US9545915B2 - Electric vehicle and method of battery set-point control - Google Patents

Electric vehicle and method of battery set-point control Download PDF

Info

Publication number
US9545915B2
US9545915B2 US14/095,018 US201314095018A US9545915B2 US 9545915 B2 US9545915 B2 US 9545915B2 US 201314095018 A US201314095018 A US 201314095018A US 9545915 B2 US9545915 B2 US 9545915B2
Authority
US
United States
Prior art keywords
route
segment
segments
soc
vehicle
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active, expires
Application number
US14/095,018
Other versions
US20140095003A1 (en
Inventor
Anthony Mark Phillips
Georgia-Evangelia Katsargyri
Ming Lang Kuang
Ilya Vladimir Kolmanovsky
John Ottavio Michelini
Munther Abdullah Dahleh
Michael David Rinehart
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ford Global Technologies LLC
Massachusetts Institute of Technology
Original Assignee
Ford Global Technologies LLC
Massachusetts Institute of Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ford Global Technologies LLC, Massachusetts Institute of Technology filed Critical Ford Global Technologies LLC
Priority to US14/095,018 priority Critical patent/US9545915B2/en
Publication of US20140095003A1 publication Critical patent/US20140095003A1/en
Application granted granted Critical
Publication of US9545915B2 publication Critical patent/US9545915B2/en
Active legal-status Critical Current
Adjusted expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W20/00Control systems specially adapted for hybrid vehicles
    • B60W20/10Controlling the power contribution of each of the prime movers to meet required power demand
    • B60W20/12Controlling the power contribution of each of the prime movers to meet required power demand using control strategies taking into account route information
    • B60L11/123
    • B60L11/14
    • B60L11/1816
    • B60L11/1862
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L15/00Methods, circuits, or devices for controlling the traction-motor speed of electrically-propelled vehicles
    • B60L15/20Methods, circuits, or devices for controlling the traction-motor speed of electrically-propelled vehicles for control of the vehicle or its driving motor to achieve a desired performance, e.g. speed, torque, programmed variation of speed
    • B60L15/2045Methods, circuits, or devices for controlling the traction-motor speed of electrically-propelled vehicles for control of the vehicle or its driving motor to achieve a desired performance, e.g. speed, torque, programmed variation of speed for optimising the use of energy
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L50/00Electric propulsion with power supplied within the vehicle
    • B60L50/10Electric propulsion with power supplied within the vehicle using propulsion power supplied by engine-driven generators, e.g. generators driven by combustion engines
    • B60L50/16Electric propulsion with power supplied within the vehicle using propulsion power supplied by engine-driven generators, e.g. generators driven by combustion engines with provision for separate direct mechanical propulsion
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L50/00Electric propulsion with power supplied within the vehicle
    • B60L50/50Electric propulsion with power supplied within the vehicle using propulsion power supplied by batteries or fuel cells
    • B60L50/60Electric propulsion with power supplied within the vehicle using propulsion power supplied by batteries or fuel cells using power supplied by batteries
    • B60L50/61Electric propulsion with power supplied within the vehicle using propulsion power supplied by batteries or fuel cells using power supplied by batteries by batteries charged by engine-driven generators, e.g. series hybrid electric vehicles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L58/00Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles
    • B60L58/10Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries
    • B60L58/12Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries responding to state of charge [SoC]
    • B60L58/13Maintaining the SoC within a determined range
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W20/00Control systems specially adapted for hybrid vehicles
    • B60W20/10Controlling the power contribution of each of the prime movers to meet required power demand
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01CMEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
    • G01C21/00Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00
    • G01C21/26Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00 specially adapted for navigation in a road network
    • G01C21/34Route searching; Route guidance
    • G01C21/3453Special cost functions, i.e. other than distance or default speed limit of road segments
    • G01C21/3469Fuel consumption; Energy use; Emission aspects
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/10Vehicle control parameters
    • B60L2240/12Speed
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/40Drive Train control parameters
    • B60L2240/42Drive Train control parameters related to electric machines
    • B60L2240/421Speed
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/40Drive Train control parameters
    • B60L2240/42Drive Train control parameters related to electric machines
    • B60L2240/423Torque
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/40Drive Train control parameters
    • B60L2240/44Drive Train control parameters related to combustion engines
    • B60L2240/441Speed
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/40Drive Train control parameters
    • B60L2240/44Drive Train control parameters related to combustion engines
    • B60L2240/443Torque
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/60Navigation input
    • B60L2240/64Road conditions
    • B60L2240/642Slope of road
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2260/00Operating Modes
    • B60L2260/40Control modes
    • B60L2260/50Control modes by future state prediction
    • B60L2260/52Control modes by future state prediction drive range estimation, e.g. of estimation of available travel distance
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2260/00Operating Modes
    • B60L2260/40Control modes
    • B60L2260/50Control modes by future state prediction
    • B60L2260/54Energy consumption estimation
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/62Hybrid vehicles
    • Y02T10/6217
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/64Electric machine technologies in electromobility
    • Y02T10/645
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries
    • Y02T10/7005
    • Y02T10/7044
    • Y02T10/705
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/7072Electromobility specific charging systems or methods for batteries, ultracapacitors, supercapacitors or double-layer capacitors
    • Y02T10/7077
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/72Electric energy management in electromobility
    • Y02T10/7283
    • Y02T10/7291
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/80Technologies aiming to reduce greenhouse gasses emissions common to all road transportation technologies
    • Y02T10/84Data processing systems or methods, management, administration
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T90/00Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02T90/10Technologies relating to charging of electric vehicles
    • Y02T90/14Plug-in electric vehicles
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T90/00Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02T90/10Technologies relating to charging of electric vehicles
    • Y02T90/16Information or communication technologies improving the operation of electric vehicles
    • Y02T90/161
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S903/00Hybrid electric vehicles, HEVS
    • Y10S903/902Prime movers comprising electrical and internal combustion motors
    • Y10S903/903Prime movers comprising electrical and internal combustion motors having energy storing means, e.g. battery, capacitor

