US9637677B2 - Aqueous cleaning composition and method - Google Patents

Aqueous cleaning composition and method Download PDF

Info

Publication number
US9637677B2
US9637677B2 US14/477,289 US201414477289A US9637677B2 US 9637677 B2 US9637677 B2 US 9637677B2 US 201414477289 A US201414477289 A US 201414477289A US 9637677 B2 US9637677 B2 US 9637677B2
Authority
US
United States
Prior art keywords
cleaning composition
sodium
aqueous cleaning
cleaning fluid
aqueous
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
US14/477,289
Other versions
US20160068741A1 (en
Inventor
Charles Bullick Talley
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Wellrenew LLC
Original Assignee
Ideal Energy Solutions IP Control LLC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ideal Energy Solutions IP Control LLC filed Critical Ideal Energy Solutions IP Control LLC
Assigned to Ideal Energy Solutions IP Control, LLC reassignment Ideal Energy Solutions IP Control, LLC ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: TALLEY, CHARLES BULLICK
Priority to US14/477,289 priority Critical patent/US9637677B2/en
Priority to PCT/US2015/046923 priority patent/WO2016036555A1/en
Publication of US20160068741A1 publication Critical patent/US20160068741A1/en
Priority to US15/371,945 priority patent/US10336934B2/en
Publication of US9637677B2 publication Critical patent/US9637677B2/en
Application granted granted Critical
Assigned to WELLRENEW, LLC reassignment WELLRENEW, LLC CHANGE OF NAME (SEE DOCUMENT FOR DETAILS). Assignors: Ideal Energy Solutions IP Control, LLC
Priority to US16/407,830 priority patent/US10941331B2/en
Assigned to VERABANK, N.A. reassignment VERABANK, N.A. SECURITY INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: Ideal Energy Solutions IP Control, LLC
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K8/00Compositions for drilling of boreholes or wells; Compositions for treating boreholes or wells, e.g. for completion or for remedial operations
    • C09K8/52Compositions for preventing, limiting or eliminating depositions, e.g. for cleaning
    • C09K8/524Compositions for preventing, limiting or eliminating depositions, e.g. for cleaning organic depositions, e.g. paraffins or asphaltenes
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K8/00Compositions for drilling of boreholes or wells; Compositions for treating boreholes or wells, e.g. for completion or for remedial operations
    • C09K8/52Compositions for preventing, limiting or eliminating depositions, e.g. for cleaning
    • C09K8/528Compositions for preventing, limiting or eliminating depositions, e.g. for cleaning inorganic depositions, e.g. sulfates or carbonates
    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11DDETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
    • C11D1/00Detergent compositions based essentially on surface-active compounds; Use of these compounds as a detergent
    • C11D1/66Non-ionic compounds
    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11DDETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
    • C11D1/00Detergent compositions based essentially on surface-active compounds; Use of these compounds as a detergent
    • C11D1/66Non-ionic compounds
    • C11D1/825Mixtures of compounds all of which are non-ionic
    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11DDETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
    • C11D1/00Detergent compositions based essentially on surface-active compounds; Use of these compounds as a detergent
    • C11D1/66Non-ionic compounds
    • C11D1/83Mixtures of non-ionic with anionic compounds
    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11DDETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
    • C11D11/00Special methods for preparing compositions containing mixtures of detergents ; Methods for using cleaning compositions
    • C11D11/0005Special cleaning or washing methods
    • C11D11/0011Special cleaning or washing methods characterised by the objects to be cleaned
    • C11D11/0023"Hard" surfaces
    • C11D11/0041Industrial or commercial equipment, e.g. reactors, tubes or engines
    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11DDETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
    • C11D3/00Other compounding ingredients of detergent compositions covered in group C11D1/00
    • C11D3/02Inorganic compounds ; Elemental compounds
    • C11D3/04Water-soluble compounds
    • C11D3/06Phosphates, including polyphosphates
    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11DDETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
    • C11D3/00Other compounding ingredients of detergent compositions covered in group C11D1/00
    • C11D3/02Inorganic compounds ; Elemental compounds
    • C11D3/04Water-soluble compounds
    • C11D3/08Silicates
    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11DDETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
    • C11D3/00Other compounding ingredients of detergent compositions covered in group C11D1/00
    • C11D3/02Inorganic compounds ; Elemental compounds
    • C11D3/04Water-soluble compounds
    • C11D3/10Carbonates ; Bicarbonates
    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11DDETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
    • C11D3/00Other compounding ingredients of detergent compositions covered in group C11D1/00
    • C11D3/16Organic compounds
    • C11D3/26Organic compounds containing nitrogen
    • C11D3/33Amino carboxylic acids
    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11DDETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
    • C11D3/00Other compounding ingredients of detergent compositions covered in group C11D1/00
    • C11D3/39Organic or inorganic per-compounds
    • C11D3/3942Inorganic per-compounds
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B08CLEANING
    • B08BCLEANING IN GENERAL; PREVENTION OF FOULING IN GENERAL
    • B08B3/00Cleaning by methods involving the use or presence of liquid or steam
    • B08B3/04Cleaning involving contact with liquid
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B08CLEANING
    • B08BCLEANING IN GENERAL; PREVENTION OF FOULING IN GENERAL
    • B08B3/00Cleaning by methods involving the use or presence of liquid or steam
    • B08B3/04Cleaning involving contact with liquid
    • B08B3/041Cleaning travelling work
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B08CLEANING
    • B08BCLEANING IN GENERAL; PREVENTION OF FOULING IN GENERAL
    • B08B9/00Cleaning hollow articles by methods or apparatus specially adapted thereto 
    • B08B9/02Cleaning pipes or tubes or systems of pipes or tubes
    • B08B9/027Cleaning the internal surfaces; Removal of blockages
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B08CLEANING
    • B08BCLEANING IN GENERAL; PREVENTION OF FOULING IN GENERAL
    • B08B9/00Cleaning hollow articles by methods or apparatus specially adapted thereto 
    • B08B9/02Cleaning pipes or tubes or systems of pipes or tubes
    • B08B9/027Cleaning the internal surfaces; Removal of blockages
    • B08B9/032Cleaning the internal surfaces; Removal of blockages by the mechanical action of a moving fluid, e.g. by flushing
    • B08B9/0321Cleaning the internal surfaces; Removal of blockages by the mechanical action of a moving fluid, e.g. by flushing using pressurised, pulsating or purging fluid
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K8/00Compositions for drilling of boreholes or wells; Compositions for treating boreholes or wells, e.g. for completion or for remedial operations
    • C09K8/58Compositions for enhanced recovery methods for obtaining hydrocarbons, i.e. for improving the mobility of the oil, e.g. displacing fluids
    • C09K8/584Compositions for enhanced recovery methods for obtaining hydrocarbons, i.e. for improving the mobility of the oil, e.g. displacing fluids characterised by the use of specific surfactants
    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11DDETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
    • C11D1/00Detergent compositions based essentially on surface-active compounds; Use of these compounds as a detergent
    • C11D1/02Anionic compounds
    • C11D1/12Sulfonic acids or sulfuric acid esters; Salts thereof
    • C11D1/14Sulfonic acids or sulfuric acid esters; Salts thereof derived from aliphatic hydrocarbons or mono-alcohols
    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11DDETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
    • C11D1/00Detergent compositions based essentially on surface-active compounds; Use of these compounds as a detergent
    • C11D1/02Anionic compounds
    • C11D1/12Sulfonic acids or sulfuric acid esters; Salts thereof
    • C11D1/14Sulfonic acids or sulfuric acid esters; Salts thereof derived from aliphatic hydrocarbons or mono-alcohols
    • C11D1/143Sulfonic acid esters
    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11DDETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
    • C11D1/00Detergent compositions based essentially on surface-active compounds; Use of these compounds as a detergent
    • C11D1/02Anionic compounds
    • C11D1/12Sulfonic acids or sulfuric acid esters; Salts thereof
    • C11D1/16Sulfonic acids or sulfuric acid esters; Salts thereof derived from divalent or polyvalent alcohols
    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11DDETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
    • C11D1/00Detergent compositions based essentially on surface-active compounds; Use of these compounds as a detergent
    • C11D1/02Anionic compounds
    • C11D1/12Sulfonic acids or sulfuric acid esters; Salts thereof
    • C11D1/22Sulfonic acids or sulfuric acid esters; Salts thereof derived from aromatic compounds
    • C11D1/24Sulfonic acids or sulfuric acid esters; Salts thereof derived from aromatic compounds containing ester or ether groups directly attached to the nucleus
    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11DDETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
    • C11D1/00Detergent compositions based essentially on surface-active compounds; Use of these compounds as a detergent
    • C11D1/66Non-ionic compounds
    • C11D1/667Neutral esters, e.g. sorbitan esters
    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11DDETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
    • C11D1/00Detergent compositions based essentially on surface-active compounds; Use of these compounds as a detergent
    • C11D1/66Non-ionic compounds
    • C11D1/72Ethers of polyoxyalkylene glycols
    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11DDETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
    • C11D1/00Detergent compositions based essentially on surface-active compounds; Use of these compounds as a detergent
    • C11D1/66Non-ionic compounds
    • C11D1/74Carboxylates or sulfonates esters of polyoxyalkylene glycols
    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11DDETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
    • C11D1/00Detergent compositions based essentially on surface-active compounds; Use of these compounds as a detergent
    • C11D1/88Ampholytes; Electroneutral compounds
    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11DDETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
    • C11D1/00Detergent compositions based essentially on surface-active compounds; Use of these compounds as a detergent
    • C11D1/88Ampholytes; Electroneutral compounds
    • C11D1/94Mixtures with anionic, cationic or non-ionic compounds
    • C11D2111/20
    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11DDETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
    • C11D3/00Other compounding ingredients of detergent compositions covered in group C11D1/00
    • C11D3/02Inorganic compounds ; Elemental compounds
    • C11D3/04Water-soluble compounds
    • C11D3/046Salts
    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11DDETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
    • C11D3/00Other compounding ingredients of detergent compositions covered in group C11D1/00
    • C11D3/16Organic compounds
    • C11D3/20Organic compounds containing oxygen
    • C11D3/2075Carboxylic acids-salts thereof
    • C11D3/2082Polycarboxylic acids-salts thereof
    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11DDETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
    • C11D3/00Other compounding ingredients of detergent compositions covered in group C11D1/00
    • C11D3/16Organic compounds
    • C11D3/26Organic compounds containing nitrogen
    • C11D3/30Amines; Substituted amines ; Quaternized amines
    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11DDETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
    • C11D3/00Other compounding ingredients of detergent compositions covered in group C11D1/00
    • C11D3/39Organic or inorganic per-compounds
    • C11D3/3945Organic per-compounds

