US9473956B2 - Antenna tilt optimization in a wireless communications network - Google Patents
Antenna tilt optimization in a wireless communications network Download PDFInfo
- Publication number
- US9473956B2 US9473956B2 US14/195,745 US201414195745A US9473956B2 US 9473956 B2 US9473956 B2 US 9473956B2 US 201414195745 A US201414195745 A US 201414195745A US 9473956 B2 US9473956 B2 US 9473956B2
- Authority
- US
- United States
- Prior art keywords
- cell
- neighbor list
- tilt
- dsr
- score
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active, expires
Links
- 238000004891 communication Methods 0.000 title claims abstract description 31
- 238000005457 optimization Methods 0.000 title abstract description 14
- 238000000034 method Methods 0.000 claims description 60
- 230000000694 effects Effects 0.000 claims description 33
- 230000001413 cellular effect Effects 0.000 claims description 12
- 230000015654 memory Effects 0.000 claims description 9
- 230000005540 biological transmission Effects 0.000 claims description 2
- 230000008569 process Effects 0.000 description 40
- 238000005516 engineering process Methods 0.000 description 14
- 230000008901 benefit Effects 0.000 description 13
- 238000013500 data storage Methods 0.000 description 12
- 238000004590 computer program Methods 0.000 description 4
- 238000004364 calculation method Methods 0.000 description 3
- 238000012804 iterative process Methods 0.000 description 3
- 238000012545 processing Methods 0.000 description 3
- 230000008859 change Effects 0.000 description 2
- 238000001514 detection method Methods 0.000 description 2
- 238000010586 diagram Methods 0.000 description 2
- 230000007613 environmental effect Effects 0.000 description 2
- 239000000284 extract Substances 0.000 description 2
- 238000005259 measurement Methods 0.000 description 2
- 238000012986 modification Methods 0.000 description 2
- 230000004048 modification Effects 0.000 description 2
- 230000010363 phase shift Effects 0.000 description 2
- VYZAMTAEIAYCRO-UHFFFAOYSA-N Chromium Chemical compound [Cr] VYZAMTAEIAYCRO-UHFFFAOYSA-N 0.000 description 1
- 238000004458 analytical method Methods 0.000 description 1
- 238000004422 calculation algorithm Methods 0.000 description 1
- 230000010267 cellular communication Effects 0.000 description 1
- 238000007405 data analysis Methods 0.000 description 1
- 238000013461 design Methods 0.000 description 1
- 238000001914 filtration Methods 0.000 description 1
- 230000006870 function Effects 0.000 description 1
- 230000007774 longterm Effects 0.000 description 1
- 238000007726 management method Methods 0.000 description 1
- 239000000203 mixture Substances 0.000 description 1
- 238000012544 monitoring process Methods 0.000 description 1
- 230000007935 neutral effect Effects 0.000 description 1
- 239000013307 optical fiber Substances 0.000 description 1
- 230000004044 response Effects 0.000 description 1
- 230000003595 spectral effect Effects 0.000 description 1
- 239000004557 technical material Substances 0.000 description 1
- 238000012876 topography Methods 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04W—WIRELESS COMMUNICATION NETWORKS
- H04W24/00—Supervisory, monitoring or testing arrangements
- H04W24/02—Arrangements for optimising operational condition
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04W—WIRELESS COMMUNICATION NETWORKS
- H04W16/00—Network planning, e.g. coverage or traffic planning tools; Network deployment, e.g. resource partitioning or cells structures
- H04W16/24—Cell structures
- H04W16/28—Cell structures using beam steering
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04W—WIRELESS COMMUNICATION NETWORKS
- H04W16/00—Network planning, e.g. coverage or traffic planning tools; Network deployment, e.g. resource partitioning or cells structures
- H04W16/02—Resource partitioning among network components, e.g. reuse partitioning
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04W—WIRELESS COMMUNICATION NETWORKS
- H04W16/00—Network planning, e.g. coverage or traffic planning tools; Network deployment, e.g. resource partitioning or cells structures
- H04W16/24—Cell structures
Definitions
- Cellular communications are affected by a variety of environmental conditions. Foliage develops during spring and recedes in the fall. Man-made structures are built and destroyed. Geographic features are altered by human and natural processes. All of these changes to environmental conditions can affect cellular service over time. Tools for monitoring network parameters and adjusting variables help operators to keep networks running smoothly as networks expand and change over time.
- Antenna tilt optimization is one processes available to an operator to improve voice call quality, voice and data dropped call performance, voice and data accessibility, data throughput, capacity and spectral efficiency.
- proper antenna tilt is crucial to good performance. All markets have a need for proper antenna tilt, but the benefits are more pronounced in markets with varying topography.
- Embodiments may be used to discover sub-optimal antenna tilt configuration in a network and to suggest or implement changes to antenna tilt. Interference detection information and neighbor relationships may be used as inputs to analyze existing tilt configurations.
- a method for optimization of a wireless communications network includes collecting information for a plurality of target cells neighboring a source cell, calculating a tilt score based on the collected information, and adjusting an antenna of the source cell based on the tilt score.