Definitions

  • the present invention relates to battery set-point control of electric vehicles.
  • a hybrid electric vehicle includes two power sources for delivering power to propel the vehicle.
  • the first power source is an internal combustion engine which consumes fuel and the second power source is a battery which stores and uses electricity.
  • the fuel economy of a hybrid electric vehicle can be improved for a given traveling route or path if the battery usage is adapted for the route or path.
  • the control of a HEV is tied to a route to be traveled in order to reduce fuel consumption and thereby improve fuel economy. Utilizing available route information including road characteristics, vehicle conditions, and traffic conditions, the battery charging and discharging can be optimized for the route.
  • the proliferation of navigation systems and digital maps in modern vehicles can facilitate the application of such path dependent control methods for HEVs.
  • Embodiments of the present invention seek to improve the fuel economy of a HEV for a route to be traveled by optimizing the charging and discharging of the battery depending on the route.
  • a route to be traveled by the vehicle is segmented into a series of route segments. Properties of each route segment such as length, grade, and vehicle speed trajectories or patterns are known or expected.
  • the route is decomposed into the series of route segments such that each node where one route segment ends and where another route segment begins corresponds to the initiation of a significant change in a characteristic(s) of the route.
  • route characteristics include vehicle speed, road grade, presence of stop signs or traffic lights, traffic congestion, and the like.
  • a virtual route based on the remaining portion of the route to be traveled i.e., the original route left-to-go
  • the virtual route has the same total length as the original route left-to-go.
  • the virtual route differs from the original route left-to-go by having a smaller amount of route segments than the original route left-to-go.
  • one of the route segments of the virtual route represents multiple route segments of the original route left-to-go.
  • the battery SoC set-points are optimized in the sense that the fuel consumption of the vehicle in traveling the original route left-to-go will be minimized, taking into account other considerations such as charge sustainment, in response to the battery being controlled in accordance with the battery SoC set-points.
  • the battery SoC set-points may be generated based on one or more properties of the route segments of the virtual route including the virtual route segment that represents multiple segments of the original route left-to-go. The battery is controlled while the vehicle is traveling along the current route segment of the original route left-to-go in accordance with the battery SoC set-point for the first route segment of the virtual route.
  • the virtual route generation and battery SoC set-point optimization are repeated as the vehicle travels along the route and reaches the beginning of each new route segment. For instance, when the vehicle has finished traveling over the current route segment and begins traveling along the next route segment of the original route left-to-go, a second virtual route based on what is now the remaining portion of the actual route is generated. In turn, an optimized sequence of battery SoC set-points for the route segments of the second virtual route is generated. The battery is controlled while the vehicle is traveling along the next route segment (which is now the current route segment) of the updated original route left-to-go with the battery SoC set-point for the first route segment of the second virtual route.
  • embodiments of the present invention are based on a Receding Horizon Control (RHC) algorithm for prescribing battery SoC set-points to the battery of a HEV traveling along a route.
  • RHC Receding Horizon Control
  • the original route left-to-go which perhaps has a relatively large amount of route segments, is replaced by a virtual route having a relatively small amount of route segments.
  • the battery SoC set-point optimization is performed for the virtual route instead of for the original route left-to-go.
  • the battery SoC set-point optimization is performed faster for the virtual route than it would be performed for the original route left-to-go.
  • the first element of the optimized battery SoC sequence for the virtual route is then applied as the battery SoC set-point for the current route segment of the original route left-to-go. That is, the battery of the vehicle is controlled according to the first element of the optimized battery SoC sequence for the virtual route as the vehicle travels along the current route segment of the original route left-to-go.
  • the virtual route generation and battery SoC set-point optimization are repeated for each new (i.e., next) route segment as the vehicle travels along the actual route.
  • a method in an embodiment, includes utilizing navigation data from a navigation system to segment a route to be travelled by a travelling vehicle into segments each having a road grade different than neighboring segments. The method further includes discharging a battery of the vehicle as the vehicle travels along an initial segment of the route according to a state-of-charge (SoC) set-point based on the road grade of the initial segment and a variable representative of the road grades of at least two other segments of the route.
  • SoC state-of-charge
  • this method includes controlling a vehicle travelling along an initial segment of a route, segmented into segments each having a characteristic different than neighboring segments, according to a battery state-of-charge (SoC) set-point based on the characteristic of the initial segment and a variable representative of the characteristics of at least two other segments of the route.
  • SoC battery state-of-charge
  • a system in communication with a navigation system to receive navigation data indicative of a route to be travelled by a vehicle.
  • the controller is configured to utilize the navigation data to segment the route into segments each having a characteristic different than neighboring segments and to control the vehicle as the vehicle travels along an initial segment of the route according to a state-of-charge (SoC) set-point based on the characteristic of the initial segment and a variable representative of the characteristics of at least two other segments of the route.
  • SoC state-of-charge
  • FIG. 1 illustrates a block diagram of a hybrid electric vehicle (HEV) in accordance with embodiments of the present invention
  • FIG. 2 illustrates a block diagram of the input and output configuration of the vehicle system controller of the HEV
  • FIG. 3 illustrates an original route segmented into route segments in accordance with embodiments of the present invention
  • FIG. 4 illustrates state-of-charge (SoC) quantization for the nodes of a segmented route in accordance with battery SoC set-point optimization for the route as a whole;
  • SoC state-of-charge
  • FIG. 5 illustrates a graph of the vehicle speed trajectories for the route segments of a sample route used to quantify potential benefits of path-dependent control in accordance with battery SoC set-point optimization for the sample route as a whole;
  • FIG. 6 illustrates a graph describing operation of a Receding Horizon Control (RHC) algorithm in accordance with embodiments of the present invention.
  • FIG. 1 a schematic representation of a hybrid electric vehicle (HEV) in accordance with embodiments of the present invention is shown.
  • the basic components of the HEV powertrain include an internal combustion engine 16 , an electric battery 12 , a power split device referred to as a planetary gear set 20 , an electric motor 46 , and an electric generator 50 .
  • the HEV powertrain has a power-split configuration. This configuration allows engine 16 to directly drive wheels 40 and at the same time charge battery 12 through generator 50 . Both motor 46 and engine 16 can drive wheels 40 independently.
  • Engine 16 is connected to generator 50 through planetary gear set 20 .
  • Battery 12 is connected to motor 46 and generator 50 .
  • Battery 12 can be recharged or discharged by motor 46 or generator 50 or both.
  • Planetary gear set 20 splits the power produced by engine 16 and transfers one part of the power to drive wheels 40 .
  • Planetary gear set 20 transfers the remaining part of the power to generator 50 in order to either provide electrical power to motor 46 or to recharge battery 12 .
  • Engine 16 can provide mechanical power to wheels 40 and at the same time charge battery 12 through generator 50 .
  • engine 16 , motor 46 (which consumes electric energy stored in battery 12 ), or both can provide power to wheels 40 to propel the vehicle.
  • the vehicle also incorporates a regenerative braking capability to charge battery 12 during vehicle deceleration events. As described, there are several degrees of freedom in this powertrain configuration to satisfy driver requests. This flexibility can be exploited to optimize fuel consumption.
  • a hierarchical vehicle system controller 10 coordinates subsystems in the HEV. Controller 10 is used to capture all possible operating modes and integrate the two power sources, engine 16 and battery 12 , to work together seamlessly and optimally as well as to meet the driver's demand. Controller 10 is configured to send control signals to and receive sensory feedback information from one or more of battery 12 , engine 16 , motor 46 , and generator 50 in order for power to be provided to wheels 40 for propelling the vehicle. Controller 10 controls the power source proportioning between battery 12 and engine 16 to provide power to propel the vehicle. As such, controller 10 controls the charging and discharging of battery 12 and thereby controls the state of charge (SoC) of battery 12 . Inherent to controller 10 is a logical structure to handle various operating modes and a dynamic control strategy associated with each operating mode to specify the vehicle requests to each subsystem. A transmission control module (TCM) 67 transmits the commands of controller 10 to motor 46 and generator 50 .
  • TCM transmission control module
  • controller 10 takes as inputs environmental conditions, the driver's requests, and the current state of the vehicle and provides outputs commands such as torque and speed commands for the powertrain components of the vehicle. The powertrain then follows the commands of controller 10 .
  • controller 10 is extended with additional functionality to optimize fuel consumption.
  • the environmental condition inputs for controller 10 include road length, road grade, and vehicle speed of a route to be traveled by the vehicle.
  • the current state of the vehicle as represented by the SoC of battery 12 is also an input to controller 10 .
  • controller 10 controls the transitions from charging to discharging mode and the durations of charging and discharging periods. Towards this goal, controller 10 generates the battery SoC set-points for the route and tracks the battery SoC in order to realize these charging and discharging transitions that result in fuel efficient travel.
  • battery SoC set-points would be prescribed for every moment of travel along the route.
  • the route is segmented into route segments.
  • a virtual route representing the original route left-to-go is generated each time the vehicle moves from one route segment to the next route segment.
  • Each virtual route contains less route segments than the corresponding original route left-to-go.
  • Battery SoC set-points are prescribed based on each virtual route. The battery is controlled while the vehicle is traveling along each current route segment with the battery SoC set-point for the first route segment of the corresponding virtual route. The segmentation enables controller 10 to accurately track the corresponding battery SoC before the end of a route segment.
  • FIG. 3 illustrates an original route 70 to be traveled segmented into a series of route segments 72 in accordance with embodiments of the present invention.
  • Original route 70 links an origin O to a destination D.
  • original route 70 is known in advance by being predicted, expected, forecasted, driver-specified, etc.
  • original route 70 includes a total of N route segments 72 .
  • the ⁇ i designates the fuel consumed over the ith route segment.
  • Each route segment 72 has a length l i , a road grade g i and a vehicle speed v i .
  • This information for each route segment 72 is available (e.g., known or predicted) in advance of the vehicle traveling along the route segment.
  • the road grade and vehicle speed for each route segment are generally functions of distance and time.
  • the road grade is a deterministic quantity which can be known in advance as a function of distance. With respect to modeling the vehicle speed, it is assumed that a nominal vehicle speed trajectory can be predicted for each route segment, possibly dependent on the characteristics of the route segment and traffic in the route segment.
  • the route segmentation criteria generally relate to substantial changes in characteristics of the route such as the average road grade or the average vehicle speed. Such changes in the road grade may correspond to the beginning or end of a hill. Such changes in the vehicle speed may coincide with the changes in the road class, vehicle deceleration to or acceleration from stop signs or traffic lights, or to traffic conditions.
  • the route segmentation criteria may also relate to the ability of controller 10 to track battery SoC set-points within a route segment. As such, route segments 72 will have different lengths from one another in order to provide more efficient aggregation of the relevant road conditions.
  • a constant average road grade g i can be assumed in each route segment and a varying nominal vehicle speed trajectory v i is considered in each route segment.
  • a representative vehicle speed trajectory (a scenario) may be chosen consistently with a finite set of statistical features (mean, variance, etc.) which are considered to be properties of traffic on a particular route segment or type of driver.
  • the state-of-charge (SoC) of battery 12 is a key dynamic state in the system.
  • SoC i The value of the battery SoC at the beginning of the ith route segment is denoted as SoC i and the value of the battery SoC at the end of the ith route segment is denoted as SoC i+1 .
  • SoC d The value of the battery SoC set-point for the ith route segment is denoted as SoC d (i).
  • Controller 10 controls the battery SoC in the ith route segment in response to the battery SoC set-point SoC d for the ith route segment.
  • E denotes the expected value.
  • the expectation is used in equation 1 because the actual vehicle speed trajectory is generally not deterministic and can deviate from the nominal trajectory (e.g., due to different driver and traffic situations) and hence the fuel consumption is a random variable.
  • the grade, the nominal vehicle speed, and the length of a route segment are deterministic quantities, the vehicle speed trajectory over the route segment is not. Different drivers may produce different vehicle speed profiles while maintaining the same average speed. Even the same driver will not be able to regenerate completely accurately a previously realized vehicle trajectory. Environmental conditions including severe weather and traffic situations and even the personality and mood of the driver may affect the vehicle speed trajectory on trips. Therefore, vehicle speed trajectory is a probabilistic quantity.
  • the corresponding fuel consumption i.e., ⁇ f (g i , v i , l i , SoC i , SoC d (i)) ⁇