Definitions

  • Paraffin wax and asphaltene deposition costs the oil industry billions of dollars worldwide. Paraffin and asphaltene precipitation and deposition in crude oil transport flow-lines and pipelines is an increasing challenge for the development of deep-water subsea hydrocarbon reservoirs. When sufficiently deposited over time, paraffin wax and asphaltenes can partially or totally block oil production to uneconomical levels requiring shutdowns or various remediation treatments. Other problems caused by paraffin or asphaltene deposition include entrapment of produced water, which increases surface roughness on pipe walls leading to increased pumping pressure and reduced throughput, accumulations that fill process vessels and storage tanks, and interference with the operation of valves and other instrumentation. This deposition also occurs in producing wells where the paraffin and asphaltene deposits accumulate in and around the wellbore causing major restrictions. All of these problems may result in production shutdowns and hazardous conditions requiring extensive workovers, and resulting in production losses and possibly irreparable damage to equipment.
  • paraffin wax is formed of molecules in the range of C 20 and higher. However, due to pressure differences and very low temperatures inside and around subsea flow lines, these paraffin wax deposits begin to form with much smaller carbon chains. Since average subsea temperatures are below 40° F., paraffin compounds such as tridecane (C 13 , which freezes at 27° F.), tetradecane (C 14 , which freezes at 41.9° F.), pentadecane (C 15 , which freezes at 49.8° F.), and hexadecane (C 16 , which freezes at 64° F.) also begin to deposit on these flow lines as wax deposits. These paraffinic compounds all display only limited solubility at modest temperatures in many types of organic solvents and are virtually insoluble in aqueous solutions, although they can be re-melted between 120-150° F.
  • Asphaltene deposition is less driven by temperature and pressure. Instead, the deposition of asphaltenes is affected more by chemical changes in the crude oil. Asphaltene molecules are dispersed or floating in the crude oil. Lowering the pH of the system or introducing carbon dioxide or nonaromatic solvents can strip away the outer parts of the asphaltene molecules, which help to maintain dispersion of the asphaltene molecules. Without the outer parts, the asphaltene molecules will flocculate and precipitate.
  • Scale formation in natural gas pipelines may be attributed to a number of factors. Evaluation of scale samples indicate that the scale formations may include trace amounts of silica and clay from the formations from which the gas was derived, along with black powders and mineral scales. These scale formations may be very hard and may resemble sand stone.
  • the use of monoethanol glycol (MEG) or methanol to retard the formation of natural gas hydrates has created the problem of decreased solubility of trace minerals.
  • basic agents e.g., NaOH or NaHCO 3
  • Possible sources of the black powder include mill scale from the pipe manufacturing process, flash rust from hydraulic test water corrosion, and internal pipe corrosion. Chemical analyses of the black powder show that it consists mainly of a mixture of iron oxides and iron sulfides.
  • An aqueous cleaning fluid has been developed for removing deposits of paraffin wax, asphaltene molecules, and scale from hydrocarbon flow lines, vessels, or other equipment.
  • a granular cleaning composition may be activated with an aqueous liquid, such as sea water or produced water, to form the aqueous cleaning fluid.
  • the effectiveness of the aqueous cleaning fluid is temperature independent. These properties render the cleaning composition ideal for offshore and subsea pipeline operations.
  • the cleaning composition lowers surface tension allowing it to penetrate the area between a deposited material and a pipe wall.
  • the cleaning composition also neutralizes the zeta charge associated with paraffin and asphaltene molecules, which reduces the stickiness of the deposit and reduces the ability of these molecules to adhere to a pipe wall, other molecules, or geological formations. In this way, the cleaning composition allows the paraffin and asphaltene molecules to be removed from the deposit.
  • the cleaning composition may include the following components: a silicate, a peroxygen, a phosphate, a carbonate or a bicarbonate, a chelating agent, and a surfactant combination.
  • the cleaning composition may be mixed with an aqueous liquid to form an aqueous cleaning fluid.
  • Suitable aqueous liquids include, but are not limited to, water, aqueous brines, sea water, lake water, river water, subsurface water, produced water, or any mixture thereof.
  • the concentration of the cleaning composition in the aqueous cleaning fluid may be about 1% to about 10% by weight. All percentages disclosed herein are weight percentages unless otherwise specified.
  • the silicate of the cleaning composition may include sodium metasilicate, sodium sesqui-silicate, a liquid sodium silicate, a liquid potassium silicate, or an orthosilicate. If sodium metasilicate is used, its ratio of SiO 2 /Na 2 O may be about 1:1.
  • the silicate may provide a soil suspending property and a corrosion inhibition property to the cleaning composition. Additionally, the silicate may help to attack C 13 -C 18 paraffins that have free fatty acid radicals, which are normally aromatic in nature, through saponification.
  • the concentration of the silicate in the cleaning composition may be about 21% to about 33% by weight. Preferably, the concentration of the silicate in the cleaning composition may be about 30% by weight.
  • the peroxygen of the cleaning composition may include a percarbonate (e.g., sodium percarbonate), a perborate (e.g., sodium perborate), a hydrogen peroxide, a persulfate, a thiourea dioxide, a diethylhydroxylamine, a peracetic acid, or urea peroxide (carbamide peroxide).
  • a percarbonate e.g., sodium percarbonate
  • a perborate e.g., sodium perborate
  • hydrogen peroxide e.g., sodium perborate
  • a persulfate e.g., sodium perborate
  • a hydrogen peroxide e.g., sodium perborate
  • a persulfate e.g., sodium perborate
  • a hydrogen peroxide e.g., sodium perborate
  • a hydrogen peroxide e.g., sodium perborate
  • a persulfate e.g.
  • the slow-release of oxygen is also critical when working under pressurized conditions, as the combination of oil and oxygen under pressure can be very dangerous.
  • the concentration of the peroxygen in the cleaning composition may be about 20% to about 35% by weight. Preferably, the concentration of the peroxygen in the cleaning composition may be about 30% by weight.
  • the phosphate of the cleaning composition may include sodium tripolyphosphate, tetrapotassium pyrophosphate, sodium hexametaphosphate, sodium acid pyrophosphate, tetrasodium pyrophosphate, trisodium phosphate, disodium phosphate, or monosodium phosphate. These materials may provide protection against humidity degradation of the cleaning composition. These materials are also good water conditions and help in lowering surface tension. The phosphate may help to suspend particulates and hold them in suspension.
  • the concentration of the phosphate in the cleaning composition may be about 3% to about 15% by weight. Preferably, the concentration of the phosphate in the cleaning composition may be about 7.5% by weight.
  • the carbonate or the bicarbonate of the cleaning composition may include sodium carbonate, sodium bicarbonate, sodium sesqui-carbonate, potassium bicarbonate, or potassium carbonate. These materials provide further alkalinity for the saponification of the shorter chain paraffins that contain a fatty acid radical.
  • the concentration of the carbonate or bicarbonate in the cleaning composition may be about 15% to about 40% by weight. Preferably, the concentration of the carbonate or bicarbonate in the cleaning composition may be about 25% by weight.
  • the chelating agent of the cleaning composition may include ethylene diamine tetra acidic acid tetra sodium salt (EDTA) or organophosphates such as HEDP, PBTC, and ATMP.
  • EDTA ethylene diamine tetra acidic acid tetra sodium salt
  • the concentration of the chelating agent in the cleaning composition may be about 1% to about 10% by weight depending on the amount of iron and other trace metals in the system.
  • the concentration of the chelating agent in the cleaning composition may be about 5% to about 8% by weight.
  • the surfactant combination in the cleaning composition may include a surfactant polymer mixture and a wetting agent.
  • the surfactant combination may have a surfactant polymer mixture to wetting agent ratio of about 1:1 to about 1:1.9.
  • the surfactant polymer mixture to the wetting agent ratio may be about 1:1.5.
  • Each of the surfactants in the surfactant combination may be compatible with oxidizing materials, thereby preventing the oxygen from attacking the surfactant instead of the materials intended to be removed from a formation. Reaction of oxygen with the hydrated surfactants in the blended cleaning composition is also avoided in order to prevent product degradation and possible fires.
  • the surfactant polymer mixture may contain an equal amount of a block polymer and a reverse polymer.
  • the surfactant polymer mixture contains an ethylene oxide/propylene oxide block copolymer (available under the trade name Pluronic L-61) and an ethylene oxide/propylene oxide reverse polymer (available under the trade name Pluronic 25R2).
  • the surfactant polymer mixture may contain ethoxylated triglyceride, polyglyceryl-2-sequilisosterate, polyethylene glycol stearate, a monoglyceride, or a diglyceride.
  • polymer surfactants are nonionic and have hydrophilic-lipophilic balance (HLB) values between 3 and 6 indicating that they are water-in-oil emulsifiers. They function as both rinse aids (i.e., allowing water to form sheets rather than spots by reducing the surface tension of water) and anti-redeposition agents (i.e., preventing soils from depositing on surfaces).
  • HLB hydrophilic-lipophilic balance
  • the concentration of the surfactant polymer mixture in the cleaning composition may be about 0.6% to about 2% by weight.
  • the concentration of the surfactant polymer mixture in the cleaning composition may be about 1% by weight.
  • the wetting agent of the surfactant combination may include a sulfonated material, such as a sodium alkane sulfonate (available under the trade name Bio Terg PAS 8S), a branched C 12 diphenyl oxide disulfide, a linear C 10 diphenyl oxide disulfonate, a sodium alpha olefin sulfonate, or a sodium (C 14-16 ) olefin sulfonate.
  • a sulfonated material such as a sodium alkane sulfonate (available under the trade name Bio Terg PAS 8S), a branched C 12 diphenyl oxide disulfide, a linear C 10 diphenyl oxide disulfonate, a sodium alpha olefin sulfonate, or a sodium (C 14-16 ) olefin sulfonate.
  • sulfonated materials are anionic and function as surface tension reducing agents.
  • the wetting agent may include an ethoxylated alcohol containing a linear (C 9 /C 10 /C 11 ) blend, a linear C 11 , a linear (C 12 /C 13 ) blend, a linear (C 12 /C 13 /C 14 /C 15 ) blend, or a linear (C 14 /C 15 ) blend.
  • ethoxylated alcohols are nonionic and have HLB values between 7 and 9 providing excellent wetting properties as well as suspending and emulsifying properties.
  • the concentration of the wetting agent in the cleaning composition may be about 0.5% to about 2% by weight.
  • the concentration of the wetting agent in the cleaning composition may be about 1.5% by weight.
  • the surfactant combination of the cleaning composition may further include an ethoxy phosphate, such as a linear alcohol ethoxy phosphate (available under the trade name Rhodafac PL-6), a branched alcohol ethoxy phosphate, or nonylphenol ethoxy phosphate (available under the trade name Rhodafac RS-610).
  • Rhodafac PL-6 linear alcohol ethoxy phosphate
  • a branched alcohol ethoxy phosphate branched alcohol ethoxy phosphate
  • nonylphenol ethoxy phosphate available under the trade name Rhodafac RS-610.
  • Rhodafac RS-610 nonylphenol ethoxy phosphate
  • solvents e.g., toluene, xylene, mixtures thereof or mixtures with diesel or kerosene
  • any non-solvent cleaning product could sufficiently remove these deposits from a hydrocarbon system, especially at subsea temperatures.
  • the specific surfactant combination allows the aqueous cleaning fluid disclosed herein to remove paraffin, asphaltene, and scale deposits from a hydrocarbon system without the use of solvents and at temperatures as low as 33° F., such as subsea temperatures, or as high as 250° F.