- Collecting the information for the plurality of target cells may include comparing an activity metric for each cell on an NCL of the source cell to a threshold value and when the activity metric exceeds the threshold value, adding the cell associated with the activity metric to a mobility neighbor list.
- optimization further includes sorting cells on the mobility neighbor list in descending order according to a signal strength value and truncating the mobility neighbor list.
- Collecting the information for the plurality of target cells may include receiving detected set reports (DSR) at the source cell and creating a DSR neighbor list from the received DSRs.
- DSR detected set reports
- creating the DSR neighbor list includes comparing an activity metric for each cell on the DSRs to a threshold value, and when the activity metric exceeds the threshold value, adding the cell associated with the activity metric to the DSR neighbor list.
- Creating the DSR neighbor list may include sorting cells on the DSRs in descending order according to a signal strength value and truncating the list of sorted cells.
- creating the DSR neighbor list may include associating cell identifiers with scrambling codes of the DSR.
- collecting the information for the plurality of target cells includes creating a first neighbor list including a first set of performance metrics and creating a second neighbor list including a second set of performance metrics.
- the first neighbor list may be a mobility neighbor list
- the second neighbor list may be a DSR neighbor list.
- Calculating the tilt score may include calculating a first tilt score for the first neighbor list, calculating a second tilt score for the second neighbor list, and adding the first tilt score and the second tilt score.
- the first tilt score may be weighted before the first and second tilt scores are added.
- the collected information includes distance information, signal strength information, and activity information.
- Collecting information for the plurality of target cells neighboring a source cell may include determining a set of intra-frequency cells neighboring the source cell, comparing a metric associated with each cell of the set of source cells to a threshold value, and when the metric exceeds the threshold value, adding the cell associated with the metric to a list.
- the metric may be an activity metric indicating a level of activity with respect to the associated cell.
- Adjusting the antenna may include adjusting one of a transmit power and a tilt angle of the source cell.
- embodiments may be implemented as a communications system.
- embodiments may include a computer system comprising a processor, a memory, and a computer readable medium including instructions which, when implemented by the processor, perform one or more of the method steps described above.
- FIG. 1 illustrates a system according to an embodiment.
- FIG. 2 illustrates a network resource controller according to an embodiment.
- FIG. 3 illustrates a base station according to an embodiment.
- FIG. 4 illustrates a process for antenna optimization in a wireless communications system.
- FIG. 5 illustrates a process for creating a neighbor list for a source cell according to an embodiment.
- FIG. 6 illustrates a process for creating a neighbor list for a source cell according to an embodiment.
- FIGS. 7A and 7B illustrate neighbor lists according to embodiments.
- FIG. 8 illustrates a process for evaluating a relationship between a source cell and a neighboring cell according to an embodiment.
- FIG. 9 illustrates a process for determining relationships between projected beamwidth geometries of a source cell and neighboring cells according to an embodiment.
- FIGS. 10A, 10B, 10C, and 10D illustrate relationships between a source cell station and neighboring cells according to an embodiment.
- FIG. 11 illustrates a process for calculating a tilt score for a cell according to an embodiment.
- FIG. 12 illustrates a process for adjusting a cell according to an embodiment.
- FIG. 13 illustrates a map of a source cell and a plurality of neighboring cells.
- FIGS. 14A and 14B illustrate data tables for calculating a tilt score according to an embodiment.
- FIG. 15 illustrates a map of a source cell and a plurality of neighboring cells.
- FIGS. 16A and 16B illustrate data tables for calculating a tilt score according to an embodiment.
- the invention can be implemented in numerous ways, including as a process; an apparatus; a system; a composition of matter; a computer program product embodied on a computer readable storage medium; and/or a processor, such as a processor configured to execute instructions stored on and/or provided by a memory coupled to the processor.
- a component such as a processor or a memory described as being configured to perform a task may be implemented as a general component that is temporarily configured to perform the task at a given time or a specific component that is manufactured to perform the task.
- the term ‘processor’ refers to one or more devices, circuits, and/or processing cores configured to process data, such as computer program instructions.
- FIG. 1 illustrates an example networked computing system 100 according to an embodiment of this disclosure.
- system 100 includes a data communications network 102 , one or more base stations 106 a - e , one or more network resource controller 110 a - c , and one or more User Equipment (UE) 108 a - m .
- base station refers to a wireless communications station provided in a location and serves as a hub of a wireless network.
- the base stations may include macrocells, microcells, picocells, and femtocells.
- the data communications network 102 may include a backhaul portion that can facilitate distributed network communications between any of the network controller devices 110 a - c and any of the base stations 106 a - e .
- Any of the network controller devices 110 a - c may be a dedicated Network Resource Controller (NRC) that is provided remotely from the base stations or provided at the base station.
- NRC Network Resource Controller
- Any of the network controller devices 110 a - c may be a non-dedicated device that provides NRC functionality among others.
- the one or more UE 108 a - m may include cell phone devices 108 a - i , laptop computers 108 j - k , handheld gaming units 1081 , electronic book devices or tablet PCs 108 m , and any other type of common portable wireless computing device that may be provided with wireless communications service by any of the base stations 106 a - e.