  • the expected value i.e., E ⁇ f (g i , v i , l i , SoC i , SoC d (i)) ⁇
  • controller 10 includes a high-level portion which prescribes the battery SoC set-points for the route.
  • the upper-level controller can vary the battery SoC set-point as a function of time. While this may be feasible over a short planning horizon, over longer planning horizons the computational effort may be large.
  • route information may only be available in aggregated/averaged form over a continuous route portion.
  • a route to be traveled is segmented into route segments (as shown in FIG. 3 ) and, as the vehicle travels along the route, battery SoC set-points are prescribed for each route segment.
  • controller 10 includes a lower-level portion which controls power flows within the HEV to satisfy the driver power request and ensure that the battery SoC tracks the specified SoC set-point.
  • the lower-level controller takes as inputs the battery SoC at the beginning of a route segment, the grade of the route segment, the vehicle speed of the route segment, the length of the route segment, and the target battery SoC at the end of the route segment (prescribed by the upper-level controller).
  • the lower-level controller also receives as inputs typical vehicle information such as driver power request, auxiliary power loads, motor speed, engine speed, etc. Based on the inputs, the lower-level controller generates torque and speed commands for the HEV components to ensure tracking of the battery SoC set-point for the route segment.
  • a route segmented in accordance with embodiments of the present invention will likely have route segments of different lengths in order to provide more efficient aggregation of the relevant route conditions.
  • the sequence of battery SoC set-points is generated based on the known properties of the route segments.
  • Controller 10 further has the ability to control the battery SoC in the ith route segment in response to the battery SoC set-point SoC d (i) for the ith route segment.
  • Controller 10 incorporates a control law which is a function of the state vector x(i) with two components: the segment/node i and the state of charge SoC i at that node.
  • the state dynamics are:
  • the state at the current node is x(i).
  • F is a nonlinear function which generates a successor state from the precedent state.
  • SoC d (i) i ⁇ 1, 2, 3, . . . N ⁇ ) are the manipulated variables.
  • SoC min and SoC max are respectively the minimum and maximum SoC limits.
  • J is a stage-additive cost function and the stage cost reflects the expected fuel consumption in each route segment i.
  • SoC d SoC d (x) is the manipulated variable.
  • the vector x f represents the final state, which is the state at the destination.
  • the variable ⁇ (x, SoC d ) denotes the expected fuel consumption for the state x and the battery SoC set-point SoC d .
  • the fuel consumption model may also include a dependence on the driver style (passive or aggressive) which may be inferred on-line from the variance of acceleration pedal input and vehicle speed. Either vehicle measurement data over different roads or the results of vehicle simulations may be used to develop such a fuel consumption model.
  • SoC d For a given battery SoC at the beginning of the ith segment, not all SoC d are feasible, i.e, can be tracked within a tolerance of 0.5 percent before the end of the segment. Such infeasible values of SoC d are eliminated from the optimization by artificially assigning a high value to the fuel consumption. Thus, only battery SoC set-points that can be accurately tracked before the end of each road segment are considered for prescription.
  • the values of battery SoC are quantized.
  • SoC i SoC 1 , SoC 2 , . . . SoC n ⁇ with SoC 1 ⁇ Soc 2 ⁇ . . . ⁇ SoC n
  • every segment i of the route can be associated with n 2 possible pairs of initial SoC and final SoC, i.e., (SoC i , SoC i+1 ), and thus with n 2 possible values for the expected fuel consumption ⁇ as shown in FIG. 4 .
  • FIG. 5 illustrates a graph of the vehicle speed trajectory in each route segment. As illustrated, the vehicle speed trajectory for the entire route includes ramp-like changes and constant vehicle speed intervals.
  • SoC D 50%.
  • the values of SoC min and SoC max were set to 40% and 60%, respectively.
  • Table II below compares the fuel consumption with the battery SoC set-point optimization for the route as a whole (referred to as “whole route optimization”) and the fuel consumption with the battery SoC set-point being maintained at 50% in each route segment (referred to as “No SoC Control”).
  • the fuel consumption (0.32 kg) when the battery is controlled in accordance with the battery SoC set-point whole route optimization is about 13.5% lower than the fuel consumption (0.37 kg) when the battery SoC is maintained constant over the entire route.
  • This fuel consumption reduction benefit is specific to the selected route and the potential benefits of varying battery SoC set-point within the route may be different depending on the route.
  • the prescribed battery SoC set-point sequence is “50-52-50-48-46-46-44-50”.
  • the battery SoC set-point for the 1 st and 8 th nodes i.e., the origin and destination
  • the battery SoC set-points for the 2 nd through 7 th nodes are 52%, 50%, 48%, 46%, 46%, and 44%, respectively.
  • the first issue involves computing effort.
  • the second issue involves dependence on route characteristics which may not be accurately known in advance.
  • the computing effort of the whole route optimization approach depends on the number of states in the model. As described, the model used for optimization had only a single vehicle state (namely, the battery SoC). Hence, computing the optimal control on-line using the whole route optimization approach may be feasible for routes with relatively few route segments. However, the whole route optimization approach may become computationally prohibitive for on-board applications if the route contains relatively many route segments. Since route segmentation is based on changes in road and traffic conditions in accordance with embodiments of the present invention, routes over which optimization needs to be performed may contain a relatively large amount of route segments.
  • the second issue of the whole route optimization approach deals with the fact that although only a prediction of the route with anticipated driving characteristics along the route segments are available, the characteristics of the route actually traveled may turn out to be different. Variability in road and traffic conditions or in the driver's choices may result in such deviations. Therefore, the control policy for the whole route optimization approach has to either be regularly recomputed or corrected to account for these changes.
  • embodiments of the present invention provide a Receding Horizon Control (RHC) optimization approach as an alternative.
  • RHC Receding Horizon Control
  • a general description of the RHC optimization approach is as follows. Assume that a HEV travels along a route L having N segments, where N is relatively large. Suppose the vehicle is currently at the beginning of the kth segment of the route. The remaining part of the route L(k) is the original route left-to-go and has N ⁇ k route segments. That is, the remaining part of the route L(k) is the original route minus the route segments already traveled. A virtual route L′(k) is generated to replace the original route left-to-go. The virtual route has n c +1 route segments, where n c ⁇ N. In the virtual route, each of the n c segments correspond to respective ones of the segments of the original route left-to-go.
  • the (n c +1) segment of the virtual route is a virtual terminal segment.
  • the n c segments of the virtual route are the initial n c segments of the virtual route and are taken from the initial n c segments of the original route left-to-go.
  • first and second segments of the virtual route are the initial two segments of the virtual route and are taken from the first and second segments, respectively, of the original route left-to-go.
  • the (n c +1) segment (i.e., the virtual terminal segment) of the virtual route is the last segment of the virtual route and represents all of the segments of the original route left-to-go following the n c segments of the original route left-to-go.
  • the virtual terminal segment (e.g., the (n c +1) segment of the virtual route) represents, on average, the characteristics of the last N ⁇ k ⁇ n c segments of the original route.
  • the virtual route generation and optimization processes are repeated.
  • the vehicle is at the beginning of the k+1 segment of the route and the original route left-to-go has N ⁇ k ⁇ 1 route segments.
  • a second virtual route having n c +1 route segments is then generated.
  • the virtual terminal segment i.e., the n c +1 segment of the second virtual route
  • n c +1 ⁇ is generated using the optimization approach on the second virtual route.
  • the virtual route generation and optimization processes are repeated as the vehicle progresses to the beginning of subsequent route segments until a route segment corresponding to a sufficiently large value of k is reached for which L(k) consists of just n c +1 route segments (the value k being incremented each time a new current route segment begins). At this point, optimization is solved for this remaining part of the actual route.
  • the three segment route includes the current segment, the next segment, and a virtual third segment.
  • the virtual third segment represents on average the remaining part of the original route (i.e., the original route left-to-go) following the current and next segments.
  • the starting point is with the vehicle at the beginning of the route (i.e., at the beginning of route segment (1)).
  • the original route left-to-go is the original route itself as the vehicle has just started traveling from the beginning of the route.
  • a virtual route having three segments is generated according to the RHC approach.
  • the first and second segments of the virtual route are the first and second segments of the original route, respectively.
  • the third segment of the virtual route is a virtual terminal segment.
  • the virtual terminal segment is characterized by the total length, the average speed, and the average grade of the remaining route segments of the original route (i.e., the 3 th , 4 th , 5 th , 6 th , and 7 th segments of the original route).
  • the virtual terminal segment includes acceleration and deceleration portions from initial to final vehicle speed values (see FIG. 6 ).
  • an optimized sequence of battery SoC set-points is generated using the optimization approach on the three-segment virtual route in order to obtain a battery SoC sequence that minimizes fuel consumption.
  • This optimization results in 50 ⁇ 50 ⁇ 48 ⁇ 50 as the optimal battery SoC sequence (also shown in FIG. 6 ).
  • This sequence suggests that 50% should be used as the battery SoC target on the first segment.
  • the battery SoC is controlled to be maintained at 50% (as the initial battery SoC was 50% at the beginning of the first route segment).
  • the virtual route generation and battery SoC optimization are repeated.
  • This subsequent iteration at the beginning of the next route segment is similar to the initial iteration with the difference being that the route over which optimization is to be performed has changed.
  • the beginning of the original route left-to-go now coincides with the beginning of the second route segment.
  • the original route left-to-go at this point includes the segments 2 through 7 and does not include the first segment as the vehicle is at the beginning of the second segment having already traveled over the first route segment.
  • a second virtual route having three segments is generated.
  • the second virtual route includes the 2 nd and 3 rd segments of the original route and includes a second virtual terminal segment.
  • the second virtual terminal segment is characterized by the total length, the average speed, and the average grade of the remaining route segments of the original route (i.e., the 4 th , 5 th , 6 th , and 7 th segments of the original route).
  • an optimized sequence of battery SoC set-points is generated using the optimization approach on the second virtual route in order to obtain a battery SoC sequence that minimizes fuel consumption.
  • the first element of the optimized battery SoC set-point sequence is set as the battery SoC set-point for the second segment of the route.
  • the route-to-optimize includes the last three segments of the original route and the optimal SoC sequence is simply computed for the route consisting of the last three segments of the original route.
  • RHC Receding Horizon Control
  • Table III summarizes the effect that the RHC and whole route optimization approaches have on fuel consumption.
  • the total fuel consumption is 0.37 kg.
  • the total fuel consumption is 0.33 kg.
  • the whole route optimization approach the total fuel consumption is 0.32 kg.
  • the RHC optimization approach thus achieves a substantial fraction of the benefit of the whole route optimization approach for this particular route.
  • the two methods produce different SoC sequences. This is because at the beginning of each new route segment the RHC optimization approach optimizes the fuel consumption over a virtual route which is an approximation of the route left-to-go. On the other hand, the whole route optimization approach performs a single optimization for the entire route.
  • the RHC optimization approach is computationally faster than the whole route optimization approach.
  • the RHC optimization approach enables on-board optimization for fuel consumption benefits.
  • the RHC optimization approach is able to incorporate changes in the route information during the trip, e.g., changes in traffic information, when re-optimizing the control solution.
  • certain segment characteristics such as grade and distance, can be considered as deterministic quantities, the vehicle speed trajectories of different tripe over the same segment are not. Factors such as weather and traffic conditions or even the personality and mood of the driver may affect the speed trajectory.
  • the ability of the RHC optimization approach to account for these changes while providing a significant fraction of the fuel consumption reduction benefits as compared to the whole route optimization approach is thus beneficial.
  • embodiments of the present invention are directed to a Receding Horizon Control (RHC) optimization approach to path-dependent control of a HEV for reduced fuel consumption.
  • RHC Receding Horizon Control
  • a route with a relatively large amount of segments is replaced by a virtual route having relatively few segments.
  • the segments of the virtual route other than the last segment of the virtual route correspond one-to-one with the initial segments of the original route left-to-go.
  • the last segment of the virtual route is a virtual terminal segment.
  • the virtual terminal segment represents on average all of the last remaining segments of the original route left-to-go.
  • Each segment is characterized by its length, grade, average speed, and possibly other parameters which permit an estimate of the expected fuel consumption over the segment.
  • the optimal battery state-of-charge (SoC) set-point sequence which minimizes the expected fuel consumption, is determined for the virtual route.
  • the first element of the optimal battery SoC set-point sequence for the virtual route is applied for the current segment of the original route left-to-go.
  • the battery SoC optimization is recomputed at the beginning of each segment of the actual route until the end of the route is reached.