  • the aqueous cleaning fluid is able to travel extremely long distances through systems with heavy deposits.
  • the surfactant combination may include an amphoteric surfactant and an ethoxylated fatty amine.
  • the amphoteric surfactant may include equal amounts of a disodium cocoampho dipropionate (available under the trade name Miranol FBS) and a sulfonated caprylic derivative sodium salt (available under the trade name Miranol JS Concentrate).
  • the concentration of the amphoteric surfactant in the cleaning composition may be about 0.6% to about 2% by weight.
  • the concentration of the amphoteric surfactant in the cleaning composition may be about 1% by weight.
  • the ethoxylated fatty amine may include polyoxyethylene tallow amine (available under the trade name Ethox TAM-5).
  • This material may function as an emulsifier and a releasing agent in the cleaning composition.
  • the surfactant combination provides the aqueous cleaning fluid with the ability to remove microorganisms that create partial or complete plugs in a hydrocarbon flow line.
  • the concentration of the ethoxylated fatty amine in the cleaning composition may be about 0.5% to about 2% by weight.
  • the concentration of the ethoxylated fatty amine in the cleaning composition may be about 1.5% by weight.
  • the surface tension of the cleaning composition may be 28 dynes or less. More preferably, the surface tension of the cleaning composition may be 24 dynes or less. Most preferably, the surface tension of the cleaning composition may be 22 dynes or less.
  • the cleaning composition may have a Na 2 O mEq value of at least about 20 mEq values at a pH of about 9, more preferably about 25 mEq, and most preferably about 35 mEq at a pH of 12.
  • the granular cleaning composition may be added to an aqueous liquid. Slow addition of the cleaning composition in a back and forth motion may eliminate clumping and excessive mixing times. After the desired amount of the cleaning composition has been added, the aqueous cleaning fluid may be allowed to mix thoroughly to ensure that all granulated material is properly dissolved. In one embodiment, the aqueous cleaning fluid may be heated to decrease the mixing time. Heating, however, is not necessary.
  • the aqueous cleaning fluid may be used to remove a deposit or plug in a system such as, but not limited to, an oil or gas pipeline or wellbore, either subsea or on land.
  • the aqueous cleaning fluid is effective at removing deposits formed of hydrocarbons or scale.
  • Hydrocarbons include, but are not limited to, crude oil, shale oil, tar, asphaltene, and paraffin.
  • Scale includes, but is not limited to, any carbonate, sulfate, or metal salt that has precipitated out of the water phase, trace formation material such as silica and clays, and corrosion materials.
  • the aqueous cleaning fluid may be pumped at a slow rate through the system. Where production fluid is present in the system, the heavier aqueous cleaning fluid may replace the lighter production fluid in the system.
  • the production fluid may be collected in an appropriate container for disposal or reprocessing. The pumping may continue until all of the production fluid has been displaced as evidenced by the return of the aqueous cleaning fluid.
  • a valve on a line used to displace and capture the production fluid may be closed, and additional aqueous cleaning fluid may be pumped into the system until a desired line pressure is reached. Once this desired line pressure is achieved, the pumping of the aqueous cleaning fluid is stopped.
  • the aqueous cleaning fluid may penetrate between the deposit and the system wall (e.g., pipe wall), as well as through the deposit itself. As this penetration occurs, the line pressure will decrease. Additional amounts of the aqueous cleaning fluid may be pumped into the system to maintain the desired line pressure. The line pressure is used as a measurement of the effectiveness of the aqueous cleaning fluid in penetrating the deposit. When there is a sufficient decrease in the line pressure, removal of the deposit may begin. On one side of the system, a valve may be opened and a collection station may be used to collect the deposited material. On the opposite side of the system, additional aqueous cleaning fluid may be pumped into the system forcing the deposit out of the system.
  • the system wall e.g., pipe wall
  • a pig may be used to push the deposit out of the system.
  • the system may be flooded with a desired concentration of the aqueous cleaning fluid and closed, allowing the aqueous cleaning fluid to soak for a minimum of 12 hours.
  • the line may be pigged and flushed with seawater to remove any remaining solids or sludge.
  • the production fluid may be removed in two ways.
  • the first way includes slowly pumping the aqueous cleaning fluid into the system, allowing the heavier aqueous cleaning fluid to displace the lighter production fluid, and collecting the production fluid at the pumping point in the same way described above.
  • the second way includes slowly pumping the aqueous cleaning fluid into the system to push the production fluid toward a capture point at the opposite end of the system from the pumping side. Pumping may be continued until all of the production fluid has been removed and the aqueous cleaning fluid is being returned at the capture point.
  • the length of the system may be filled with a desired concentration of the aqueous cleaning fluid, and allowed to soak for a minimum of 12 hours.
  • the system may be flushed with an additional volume of the aqueous cleaning fluid to collect the contents of the line at the capture point. Pumping may continue until a sufficient amount of the aqueous cleaning fluid has been added to the system.
  • the line may be closed and allowed to soak for a minimum of 12 hours.
  • the line may be pigged. If the line pressure decreases, an additional amount of the aqueous cleaning fluid may be added to maintain the desired line pressure. This process may be continued until the deposit or blockage is removed and communication is established. Then the line may be flooded with a desired concentration of the aqueous cleaning fluid.
  • the system may be closed and allowed to soak again for a minimum of 12 hours.
  • the line may be pigged and flushed with seawater to remove any remaining solids or sludge.
  • a cleaning composition was prepared with the components shown in Table 1.
  • Test Well 1 was at static pressure and producing only 1 ⁇ 4 barrel of oil per day. Fifty pounds of the cleaning composition was poured directly into the annulus of Test Well 1 followed by 10 barrels (420 gallons) of produced water to form an aqueous cleaning fluid in the annulus. The aqueous cleaning fluid was allowed to soak in the annulus for 24 hours. After reassembly, the aqueous cleaning fluid was pumped out and processed through a tank battery. After treatment with the aqueous cleaning fluid, the production rate of Test Well 1 increased to 4 barrels of oil per day. Test Well 1 continued at this production rate for a period of 8 months.
  • Test Well 2 was producing only 1 ⁇ 2 barrel of oil per day.
  • Test Well 2 was treated with the cleaning composition shown in Table 2 according to the procedure set forth in Example 1 above. After treatment with the aqueous cleaning fluid, the production rate of Test Well 2 increased to 3.5 barrels of oil per day. Test Well 2 continued at this production rate for a period of 6 months.
  • Test Well 3 was producing only 1 ⁇ 2 barrel of oil per day at ambient pressure.
  • Test Well 3 was treated with the cleaning composition shown in Table 3 according to the procedure set forth in Example 1 above. After treatment with the aqueous cleaning fluid, the production rate of Test Well 3 increased to 10 barrels per day, with a renewed production of natural gas. Test Well 3 continued at this production level for a period of about 3 months. After this time, Test Well 3 dropped to a production rate of 8 barrels per day, but with continued production of natural gas. Production continued at this rate for an additional 6 months.
  • a cleaning composition was prepared with the components shown in Table 4. First, a pre-blend of the surfactants was prepared with a small amount of water. Then the remaining components were mixed and the surfactant pre-blend was added slowly and allowed to hydrate for about 15 minutes until the mixture was fluffy and try to touch. Pipeline 4 was plugged with no communication between Point A and Point B (separated by a distance of 1.43 miles) for approximately 10 months. Previous cleaning attempts on Pipeline 4 proved unsuccessful, including the use of a prior art paraffin inhibitor. The blockage was detected 469 feet from Point B and a possible blockage was detected 467 feet from Point A. An aqueous cleaning fluid was prepared using the cleaning composition shown in Table 4.
  • the aqueous cleaning fluid was pumped into Point A of Pipeline 4 until the production fluid present in this end of Pipeline 4 was displaced and captured in an appropriate tank. Then the aqueous cleaning fluid was pumped into Point B of Pipeline 4. Communication was first established between Point A and Point B after 8 hours total pumping time and the injection of 44.5 barrels of the aqueous cleaning fluid. Full communication was established between Point A and Point B after 45 hours of pumping. Ultimately, the aqueous cleaning fluid removed 284 barrels of paraffin solids and sludge from the 8 inch pipeline. In other words, it removed a paraffin plug that occupied 72% of the 1.43 mile long pipeline between Point A and Point B.
  • Test Well 5 was producing no oil.
  • the cleaning composition shown in Table 1 was used, according to the procedure set forth in Example 1. However, after the soaking time with this aqueous cleaning fluid, Test Well 5 did not begin producing oil. Further inspection revealed the presence of a microorganism. A cleaning composition with the components shown in Table 5 was then prepared. This cleaning composition was added to the annulus of Test Well 5 at a rate of 50 pounds of the cleaning composition to 5 barrels of produced water. After a 24-hour soaking time with the aqueous cleaning fluid, the well pump was able to sufficiently remove the microorganism. Test Well 5 recovered with a production rate of 2 barrels per day.
  • the aqueous cleaning fluid may be used to remove blockages from wellbores and pipelines. It may also be used to remove built up paraffins and asphaltenes in sand control operations (i.e., gravel pack); to remove scale and other deposits in injection wells; to remove microorganisms blocking a wellbore; to remove Slick Water deposits remaining after completion of a Slick Water project; and to remove rust deposits, burnt carbon, amine, and other solvent residues from oil and gas platform and refinery equipment.
  • sand control operations i.e., gravel pack
  • to remove scale and other deposits in injection wells to remove microorganisms blocking a wellbore
  • Slick Water deposits remaining after completion of a Slick Water project to remove rust deposits, burnt carbon, amine, and other solvent residues from oil and gas platform and refinery equipment.
  • the aqueous cleaning fluid may also be used to flush and clean pipelines.
  • the aqueous cleaning fluid may first penetrate bonds holding paraffin and asphaltenes in place. It may also leave a slight silica residue to assist in reducing friction and to allow the deposited materials to move freely.
  • the aqueous cleaning fluid may also break down the asphaltenes and cap the paraffins to prevent reformation of the deposit. The combination of these effects may allow the aqueous cleaning fluid to transform a deposit or plug into a movable mass.
  • Hydrocarbons are usually present in mineral scale deposits found in flow lines, separators, and tubulars.
  • the aqueous cleaning fluid may be used to remove the top layers of hydrocarbons from the mineral scale deposits and to create small pathways in the scale for mineral acids to follow.
  • the removed hydrocarbons may migrate to the surface of the aqueous cleaning fluid.
  • mineral acid is poured through the aqueous cleaning fluid, an acid base neutralization occurs and the scale may be broken apart via the pathways created by the aqueous cleaning fluid.
  • scale deposits that may be removed using the aqueous cleaning fluid include, but are not limited to, barium carbonate and barium sulfate scale deposits.