- the backhaul portion of a data communications network 102 may include intermediate links between a backbone of the network which are generally wire line, and sub networks or base stations 106 a - e located at the periphery of the network.
- cellular user equipment e.g., any of UE 108 a - m
- the network connection between any of the base stations 106 a - e and the rest of the world may initiate with a link to the backhaul portion of an access provider's communications network 102 (e.g., via a point of presence).
- an NRC has presence and functionality that may be defined by the processes it is capable of carrying out. Accordingly, the conceptual entity that is the NRC may be generally defined by its role in performing processes associated with embodiments of the present disclosure. Therefore, depending on the particular embodiment, the NRC entity may be considered to be either a hardware component, and/or a software component that is stored in computer readable media such as volatile or non-volatile memories of one or more communicating device(s) within the networked computing system 100 .
- any of the network controller devices 110 a - c and/or base stations 106 a - e may function independently or collaboratively to implement processes associated with various embodiments of the present disclosure. Further, processes within the system may be carried out via any common communications technology known in the Art, such as those associated with modern Global Systems for Mobile (GSM), Universal Mobile Telecommunications System (UMTS), Long Term Evolution (LTE) network infrastructures, etc.
- GSM Global Systems for Mobile
- UMTS Universal Mobile Telecommunications System
- LTE Long Term Evolution
- any of the network controller devices 110 a - c may be associated with a base station controller (BSC), a mobile switching center (MSC), a data scheduler, or any other common service provider control device known in the art, such as a radio resource manager (RRM).
- BSC base station controller
- MSC mobile switching center
- RRM radio resource manager
- any of the network controller devices 110 a - c may be associated with a NRC, a serving GPRS support node (SGSN), or any other common network controller device known in the art, such as an RRM.
- SGSN serving GPRS support node
- any of the network controller devices 110 a - c may be associated with an eNodeB base station, a mobility management entity (MME), or any other common network controller device known in the art, such as an RRM.
- MME mobility management entity
- any of the network controller devices 110 a - c , the base stations 106 a - e , as well as any of the UE 108 a - m may be configured to run any well-known operating system, including, but not limited to: Microsoft® Windows®, Mac OS®, Google® Chrome®, Linux®, Unix®, or any mobile operating system, including Symbian®, Palm®, Windows Mobile®, Google® Android®, Mobile Linux®, etc. Any of the network controller devices 110 a - c , or any of the base stations 106 a - e may employ any number of common server, desktop, laptop, and personal computing devices.
- any of the UE 108 a - m may be associated with any combination of common mobile computing devices (e.g., laptop computers, tablet computers, cellular phones, handheld gaming units, electronic book devices, personal music players, MiFiTM devices, video recorders, etc.), having wireless communications capabilities employing any common wireless data communications technology, including, but not limited to: GSM, UMTS, 3GPP LTE, LTE Advanced, WiMAX, etc.
- common mobile computing devices e.g., laptop computers, tablet computers, cellular phones, handheld gaming units, electronic book devices, personal music players, MiFiTM devices, video recorders, etc.
- wireless communications capabilities employing any common wireless data communications technology, including, but not limited to: GSM, UMTS, 3GPP LTE, LTE Advanced, WiMAX, etc.
- the backhaul portion of the data communications network 102 of FIG. 1 may employ any of the following common communications technologies: optical fiber, coaxial cable, twisted pair cable, Ethernet cable, and power-line cable, along with any other wireless communication technology known in the art.
- wireless communications coverage associated with various data communication technologies typically vary between different service provider networks based on the type of network and the system infrastructure deployed within a particular region of a network (e.g., differences between GSM, UMTS, LTE, LTE Advanced, and WiMAX based networks and the technologies deployed in each network type).
- FIG. 2 illustrates a block diagram of a base station 200 (e.g., a femtocell, picocell, microcell or macrocell) that may be representative of the base stations 106 a - e in FIG. 1 .
- the base station 200 includes at least one central processing unit (CPU) 202 .
- the CPU 202 may include an arithmetic logic unit (ALU, not shown) that performs arithmetic and logical operations and one or more control units (CUs, not shown) that extract instructions and stored content from memory and then executes and/or processes them, calling on the ALU when necessary during program execution.
- the CPU 202 is responsible for executing computer programs stored on volatile (RAM) and nonvolatile (ROM) system memories 204 .
- RAM volatile
- ROM nonvolatile
- Base station 200 may include a user interface 206 for inputting and retrieving data to and from the base station by operator personnel, and a network interface coupled to a wireline portion of the network.
- the base station 200 may send and receive scheduling information to and from an NRC, transmit signal data to an NRC, and share UE data with other base stations through network interface 208 .
- base station 200 wirelessly sends and receives information to and from UE through transceiver 212 , which is equipped with one or more antenna 214 .
- the base station 200 may further include a system bus 210 and data storage 216 .
- the system bus facilitates communication between the various components of the base station.