Landscapes

  • Engineering & Computer Science (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)
  • Power Engineering (AREA)
  • Remote Sensing (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Automation & Control Theory (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Hybrid Electric Vehicles (AREA)
  • Electric Propulsion And Braking For Vehicles (AREA)

Abstract

A method includes utilizing navigation data from a navigation system to segment a route to be travelled by a travelling vehicle into segments each having a road grade different than neighboring segments. The method further includes discharging a battery of the vehicle as the vehicle travels along an initial segment of the route according to a state-of-charge (SoC) set-point based on the road grade of the initial segment and a variable representative of the road grades of at least two other segments of the route.

Description

CROSS-REFERENCE TO RELATED APPLICATIONS
This application is a continuation of U.S. application Ser. No. 13/176,972, filed Jul. 6, 2011; which claims the benefit of U.S. Provisional Application No. 61/361,948, filed Jul. 7, 2010; the disclosures of which are hereby incorporated by reference herein in their entirety.
TECHNICAL FIELD
The present invention relates to battery set-point control of electric vehicles.
BACKGROUND
A hybrid electric vehicle (HEV) includes two power sources for delivering power to propel the vehicle. Typically, the first power source is an internal combustion engine which consumes fuel and the second power source is a battery which stores and uses electricity.
SUMMARY
The fuel economy of a hybrid electric vehicle (HEV) can be improved for a given traveling route or path if the battery usage is adapted for the route or path. In accordance with embodiments of the present invention, the control of a HEV (including non-plug-in and plug-in HEVs) is tied to a route to be traveled in order to reduce fuel consumption and thereby improve fuel economy. Utilizing available route information including road characteristics, vehicle conditions, and traffic conditions, the battery charging and discharging can be optimized for the route. The proliferation of navigation systems and digital maps in modern vehicles can facilitate the application of such path dependent control methods for HEVs.
Embodiments of the present invention seek to improve the fuel economy of a HEV for a route to be traveled by optimizing the charging and discharging of the battery depending on the route. In accordance with embodiments of the present invention, a route to be traveled by the vehicle is segmented into a series of route segments. Properties of each route segment such as length, grade, and vehicle speed trajectories or patterns are known or expected. To this end, the route is decomposed into the series of route segments such that each node where one route segment ends and where another route segment begins corresponds to the initiation of a significant change in a characteristic(s) of the route. Such route characteristics include vehicle speed, road grade, presence of stop signs or traffic lights, traffic congestion, and the like.
As the vehicle starts traveling from the beginning of a current route segment, a virtual route based on the remaining portion of the route to be traveled (i.e., the original route left-to-go) is generated. The virtual route has the same total length as the original route left-to-go. The virtual route differs from the original route left-to-go by having a smaller amount of route segments than the original route left-to-go. In particular, one of the route segments of the virtual route represents multiple route segments of the original route left-to-go.
An optimized sequence of battery state-of-charge (SoC) set-points for the route segments of the virtual route is generated. The battery SoC set-points are optimized in the sense that the fuel consumption of the vehicle in traveling the original route left-to-go will be minimized, taking into account other considerations such as charge sustainment, in response to the battery being controlled in accordance with the battery SoC set-points. The battery SoC set-points may be generated based on one or more properties of the route segments of the virtual route including the virtual route segment that represents multiple segments of the original route left-to-go. The battery is controlled while the vehicle is traveling along the current route segment of the original route left-to-go in accordance with the battery SoC set-point for the first route segment of the virtual route.
The virtual route generation and battery SoC set-point optimization are repeated as the vehicle travels along the route and reaches the beginning of each new route segment. For instance, when the vehicle has finished traveling over the current route segment and begins traveling along the next route segment of the original route left-to-go, a second virtual route based on what is now the remaining portion of the actual route is generated. In turn, an optimized sequence of battery SoC set-points for the route segments of the second virtual route is generated. The battery is controlled while the vehicle is traveling along the next route segment (which is now the current route segment) of the updated original route left-to-go with the battery SoC set-point for the first route segment of the second virtual route.
As described, embodiments of the present invention are based on a Receding Horizon Control (RHC) algorithm for prescribing battery SoC set-points to the battery of a HEV traveling along a route. As the vehicle travels along the route, the original route left-to-go, which perhaps has a relatively large amount of route segments, is replaced by a virtual route having a relatively small amount of route segments. The battery SoC set-point optimization is performed for the virtual route instead of for the original route left-to-go. As the virtual route has a smaller amount of route segments than the original route left-to-go, the battery SoC set-point optimization is performed faster for the virtual route than it would be performed for the original route left-to-go. The first element of the optimized battery SoC sequence for the virtual route is then applied as the battery SoC set-point for the current route segment of the original route left-to-go. That is, the battery of the vehicle is controlled according to the first element of the optimized battery SoC sequence for the virtual route as the vehicle travels along the current route segment of the original route left-to-go. The virtual route generation and battery SoC set-point optimization are repeated for each new (i.e., next) route segment as the vehicle travels along the actual route.
In an embodiment, a method is provided. The method includes utilizing navigation data from a navigation system to segment a route to be travelled by a travelling vehicle into segments each having a road grade different than neighboring segments. The method further includes discharging a battery of the vehicle as the vehicle travels along an initial segment of the route according to a state-of-charge (SoC) set-point based on the road grade of the initial segment and a variable representative of the road grades of at least two other segments of the route.
In an embodiment, another method is provided. This method includes controlling a vehicle travelling along an initial segment of a route, segmented into segments each having a characteristic different than neighboring segments, according to a battery state-of-charge (SoC) set-point based on the characteristic of the initial segment and a variable representative of the characteristics of at least two other segments of the route.
In an embodiment, a system is provided. The system includes a controller in communication with a navigation system to receive navigation data indicative of a route to be travelled by a vehicle. The controller is configured to utilize the navigation data to segment the route into segments each having a characteristic different than neighboring segments and to control the vehicle as the vehicle travels along an initial segment of the route according to a state-of-charge (SoC) set-point based on the characteristic of the initial segment and a variable representative of the characteristics of at least two other segments of the route.
BRIEF DESCRIPTION OF THE DRAWINGS
FIG. 1 illustrates a block diagram of a hybrid electric vehicle (HEV) in accordance with embodiments of the present invention;
FIG. 2 illustrates a block diagram of the input and output configuration of the vehicle system controller of the HEV;
FIG. 3 illustrates an original route segmented into route segments in accordance with embodiments of the present invention;
FIG. 4 illustrates state-of-charge (SoC) quantization for the nodes of a segmented route in accordance with battery SoC set-point optimization for the route as a whole;
FIG. 5 illustrates a graph of the vehicle speed trajectories for the route segments of a sample route used to quantify potential benefits of path-dependent control in accordance with battery SoC set-point optimization for the sample route as a whole; and
FIG. 6 illustrates a graph describing operation of a Receding Horizon Control (RHC) algorithm in accordance with embodiments of the present invention.
DETAILED DESCRIPTION
Detailed embodiments of the present invention are disclosed herein; however, it is to be understood that the disclosed embodiments are merely exemplary of the present invention that may be embodied in various and alternative forms. The figures are not necessarily to scale some features may be exaggerated or minimized to show details of particular components. Therefore, specific structural and functional details disclosed herein are not to be interpreted as limiting, but merely as a representative basis for teaching one skilled in the art to variously employ the present invention.
Referring now to FIG. 1, a schematic representation of a hybrid electric vehicle (HEV) in accordance with embodiments of the present invention is shown. The basic components of the HEV powertrain include an internal combustion engine 16, an electric battery 12, a power split device referred to as a planetary gear set 20, an electric motor 46, and an electric generator 50. The HEV powertrain has a power-split configuration. This configuration allows engine 16 to directly drive wheels 40 and at the same time charge battery 12 through generator 50. Both motor 46 and engine 16 can drive wheels 40 independently.
Engine 16 is connected to generator 50 through planetary gear set 20. Battery 12 is connected to motor 46 and generator 50. Battery 12 can be recharged or discharged by motor 46 or generator 50 or both. Planetary gear set 20 splits the power produced by engine 16 and transfers one part of the power to drive wheels 40. Planetary gear set 20 transfers the remaining part of the power to generator 50 in order to either provide electrical power to motor 46 or to recharge battery 12.
Engine 16 can provide mechanical power to wheels 40 and at the same time charge battery 12 through generator 50. Depending on the operating conditions, engine 16, motor 46 (which consumes electric energy stored in battery 12), or both can provide power to wheels 40 to propel the vehicle. The vehicle also incorporates a regenerative braking capability to charge battery 12 during vehicle deceleration events. As described, there are several degrees of freedom in this powertrain configuration to satisfy driver requests. This flexibility can be exploited to optimize fuel consumption.
A hierarchical vehicle system controller 10 coordinates subsystems in the HEV. Controller 10 is used to capture all possible operating modes and integrate the two power sources, engine 16 and battery 12, to work together seamlessly and optimally as well as to meet the driver's demand. Controller 10 is configured to send control signals to and receive sensory feedback information from one or more of battery 12, engine 16, motor 46, and generator 50 in order for power to be provided to wheels 40 for propelling the vehicle. Controller 10 controls the power source proportioning between battery 12 and engine 16 to provide power to propel the vehicle. As such, controller 10 controls the charging and discharging of battery 12 and thereby controls the state of charge (SoC) of battery 12. Inherent to controller 10 is a logical structure to handle various operating modes and a dynamic control strategy associated with each operating mode to specify the vehicle requests to each subsystem. A transmission control module (TCM) 67 transmits the commands of controller 10 to motor 46 and generator 50.
As shown in FIG. 2, controller 10 takes as inputs environmental conditions, the driver's requests, and the current state of the vehicle and provides outputs commands such as torque and speed commands for the powertrain components of the vehicle. The powertrain then follows the commands of controller 10.
In order to handle path-dependent control in accordance with embodiments of the present invention, controller 10 is extended with additional functionality to optimize fuel consumption. In particular, the environmental condition inputs for controller 10 include road length, road grade, and vehicle speed of a route to be traveled by the vehicle. The current state of the vehicle as represented by the SoC of battery 12 is also an input to controller 10. In order to improve fuel economy, controller 10 controls the transitions from charging to discharging mode and the durations of charging and discharging periods. Towards this goal, controller 10 generates the battery SoC set-points for the route and tracks the battery SoC in order to realize these charging and discharging transitions that result in fuel efficient travel.
Ideally, battery SoC set-points would be prescribed for every moment of travel along the route. However, to simplify the computations, the route is segmented into route segments. A virtual route representing the original route left-to-go is generated each time the vehicle moves from one route segment to the next route segment. Each virtual route contains less route segments than the corresponding original route left-to-go. Battery SoC set-points are prescribed based on each virtual route. The battery is controlled while the vehicle is traveling along each current route segment with the battery SoC set-point for the first route segment of the corresponding virtual route. The segmentation enables controller 10 to accurately track the corresponding battery SoC before the end of a route segment.
