lower than the shroud surface 32 , and rises from the inner part of the groove 40 (i.e. the part closest to the impeller 20 ) to arrive flush with the shroud surface 32 at the outer part of the groove 40 (i.e. the part furthest from the impeller 20 ).
  • each groove partition 48 can have one or two flow exit ramps 43 disposed on opposed circumferential ends of the groove partition 48 .
  • Each flow exit ramp 43 can help to guide the circulating compressible fluid out of the groove 40 in which the groove partition 48 is located, thus helping to prevent the recirculation of the compressible fluid within the groove 40 .
  • the configuration of the flow exit ramps 43 can vary.
  • the flow exit ramp 43 can be defined by an inclined flat plane which extends across the width W of the groove, and which rises at an incline from the groove bottom segment 46 until the shroud surface 32 .
  • the flow exit ramp 43 can be defined by an inclined curved plane, similar to a “ski jump”, which extends across the width W of the groove, and which rises along a curved profile from the groove bottom segment 46 until the shroud surface 32 .
  • the choice between the possible shapes and configurations of the groove partitions 48 can be determined based upon consideration of the following non-exhaustive list of factors: their effect on the performance of the compressor 15 , their difficulty to machine or install in the grooves 40 , and the intended use of the compressor 15 .
  • the groove partitions 48 divide the grooves 40 in which they are located into groove slots 49 .
  • the number and angular width of each of the groove slots 49 can vary depending on the number and location of the groove partitions 48 for a particular groove.
  • the groove partitions 48 of a given groove 40 are disposed at regular or irregular angular intervals from an adjacent groove partition 48 .
  • the angular interval can vary or remain constant for a single groove 40 , and between adjacent grooves 40 .
  • FIGS. 7 a -7 b and 8 a -8 b show graphs of certain parameters of a compressor for a shroud 30 without circumferential grooves 40 (referred to in FIGS. 7 and 8 as the “Baseline”) versus a shroud 30 with the circumferential grooves 40 (referred to in FIGS. 7 and 8 as “casing treatment” or “CT”).
  • the values and trends shown in the graphs are provided for the sole purposes of comparing and contrasting the two types of shrouds 30 .
  • the curves of these graphs may vary depending on numerous factors, and thus, so may the extent by which reliable comparisons can be drawn. It will be appreciated that the performance of the compressor 15 is not limited to, or defined by, the curves shown.
  • the graph of FIG. 7 a plots the overall pressure ratio as a function of the mass flow rate of the compressible fluid for a compressor having a “baseline” shroud, versus the compressor 15 having the “treated” shroud 30 .
  • the curves for both types of shrouds are substantially similar, with the “treated” shroud 30 showing improved surge margin over the “baseline” shroud.
  • the graph of FIG. 7 b plots the overall efficiency of the compressor 15 as a function of the mass flow rate of the compressible fluid for a compressor having a “baseline” shroud, versus the compressor 15 having the “treated” shroud 30 .
  • the overall efficiency of the compressor 15 having the “treated” shroud 30 can be greater for most mass flow rates when compared to the compressor having the “baseline” shroud, which is an indication of improved compressor 15 performance.
  • compressor 15 performance (as represented by pressure ratio and surge margin) and overall compressor efficiency for compressors 15 having the shroud 30 with circumferential grooves 40 described above.
  • the graph of FIG. 8 a plots the total temperature of the compressible fluid at the exit of an impeller as a function of the span of the impeller. Two curves are produced.
  • the “Imp_Baseline” curve represents the data for a compressor having a “baseline” shroud
  • the other “Imp_CT” curve represents the data for the compressor 15 having the “treated” shroud 30 .
  • the “treated” shroud 30 may advantageously generate lower total temperatures near the tip of the impeller, and substantially the same total temperatures as the “baseline” shroud for other locations along the impeller.
  • the graph of FIG. 8 b plots the velocity of the compressible fluid at the exit of an impeller as a function of the span of the impeller. Two curves are produced.
  • the “Imp_Baseline” curve represents the data for a compressor having a “baseline” shroud
  • the other “Imp_CT” curve represents the data for the compressor 15 having the “treated” shroud 30 .
  • the “treated” shroud 30 may advantageously have a fuller velocity profile when compared to that of the “baseline” shroud along all locations of the impeller.
  • a method of reducing flow blockage of a compressible fluid at an exit of an impeller of a centrifugal compressor is also provided.
  • the centrifugal compressor of the method 100 disclosed herein is similar to the compressor 15 described above.
  • Flow blockage is a phenomenon observed in many compressors. It is known that the flow of the compressible fluid at the exit of the impeller is highly complex. The pressure of the compressible fluid is raised rapidly after the impeller inlet, starting at the impeller bend area. The combination of the rapid rise in pressure and the relatively high curvature of the shroud surface can cause a relatively high adverse pressure gradient to develop as the compressible fluid negotiates the curved shroud surface. This results in a build-up of the boundary layer due to the deceleration of the compressible fluid, and leads to increased flow blockage. This flow blockage can reduce the pressure gains achieved by the compressor and cause flow separation.
  • the method 100 involves conveying the compressible fluid substantially parallel to the shaft axis along the fluid flow path and through the inducer portion, identified in FIG. 9 with the reference number 102 . This can occur, for example, when the impeller is rotating, thereby drawing the compressible fluid through the inducer portion.
  • the method 100 also involves conveying the compressible fluid radially away from the shaft axis along the fluid flow path and through the exducer portion, identified in FIG. 9 with the reference number 104 . This can occur, for example, when the pressurized compressible fluid leaves the exit of the impeller.
  • the method 100 also involves recirculating the compressible fluid between the fluid flow path and the one or more circumferential grooves described above, identified in FIG. 9 with the reference number 106 .
  • the recirculation of the compressible fluid 106 can involve the compressible fluid being injected or inserted into the grooves. It can also involve removing the compressible fluid from within the grooves.
  • the recirculation of the compressible fluid in 106 may help to alleviate the flow blockage associated with conventional exits of impellers by breaking up relatively large flow vortices into smaller flow vortices. These smaller flow vortices may have less permanence and be easier to dissipate. They may also be confined closer to the grooves, which may improve flow conditions to components downstream of the compressor, such as a diffuser system.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Structures Of Non-Positive Displacement Pumps (AREA)
US14/164,494 2014-01-27 2014-01-27 Shroud treatment for a centrifugal compressor Active 2035-08-21 US9644639B2 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US14/164,494 US9644639B2 (en) 2014-01-27 2014-01-27 Shroud treatment for a centrifugal compressor
CA2879923A CA2879923C (fr) 2014-01-27 2015-01-26 Traitement de carenage pour compresseur centrifuge
EP15152571.4A EP2899407B1 (fr) 2014-01-27 2015-01-26 Compresseur centrifuge avec gorge de recirculation dans son couvercle