- system bus 210 may facilitate communication between a program stored in data storage 216 and CPU 202 which executes the program.
- data storage 216 may store one or more neighbor list 218 and configuration information 220 .
- data storage 216 may include an operating system, and various programs related to the operation of the base station 200 .
- the base station 200 may use any modulation/encoding scheme known in the art such as Binary Phase Shift Keying (BPSK, having 1 bit/symbol), Quadrature Phase Shift Keying (QPSK, having 2 bits/symbol), and Quadrature Amplitude Modulation (e.g., 16-QAM, 64-QAM, etc., having 4 bits/symbol, 6 bits/symbol, etc.).
- BPSK Binary Phase Shift Keying
- QPSK Quadrature Phase Shift Keying
- Quadrature Amplitude Modulation e.g., 16-QAM, 64-QAM, etc., having 4 bits/symbol, 6 bits/symbol, etc.
- the base station 200 may be configured to communicate with UEs 108 a - m via any Cellular Data Communications Protocol, including any common GSM, UMTS, WiMAX or LTE protocol.
- FIG. 3 illustrates a block diagram of an NRC 300 that may be representative of any of the network controller devices 110 a - c .
- the NRC 300 includes one or more processor devices including a central processing unit (CPU) 304 .
- the CPU 304 may include an arithmetic logic unit (ALU) (not shown) that performs arithmetic and logical operations and one or more control units (CUs) (not shown) that extracts instructions and stored content from memory and then executes and/or processes them, calling on the ALU when necessary during program execution.
- ALU arithmetic logic unit
- CUs control units
- the CPU 304 is responsible for executing computer programs stored on volatile (RAM) and nonvolatile (ROM) memories 302 and a storage device 312 (e.g., HDD or SSD).
- storage device 312 may store program instructions as logic hardware such as an ASIC or FPGA.
- Storage device 312 may store performance metrics 314 , neighbor list information 316 , and data analyzer 318 .
- Data analyzer 318 may include program information for executing one or more form of data analysis described below, such as comparing source and target cells and calculating a tilt score.
- the NRC 300 may also include a user interface 306 that allows an administrator to interact with the NRC's software and hardware resources and to display the performance and operation of the networked computing system 100 .
- the NRC 300 may include a network interface 306 for communicating with other components in the networked computer system, and a system bus 310 that facilitates data communications between the hardware resources of the NRC 300 .
- the NRC 300 may be used to implement other types of computer devices, such as an antenna controller, an RF planning engine, a core network element, a database system, or the like. Based on the functionality provided by an NRC, the storage device of such a computer serves as a repository for software and database thereto.
- data schedulers control the uplink and downlink transmissions in the network.
- the data schedulers can either reside at the base stations (e.g. eNodeBs in an LTE network) in the network or at a centralized location (e.g. RNC in UMTS networks).
- An RRM informs each of the data schedulers in the network of the frequency and time resources on which they can transmit and receive data.
- FIG. 4 illustrates an embodiment of a process 400 for antenna optimization in a wireless communications system. Steps of process 400 are generally explained in the following description, and explained in further detail with respect to subsequent figures and processes. Process 400 is described with respect to a source cell, which is a cell for which antenna characteristics are optimized, and target cells, which are cells that are analyzed to optimize antenna characteristics of the source cell.
- source cell which is a cell for which antenna characteristics are optimized
- target cells which are cells that are analyzed to optimize antenna characteristics of the source cell.
- the neighboring cells may be cells in the geographic vicinity of the source cell. Neighbor cells which use the same technology and operate on the same frequency as the source cell are known as intra-frequency neighbors. Neighbor cells which use the same technology, but operate on different frequencies as the source cell are known as inter-frequency neighbors. Neighbor cells which use different technologies as the source cell are known as inter-RAT neighbors.
- two lists are collected—a list of neighbors determined from detected set reports (DSR), and a neighbor cell list (NCL) already configured for the source cell.
- DSR detected set reports
- NCL neighbor cell list
- the source base station retrieves, sorts and filters the NCL to create a first neighbor list.
- the source base station may receive DSRs from attached UE and combine that information into a second list.
- the one or more lists are filtered and sorted.
- the lists may be filtered according to activity data, sorted in order of signal strength, and then truncated so that less relevant cells are not included in subsequent analysis.
- step 406 a geometric relationship between the source cell and each cell on the one or more lists is analyzed.
- the projected beamwidth of the cells are analyzed to determine whether the source cell is overlapped by projected beamwidths of each target cell, and vice versa.
- scores are calculated to quantify an overlap or underlap condition of the source cell.
- an overshooting condition may be characterized by a positive score, while an undershooting condition is characterized by a negative score.
- the magnitude of the overlap or underlap condition may correspond to the magnitude of the score.
- an antenna parameter of the source cell may be adjusted based on the score calculated in process 408 .
- the antenna parameter is chosen from the tilt angle of the antenna and the transmit power of the antenna.
- tilting may be implemented by the system. Adjustment may be executed in an iterative process.
- FIG. 5 illustrates an embodiment of a process 500 for creating a first neighbor list for a source cell.