FIG. 3 illustrates an original route 70 to be traveled segmented into a series of route segments 72 in accordance with embodiments of the present invention. Original route 70 links an origin O to a destination D. In accordance with embodiments of the present invention, original route 70 is known in advance by being predicted, expected, forecasted, driver-specified, etc. Original route 70 is segmented into a series of i=1, . . . , N route segments 72 connected to one another. Thus, original route 70 includes a total of N route segments 72. In FIG. 3, the ωi designates the fuel consumed over the ith route segment.
Each route segment 72 has a length li, a road grade gi and a vehicle speed vi. This information for each route segment 72 is available (e.g., known or predicted) in advance of the vehicle traveling along the route segment. The road grade and vehicle speed for each route segment are generally functions of distance and time. The road grade is a deterministic quantity which can be known in advance as a function of distance. With respect to modeling the vehicle speed, it is assumed that a nominal vehicle speed trajectory can be predicted for each route segment, possibly dependent on the characteristics of the route segment and traffic in the route segment.
In accordance with embodiments of the present invention, the route segmentation criteria generally relate to substantial changes in characteristics of the route such as the average road grade or the average vehicle speed. Such changes in the road grade may correspond to the beginning or end of a hill. Such changes in the vehicle speed may coincide with the changes in the road class, vehicle deceleration to or acceleration from stop signs or traffic lights, or to traffic conditions. The route segmentation criteria may also relate to the ability of controller 10 to track battery SoC set-points within a route segment. As such, route segments 72 will have different lengths from one another in order to provide more efficient aggregation of the relevant road conditions.
Consequently, a constant average road grade gi can be assumed in each route segment and a varying nominal vehicle speed trajectory vi is considered in each route segment. Such a representative vehicle speed trajectory (a scenario) may be chosen consistently with a finite set of statistical features (mean, variance, etc.) which are considered to be properties of traffic on a particular route segment or type of driver.
The state-of-charge (SoC) of battery 12 is a key dynamic state in the system. The value of the battery SoC at the beginning of the ith route segment is denoted as SoCi and the value of the battery SoC at the end of the ith route segment is denoted as SoCi+1. The value of the battery SoC set-point for the ith route segment is denoted as SoCd(i). Controller 10 controls the battery SoC in the ith route segment in response to the battery SoC set-point SoCd for the ith route segment.
The expected fuel consumption ωi in the ith route segment is thus a function of gi, vi, li, SoCi, and SoCd(i), i.e.,
ωi(g i ,v i ,l i,SoCi,SOCd(i))=E{f(g i ,v i ,l i,SoCi,SoCd(i))}  (equation 1)
E denotes the expected value. The expectation is used in equation 1 because the actual vehicle speed trajectory is generally not deterministic and can deviate from the nominal trajectory (e.g., due to different driver and traffic situations) and hence the fuel consumption is a random variable. In particular, although the grade, the nominal vehicle speed, and the length of a route segment are deterministic quantities, the vehicle speed trajectory over the route segment is not. Different drivers may produce different vehicle speed profiles while maintaining the same average speed. Even the same driver will not be able to regenerate completely accurately a previously realized vehicle trajectory. Environmental conditions including severe weather and traffic situations and even the personality and mood of the driver may affect the vehicle speed trajectory on trips. Therefore, vehicle speed trajectory is a probabilistic quantity. Consequently, even though a nominal speed on a route segment or a more realistic speed model is given, this information is not sufficient to compute a reliable value for the fuel consumption along a route segment. Thus, a value representative enough for every type of driver and every environmental situation has to be considered for the fuel consumption of a route segment. An appropriate way to satisfy this goal is to consider the expected value of the fuel consumption over multiple probabilistic realizations of vehicle speed. Accordingly, a large amount of speed trajectories around an originally given speed model is generated probabilistically for each route segment. For all of those speed trajectories, the corresponding fuel consumption (i.e., {f (gi, vi, li, SoCi, SoCd(i))}) is computed. The expected value (i.e., E{f (gi, vi, li, SoCi, SoCd(i))}) of those fuel consumptions is the representative fuel consumption of the route segment that will be provided as an optimization algorithm input as described herein.
As indicated above, controller 10 includes a high-level portion which prescribes the battery SoC set-points for the route. The upper-level controller can vary the battery SoC set-point as a function of time. While this may be feasible over a short planning horizon, over longer planning horizons the computational effort may be large. Furthermore, route information may only be available in aggregated/averaged form over a continuous route portion. Thus, in accordance with embodiments of the present invention, a route to be traveled is segmented into route segments (as shown in FIG. 3) and, as the vehicle travels along the route, battery SoC set-points are prescribed for each route segment.
As further indicated above, controller 10 includes a lower-level portion which controls power flows within the HEV to satisfy the driver power request and ensure that the battery SoC tracks the specified SoC set-point. The lower-level controller takes as inputs the battery SoC at the beginning of a route segment, the grade of the route segment, the vehicle speed of the route segment, the length of the route segment, and the target battery SoC at the end of the route segment (prescribed by the upper-level controller). Of course, the lower-level controller also receives as inputs typical vehicle information such as driver power request, auxiliary power loads, motor speed, engine speed, etc. Based on the inputs, the lower-level controller generates torque and speed commands for the HEV components to ensure tracking of the battery SoC set-point for the route segment. As indicated, a route segmented in accordance with embodiments of the present invention will likely have route segments of different lengths in order to provide more efficient aggregation of the relevant route conditions.
As indicated above, for a route segmented into N route segments with certain properties of each route segment being known, controller 10 has the ability to prescribe a sequence of battery SoC set-points {SoCd(i), i=1, . . . , N} for the route to minimize the total fuel consumption. The sequence of battery SoC set-points is generated based on the known properties of the route segments. Controller 10 further has the ability to control the battery SoC in the ith route segment in response to the battery SoC set-point SoCd(i) for the ith route segment.
Let i be the current node and the beginning of the ith route segment, i=1, 2, . . . , N+1, where i=1 and i=N+1 represent, respectively, the origin and destination nodes of the route. Controller 10 incorporates a control law which is a function of the state vector x(i) with two components: the segment/node i and the state of charge SoCi at that node. The state dynamics are:
x ( i + 1 ) = F ( x ( i ) , SoC d ( i ) ) , and x ( i ) = ( i SoCi ) . ( equation 2 )
The state at the current node is x(i). F is a nonlinear function which generates a successor state from the precedent state.
The objective of minimizing the total fuel consumption along the route can be formulated as follows:
min J[SoCd(i)]=Σi=1 Nωi  (equation 3)
subject to SoCmin≦SoCi+1≦SoCmax and subject to SoCN+1=SoCD.
J is the objective function of the optimization problem. SoCd(i) (iε{1, 2, 3, . . . N}) are the manipulated variables. SoCmin and SoCmax are respectively the minimum and maximum SoC limits. J is a stage-additive cost function and the stage cost reflects the expected fuel consumption in each route segment i. The constraint SoCN+1=SoCD is an optional constraint to match the battery SoC to the desired battery SoC value at the end of the route. The choice SoCD=SoCO ensures that the battery charge is sustained over the route.
The optimization algorithm employed by controller 10 translates the property of any final part of an optimal trajectory to be optimal with respect to its initial state into a computational procedure in which the cost-to-go function J*(x) can be recursively computed and satisfies the following relationships:
J*(x)=min[SoCd ]{J*(F(x,SoCd))+ω(x,SoCd)},and  (equation 4)
J*(x f)=0.  (equation 5)
J* is the value function in the optimization problem. SoCd=SoCd(x) is the manipulated variable. x=[i, SoC]T is the state vector with the elements being the route segment number i, i=1, . . . , N and the battery SoC at the beginning of the segment. The vector xf represents the final state, which is the state at the destination. F is a nonlinear state transition function, which generates the next state from the precedent one. If the battery set-point SoCd is feasible, then for x=[i, SoC]T it follows that F(x, SoCd)=[i+1, SoCd]T. The variable ω(x, SoCd) denotes the expected fuel consumption for the state x and the battery SoC set-point SoCd.
For on-line implementation, a regression model may be used to estimate the expected fuel consumption ω(x, SoCd) as a function of battery SoC=x(2) at the beginning of the segment, battery SoC set-point SoCd within the segment, and i=x(l)th segment properties (grade, length, features of vehicle speed trajectory such as average, maximum, and minimum speeds and accelerations, etc.). The fuel consumption model may also include a dependence on the driver style (passive or aggressive) which may be inferred on-line from the variance of acceleration pedal input and vehicle speed. Either vehicle measurement data over different roads or the results of vehicle simulations may be used to develop such a fuel consumption model.
For a given battery SoC at the beginning of the ith segment, not all SoCd are feasible, i.e, can be tracked within a tolerance of 0.5 percent before the end of the segment. Such infeasible values of SoCd are eliminated from the optimization by artificially assigning a high value to the fuel consumption. Thus, only battery SoC set-points that can be accurately tracked before the end of each road segment are considered for prescription.
Given that battery SoC is a continuously-valued quantity, for the numeral implementation of the optimization, the values of battery SoC are quantized. With a quantization of the form SoCiε{SoC1, SoC2, . . . SoCn} with SoC1≦Soc2≦ . . . ≦SoCn, every segment i of the route can be associated with n2 possible pairs of initial SoC and final SoC, i.e., (SoCi, SoCi+1), and thus with n2 possible values for the expected fuel consumption ω as shown in FIG. 4.
A case study of the battery SoC set-point optimization for a route as a whole will now be described. A sample route was segmented into seven route segments (i.e., N=7). The route is assumed to have zero road grade. Length information for each route segment and the vehicle speed trajectory in each route segment were assumed to be available and known in advance. Table I below indicates the length and road grade of each route segment. FIG. 5 illustrates a graph of the vehicle speed trajectory in each route segment. As illustrated, the vehicle speed trajectory for the entire route includes ramp-like changes and constant vehicle speed intervals.
TABLE I
Segment
1 2 3 4 5 6 7
Length 0.87 0.68 0.74 0.98 1.02 0.59 0.42
(miles)
Grade (%) 0 0 0 0 0 0 0
The battery SoC at the route origin (i.e., at the beginning of route segment (1)) is SoCO=50%. To sustain the charge in battery 12, the desired battery SoC at the route destination (i.e., at the end of route segment (7)) is SoCD=50%. The values of SoCmin and SoCmax were set to 40% and 60%, respectively.
Table II below compares the fuel consumption with the battery SoC set-point optimization for the route as a whole (referred to as “whole route optimization”) and the fuel consumption with the battery SoC set-point being maintained at 50% in each route segment (referred to as “No SoC Control”). The fuel consumption (0.32 kg) when the battery is controlled in accordance with the battery SoC set-point whole route optimization is about 13.5% lower than the fuel consumption (0.37 kg) when the battery SoC is maintained constant over the entire route. This fuel consumption reduction benefit is specific to the selected route and the potential benefits of varying battery SoC set-point within the route may be different depending on the route.
As further indicated in Table II, the prescribed battery SoC set-point sequence is “50-52-50-48-46-46-44-50”. As such, the battery SoC set-point for the 1st and 8th nodes (i.e., the origin and destination) is 50%. The battery SoC set-points for the 2nd through 7th nodes are 52%, 50%, 48%, 46%, 46%, and 44%, respectively.
TABLE II
Total Fuel
FUEL SAVINGS 13.5% Consumption (kg) SoCd sequence (%)
No SoC control 0.37 50-50-50-50-50-50-50-50
whole route optimization 0.32 50-52-50-48-46-46-44-50
The battery SoC set-point whole route optimization approach (i.e., a single prescription of a sequence of battery SoC set-points for a route segmented into N route segments {SoCd(i), i=1, . . . , N} with the battery SoC in the ith route segment to be controlled pursuant to the battery SoC set-point SoCd(i) for the ith route segment) is helpful in delineating potential benefits of adjusting battery SoC set-points according to the route being traveled. In implementing the whole route optimization approach, two issues need to be considered. The first issue involves computing effort. The second issue involves dependence on route characteristics which may not be accurately known in advance.
The computing effort of the whole route optimization approach depends on the number of states in the model. As described, the model used for optimization had only a single vehicle state (namely, the battery SoC). Hence, computing the optimal control on-line using the whole route optimization approach may be feasible for routes with relatively few route segments. However, the whole route optimization approach may become computationally prohibitive for on-board applications if the route contains relatively many route segments. Since route segmentation is based on changes in road and traffic conditions in accordance with embodiments of the present invention, routes over which optimization needs to be performed may contain a relatively large amount of route segments.