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US14/164,494 US9644639B2 (en) 2014-01-27 2014-01-27 Shroud treatment for a centrifugal compressor

Publications (2)

Publication Number Publication Date
US20150211545A1 US20150211545A1 (en) 2015-07-30
US9644639B2 true US9644639B2 (en) 2017-05-09

Family

ID=52396564

Family Applications (1)

Application Number Title Priority Date Filing Date
US14/164,494 Active 2035-08-21 US9644639B2 (en) 2014-01-27 2014-01-27 Shroud treatment for a centrifugal compressor

Country Status (3)

Country Link
US (1) US9644639B2 (fr)
EP (1) EP2899407B1 (fr)
CA (1) CA2879923C (fr)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11066982B2 (en) 2019-02-27 2021-07-20 Mitsubishi Heavy Industries, Ltd. Centrifugal compressor and turbocharger
US11143201B2 (en) * 2019-03-15 2021-10-12 Pratt & Whitney Canada Corp. Impeller tip cavity
US11242769B2 (en) * 2018-12-17 2022-02-08 Raytheon Technologies Corporation Additively controlled surface roughness for designed performance
US11255345B2 (en) * 2017-03-03 2022-02-22 Elliott Company Method and arrangement to minimize noise and excitation of structures due to cavity acoustic modes
US11268536B1 (en) 2020-09-08 2022-03-08 Pratt & Whitney Canada Corp. Impeller exducer cavity with flow recirculation