- Conventional neighbor cell lists are used by cellular systems for mobility purposes. Each source cell is associated with an NCL of neighbors to which UEs can handover from the source cell as the UEs move across a geographical area.
- data from the NCL that are used for mobility purposes may be used to create a neighbor list for antenna optimization. Such a list for antenna optimization may be referred to as a mobility neighbor list.
- a neighbor list may be retrieved in step 502 .
- the list is the NCL that is maintained by the source base station.
- the neighbor list may include cells that are part of active sets or monitored sets of UE attached to the source cell.
- one or more neighbor list used to create an antenna optimization neighbor list for a source cell may come from various network optimization processes such as automated neighbor relations or interference detection.
- the neighbor list is from a proprietary system such as Nokia Systems Network (NSN) or Ericsson.
- the neighbor list data for the source cell is filtered in step 504 .
- Filtering the neighbor list data may include comparing one or more value in the list data to a threshold value, and removing a base station associated with the value from the list based on the results of the comparison.
- the value may be an activity metric value.
- a value is handover attempts, and when the neighbor list data for a particular base station shows less handover attempts than a threshold value, it is removed from the neighbor list.
- entries for base stations with less than 100 handover attempts are removed from the list.
- the threshold value for handover attempts may be a different value such as 50, 150, 200, etc., or may be a percentage of all handover attempts from the source base station.
- the value may be a distance between the source base station and the base station for the entry, a distance between a UE that collected data on the list and the source base station, etc.
- entries on the neighbor list are sorted according to a value on the list.
- the value is a signal strength value, and entries are sorted in descending order according to signal strength.
- FIG. 7A shows an example of a list including performance metrics that has been sorted according to signal strength.
- the signal strength value is Received Signal Code Power (RSCP), but other signal strength measurements are possible.
- RSCP Received Signal Code Power
- RSRP Reference Signal Received Power
- Sorting according to signal strength identifies neighboring base stations with a higher probability of providing service to UE that are within a geographic area of the source cell.
- each neighbor is identified by the value “CELL######,” but in an embodiment each neighbor is identified by a unique cell identifier.
- the list may be truncated by removing entries beyond a threshold value from the bottom of a list sorted in step 506 .
- the threshold value is 25, but it may be other values such as 15 or 40 in other embodiments.
- the filtered list is stored in a data storage.
- the data storage may be, for example, data storage 216 at a base station, or data storage 312 at an NRC.
- FIG. 6 shows a process 600 for creating a second neighbor list for the source cell.
- the second neighbor list is based on detected set reports (DSR) for the source cell, and steps of process 600 will be described with respect to DSR data.
- DSR detected set reports
- FIG. 7B An example of such a neighbor list is shown in FIG. 7B .
- DSR data is received by the base station for the source cell.
- DSR data may be received as an aspect of routine KPI reporting, or in response to a request from the system.
- the DSR data may be received at the source base station or at an NRC.
- the DSR data is filtered according to one or more category such as an activity metric.
- category such as an activity metric.
- the number of counts for each DSR entry is compared to a threshold value, and when the number of counts is less than the threshold value, the entry is removed from the list.
- An example of a threshold value for counts is 1000, but persons of skill in the art will recognize that other categories are possible, and threshold values may be determined based on system design criteria.
- step 606 base stations on the DSR list are sorted in descending order according to a signal strength value in the reports.
- the signal strength value may be an RSCP value or an EC/No value.
- step 608 the list of DSR data is truncated to remove entries over a predetermined value such as 25.
- DSR entries may include scrambling codes for neighboring base stations, but the DSR data may not include unique identifiers for those base stations.
- the second neighbor list of FIG. 7B has been arranged in descending order according to RSCP and filtered according to count value, but the scrambling codes on the list have not been associated with unique base station identifiers.
- the unique identifier for a base station can be helpful for determining whether geometric relationships between source and target cells suggest an overshooting condition or an undershooting condition.
- a step 610 of identifying a unique base station responsible for signals associated with scrambling may be performed.
- step 610 may be accomplished by comparing the scrambling codes, and possibly other data, with data on an NCL, and when the scrambling code is the same and the data is similar, associating entries with the scrambling code on the DSR with the unique base station identifier from the NCL.
- the second neighbor list data is stored in a data storage in step 612 .
- the data storage may be, for example, data storage 216 at a base station, or data storage 312 at an NRC.
- one or the other of a mobility neighbor list and a DSR neighbor list may be created.
- two or more neighbor lists may be created based on various data, and those neighbor lists may be combined into a single neighbor list.
- neighbor lists may be compared, and base stations that are only present on one of the lists may be eliminated.
- FIG. 8 shows an embodiment of a process 800 of evaluating a relationship between a source cell and a target cell.
- a target cell is a cell which appears on a neighbor list such as the first and second neighbor lists shown in FIGS. 7A and 7B .
- the pointing direction, or azimuth, of the source cell is determined.
- Pointing directions of the target cells on the neighbor list are determined in step 804 .
- Pointing directions for the target cells may be determined in the same fashion as step 802 .
- beamwidth values are set for the source cell and target cells.