Abstract

An aqueous cleaning composition for removing paraffin, asphaltene, and scale deposits or plugs from a hydrocarbon system. The aqueous cleaning composition is formed of a cleaning composition and an aqueous liquid. The cleaning composition contains about 21-33% of a silicate, about 20-35% of a peroxygen, about 3-15% of a phosphate, about 15-40% of a carbonate or bicarbonate, about 1-10% of a chelating agent, about 1-5.5% of a surfactant combination. In one embodiment, the surfactant combination includes a surfactant polymer mixture containing a block polymer and a reverse polymer, and a wetting agent containing a sulfonated material or an ethoxylated alcohol.

Description

BACKGROUND
Paraffin wax and asphaltene deposition costs the oil industry billions of dollars worldwide. Paraffin and asphaltene precipitation and deposition in crude oil transport flow-lines and pipelines is an increasing challenge for the development of deep-water subsea hydrocarbon reservoirs. When sufficiently deposited over time, paraffin wax and asphaltenes can partially or totally block oil production to uneconomical levels requiring shutdowns or various remediation treatments. Other problems caused by paraffin or asphaltene deposition include entrapment of produced water, which increases surface roughness on pipe walls leading to increased pumping pressure and reduced throughput, accumulations that fill process vessels and storage tanks, and interference with the operation of valves and other instrumentation. This deposition also occurs in producing wells where the paraffin and asphaltene deposits accumulate in and around the wellbore causing major restrictions. All of these problems may result in production shutdowns and hazardous conditions requiring extensive workovers, and resulting in production losses and possibly irreparable damage to equipment.
A plethora of thermal, chemical, and mechanical measures are available to manage these types of depositions on either a preventative basis (i.e., mitigation of deposition) or a remediate basis (i.e., removal of deposits). Typical deposition management systems include chemical inhibitors and the implementation of operations such as line heating, solvent circulation and, in shorter lines, mechanical scraping. But mechanical scraping processes (e.g., coiled tubing) are limited by their ability to only travel short distances, are costly, and involve significant risks. Additionally, solvents (e.g., xylene or toluene mixed with either diesel or kerosene) require heat to significantly increase paraffin and asphaltene solubility. The subsea temperatures dissipate the necessary heat quickly, rendering the solvents ineffective. This decreased efficiency of solvents results in the requirement for larger treatment volumes, longer treatment times, and ultimately a high cost. These solvents are also environmentally unfriendly.
It is commonly believed that paraffin wax is formed of molecules in the range of C20 and higher. However, due to pressure differences and very low temperatures inside and around subsea flow lines, these paraffin wax deposits begin to form with much smaller carbon chains. Since average subsea temperatures are below 40° F., paraffin compounds such as tridecane (C13, which freezes at 27° F.), tetradecane (C14, which freezes at 41.9° F.), pentadecane (C15, which freezes at 49.8° F.), and hexadecane (C16, which freezes at 64° F.) also begin to deposit on these flow lines as wax deposits. These paraffinic compounds all display only limited solubility at modest temperatures in many types of organic solvents and are virtually insoluble in aqueous solutions, although they can be re-melted between 120-150° F.
Asphaltene deposition is less driven by temperature and pressure. Instead, the deposition of asphaltenes is affected more by chemical changes in the crude oil. Asphaltene molecules are dispersed or floating in the crude oil. Lowering the pH of the system or introducing carbon dioxide or nonaromatic solvents can strip away the outer parts of the asphaltene molecules, which help to maintain dispersion of the asphaltene molecules. Without the outer parts, the asphaltene molecules will flocculate and precipitate.
Scale formation in natural gas pipelines may be attributed to a number of factors. Evaluation of scale samples indicate that the scale formations may include trace amounts of silica and clay from the formations from which the gas was derived, along with black powders and mineral scales. These scale formations may be very hard and may resemble sand stone. The use of monoethanol glycol (MEG) or methanol to retard the formation of natural gas hydrates has created the problem of decreased solubility of trace minerals. Additionally, basic agents (e.g., NaOH or NaHCO3) may be added to the MEG stream to increase pH for preventing corrosion. The increased pH, however, leads to decreased solubility of carbonate salts. Possible sources of the black powder include mill scale from the pipe manufacturing process, flash rust from hydraulic test water corrosion, and internal pipe corrosion. Chemical analyses of the black powder show that it consists mainly of a mixture of iron oxides and iron sulfides.
DETAILED DESCRIPTION OF SELECTED EMBODIMENTS
An aqueous cleaning fluid has been developed for removing deposits of paraffin wax, asphaltene molecules, and scale from hydrocarbon flow lines, vessels, or other equipment. A granular cleaning composition may be activated with an aqueous liquid, such as sea water or produced water, to form the aqueous cleaning fluid. The effectiveness of the aqueous cleaning fluid is temperature independent. These properties render the cleaning composition ideal for offshore and subsea pipeline operations.
The cleaning composition lowers surface tension allowing it to penetrate the area between a deposited material and a pipe wall. The cleaning composition also neutralizes the zeta charge associated with paraffin and asphaltene molecules, which reduces the stickiness of the deposit and reduces the ability of these molecules to adhere to a pipe wall, other molecules, or geological formations. In this way, the cleaning composition allows the paraffin and asphaltene molecules to be removed from the deposit.
The cleaning composition may include the following components: a silicate, a peroxygen, a phosphate, a carbonate or a bicarbonate, a chelating agent, and a surfactant combination. The cleaning composition may be mixed with an aqueous liquid to form an aqueous cleaning fluid. Suitable aqueous liquids include, but are not limited to, water, aqueous brines, sea water, lake water, river water, subsurface water, produced water, or any mixture thereof. The concentration of the cleaning composition in the aqueous cleaning fluid may be about 1% to about 10% by weight. All percentages disclosed herein are weight percentages unless otherwise specified.
The silicate of the cleaning composition may include sodium metasilicate, sodium sesqui-silicate, a liquid sodium silicate, a liquid potassium silicate, or an orthosilicate. If sodium metasilicate is used, its ratio of SiO2/Na2O may be about 1:1. The silicate may provide a soil suspending property and a corrosion inhibition property to the cleaning composition. Additionally, the silicate may help to attack C13-C18 paraffins that have free fatty acid radicals, which are normally aromatic in nature, through saponification. The concentration of the silicate in the cleaning composition may be about 21% to about 33% by weight. Preferably, the concentration of the silicate in the cleaning composition may be about 30% by weight.
The peroxygen of the cleaning composition may include a percarbonate (e.g., sodium percarbonate), a perborate (e.g., sodium perborate), a hydrogen peroxide, a persulfate, a thiourea dioxide, a diethylhydroxylamine, a peracetic acid, or urea peroxide (carbamide peroxide). These materials neutralize the zeta charge associated with crude oil, which causes molecules in the oil to stick to a formation or to pipe walls. Additionally, these materials release oxygen slowly. At 150° F., these materials will take about 8 hours to fully expend all of their oxygen. This slow-release of oxygen is critical when the cleaning composition must penetrate thousands of feet of paraffin/asphaltene deposition. The slow-release of oxygen is also critical when working under pressurized conditions, as the combination of oil and oxygen under pressure can be very dangerous. The concentration of the peroxygen in the cleaning composition may be about 20% to about 35% by weight. Preferably, the concentration of the peroxygen in the cleaning composition may be about 30% by weight.
The phosphate of the cleaning composition may include sodium tripolyphosphate, tetrapotassium pyrophosphate, sodium hexametaphosphate, sodium acid pyrophosphate, tetrasodium pyrophosphate, trisodium phosphate, disodium phosphate, or monosodium phosphate. These materials may provide protection against humidity degradation of the cleaning composition. These materials are also good water conditions and help in lowering surface tension. The phosphate may help to suspend particulates and hold them in suspension. The concentration of the phosphate in the cleaning composition may be about 3% to about 15% by weight. Preferably, the concentration of the phosphate in the cleaning composition may be about 7.5% by weight.
The carbonate or the bicarbonate of the cleaning composition may include sodium carbonate, sodium bicarbonate, sodium sesqui-carbonate, potassium bicarbonate, or potassium carbonate. These materials provide further alkalinity for the saponification of the shorter chain paraffins that contain a fatty acid radical. The concentration of the carbonate or bicarbonate in the cleaning composition may be about 15% to about 40% by weight. Preferably, the concentration of the carbonate or bicarbonate in the cleaning composition may be about 25% by weight.