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102015002028A1 (de) * 2015-02-17 2016-08-18 Daimler Ag Verdichter, insbesondere für einen Abgasturbolader einer Verbrennungskraftmaschine
US10935035B2 (en) 2017-10-26 2021-03-02 Hanwha Power Systems Co., Ltd Closed impeller with self-recirculation casing treatment
US11015465B2 (en) 2019-03-25 2021-05-25 Honeywell International Inc. Compressor section of gas turbine engine including shroud with serrated casing treatment
DE102020200447A1 (de) * 2020-01-15 2021-07-15 Ziehl-Abegg Se Gehäuse für einen Ventilator und Ventilator mit einem entsprechenden Gehäuse
CN115962153B (zh) * 2023-03-17 2023-06-23 潍柴动力股份有限公司 过渡段子午流道宽度变窄的压气机和发动机

Citations (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3893787A (en) * 1974-03-14 1975-07-08 United Aircraft Corp Centrifugal compressor boundary layer control
US4063848A (en) * 1976-03-24 1977-12-20 Caterpillar Tractor Co. Centrifugal compressor vaneless space casing treatment
US4466772A (en) * 1977-07-14 1984-08-21 Okapuu Uelo Circumferentially grooved shroud liner
US5333990A (en) * 1990-08-28 1994-08-02 Aktiengesellschaft Kuhnle, Kopp & Kausch Performance characteristics stabilization in a radial compressor
US5466118A (en) 1993-03-04 1995-11-14 Abb Management Ltd. Centrifugal compressor with a flow-stabilizing casing
EP0754864A1 (fr) 1995-07-18 1997-01-22 Ebara Corporation Turbomachine
EP1008758A2 (fr) 1998-12-10 2000-06-14 United Technologies Corporation Compresseurs à fluide
US6582189B2 (en) * 1999-09-20 2003-06-24 Hitachi, Ltd. Turbo machines
US7025557B2 (en) * 2004-01-14 2006-04-11 Concepts Eti, Inc. Secondary flow control system
US20080044273A1 (en) * 2006-08-15 2008-02-21 Syed Arif Khalid Turbomachine with reduced leakage penalties in pressure change and efficiency
US7338251B2 (en) * 2004-01-08 2008-03-04 Samsung Electronics Co., Ltd. Turbo compressor
US20090041576A1 (en) * 2007-08-10 2009-02-12 Volker Guemmer Fluid flow machine featuring an annulus duct wall recess
US20100014956A1 (en) 2008-07-07 2010-01-21 Rolls-Royce Deutschland Ltd & Co Kg Fluid flow machine featuring a groove on a running gap of a blade end
US8337146B2 (en) * 2009-06-03 2012-12-25 Pratt & Whitney Canada Corp. Rotor casing treatment with recessed baffles
US8550775B2 (en) * 2002-08-13 2013-10-08 Honeywell International Inc. Compressor
US20140020975A1 (en) * 2011-03-03 2014-01-23 Sven König Resonator silencer for a radial flow machine, in particular for a radial compressor

Patent Citations (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3893787A (en) * 1974-03-14 1975-07-08 United Aircraft Corp Centrifugal compressor boundary layer control
US4063848A (en) * 1976-03-24 1977-12-20 Caterpillar Tractor Co. Centrifugal compressor vaneless space casing treatment
US4466772A (en) * 1977-07-14 1984-08-21 Okapuu Uelo Circumferentially grooved shroud liner
US5333990A (en) * 1990-08-28 1994-08-02 Aktiengesellschaft Kuhnle, Kopp & Kausch Performance characteristics stabilization in a radial compressor
US5466118A (en) 1993-03-04 1995-11-14 Abb Management Ltd. Centrifugal compressor with a flow-stabilizing casing
EP0754864A1 (fr) 1995-07-18 1997-01-22 Ebara Corporation Turbomachine
US5707206A (en) * 1995-07-18 1998-01-13 Ebara Corporation Turbomachine
US6231301B1 (en) * 1998-12-10 2001-05-15 United Technologies Corporation Casing treatment for a fluid compressor
EP1008758A2 (fr) 1998-12-10 2000-06-14 United Technologies Corporation Compresseurs à fluide
US6582189B2 (en) * 1999-09-20 2003-06-24 Hitachi, Ltd. Turbo machines
US8550775B2 (en) * 2002-08-13 2013-10-08 Honeywell International Inc. Compressor
US7338251B2 (en) * 2004-01-08 2008-03-04 Samsung Electronics Co., Ltd. Turbo compressor
US7025557B2 (en) * 2004-01-14 2006-04-11 Concepts Eti, Inc. Secondary flow control system
US20080044273A1 (en) * 2006-08-15 2008-02-21 Syed Arif Khalid Turbomachine with reduced leakage penalties in pressure change and efficiency
US20090041576A1 (en) * 2007-08-10 2009-02-12 Volker Guemmer Fluid flow machine featuring an annulus duct wall recess
US20100014956A1 (en) 2008-07-07 2010-01-21 Rolls-Royce Deutschland Ltd & Co Kg Fluid flow machine featuring a groove on a running gap of a blade end
US8337146B2 (en) * 2009-06-03 2012-12-25 Pratt & Whitney Canada Corp. Rotor casing treatment with recessed baffles
US20140020975A1 (en) * 2011-03-03 2014-01-23 Sven König Resonator silencer for a radial flow machine, in particular for a radial compressor