- beamwidth values are set by setting a single variable in the system.
- current beamwidth values such as half-power beamwidth values for each cell are read from one or more storage medium.
- the beamwidth values may be set once in the system as a default value such as 60 degrees, or may be set each time a source cell is analyzed.
- Beamwidth geometry for the source and target cells is projected in step 808 .
- Projecting the beamwidth geometry for a cell may include calculating a geographical area by projecting a triangular area with an apex located at the geographical location of the respective cell's base station. The projection may be made with an infinite distance, or a distance which extends through an area which includes the source and target cells.
- step 810 The relationship between source and target cells is analyzed in step 810 .
- An embodiment of step 810 is shown in FIG. 9 , which illustrates an embodiment of a process 900 for determining relationships between projected beamwidth geometries of a source cell and neighboring cells.
- FIGS. 10A, 10B, 10C, and 10D illustrate four different relationships between a projected beamwidth geometry of a source cell 1002 and a projected beamwidth geometry of a target cell 1022 .
- process 900 determines which of these four relationships exist.
- Step 902 determines whether a source cell envelops a target cell.
- the source cell is classified as having an overshooter relationship with the target cell.
- FIG. 10A shows beamwidth geometry 1002 is projected from an antenna 1004 using a beamwidth 1006 .
- the dotted lines 1008 a and 1008 b indicate boundaries of the projected beamwidth geometry of the source cell, and dotted lines 1028 a and 1028 b show boundaries of the projected beamwidth geometry of the target cell.
- the beamwidth geometries of the source and target cell are based in part on beamwidth angles 1006 and 1026 , respectively. Locations of base stations may be used as locations for corresponding antennas.
- the antenna 1024 of the target cell falls within the area of the projected beamwidth geometry 1002 of the source cell, and antenna 1004 of the source cell does not fall within the projected beamwidth geometry 1022 of the target cell.
- the relationship may be classified as overshooter.
- FIG. 10B shows a scenario in which the projected beamwidth geometry of target cell antenna 1024 envelops source cell antenna 1004 , and the projected beamwidth geometry of source cell antenna 1004 does not envelop target cell antenna 1024 .
- the source cell is classified as having an undershooter relationship with the target cell in step 922 .
- FIG. 10C shows a scenario in which the projected beamwidth geometry of target cell base station 1024 envelops source cell antenna 1004 , and the projected beamwidth geometry of source cell antenna 1004 envelops target cell antenna 1024 .
- a joint relationship is determined as indicated by step 924 .
- a no overlap condition is a scenario in which neither projected beamwidth geometry of the source and target cell overlaps the other.
- An example of such a relationship is illustrated in FIG. 10D . Similar to the mutual overlap scenario of FIG. 10C , when a no overlap scenario is determined, the relationship is classified as joint in step 924 .
- each relationship between source and target cells can be analyzed by determining whether the source envelops the target, determining whether the target envelops the source, and determining whether an overshoot scenario or an undershoot scenario is present based on the resulting data.
- FIGS. 10 A-D are described as using antenna locations 1004 and 1024 to determine overlap, another embodiment may use an area around a base station such as a cellular coverage area. Accordingly, as with all embodiments of this disclosure, FIG. 9 is not limiting.
- FIG. 11 illustrates an embodiment of a process 1100 for calculating a tilt score for a source cell.
- some of the overlap scenarios do not influence the final tilt score. For example, when the beamwidth value is close to the actual half-power beamwidth of the cells and neither projected beamwidth geometry overlaps the other as shown in FIG. 10D , the chance of source cell and target cell influencing one another is minimal. In such a scenario, the relationship between the source and target cell is not likely to have significant influence on a determination of optimal antenna tilt of the source cell. When a joint relationship exists in which the source and target cells envelop one another as shown in FIG. 10 C, there may be ambiguity regarding the benefit of adjusting the tilt angle for the source cell.
- step 1102 a step of determining whether an undershoot or overshoot relationship is present for each source and target cell combination, and if not, a value of zero is assigned to the distance in step 1104 so that a score for the joint cell is zero when subsequent calculations such as Equation 1 and Equation 2 are performed.
- the entry for the particular target cell is simply removed from consideration in subsequent calculations.
- a sign may be determined for scores in step 1106 .
- the sign may be determined at various phases of antenna optimization.
- the sign may be determined when an overshoot or undershoot relationship is determined as described with respect to FIG. 9 .
- a sign When a sign is determined at an early phase, it may be applied to a target cell/source cell relationship by applying the sign to a value associated with the target cell, such as the distance value shown in the lists of FIGS. 7A and 7B .
- a positive sign is associated with an overshoot scenario
- negative sign is associated with an undershoot scenario.
- a positive score implies that the source cell would benefit from a downtilt adjustment
- a negative score implies that the source cell would benefit from an uptilt adjustment.
- a step 1108 of calculating a first score is performed.