The second issue of the whole route optimization approach deals with the fact that although only a prediction of the route with anticipated driving characteristics along the route segments are available, the characteristics of the route actually traveled may turn out to be different. Variability in road and traffic conditions or in the driver's choices may result in such deviations. Therefore, the control policy for the whole route optimization approach has to either be regularly recomputed or corrected to account for these changes.
In order to address the noted issues of the whole route optimization approach, embodiments of the present invention provide a Receding Horizon Control (RHC) optimization approach as an alternative.
A general description of the RHC optimization approach is as follows. Assume that a HEV travels along a route L having N segments, where N is relatively large. Suppose the vehicle is currently at the beginning of the kth segment of the route. The remaining part of the route L(k) is the original route left-to-go and has N−k route segments. That is, the remaining part of the route L(k) is the original route minus the route segments already traveled. A virtual route L′(k) is generated to replace the original route left-to-go. The virtual route has nc+1 route segments, where nc<<N. In the virtual route, each of the nc segments correspond to respective ones of the segments of the original route left-to-go. The (nc+1) segment of the virtual route is a virtual terminal segment. In particular, the nc segments of the virtual route are the initial nc segments of the virtual route and are taken from the initial nc segments of the original route left-to-go. For instance, if nc=2, then first and second segments of the virtual route are the initial two segments of the virtual route and are taken from the first and second segments, respectively, of the original route left-to-go. The (nc+1) segment (i.e., the virtual terminal segment) of the virtual route is the last segment of the virtual route and represents all of the segments of the original route left-to-go following the nc segments of the original route left-to-go. The virtual terminal segment (e.g., the (nc+1) segment of the virtual route) represents, on average, the characteristics of the last N−k−nc segments of the original route.
After the virtual route L′(k) is generated, an optimized sequence of battery SoC set-points {SoC*d(l), l=1, 2, . . . , nc+1} is generated using the optimization approach on the virtual route L′(k). That is, the optimization is done for a virtual route containing only nc+1 route segments as opposed to being done for the original route left-to-go containing N−k route segments (and as opposed to being done for the route as a whole containing N route segments). As a result, the optimization may be performed relatively fast and in an on-board manner as there are relatively few route segments involved in the optimization computations. After the optimization for the virtual route L′(k) is completed, the assignment SOCd(k)=SoC*d(l) is made (i.e., the battery SoC set-point for the kth segment of the actual route is assigned to be the battery SoC set-point for the first segment of the virtual route).
Again, recall that the vehicle is currently at the beginning of the kth segment of the route. Once the vehicle progresses to the beginning of the next route segment (i.e., the (k+1) route segment), the virtual route generation and optimization processes are repeated. At this point, the vehicle is at the beginning of the k+1 segment of the route and the original route left-to-go has N−k−1 route segments. A second virtual route having nc+1 route segments is then generated. The virtual terminal segment (i.e., the nc+1 segment of the second virtual route) represents, on average, the characteristics of the omitted N−k−1−nc segments of the original route. An optimized sequence of battery SoC set-points {SoC*d(l), l=1, 2, . . . , nc+1} is generated using the optimization approach on the second virtual route. The assignment SOCd(k)=SoC*d(l) is then made (i.e., the battery SoC set-point for the k+1 segment of the actual route is assigned to be the battery SoC set-point for the first segment of the second virtual route).
The virtual route generation and optimization processes are repeated as the vehicle progresses to the beginning of subsequent route segments until a route segment corresponding to a sufficiently large value of k is reached for which L(k) consists of just nc+1 route segments (the value k being incremented each time a new current route segment begins). At this point, optimization is solved for this remaining part of the actual route.
With the Receding Horizon Control (RHC) approach, optimization is performed over a route with nc+1 segments and thus requires significantly less computing time and effort compared with whole route optimization (assuming nc<<N). Further, with the RHC approach, characteristic changes of the route being traveled can be accounted for as a result of the optimization being repeated at the beginning of new route segments.
With reference to FIG. 6, an example of the RHC approach will be described. This example uses the same sample route described above with reference to FIG. 5. As described, the sample route is segmented into N=7 route segments. In this application of the RHC approach, the horizon (nc) is chosen to be two segments (e.g., nc=2). Thus, a three segment route is considered and optimized at each step of the approach. The three segment route includes the current segment, the next segment, and a virtual third segment. The virtual third segment represents on average the remaining part of the original route (i.e., the original route left-to-go) following the current and next segments.
The starting point is with the vehicle at the beginning of the route (i.e., at the beginning of route segment (1)). At this point, the original route left-to-go is the original route itself as the vehicle has just started traveling from the beginning of the route. A virtual route having three segments is generated according to the RHC approach. The first and second segments of the virtual route are the first and second segments of the original route, respectively. The third segment of the virtual route is a virtual terminal segment. The virtual terminal segment is characterized by the total length, the average speed, and the average grade of the remaining route segments of the original route (i.e., the 3th, 4th, 5th, 6th, and 7th segments of the original route). The virtual terminal segment includes acceleration and deceleration portions from initial to final vehicle speed values (see FIG. 6).
Next, according to the RHC approach, an optimized sequence of battery SoC set-points is generated using the optimization approach on the three-segment virtual route in order to obtain a battery SoC sequence that minimizes fuel consumption. This optimization results in 50→50→48→50 as the optimal battery SoC sequence (also shown in FIG. 6). This sequence suggests that 50% should be used as the battery SoC target on the first segment. Thus, the battery SoC is controlled to be maintained at 50% (as the initial battery SoC was 50% at the beginning of the first route segment). When the vehicle arrives at the beginning of the next route segment (i.e., the second route segment), the virtual route generation and battery SoC optimization are repeated.
This subsequent iteration at the beginning of the next route segment is similar to the initial iteration with the difference being that the route over which optimization is to be performed has changed. In particular, the beginning of the original route left-to-go now coincides with the beginning of the second route segment. The original route left-to-go at this point includes the segments 2 through 7 and does not include the first segment as the vehicle is at the beginning of the second segment having already traveled over the first route segment. A second virtual route having three segments is generated. The second virtual route includes the 2nd and 3rd segments of the original route and includes a second virtual terminal segment. The second virtual terminal segment is characterized by the total length, the average speed, and the average grade of the remaining route segments of the original route (i.e., the 4th, 5th, 6th, and 7th segments of the original route). Next, an optimized sequence of battery SoC set-points is generated using the optimization approach on the second virtual route in order to obtain a battery SoC sequence that minimizes fuel consumption. The first element of the optimized battery SoC set-point sequence is set as the battery SoC set-point for the second segment of the route.
The procedure continues until the final iteration is reached where the vehicle has to travel just three segments until reaching the destination. At this point, the route-to-optimize includes the last three segments of the original route and the optimal SoC sequence is simply computed for the route consisting of the last three segments of the original route.
A case study of the Receding Horizon Control (RHC) approach in accordance with embodiments of the present invention will now be described. This study illustrates the results of the RHC approach and presents a comparison with the battery SoC optimization for a route as a whole approach (“whole route optimization”). This study uses the same sample route described with reference to FIG. 5. Again, the grade of the entire route is zero and the SoC at the origin and destination is set to be 50%.
Table III summarizes the effect that the RHC and whole route optimization approaches have on fuel consumption. When the battery SoC set-point is not varied the total fuel consumption is 0.37 kg. With the RHC optimization approach the total fuel consumption is 0.33 kg. With the whole route optimization approach the total fuel consumption is 0.32 kg. The RHC optimization approach thus achieves a substantial fraction of the benefit of the whole route optimization approach for this particular route.
TABLE III
Fuel Fuel Savings
Consumption SoCd sequence (%) (%)
No SoC control 0.37 50-50-50-50-50-50-50-50 0
RHC optimization 0.33 50-50-48-52-50-50-44-50 10.8
whole route 0.32 50-52-50-48-46-46-44-50 13.5
optimization
As shown in Table III, the two methods (RHC and whole route optimization) produce different SoC sequences. This is because at the beginning of each new route segment the RHC optimization approach optimizes the fuel consumption over a virtual route which is an approximation of the route left-to-go. On the other hand, the whole route optimization approach performs a single optimization for the entire route.
Another case study of the RHC optimization approach in accordance with embodiments of the present invention will now be described. In this study, the same sample route is used again. However, a grade of 1% is inserted at the fourth segment and a grade of −1% is inserted at the sixth segment. The rest of the sample route characteristics remain unchanged. Table IV summarizes the improvement of fuel economy that RHC and whole route optimization have on fuel consumption when the grade is not zero along the entire route. When the battery SoC set-point is not varied the total fuel consumption is 0.37 kg. As such, although the grade of the route has changed, the total fuel consumption has not. This can be explained as the average grade of the entire route is slightly positive, but still very close to zero. With the RHC optimization approach the total fuel consumption has increased to 0.34 kg. With the whole route optimization approach the total fuel consumption has increased to 0.33 kg. These results indicate that the RHC optimization approach is able to reduce fuel consumption and attain a significant fraction of the achievable benefit given by the whole route optimization approach.
TABLE IV
Fuel
Total fuel Savings
consumption kg SoCd (%) (%)
No SoC control 0.37 50-50-50-50-50-50-50-50 0
RHC optimization 0.34 50-50-48-54-52-46-44-50 8.1
whole route 0.33 50-52-50-54-48-48-44-50 10.8
ptimization
As described, the RHC optimization approach is computationally faster than the whole route optimization approach. The RHC optimization approach enables on-board optimization for fuel consumption benefits. The RHC optimization approach is able to incorporate changes in the route information during the trip, e.g., changes in traffic information, when re-optimizing the control solution. Although certain segment characteristics, such as grade and distance, can be considered as deterministic quantities, the vehicle speed trajectories of different tripe over the same segment are not. Factors such as weather and traffic conditions or even the personality and mood of the driver may affect the speed trajectory. The ability of the RHC optimization approach to account for these changes while providing a significant fraction of the fuel consumption reduction benefits as compared to the whole route optimization approach is thus beneficial.
As described, embodiments of the present invention are directed to a Receding Horizon Control (RHC) optimization approach to path-dependent control of a HEV for reduced fuel consumption. In the RHC optimization approach, a route with a relatively large amount of segments is replaced by a virtual route having relatively few segments. The segments of the virtual route other than the last segment of the virtual route correspond one-to-one with the initial segments of the original route left-to-go. The last segment of the virtual route is a virtual terminal segment. The virtual terminal segment represents on average all of the last remaining segments of the original route left-to-go. Each segment is characterized by its length, grade, average speed, and possibly other parameters which permit an estimate of the expected fuel consumption over the segment. The optimal battery state-of-charge (SoC) set-point sequence, which minimizes the expected fuel consumption, is determined for the virtual route. The first element of the optimal battery SoC set-point sequence for the virtual route is applied for the current segment of the original route left-to-go. During travel along the route, the battery SoC optimization is recomputed at the beginning of each segment of the actual route until the end of the route is reached.
While exemplary embodiments are described above, it is not intended that these embodiments describe all possible forms of the present invention. Rather, the words used in the specification are words of description rather than limitation, and it is understood that various changes may be made without departing from the spirit and scope of the present invention. Additionally, the features of various implementing embodiments may be combined to form further embodiments of the present invention.