The chelating agent of the cleaning composition may include ethylene diamine tetra acidic acid tetra sodium salt (EDTA) or organophosphates such as HEDP, PBTC, and ATMP. The concentration of the chelating agent in the cleaning composition may be about 1% to about 10% by weight depending on the amount of iron and other trace metals in the system. Preferably, the concentration of the chelating agent in the cleaning composition may be about 5% to about 8% by weight.
The surfactant combination in the cleaning composition may include a surfactant polymer mixture and a wetting agent. The surfactant combination may have a surfactant polymer mixture to wetting agent ratio of about 1:1 to about 1:1.9. Preferably, the surfactant polymer mixture to the wetting agent ratio may be about 1:1.5. Each of the surfactants in the surfactant combination may be compatible with oxidizing materials, thereby preventing the oxygen from attacking the surfactant instead of the materials intended to be removed from a formation. Reaction of oxygen with the hydrated surfactants in the blended cleaning composition is also avoided in order to prevent product degradation and possible fires.
The surfactant polymer mixture may contain an equal amount of a block polymer and a reverse polymer. In one embodiment, the surfactant polymer mixture contains an ethylene oxide/propylene oxide block copolymer (available under the trade name Pluronic L-61) and an ethylene oxide/propylene oxide reverse polymer (available under the trade name Pluronic 25R2). Alternatively, the surfactant polymer mixture may contain ethoxylated triglyceride, polyglyceryl-2-sequilisosterate, polyethylene glycol stearate, a monoglyceride, or a diglyceride. These polymer surfactants are nonionic and have hydrophilic-lipophilic balance (HLB) values between 3 and 6 indicating that they are water-in-oil emulsifiers. They function as both rinse aids (i.e., allowing water to form sheets rather than spots by reducing the surface tension of water) and anti-redeposition agents (i.e., preventing soils from depositing on surfaces). The concentration of the surfactant polymer mixture in the cleaning composition may be about 0.6% to about 2% by weight. Preferably, the concentration of the surfactant polymer mixture in the cleaning composition may be about 1% by weight.
The wetting agent of the surfactant combination may include a sulfonated material, such as a sodium alkane sulfonate (available under the trade name Bio Terg PAS 8S), a branched C12 diphenyl oxide disulfide, a linear C10 diphenyl oxide disulfonate, a sodium alpha olefin sulfonate, or a sodium (C14-16) olefin sulfonate. These sulfonated materials are anionic and function as surface tension reducing agents. Alternatively, the wetting agent may include an ethoxylated alcohol containing a linear (C9/C10/C11) blend, a linear C11, a linear (C12/C13) blend, a linear (C12/C13/C14/C15) blend, or a linear (C14/C15) blend. These ethoxylated alcohols are nonionic and have HLB values between 7 and 9 providing excellent wetting properties as well as suspending and emulsifying properties. The concentration of the wetting agent in the cleaning composition may be about 0.5% to about 2% by weight. Preferably, the concentration of the wetting agent in the cleaning composition may be about 1.5% by weight.
The surfactant combination of the cleaning composition may further include an ethoxy phosphate, such as a linear alcohol ethoxy phosphate (available under the trade name Rhodafac PL-6), a branched alcohol ethoxy phosphate, or nonylphenol ethoxy phosphate (available under the trade name Rhodafac RS-610). These materials are anionic and provide excellent surface tension reduction as well as emulsifying properties. The ethoxy phosphate provides the ability to not only travel between a paraffin/asphaltene formation and a pipe wall, but also to penetrate the formation itself, thereby breaking the paraffin from the asphaltene and emulsifying the two materials. The concentration of the ethoxy phosphate in the cleaning composition may be about 0.4% to about 1.5% by weight. Preferably, the concentration of the ethoxy phosphate in the cleaning composition may be about 1% by weight.
The petroleum industry traditionally uses solvents (e.g., toluene, xylene, mixtures thereof or mixtures with diesel or kerosene) in attempts to remove paraffin, asphaltene, and scale deposits from hydrocarbon systems. It was unexpected that any non-solvent cleaning product could sufficiently remove these deposits from a hydrocarbon system, especially at subsea temperatures. However, the specific surfactant combination allows the aqueous cleaning fluid disclosed herein to remove paraffin, asphaltene, and scale deposits from a hydrocarbon system without the use of solvents and at temperatures as low as 33° F., such as subsea temperatures, or as high as 250° F. The aqueous cleaning fluid is able to travel extremely long distances through systems with heavy deposits.
In an alternate embodiment, the surfactant combination may include an amphoteric surfactant and an ethoxylated fatty amine. The amphoteric surfactant may include equal amounts of a disodium cocoampho dipropionate (available under the trade name Miranol FBS) and a sulfonated caprylic derivative sodium salt (available under the trade name Miranol JS Concentrate). The concentration of the amphoteric surfactant in the cleaning composition may be about 0.6% to about 2% by weight. Preferably, the concentration of the amphoteric surfactant in the cleaning composition may be about 1% by weight. The ethoxylated fatty amine may include polyoxyethylene tallow amine (available under the trade name Ethox TAM-5). This material may function as an emulsifier and a releasing agent in the cleaning composition. In this embodiment, the surfactant combination provides the aqueous cleaning fluid with the ability to remove microorganisms that create partial or complete plugs in a hydrocarbon flow line. The concentration of the ethoxylated fatty amine in the cleaning composition may be about 0.5% to about 2% by weight. Preferably, the concentration of the ethoxylated fatty amine in the cleaning composition may be about 1.5% by weight.
Tests conducted on the aqueous cleaning fluid containing 1% of the cleaning composition showed the surface tension to be about 27 dynes without the help of surfactants, which was attributed to the phosphate and the EDTA. The surface tension of only the surfactant combination was found to be about 22 dynes. The surface tension of the cleaning composition may be 28 dynes or less. More preferably, the surface tension of the cleaning composition may be 24 dynes or less. Most preferably, the surface tension of the cleaning composition may be 22 dynes or less. The cleaning composition may have a Na2O mEq value of at least about 20 mEq values at a pH of about 9, more preferably about 25 mEq, and most preferably about 35 mEq at a pH of 12.
With a pump or agitator running at sufficient speed, the granular cleaning composition may be added to an aqueous liquid. Slow addition of the cleaning composition in a back and forth motion may eliminate clumping and excessive mixing times. After the desired amount of the cleaning composition has been added, the aqueous cleaning fluid may be allowed to mix thoroughly to ensure that all granulated material is properly dissolved. In one embodiment, the aqueous cleaning fluid may be heated to decrease the mixing time. Heating, however, is not necessary.
The aqueous cleaning fluid may be used to remove a deposit or plug in a system such as, but not limited to, an oil or gas pipeline or wellbore, either subsea or on land. The aqueous cleaning fluid is effective at removing deposits formed of hydrocarbons or scale. Hydrocarbons include, but are not limited to, crude oil, shale oil, tar, asphaltene, and paraffin. Scale includes, but is not limited to, any carbonate, sulfate, or metal salt that has precipitated out of the water phase, trace formation material such as silica and clays, and corrosion materials.
If the system is completely blocked by the deposit or plug, the aqueous cleaning fluid may be pumped at a slow rate through the system. Where production fluid is present in the system, the heavier aqueous cleaning fluid may replace the lighter production fluid in the system. The production fluid may be collected in an appropriate container for disposal or reprocessing. The pumping may continue until all of the production fluid has been displaced as evidenced by the return of the aqueous cleaning fluid. A valve on a line used to displace and capture the production fluid may be closed, and additional aqueous cleaning fluid may be pumped into the system until a desired line pressure is reached. Once this desired line pressure is achieved, the pumping of the aqueous cleaning fluid is stopped. The aqueous cleaning fluid may penetrate between the deposit and the system wall (e.g., pipe wall), as well as through the deposit itself. As this penetration occurs, the line pressure will decrease. Additional amounts of the aqueous cleaning fluid may be pumped into the system to maintain the desired line pressure. The line pressure is used as a measurement of the effectiveness of the aqueous cleaning fluid in penetrating the deposit. When there is a sufficient decrease in the line pressure, removal of the deposit may begin. On one side of the system, a valve may be opened and a collection station may be used to collect the deposited material. On the opposite side of the system, additional aqueous cleaning fluid may be pumped into the system forcing the deposit out of the system. In another embodiment, a pig may be used to push the deposit out of the system. Once the blockage is removed, the system may be flooded with a desired concentration of the aqueous cleaning fluid and closed, allowing the aqueous cleaning fluid to soak for a minimum of 12 hours. After the desired soaking time, the line may be pigged and flushed with seawater to remove any remaining solids or sludge.