- Tilt_Score_Neighbor ⁇ d i *AVG(max( RSCP i ⁇ RSCP _Thresh,0),max( EcNo i ⁇ EcNo _Thresh,0)) *(log10( HO _Count i ) ⁇ log 10( HO _Thresh)+1) [Equation 1] Equation 1 may be performed for entries on a mobility neighbor list such as the list shown in FIG. 7A .
- i 1 to the number of neighbors on a mobility neighbor list
- d i is the distance between the source cell and the i th neighbor cell in kilometers
- EcNo i is the EcNo value for the i th cell
- RSCP is the RSCP value for the i th cell
- HO_Count i is the handover count value for the i th cell.
- the specific values for distance, EcNo, RSCP, and handover count may be taken from a mobility neighbor list for the source cell. Higher values for distance, EcNo, RSCP and handover count increase the magnitude of the tilt score.
- Threshold values such as RSCP_Thresh, EcNo_Thresh, and HO_Thresh may vary between embodiments.
- the value for RSCP_Thresh is ⁇ 109 dBm
- the value for EcNo_Thresh is ⁇ 19 dB
- the value for HO_Thresh is 100.
- a second score is calculated in step 1110 .
- Tilt_Score_DSR *AVG(max( RSCP i ⁇ RSCP _Thresh,0),max( EcNo i ⁇ EcNo _Thresh,0)) *(log10( DSR _Count i ) ⁇ log 10( DSR _Thresh)+1) [Equation 2] Equation 2 may be performed for entries on a DSR neighbor list such as the neighbor list 702 shown in FIG. 7B .
- i 1 to the number of neighbors on a DSR neighbor list, d, is the distance between the source cell and the i th neighbor cell in kilometers, EcNo i is the EcNo value for the i th cell, RSCP i is the RSCP value for the i th cell, and DSR_Count i is the DSR count value for the i th cell.
- the specific values for distance, EcNo, RSCP, and DSR count may be taken from a DSR neighbor list for the source cell such as the list of FIG. 7B . Higher values for distance, EcNo, RSCP and DSR count increase the magnitude of the tilt score.
- Threshold values for a second neighbor list such as RSCP_Thresh, EcNo_Thresh, and DSR_Count may vary between embodiments.
- the value for RSCP_Thresh is ⁇ 109 dBm
- the value for EcNo_Thresh is ⁇ 19 dB
- the value for DSR_Count is 1000.
- the threshold values may be the same for both calculations as in the examples above.
- the variables for calculating the first and second scores are different.
- Equation 1 and Equation 2 are merely examples of equations that can be used to calculate a tilt score.
- Equation 1 uses RSCP as a signal strength component, EcNo as an interference component, and handover count as an activity metric.
- Other embodiments may use different metrics for similar components.
- RSRP can be the metric for a signal strength component.
- RSSI Received Signal Strength Indication
- An embodiment may have more than one metric for a given component, and embodiments may have more or less than the components that are present in Equation 1 and Equation 2.
- a score After a score is calculated, it may be weighted in step 1112 .
- one or the other of the first and second scores is multiplied by a weighting factor.
- a weight may be applied to change the influence of one or more score on the final tilt score.
- step 1114 the first and second scores for a source cell are added together, and the resulting sum is the tilt score for the source cell.
- the weighted score is added. In an embodiment in which only one calculated score is used, step 1114 is not performed.
- FIG. 12 shows a process 1200 for adjusting a source cell according to an embodiment.
- the sign of a tilt score may indicate a direction for adjustment.
- a positive tilt score suggests that the source cell would benefit from an downtilt adjustment or decrease in transmit power
- a negative tilt score suggests that the source cell would benefit from a uptilt adjustment or an increase in transmit power.
- step 1202 of determining a direction for adjustment may include comparing the tilt score to a predetermined value, which in the above example is zero.
- Equation 1 and Equation 2 are used to determine a tilt score
- a tilt score of zero suggests a neutral position that would not benefit from adjustment.
- a large number of cells in a network may have a non-zero tilt score.
- Comparing the tilt score to a threshold value in step 1204 may be performed to determine whether to make adjustments to an antenna.
- the absolute value of a tilt score is compared to a threshold value, and if the absolute value of the tilt score is greater than the threshold value, an adjustment is made.
- the magnitude of a tilt score reflects the extent to which an antenna would benefit from adjustment.
- a tilt score is very large, network performance may improve greatly when the source cell is adjusted. In contrast, when the tilt score is very small, the benefit may be negligible. Accordingly, the magnitude of an adjustment that is made to the source cell antenna may be determined in 1206 based on the magnitude of the tilt score.
- the threshold value for step 1204 is 1000, and each 100 points above 1000 corresponds to 0.1 degrees of tilt adjustment.
- a tilt score of 900 would not lead to adjustment
- a tilt score of from 1000 and 1099 would result in an antenna adjustment of 0.1 degrees
- a tilt score of from 1500 to 1599 would result in an antenna adjustment of 0.5 degrees.
- a maximum tilt adjustment may also be enforced for very large tilt scores. For example, if the tilt score is above 2000, the antenna tilt adjustment is 1 degree. However, this is merely an example, and other embodiments are possible.
- step 1206 is not performed, and adjustments are made using a predetermined value.