Claims (12)

What is claimed is:
1. A method comprising:
utilizing navigation data from a navigation system to segment a route to be travelled by a travelling vehicle into segments each having a road grade different than neighboring segments;
discharging a battery of the vehicle, as the vehicle travels along an initial segment of the route, according to a state-of-charge (SoC) set-point from a sequence of SoC set-points for respective segments of a simpler version of the route having the initial segment, a single segment representing the last two or more segments of the route, and any remaining segments of the route, the set-point for the initial segment depending on the set-point for the single segment representing the last two or more segments of the route as the sequence is prescribed to minimize fuel consumption for the simpler version taking into account the road grade of the initial segment and a variable representative of the road grades of the last two or more segments of the route.
2. The method of claim 1 wherein:
the variable representative of the characteristics of the last two or more segments of the route is an average of the characteristics of the last two or more segments of the route.
3. The method of claim 1 further comprising:
discharging the battery, as the vehicle travels along a next segment of the route after the initial segment, according to a next battery SoC set-point from a next sequence of SoC set-points for respective segments of a next simpler version of the route lacking the initial segment and having the next segment and a single segment representing the last two or more segments of the route other than the initial and next segments, the next sequence being prescribed to minimize fuel consumption for the next simpler version taking into account the road grade of the next segment and a variable representative of the road grades of the last two or more segments of the route other than the initial and next segments.
4. A method comprising:
controlling a vehicle travelling along an initial segment of a route, segmented into segments having characteristics different than neighboring segments, according to a battery state-of-charge (SoC) set-point from a sequence of SoC set-points for respective segments of a simpler version of the route having the initial segment and one segment representing two or more last segments of the route, the set-points dependent on another in minimizing fuel consumption for the simpler version.
5. The method of claim 4 further comprising:
utilizing navigation data from a navigation system to segment the route into the segments each having a characteristic different than neighboring segments while the vehicle is traveling prior to the vehicle traveling along the initial segment of the route.
6. The method of claim 5 wherein:
the navigation data is indicative of road grade along the route such that the characteristic of each segment pertains to road grade with each segment being associated with a different road grade than neighboring segments.
7. The method of claim 5 wherein:
the navigation data is indicative of vehicle speed along the route such that the characteristic of each segment pertains to vehicle speed with each segment being associated with a different vehicle speed than neighboring segments.
8. The method of claim 5 wherein:
the navigation data is indicative of traffic congestion along the route such that the characteristic of each segment pertains to traffic congestion with each segment being associated with a different traffic congestion than neighboring segments.
9. The method of claim 4 further comprising:
controlling the vehicle as the vehicle travels along a next segment of the route after the initial segment according to a battery SoC set-point from a next sequence of SoC set-points for respective segments of a next simpler version of the route lacking the initial segment and having the next segment and the one segment representing two or more last segments of the route, the next sequence of set-points dependent on another in minimizing fuel consumption for the next simpler version.
10. The method of claim 4 wherein:
the characteristic of each segment pertains to vehicle speed and road grade such that each segment is associated with at least a different one of vehicle speed and road grade than neighboring segments.
11. A system comprising:
a controller in communication with a navigation system to receive navigation data indicative of a route to be travelled by a vehicle, the controller being configured to utilize the navigation data to segment the route into segments each having a characteristic different than neighboring segments and to control the vehicle as the vehicle travels along an initial segment of the route according to a state-of-charge (SoC) set-point from a sequence of SoC set-points for respective segments of a simpler version of the route having the initial segment, a single segment representing the last two or more segments of the route, and any remaining segments of the route, the set-point for the initial segment dependent on the set-point for the single segment representing the last two or more segments of the route as the sequence is prescribed to minimize fuel consumption for the simpler version taking into account the characteristic of the initial segment and a variable representative of the characteristics of the last two or more segments of the route.
12. The system of claim 11 wherein:
the variable representative of the characteristics of the last two or more segments of the route is an average of the characteristics of the last two or more segments of the route.
US14/095,018 2010-07-07 2013-12-03 Electric vehicle and method of battery set-point control Active 2031-12-09 US9545915B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US14/095,018 US9545915B2 (en) 2010-07-07 2013-12-03 Electric vehicle and method of battery set-point control

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US36194810P 2010-07-07 2010-07-07
US13/176,972 US8612077B2 (en) 2010-07-07 2011-07-06 Hybrid electric vehicle and method of path dependent receding horizon control
US14/095,018 US9545915B2 (en) 2010-07-07 2013-12-03 Electric vehicle and method of battery set-point control

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
US13/176,972 Continuation US8612077B2 (en) 2010-07-07 2011-07-06 Hybrid electric vehicle and method of path dependent receding horizon control

Publications (2)

Publication Number Publication Date
US20140095003A1 US20140095003A1 (en) 2014-04-03
US9545915B2 true US9545915B2 (en) 2017-01-17

Family

ID=45439166

Family Applications (2)

Application Number Title Priority Date Filing Date
US13/176,972 Active 2031-11-30 US8612077B2 (en) 2010-07-07 2011-07-06 Hybrid electric vehicle and method of path dependent receding horizon control
US14/095,018 Active 2031-12-09 US9545915B2 (en) 2010-07-07 2013-12-03 Electric vehicle and method of battery set-point control

Family Applications Before (1)

Application Number Title Priority Date Filing Date
US13/176,972 Active 2031-11-30 US8612077B2 (en) 2010-07-07 2011-07-06 Hybrid electric vehicle and method of path dependent receding horizon control

Country Status (1)

Country Link
US (2) US8612077B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11325580B2 (en) 2019-08-12 2022-05-10 Robert Bosch Gmbh Hybrid vehicle transmission control using driver statistics
US20220176939A1 (en) * 2020-12-08 2022-06-09 Ford Global Technologies, Llc Electrified vehicle control with dynamic segment-based distance-to-empty (dte)
US11535235B2 (en) * 2019-12-20 2022-12-27 Robert Bosch Gmbh Simplified control for optimized hybrid vehicle powertrain operation