If the system is only partially blocked by the deposit or plug, the production fluid may be removed in two ways. The first way includes slowly pumping the aqueous cleaning fluid into the system, allowing the heavier aqueous cleaning fluid to displace the lighter production fluid, and collecting the production fluid at the pumping point in the same way described above. The second way includes slowly pumping the aqueous cleaning fluid into the system to push the production fluid toward a capture point at the opposite end of the system from the pumping side. Pumping may be continued until all of the production fluid has been removed and the aqueous cleaning fluid is being returned at the capture point. The length of the system may be filled with a desired concentration of the aqueous cleaning fluid, and allowed to soak for a minimum of 12 hours. After the desired soaking time, the system may be flushed with an additional volume of the aqueous cleaning fluid to collect the contents of the line at the capture point. Pumping may continue until a sufficient amount of the aqueous cleaning fluid has been added to the system. The line may be closed and allowed to soak for a minimum of 12 hours. After the desired secondary soak time period, the line may be pigged. If the line pressure decreases, an additional amount of the aqueous cleaning fluid may be added to maintain the desired line pressure. This process may be continued until the deposit or blockage is removed and communication is established. Then the line may be flooded with a desired concentration of the aqueous cleaning fluid. The system may be closed and allowed to soak again for a minimum of 12 hours. After the desired third soak time period, the line may be pigged and flushed with seawater to remove any remaining solids or sludge.
Example 1
A cleaning composition was prepared with the components shown in Table 1. Test Well 1 was at static pressure and producing only ¼ barrel of oil per day. Fifty pounds of the cleaning composition was poured directly into the annulus of Test Well 1 followed by 10 barrels (420 gallons) of produced water to form an aqueous cleaning fluid in the annulus. The aqueous cleaning fluid was allowed to soak in the annulus for 24 hours. After reassembly, the aqueous cleaning fluid was pumped out and processed through a tank battery. After treatment with the aqueous cleaning fluid, the production rate of Test Well 1 increased to 4 barrels of oil per day. Test Well 1 continued at this production rate for a period of 8 months.
TABLE 1
Sodium metasilicate, anhydrous 30.3%
Sodium percarbonate 30.3%
Sodium tripolyphosphate 6.7%
Sodium carbonate, dense 23.6%
EDTA 6.7%
Ethylene oxide/propylene oxide block 0.4%
copolymer (Pluronic L-61)
Ethylene oxide/propylene oxide reverse 0.4%
polymer (Pluronic 25R2)
Sodium alkane sulfonate (Bio Terg PAS 8S) 1.5%
Example 2
A cleaning composition was prepared with the components shown in Table 2. Test Well 2 was producing only ½ barrel of oil per day. Test Well 2 was treated with the cleaning composition shown in Table 2 according to the procedure set forth in Example 1 above. After treatment with the aqueous cleaning fluid, the production rate of Test Well 2 increased to 3.5 barrels of oil per day. Test Well 2 continued at this production rate for a period of 6 months.
TABLE 2
Sodium metasilicate, anhydrous 24.7%
Sodium percarbonate 30.1%
Sodium tripolyphosphate 7.9%
Sodium carbonate, dense 28.1%
EDTA 6.7%
Ethylene oxide/propylene oxide block copolymer 0.5%
(Pluronic L-61)
Ethylene oxide/propylene oxide reverse polymer 0.5%
(Pluronic 25R2)
Linear alcohol ethoxy phosphate (Rhodafac PL-6) 1.5%
Example 3
A cleaning composition was prepared with the components shown in Table 3. Test Well 3 was producing only ½ barrel of oil per day at ambient pressure. Test Well 3 was treated with the cleaning composition shown in Table 3 according to the procedure set forth in Example 1 above. After treatment with the aqueous cleaning fluid, the production rate of Test Well 3 increased to 10 barrels per day, with a renewed production of natural gas. Test Well 3 continued at this production level for a period of about 3 months. After this time, Test Well 3 dropped to a production rate of 8 barrels per day, but with continued production of natural gas. Production continued at this rate for an additional 6 months.
TABLE 3
Sodium metasilicate, anhydrous 31.5%
Sodium percarbonate 30.2%
Sodium tripolyphosphate 8.0%
Sodium carbonate, dense 25.8%
EDTA 1.0%
Ethylene oxide/propylene oxide block copolymer 0.5%
(Pluronic L-61)
Ethylene oxide/propylene oxide reverse polymer 0.5%
(Pluronic 25R2)
Sodium alkane sulfonate (Bio Terg PAS 8S) 1.5%
Linear alcohol ethoxy phosphate (Rhodafac RS-610) 1.0%
Example 4
A cleaning composition was prepared with the components shown in Table 4. First, a pre-blend of the surfactants was prepared with a small amount of water. Then the remaining components were mixed and the surfactant pre-blend was added slowly and allowed to hydrate for about 15 minutes until the mixture was fluffy and try to touch. Pipeline 4 was plugged with no communication between Point A and Point B (separated by a distance of 1.43 miles) for approximately 10 months. Previous cleaning attempts on Pipeline 4 proved unsuccessful, including the use of a prior art paraffin inhibitor. The blockage was detected 469 feet from Point B and a possible blockage was detected 467 feet from Point A. An aqueous cleaning fluid was prepared using the cleaning composition shown in Table 4. The aqueous cleaning fluid was pumped into Point A of Pipeline 4 until the production fluid present in this end of Pipeline 4 was displaced and captured in an appropriate tank. Then the aqueous cleaning fluid was pumped into Point B of Pipeline 4. Communication was first established between Point A and Point B after 8 hours total pumping time and the injection of 44.5 barrels of the aqueous cleaning fluid. Full communication was established between Point A and Point B after 45 hours of pumping. Ultimately, the aqueous cleaning fluid removed 284 barrels of paraffin solids and sludge from the 8 inch pipeline. In other words, it removed a paraffin plug that occupied 72% of the 1.43 mile long pipeline between Point A and Point B.
TABLE 4
Sodium metasilicate, anhydrous 22.0%
Sodium percarbonate 32.3%
Sodium tripolyphosphate 7.3%
Sodium carbonate, dense 14.7%
Sodium carbonate, light 14.7%
EDTA 5.9%
Ethylene oxide/propylene oxide block copolymer 0.4%
(Pluronic L-61)
Ethylene oxide/propylene oxide reverse polymer 0.4%
(Pluronic 25R2)
Sodium alkane sulfonate (Bio Terg PAS 8S) 1.5%
Linear alcohol ethoxy phosphate (Rhodafac RS-610) 0.4%
Water 0.4%
Example 5
Test Well 5 was producing no oil. The cleaning composition shown in Table 1 was used, according to the procedure set forth in Example 1. However, after the soaking time with this aqueous cleaning fluid, Test Well 5 did not begin producing oil. Further inspection revealed the presence of a microorganism. A cleaning composition with the components shown in Table 5 was then prepared. This cleaning composition was added to the annulus of Test Well 5 at a rate of 50 pounds of the cleaning composition to 5 barrels of produced water. After a 24-hour soaking time with the aqueous cleaning fluid, the well pump was able to sufficiently remove the microorganism. Test Well 5 recovered with a production rate of 2 barrels per day.
TABLE 5
Sodium metasilicate, anhydrous 24.7%
Sodium percarbonate 30.1%
Sodium tripolyphosphate 7.9%
Sodium carbonate, dense 28.1%
EDTA 6.7%
Disodium cocoampho dipropionate (Miranol FBS) 0.5%
Sulfonated caprylic derivative sodium salt 0.5%
(Miranol JS Concentrate)
Polyoxyethylene tallow amine (Ethox TAM-5) 1.5%
The examples above show that the aqueous cleaning fluid may be used to remove blockages from wellbores and pipelines. It may also be used to remove built up paraffins and asphaltenes in sand control operations (i.e., gravel pack); to remove scale and other deposits in injection wells; to remove microorganisms blocking a wellbore; to remove Slick Water deposits remaining after completion of a Slick Water project; and to remove rust deposits, burnt carbon, amine, and other solvent residues from oil and gas platform and refinery equipment.
The aqueous cleaning fluid may also be used to flush and clean pipelines. The aqueous cleaning fluid may first penetrate bonds holding paraffin and asphaltenes in place. It may also leave a slight silica residue to assist in reducing friction and to allow the deposited materials to move freely. The aqueous cleaning fluid may also break down the asphaltenes and cap the paraffins to prevent reformation of the deposit. The combination of these effects may allow the aqueous cleaning fluid to transform a deposit or plug into a movable mass.
Hydrocarbons are usually present in mineral scale deposits found in flow lines, separators, and tubulars. The aqueous cleaning fluid may be used to remove the top layers of hydrocarbons from the mineral scale deposits and to create small pathways in the scale for mineral acids to follow. The removed hydrocarbons may migrate to the surface of the aqueous cleaning fluid. When mineral acid is poured through the aqueous cleaning fluid, an acid base neutralization occurs and the scale may be broken apart via the pathways created by the aqueous cleaning fluid. Examples of scale deposits that may be removed using the aqueous cleaning fluid include, but are not limited to, barium carbonate and barium sulfate scale deposits.
The embodiments shown in the drawings and described above are exemplary of numerous embodiments that may be made within the scope of the appended claims. It is contemplated that numerous other configurations may be used, and the material of each component may be selected from numerous materials other than those specifically disclosed. In short, it is the applicant's intention that the scope of the patent issuing herefrom will be limited only by the scope of the appended claims.