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11255345B2 (en) * 2017-03-03 2022-02-22 Elliott Company Method and arrangement to minimize noise and excitation of structures due to cavity acoustic modes
US11242769B2 (en) * 2018-12-17 2022-02-08 Raytheon Technologies Corporation Additively controlled surface roughness for designed performance
US11904405B2 (en) 2018-12-17 2024-02-20 Rtx Corporation Additively controlled surface roughness for designed performance
US11066982B2 (en) 2019-02-27 2021-07-20 Mitsubishi Heavy Industries, Ltd. Centrifugal compressor and turbocharger
DE102019216414B4 (de) 2019-02-27 2022-11-24 Mitsubishi Heavy Industries, Ltd. Zentrifugalkompressor und turbolader
US11143201B2 (en) * 2019-03-15 2021-10-12 Pratt & Whitney Canada Corp. Impeller tip cavity
US11268536B1 (en) 2020-09-08 2022-03-08 Pratt & Whitney Canada Corp. Impeller exducer cavity with flow recirculation

Also Published As

Publication number Publication date
EP2899407B1 (fr) 2020-05-06
EP2899407A1 (fr) 2015-07-29
CA2879923A1 (fr) 2015-07-27
CA2879923C (fr) 2022-08-16
US20150211545A1 (en) 2015-07-30

Similar Documents

Publication Publication Date Title
CA2879923C (fr) Traitement de carenage pour compresseur centrifuge
EP2905477B1 (fr) Diffuseur de compresseur centrifuge et son procédé de commande
US10041500B2 (en) Venturi effect endwall treatment
US9033668B2 (en) Impeller
EP2778427B1 (fr) Système de recirculation automatique de purge de compresseur
EP3060810B1 (fr) Diffuseur de turbomachine
US10539154B2 (en) Compressor end-wall treatment having a bent profile
EP2484913B1 (fr) Turbomachine comportant un boîtier annulaire et rotor à pales
JP2016118165A (ja) 軸流機械およびジェットエンジン
EP3708804A1 (fr) Cavité de pointe d'hélice
JP4265656B2 (ja) 遠心圧縮機
EP3098383B1 (fr) Aubage compresseur présentant un profil de bord d'attaque composé
US10823197B2 (en) Vane diffuser and method for controlling a compressor having same
KR20200044012A (ko) 래디얼 압축기용 디퓨저
EP3964716A1 (fr) Cavité d'éjecteur de roue avec recirculation d'écoulement
CA2846376C (fr) Rotors de turbomachine a bord d'extremite arrondi
JP7041033B2 (ja) 軸流圧縮機

Legal Events

Date Code Title Description
AS Assignment

Owner name: PRATT & WHITNEY CANADA CORP., CANADA

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:DUONG, HIEN;KANDASAMY, VIJAY;REEL/FRAME:032073/0736

Effective date: 20140120

STCF Information on status: patent grant

Free format text: PATENTED CASE

MAFP Maintenance fee payment

Free format text: PAYMENT OF MAINTENANCE FEE, 4TH YEAR, LARGE ENTITY (ORIGINAL EVENT CODE: M1551); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY

Year of fee payment: 4