Families Citing this family (42)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8612077B2 (en) 2010-07-07 2013-12-17 Massachusetts Institute Of Technology Hybrid electric vehicle and method of path dependent receding horizon control
JP5589650B2 (en) * 2010-07-30 2014-09-17 日産自動車株式会社 Information providing apparatus and information providing method
GB201100841D0 (en) 2011-01-18 2011-08-17 Bae Systems Plc Trajectory planning
GB201100843D0 (en) * 2011-01-18 2011-08-17 Bae Systems Plc Trajectory planning
GB201100844D0 (en) 2011-01-18 2011-08-17 Bae Systems Plc Trajectory planning
GB201100840D0 (en) 2011-01-18 2011-08-17 Bae Systems Plc Trajectory planning
KR101294087B1 (en) * 2011-12-09 2013-08-08 기아자동차주식회사 Eco Driving Driver Feedback System For Electric Vehicle And Feedback Method Threreof
FR2984570B1 (en) * 2011-12-14 2015-09-04 Renault Sa POWER MANAGEMENT METHOD FOR AN ELECTRIC VEHICLE
US8606513B2 (en) * 2011-12-21 2013-12-10 Fujitsu Limited Method and system for power management in a hybrid electric vehicle
US9248836B2 (en) * 2011-12-22 2016-02-02 Scania Cv Ab Method and module for determining of at least one reference value
FR2988060B1 (en) * 2012-03-15 2016-05-06 Renault Sa METHOD FOR ENERGY MANAGEMENT OF AN ELECTRIC VEHICLE
US9669828B2 (en) 2012-06-01 2017-06-06 Toyota Motor Engineering & Manufacturing North America, Inc. Cooperative driving and collision avoidance by distributed receding horizon control
KR20130136781A (en) * 2012-06-05 2013-12-13 현대자동차주식회사 Method for decision of eco-route using soc consumption ratio
GB201211848D0 (en) * 2012-07-02 2012-08-15 Imp Innovations Ltd A parallel drive train for a hybrid electric vehicle and a method of operating such a drive train
FR2993213B1 (en) * 2012-07-12 2015-10-23 Commissariat Energie Atomique METHOD FOR MANAGING ENERGY CONSUMED BY A MOTOR VEHICLE AND SYSTEM IMPLEMENTING SAID METHOD
US9296301B2 (en) * 2012-11-24 2016-03-29 Ford Global Technologies, Llc Environment-aware regenerative braking energy calculation method
US10088316B2 (en) 2012-11-28 2018-10-02 Toyota Motor Engineering & Manufacturing North America, Inc. Navigation systems and vehicles for predicting routes
US9266529B2 (en) 2013-03-05 2016-02-23 Toyota Motor Engineering & Manufacturing North America, Inc. Known route HV control compensation
HUP1300488A2 (en) * 2013-08-15 2015-03-02 Gps Tuner Kft Method for monitoring and navigating electric vehicles on a navigated route
KR20150070881A (en) * 2013-12-17 2015-06-25 현대자동차주식회사 Driving mode recommendation system based on customer characteristic information and environment information, and Method thereof
DE102014201062A1 (en) * 2014-01-22 2015-07-23 Robert Bosch Gmbh Method for controlling a speed
JP6136976B2 (en) 2014-02-24 2017-05-31 トヨタ自動車株式会社 Movement support device, movement support method, and driving support system
JP2015168402A (en) * 2014-03-11 2015-09-28 三菱電機株式会社 Vehicle energy management device
US9696782B2 (en) 2015-02-09 2017-07-04 Microsoft Technology Licensing, Llc Battery parameter-based power management for suppressing power spikes
US9643512B2 (en) * 2015-02-17 2017-05-09 Ford Global Technologies, Llc Vehicle battery charge preparation for post-drive cycle power generation
US10158148B2 (en) 2015-02-18 2018-12-18 Microsoft Technology Licensing, Llc Dynamically changing internal state of a battery
US9748765B2 (en) 2015-02-26 2017-08-29 Microsoft Technology Licensing, Llc Load allocation for multi-battery devices
JP6135698B2 (en) * 2015-03-04 2017-05-31 トヨタ自動車株式会社 Information processing apparatus for vehicle
US9637111B2 (en) 2015-06-09 2017-05-02 Mitsubishi Electric Research Laboratories, Inc. Method and system for selecting power sources in hybrid electric vehicles
US10065634B2 (en) * 2015-06-10 2018-09-04 Nissan Motor Co., Ltd. Energy management control device for hybrid vehicle
US9939862B2 (en) 2015-11-13 2018-04-10 Microsoft Technology Licensing, Llc Latency-based energy storage device selection
US10061366B2 (en) 2015-11-17 2018-08-28 Microsoft Technology Licensing, Llc Schedule-based energy storage device selection
US9793570B2 (en) 2015-12-04 2017-10-17 Microsoft Technology Licensing, Llc Shared electrode battery
JP6436071B2 (en) * 2015-12-07 2018-12-12 株式会社デンソー Vehicle control device
DE102017102222A1 (en) 2017-02-06 2017-03-23 FEV Europe GmbH Method for optimizing fuel consumption of a hybrid motor vehicle
US10693401B2 (en) * 2017-05-22 2020-06-23 Ford Global Technoiogies, LLC Electrified vehicle off-board load power management
CN111076737A (en) * 2018-10-18 2020-04-28 通用汽车环球科技运作有限责任公司 Route determination method and system based on vehicle and propulsion system characteristics
US11117475B2 (en) 2018-10-22 2021-09-14 Woven Planet North America, Inc. Systems and methods for efficient vehicle control
JP7176376B2 (en) * 2018-11-30 2022-11-22 トヨタ自動車株式会社 vehicle controller
CN111731262A (en) * 2020-06-10 2020-10-02 南京航空航天大学 Variable time domain model prediction energy management method for plug-in hybrid electric vehicle
US11897447B2 (en) * 2020-12-01 2024-02-13 Ford Global Technologies, Llc Iterative sequential velocity and state of charge setpoint selection for autonomous vehicles
CN113326973B (en) * 2021-05-06 2024-08-02 清华大学 Control method of portable energy storage system PESS

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6487477B1 (en) 2001-05-09 2002-11-26 Ford Global Technologies, Inc. Strategy to use an on-board navigation system for electric and hybrid electric vehicle energy management
US6687581B2 (en) 2001-02-07 2004-02-03 Nissan Motor Co., Ltd. Control device and control method for hybrid vehicle
US20070112475A1 (en) * 2005-11-17 2007-05-17 Motility Systems, Inc. Power management systems and devices
US20090171522A1 (en) 2007-12-27 2009-07-02 Byd Co. Ltd. Hybrid Vehicle Having Multi-Mode Controller
US20090259363A1 (en) 2008-04-15 2009-10-15 The Uwm Research Foundation, Inc. Power management systems and methods in a hybrid vehicle
US20100138089A1 (en) 2009-07-01 2010-06-03 Ise Corporation Hybrid electric vehicle system and method for initiating and operating a hybrid vehicle in a limited operation mode
US7865298B2 (en) 2007-05-03 2011-01-04 Ford Motor Company System and method for providing route information to a driver of a vehicle
US7904217B2 (en) 2008-03-25 2011-03-08 International Truck Intellectual Property Company, Llc Battery pack management strategy in a hybrid electric motor vehicle
US20120010768A1 (en) 2010-07-07 2012-01-12 Massachusetts Institute Of Technology Hybrid electric vehicle and method of path dependent receding horizon control

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6687581B2 (en) 2001-02-07 2004-02-03 Nissan Motor Co., Ltd. Control device and control method for hybrid vehicle
US6487477B1 (en) 2001-05-09 2002-11-26 Ford Global Technologies, Inc. Strategy to use an on-board navigation system for electric and hybrid electric vehicle energy management
US20070112475A1 (en) * 2005-11-17 2007-05-17 Motility Systems, Inc. Power management systems and devices
US7865298B2 (en) 2007-05-03 2011-01-04 Ford Motor Company System and method for providing route information to a driver of a vehicle
US20090171522A1 (en) 2007-12-27 2009-07-02 Byd Co. Ltd. Hybrid Vehicle Having Multi-Mode Controller
US7904217B2 (en) 2008-03-25 2011-03-08 International Truck Intellectual Property Company, Llc Battery pack management strategy in a hybrid electric motor vehicle
US20090259363A1 (en) 2008-04-15 2009-10-15 The Uwm Research Foundation, Inc. Power management systems and methods in a hybrid vehicle
US20100138089A1 (en) 2009-07-01 2010-06-03 Ise Corporation Hybrid electric vehicle system and method for initiating and operating a hybrid vehicle in a limited operation mode
US20120010768A1 (en) 2010-07-07 2012-01-12 Massachusetts Institute Of Technology Hybrid electric vehicle and method of path dependent receding horizon control

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
Georgia-Evangelia Katsargyri et al., Optimally Controlling Hybrid Electric Vehicles Using Path Forecasting, 2009 American Control Conference, Jun. 10-12, 2009.
Georgia-Evangelia Katsargyri et al., Path Dependent Receding Horizon Control, Policies for Hybrid Electric Vehicles, 18th IEEE International Conference on Control Applications, Part of 2009 IEEE Multi-Conference on Systems and Control, Saint Petersburg, Russia, Jul. 8-10, 2009.
Nick Chambers, Volvo Unveils Plug-in Hybrid Diesel V60:124 MPG, 30 Electric Miles, AWD, 0-60 in 6.9 sec., Published in PluginCars.com(http://www.plugincars.com) Feb. 21, 2011.

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11325580B2 (en) 2019-08-12 2022-05-10 Robert Bosch Gmbh Hybrid vehicle transmission control using driver statistics
US11535235B2 (en) * 2019-12-20 2022-12-27 Robert Bosch Gmbh Simplified control for optimized hybrid vehicle powertrain operation
US20220176939A1 (en) * 2020-12-08 2022-06-09 Ford Global Technologies, Llc Electrified vehicle control with dynamic segment-based distance-to-empty (dte)
US11814032B2 (en) * 2020-12-08 2023-11-14 Ford Global Technologies, Llc Electrified vehicle control with dynamic segment-based distance-to-empty (DTE)

Also Published As

Publication number Publication date
US20120010768A1 (en) 2012-01-12
US20140095003A1 (en) 2014-04-03
US8612077B2 (en) 2013-12-17

Similar Documents

Publication Publication Date Title
US9545915B2 (en) Electric vehicle and method of battery set-point control
US20120010767A1 (en) Hybrid electric vehicle and method of control using path forecasting
US8190318B2 (en) Power management systems and methods in a hybrid vehicle
CN111867911B (en) Vehicle control method and apparatus
CN109263640B (en) Model-based route energy prediction, correction and optimization vehicle
Katsargyri et al. Optimally controlling hybrid electric vehicles using path forecasting
Liu et al. Bi-level convex optimization of eco-driving for connected Fuel Cell Hybrid Electric Vehicles through signalized intersections
EP3878706A1 (en) Method for controlling a hybrid electric vehicle
Xie et al. Coordinated management of connected plug-in hybrid electric buses for energy saving, inter-vehicle safety, and battery health
US9469213B2 (en) Spatial domain optimal electric and hybrid electric vehicle control with path forecasting
CN109910866B (en) Hybrid electric vehicle energy management method and system based on road condition prediction
Zeng et al. A two-level stochastic approach to optimize the energy management strategy for fixed-route hybrid electric vehicles
US10668824B2 (en) Method for calculating a setpoint for managing the fuel and electricity consumption of a hybrid motor vehicle
JP4918076B2 (en) Hybrid vehicle control device and hybrid vehicle
US20170320481A1 (en) A hybrid vehicle and a method for energy management of a hybrid vehicle
CN102881955A (en) Method and system for determining a target state of charge to charge a battery in a vehicle using external electric power
CN105667325A (en) Pattern based charge scheduling
JP2001314004A (en) Hybrid vehicle
CN112009455B (en) Energy management method and device for hybrid vehicle and vehicle
US20240278765A1 (en) Method for calculating a management setpoint for the comsumption of fuel and electric current by a hybrid motor vehicle
Cussigh et al. Optimal charging and driving strategies for battery electric vehicles on long distance trips: A dynamic programming approach
Lamantia et al. Remaining driving range estimation framework for electric vehicles in platooning applications
JP2004056867A (en) Hybrid vehicle control system
Capancioni et al. Development of Adaptive-ECMS and predictive functions for Plug-in HEVs to handle Zero-Emission Zones using navigation data
Katsargyri et al. Path dependent receding horizon control policies for hybrid electric vehicles

Legal Events

Date Code Title Description
STCF Information on status: patent grant

Free format text: PATENTED CASE

MAFP Maintenance fee payment

Free format text: PAYMENT OF MAINTENANCE FEE, 4TH YEAR, LARGE ENTITY (ORIGINAL EVENT CODE: M1551); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY

Year of fee payment: 4

MAFP Maintenance fee payment

Free format text: PAYMENT OF MAINTENANCE FEE, 8TH YEAR, LARGE ENTITY (ORIGINAL EVENT CODE: M1552); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY

Year of fee payment: 8