Claims (3)

The invention claimed is:
1. A cleaning composition for removing a deposit from a hydrocarbon system, the cleaning composition comprising:
about 21% to about 33% of sodium metasilicate;
about 20% to about 35% of sodium percarbonate;
about 3% to about 15% of sodium tripolyphosphate;
about 15% to about 40% of sodium carbonate;
about 1% to about 10% of ethylene diamine tetra acidic tetra sodium salt;
about 0.4% to about 1.5% of a branched alcohol ethoxy phosphate;
about 0.6% to about 2% of a surfactant polymer mixture which is a polyethylene glycol stearate and an equal amount of an ethylene oxide/propylene oxide block polymer and an ethylene oxide/propylene oxide reverse polymer, mixed with a polyethylene glycol stearate; and
about 0.5% to about 2% of a wetting agent which is a nonionic ethoxylated alcohol.
2. The cleaning composition of claim 1, comprising:
about 21% to about 30% of sodium metasilicate;
about 20% to about 30% of sodium percarbonate;
about 3% to about 7.5% of sodium tripolyphosphate;
about 15% to about 40% of sodium carbonate;
about 1% to about 10% of ethylene diamine tetra acidic tetra sodium salt;
about 0.4% to about 1.5% of the branched alcohol ethoxy phosphate;
about 0.6% to about 2% of the surfactant polymer mixture; and
about 0.5% to about 2% of the nonionic ethoxylated alcohol.
3. The cleaning composition of claim 1, wherein the nonionic ethoxylated alcohol comprises a linear (C9/C10/C11) blend, a linear C11, a linear (C12/C13) blend, a linear (C12/C13/C14/C15) blend, or a linear (C14/C15) blend.
US14/477,289 2014-09-04 2014-09-04 Aqueous cleaning composition and method Active US9637677B2 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
US14/477,289 US9637677B2 (en) 2014-09-04 2014-09-04 Aqueous cleaning composition and method
PCT/US2015/046923 WO2016036555A1 (en) 2014-09-04 2015-08-26 Aqueous cleaning composition and method
US15/371,945 US10336934B2 (en) 2014-09-04 2016-12-07 Aqueous cleaning composition and method
US16/407,830 US10941331B2 (en) 2014-09-04 2019-05-09 Aqueous cleaning composition and method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US14/477,289 US9637677B2 (en) 2014-09-04 2014-09-04 Aqueous cleaning composition and method

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US15/371,945 Division US10336934B2 (en) 2014-09-04 2016-12-07 Aqueous cleaning composition and method

Publications (2)

Publication Number Publication Date
US20160068741A1 US20160068741A1 (en) 2016-03-10
US9637677B2 true US9637677B2 (en) 2017-05-02

Family

ID=55436930

Family Applications (3)

Application Number Title Priority Date Filing Date
US14/477,289 Active US9637677B2 (en) 2014-09-04 2014-09-04 Aqueous cleaning composition and method
US15/371,945 Active 2034-11-11 US10336934B2 (en) 2014-09-04 2016-12-07 Aqueous cleaning composition and method
US16/407,830 Active 2034-10-04 US10941331B2 (en) 2014-09-04 2019-05-09 Aqueous cleaning composition and method

Family Applications After (2)

Application Number Title Priority Date Filing Date
US15/371,945 Active 2034-11-11 US10336934B2 (en) 2014-09-04 2016-12-07 Aqueous cleaning composition and method
US16/407,830 Active 2034-10-04 US10941331B2 (en) 2014-09-04 2019-05-09 Aqueous cleaning composition and method

Country Status (2)

Country Link
US (3) US9637677B2 (en)
WO (1) WO2016036555A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10941331B2 (en) * 2014-09-04 2021-03-09 Wellrenew, Llc Aqueous cleaning composition and method

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107418542A (en) * 2016-05-24 2017-12-01 中国石油化工股份有限公司 A kind of asphaltene deposits inhibitor combination and preparation method thereof
CN109021950B (en) * 2018-09-27 2021-06-01 陕西友邦石油工程技术有限公司 Solid chelating acid for increasing injection of water injection well and preparation method thereof
BR112021017145A2 (en) 2019-03-06 2021-11-09 Ecolab Usa Inc Solid cleaning composition and method for cleaning a hard surface
DE102019205476A1 (en) * 2019-04-16 2020-10-22 BSH Hausgeräte GmbH Cleaning agent and method for the care cleaning of a washing device
AU2020364008A1 (en) * 2019-10-10 2022-04-28 Flex-Chem Holding Company, Llc Method for remediation of subterranean-formed metal-polymer complexes using peracetic acid
CN111004613A (en) * 2019-11-28 2020-04-14 中国海洋石油集团有限公司 Emulsion type composite blocking remover and preparation method thereof
US11512241B2 (en) 2020-01-13 2022-11-29 Riddle's Dehi & Chemical Services Co., Inc. Method of treating pipeline
US11732181B2 (en) 2020-01-13 2023-08-22 Riddle's Dehi & Chemical Services Co., Inc. Method of treating an apparatus to remove surface deposits
US11077474B1 (en) 2020-01-13 2021-08-03 Riddle's Dehi & Chemical Services Co., Inc. Method of cleaning pipeline
US11795372B2 (en) 2021-09-08 2023-10-24 King Fahd University Of Petroleum And Minerals Method of removing sulfate scale
US11692126B1 (en) 2022-03-21 2023-07-04 Riddle's Dehi & Cbemical Services Co., Inc. Method of pretreating a pipeline or apparatus

Citations (30)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4683008A (en) * 1985-07-12 1987-07-28 Sparkle Wash, Inc. Method for cleaning hard surfaces
US4803012A (en) * 1986-02-06 1989-02-07 Henkel Kommanditgesellschaft Auf Aktien Ethoxylated amines as solution promoters
US5114607A (en) 1990-08-08 1992-05-19 Betz Laboratories, Inc. Low foaming alkaline cleaner comprising a surfactant mixture of an EO-PO-EO block copolymer and a PO-ZO-PO block copolymer
US5259993A (en) 1992-01-21 1993-11-09 Cook Composites And Polymers Co. Aqueous cleaner
US5275671A (en) * 1988-11-07 1994-01-04 Ivar Rivenaes Aqueous solutions especially for cleaning high strength steel
US5308550A (en) * 1991-09-05 1994-05-03 Delta Omega Technologies, Ltd. Cleaning, wetting agent and solvent
US5534199A (en) * 1995-09-22 1996-07-09 Winkler, Iii; J. A. Vehicle wash detergent/foam and method
US5663132A (en) 1995-03-01 1997-09-02 Charvid Limited Liability Company Non-caustic composition comprising peroxygen compound and metasilicate and cleaning methods for using same
US5670469A (en) * 1995-01-06 1997-09-23 Texas Research Institute Methods and compositions for cleaning and decontamination
US5898024A (en) 1995-03-01 1999-04-27 Charvid Limited Liability Non-caustic cleaning composition comprising peroxygen compound and specific silicate, and method of making the same in free-flowing, particulate form
US6034048A (en) 1995-03-01 2000-03-07 Charvid Limited Liability Co. Non-caustic cleaning composition using an alkali salt
US6194367B1 (en) 1995-03-01 2001-02-27 Charvid Limited Liability Co. Non-caustic cleaning composition comprising peroxygen compound and specific silicate and method of making the same in free-flowing, particulate form
US6310024B1 (en) * 1999-03-26 2001-10-30 Calgon Corporation Rust and scale removal composition and process
US6521578B1 (en) * 1999-04-22 2003-02-18 Cognis Deutschland Gmbh Cleaning agents for hard surfaces
US20030096726A1 (en) * 1999-01-11 2003-05-22 Huntsman Petrochemical Corporation Concentrated surfactant blends
US6624132B1 (en) * 2000-06-29 2003-09-23 Ecolab Inc. Stable liquid enzyme compositions with enhanced activity
US20030181349A1 (en) * 2001-01-05 2003-09-25 Junichi Maeno Detergent composition
US20040214741A1 (en) * 2003-04-23 2004-10-28 Liss Audrey Brenda Aqueous detergent composition and method of use
WO2005019399A1 (en) 2003-08-19 2005-03-03 Ecolab Inc. Cleaning concentrate
US20050126784A1 (en) 2003-12-10 2005-06-16 Dan Dalton Treatment of oil wells
US20050181966A1 (en) 2004-01-09 2005-08-18 Bissell Homecare, Inc. Stable, low-foaming, peroxide steam cleaning compositions and method of predicting foaming in steam cleaning compositions
US20070082834A1 (en) * 2005-10-07 2007-04-12 Hudson Alice P Microemulsions containing alkoxylated amine carboxylates
US20090233837A1 (en) * 2007-06-12 2009-09-17 Rhodia Inc. Detergent composition with hydrophilizing soil-release agent and methods for using same
US20090313772A1 (en) 2008-06-18 2009-12-24 Charles Bullick Talley Composition comprising peroxygen and surfactant compounds and method of using the same
US20100263693A1 (en) * 2007-09-07 2010-10-21 Reckitt Benckiser Inc. Hard Surface Treatment Compositions
US20110301072A1 (en) * 2007-05-04 2011-12-08 Ecolab Usa Inc. Method of reducing corrosion using a warewashing composition
US20120149623A1 (en) * 2010-12-13 2012-06-14 Ecolab Usa Inc. Soil resistant floor cleaner
US20120202729A1 (en) 2009-08-13 2012-08-09 Rhodia Operations Graffiti-cleaning composition
US8293699B2 (en) * 2007-06-12 2012-10-23 Rhodia Operations Hard surface cleaning composition with hydrophilizing agent and method for cleaning hard surfaces
US20130210692A1 (en) * 2012-02-13 2013-08-15 Basf Se Cleaning composition and method of forming the same

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4878951A (en) * 1989-01-17 1989-11-07 A & L Laboratories, Inc. Low-foaming alkaline, hypochlorite cleaner
US6293699B1 (en) 1998-10-26 2001-09-25 Merck & Co., Inc. Method of continuously monitoring controlled temperature units
US6995128B2 (en) * 2000-03-24 2006-02-07 The Clorox Co. Mixed surfactant cleaning compositions with reduced streaking
US7820603B2 (en) * 2005-03-15 2010-10-26 Ecolab Usa Inc. Low foaming conveyor lubricant composition and methods
US9353609B2 (en) * 2010-05-04 2016-05-31 Nw24 Holdings, Llc Method and composition for remedial treatment of parafin, asphaltenes, scale and deposits in oil and gas infrastructure and subterranean formations
US20130102518A1 (en) * 2011-10-19 2013-04-25 Ecolab Usa Inc. Detergent composition containing an amps copolymer and a phosphonate
CA2919998A1 (en) * 2013-08-26 2015-03-05 The Procter & Gamble Company Compositions comprising alkoxylated polyamines having low melting points
US9637677B2 (en) * 2014-09-04 2017-05-02 Ideal Energy Solutions IP Control, LLC Aqueous cleaning composition and method

Patent Citations (34)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4683008A (en) * 1985-07-12 1987-07-28 Sparkle Wash, Inc. Method for cleaning hard surfaces
US4803012A (en) * 1986-02-06 1989-02-07 Henkel Kommanditgesellschaft Auf Aktien Ethoxylated amines as solution promoters
US5275671A (en) * 1988-11-07 1994-01-04 Ivar Rivenaes Aqueous solutions especially for cleaning high strength steel
US5114607A (en) 1990-08-08 1992-05-19 Betz Laboratories, Inc. Low foaming alkaline cleaner comprising a surfactant mixture of an EO-PO-EO block copolymer and a PO-ZO-PO block copolymer
US5308550A (en) * 1991-09-05 1994-05-03 Delta Omega Technologies, Ltd. Cleaning, wetting agent and solvent
US5259993A (en) 1992-01-21 1993-11-09 Cook Composites And Polymers Co. Aqueous cleaner
US5670469A (en) * 1995-01-06 1997-09-23 Texas Research Institute Methods and compositions for cleaning and decontamination
US5663132A (en) 1995-03-01 1997-09-02 Charvid Limited Liability Company Non-caustic composition comprising peroxygen compound and metasilicate and cleaning methods for using same
US5789361A (en) 1995-03-01 1998-08-04 Charvid Limited Liability Co. Non-caustic cleaning composition comprising peroxygen compound and specific silicate, and method of making same in free-flowing, particulate form
US5863345A (en) 1995-03-01 1999-01-26 Charvid Limited Liability Company Methods for removing foreign deposits from hard surfaces using non-caustic cleaning composition comprising peroxygen compound and specific silicate
US5898024A (en) 1995-03-01 1999-04-27 Charvid Limited Liability Non-caustic cleaning composition comprising peroxygen compound and specific silicate, and method of making the same in free-flowing, particulate form
US6034048A (en) 1995-03-01 2000-03-07 Charvid Limited Liability Co. Non-caustic cleaning composition using an alkali salt
US6043207A (en) 1995-03-01 2000-03-28 Charvid Limited Liability Co. Non-caustic cleaning composition comprising peroxygen compound, meta/sesqui-silicate, chelate and method of making same in free-flowing, particulate form
US6194367B1 (en) 1995-03-01 2001-02-27 Charvid Limited Liability Co. Non-caustic cleaning composition comprising peroxygen compound and specific silicate and method of making the same in free-flowing, particulate form
US5534199A (en) * 1995-09-22 1996-07-09 Winkler, Iii; J. A. Vehicle wash detergent/foam and method
US20030096726A1 (en) * 1999-01-11 2003-05-22 Huntsman Petrochemical Corporation Concentrated surfactant blends
US6310024B1 (en) * 1999-03-26 2001-10-30 Calgon Corporation Rust and scale removal composition and process
US6521578B1 (en) * 1999-04-22 2003-02-18 Cognis Deutschland Gmbh Cleaning agents for hard surfaces
US7553806B2 (en) * 2000-06-29 2009-06-30 Ecolab Inc. Stable liquid enzyme compositions with enhanced activity
US6624132B1 (en) * 2000-06-29 2003-09-23 Ecolab Inc. Stable liquid enzyme compositions with enhanced activity
US20030181349A1 (en) * 2001-01-05 2003-09-25 Junichi Maeno Detergent composition
US20040214741A1 (en) * 2003-04-23 2004-10-28 Liss Audrey Brenda Aqueous detergent composition and method of use
WO2005019399A1 (en) 2003-08-19 2005-03-03 Ecolab Inc. Cleaning concentrate
US20050126784A1 (en) 2003-12-10 2005-06-16 Dan Dalton Treatment of oil wells
US20050181966A1 (en) 2004-01-09 2005-08-18 Bissell Homecare, Inc. Stable, low-foaming, peroxide steam cleaning compositions and method of predicting foaming in steam cleaning compositions
US20070082834A1 (en) * 2005-10-07 2007-04-12 Hudson Alice P Microemulsions containing alkoxylated amine carboxylates
US20110301072A1 (en) * 2007-05-04 2011-12-08 Ecolab Usa Inc. Method of reducing corrosion using a warewashing composition
US20090233837A1 (en) * 2007-06-12 2009-09-17 Rhodia Inc. Detergent composition with hydrophilizing soil-release agent and methods for using same
US8293699B2 (en) * 2007-06-12 2012-10-23 Rhodia Operations Hard surface cleaning composition with hydrophilizing agent and method for cleaning hard surfaces
US20100263693A1 (en) * 2007-09-07 2010-10-21 Reckitt Benckiser Inc. Hard Surface Treatment Compositions
US20090313772A1 (en) 2008-06-18 2009-12-24 Charles Bullick Talley Composition comprising peroxygen and surfactant compounds and method of using the same
US20120202729A1 (en) 2009-08-13 2012-08-09 Rhodia Operations Graffiti-cleaning composition
US20120149623A1 (en) * 2010-12-13 2012-06-14 Ecolab Usa Inc. Soil resistant floor cleaner
US20130210692A1 (en) * 2012-02-13 2013-08-15 Basf Se Cleaning composition and method of forming the same

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
Buckley, Jill S., "Evaluation of Reservoir Wettability and its Effect on Oil Recovery," First Annual Report, reporting period: Jul. 1, 1996-Jun. 30, 1997, prepared for U.S. Department of Energy.
Mansoori, G. Ali, "Modeling of Asphaltene and Other Heavy Organic Depositions," Journal of Petroleum Science and Engineering 17 (1997) 101-111.
PCT International Searching Authority/US, International Search Report, mailed Nov. 27, 2015, for PCT/US2015/046923, "Aqueous Cleaning Composition and Method."
PCT International Searching Authority/US, Written Opinion of the International Searching Authority, mailed Nov. 27, 2015, for PCT/US2015/046923, "Aqueous Cleaning Composition and Method."

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10941331B2 (en) * 2014-09-04 2021-03-09 Wellrenew, Llc Aqueous cleaning composition and method

Also Published As

Publication number Publication date
US20190264087A1 (en) 2019-08-29
US20160068741A1 (en) 2016-03-10
US20170088767A1 (en) 2017-03-30
US10941331B2 (en) 2021-03-09
WO2016036555A1 (en) 2016-03-10
US10336934B2 (en) 2019-07-02

Similar Documents

Publication Publication Date Title
US10941331B2 (en) Aqueous cleaning composition and method
EP2721118B1 (en) Method of inhibiting or controlling release of well treatment agent
Mahmoud et al. Removal of pyrite and different types of iron sulfide scales in oil and gas wells without H2S generation
Fink Oil field chemicals
US9353609B2 (en) Method and composition for remedial treatment of parafin, asphaltenes, scale and deposits in oil and gas infrastructure and subterranean formations
JP6028045B2 (en) System and method for inhibiting scale formation in oil wells
US20220332611A1 (en) Methods and compositions for the treatment of produced water
CA2892877A1 (en) Using non-regulated synthetic acid compositions as alternatives to conventional acids in the oil and gas industry
EP1554369A1 (en) Cleaning compositions for oil-gas wells, well lines, casings, equipment, storage tanks, etc., and method of use
Umar et al. Silicate scales formation during ASP flooding: a review
SA515370321B1 (en) Methods and systems for iron control using a phosphinated carboxylic acid polymer
Al Rawahi et al. Studies on scale deposition in oil industries & their control
CA2852705A1 (en) Synthetic acid compositions alternatives to conventional acids for use in the oil and gas industry
Graham et al. Production chemistry issues and solutions associated with chemical EOR
CA2503018A1 (en) Cleaning compositions for oil-gas wells, well lines, casings, equipment, storage tanks, etc., and method of use
US11421143B2 (en) Method for removing iron sulfide and calcium carbonate scale
US10808165B2 (en) Corrosion inhibitor compositions and methods of using same
CN112384645A (en) Novel corrosion inhibitors for various acids
Waka et al. Review of oilfield chemicals used in oil and gas industry
Adegoke et al. Understanding oilfield scale deposition and inhibition mechanisms for optimum management: A review
US20190249075A1 (en) Process of recovering oil
CA2676517C (en) Method of treating flow conduits and vessels with foamed composition
Mahmoud et al. IPTC-18279-MS
Ramanathan Iron Sulfide Scale Removal Using Alternative Dissolvers
Pawar et al. Iron sulfide scale removal: A Environment Friendly Approach.

Legal Events

Date Code Title Description
AS Assignment

Owner name: IDEAL ENERGY SOLUTIONS IP CONTROL, LLC, LOUISIANA

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:TALLEY, CHARLES BULLICK;REEL/FRAME:033687/0057

Effective date: 20140829

STCF Information on status: patent grant

Free format text: PATENTED CASE

AS Assignment

Owner name: WELLRENEW, LLC, LOUISIANA

Free format text: CHANGE OF NAME;ASSIGNOR:IDEAL ENERGY SOLUTIONS IP CONTROL, LLC;REEL/FRAME:049089/0747

Effective date: 20190213

CC Certificate of correction
MAFP Maintenance fee payment

Free format text: PAYMENT OF MAINTENANCE FEE, 4TH YR, SMALL ENTITY (ORIGINAL EVENT CODE: M2551); ENTITY STATUS OF PATENT OWNER: SMALL ENTITY

Year of fee payment: 4

AS Assignment

Owner name: VERABANK, N.A., TEXAS

Free format text: SECURITY INTEREST;ASSIGNOR:IDEAL ENERGY SOLUTIONS IP CONTROL, LLC;REEL/FRAME:062499/0158

Effective date: 20221215