- the source cell antenna is adjusted. Adjustment to the source cell antenna may be made by adjusting an antenna tilt angle, adjusting a transmit power, or both. Examples of tilt adjustment values include 0.5 degrees, 1.0 degrees, 3.0 degrees, 5.0 degrees, etc. An example of adjusting transmit power is adjusting the common pilot channel (CPICH) power of a 3G cell.
- CPICH common pilot channel
- Adjustments may be applied according to a level of automation present in a cell.
- a newer base station may be equipped with Remote Electrical Tilt (RET) technology, in which case tilt may be applied automatically.
- RET Remote Electrical Tilt
- an older base station may require a technician to manually adjust an antenna position at the physical location of a base station.
- transmit power when transmit power is adjustable remotely but antenna tilt adjustment requires manual intervention, transmit power may be adjusted instead of antenna tilt.
- a system may determine which base stations are equipped with RET and apply antenna tilt adjustments to those base stations, while adjusting the transmit power of base stations without RET.
- transmit power may be adjusted instead of or in addition to tilt angle. For example, when a source cell antenna is at or near the limits of its tilt adjustment capabilities, then transmit power may be adjusted instead. Similarly, when an antenna is at or near an upper or lower power limit, then tilt may be adjusted. In another embodiment, both tilt and transmit power are adjusted simultaneously.
- Adjusting a source cell 1200 may be performed as an iterative process. In such an embodiment, after an adjustment is made to a cell, a new tilt score is calculated for that cell in step 1210 , and the process reiterates. In an embodiment, an iterative process adjusts a source cell by a predetermined amount and re-calculates the tilt score until it is less than a predetermined value. Iterations may be performed with or without a time delay in various embodiments. A time delay of an hour, a day, or more may be implemented to build a robust set of data from which to calculate a tilt score, or to give a technician time to make manual adjustments.
- the process 1200 of adjusting cells is performed periodically for one or more cells in a network.
- the process may be performed on an ongoing basis by analyzing all or a subset of cells in a network.
- the process may be performed on one cell at a time or on multiple cells simultaneously.
- tilt scores are calculated for a plurality of cells in a network, the tilt scores are sorted in descending order in terms of magnitudes (ignoring the sign of the score), and a portion of the cells with the highest magnitudes are adjusted. Additional tilt scores may be calculated after one or more of the adjustments are made, or adjustments may be made to all of the highest scoring cells before making additional measurements.
- FIG. 13 illustrates an example of a map view of a plurality of cells in a communications network.
- Intra-frequency neighbors 1304 of source cell 1302 are indicated by an arc segment at the far ends of triangular coverage indicators.
- the density of intra-frequency neighbors 1304 that are pointing in the general direction of source cell 1302 suggest that the source cell may benefit from adjustments to reduce overshooting.
- FIG. 14A shows a table of data associated with neighbors from a mobility neighbor list
- the right hand column “TILT_SCORE_NEIGHBOR” includes scores for each mobility neighbor identified in the second column (“neighbor”) based on Equation 1.
- each neighbor is identified by the value “CELL########,” but in an embodiment each neighbor is identified by a unique cell identifier.
- FIG. 14B shows a table of data associated with neighbors from a DSR neighbor list.
- the right hand column, “TILT_SCORE_DSR” includes tilt scores that have been calculated for each DSR neighbor on the list according to Equation 2 above.
- the “Scenario” column indicates the relationship between the target cell of a particular row and the source cell.
- the term “Joint” represents relationships in which the projected beamwidth geometries for the source cell and the target cell envelop each other, or in which neither projected beamwidth geometry envelops the other, as indicated in FIGS. 10C and 10D , respectively.
- the value in the “Distance” column is multiplied by zero, so that the value in the “new d” column becomes zero.
- the value in “new d” may be used as the distance value d i in Equation 1 and Equation 2. Accordingly, when a joint scenario is present, the tilt score for the target cell is zero.
- the term “Overshoot” represents a relationship in which the projected beamwidth geometry of the source envelops the target cell
- the term “Undershoot” represents a scenario in which the projected beamwidth geometry of the target cell envelops the source cell.
- the Distance value for the target cell is multiplied by negative one so that the value in “new d” is negative.
- the tilt score for the target cell in an undershoot scenario is negative.
- the value in the “Distance” column is used without modification so that the tilt score is positive.
- a weight may be applied to a tilt score as discussed above with respect to step 1112 .
- the final score is significantly greater than zero, which suggests that performance of the cellular network would benefit from applying downtilt or reducing transmit power of the source cell 1302 .
- FIG. 15 shows an example of a map view of a plurality of cells in a communications network including a source cell 1502 and a plurality of intra-frequency neighbor target cells 1504 .
- Target cells 1504 are indicated by arc segments at the ends of triangles which represent individual cells. The number of intra-frequency neighbor cells that appear to be within the projected beamwidth geometry of the source cell suggest that the source cell 1502 may benefit from adjustments to reduce undershooting.
- FIG. 16A shows a table of data associated with neighbors from a mobility neighbor list
- the right hand column “TILT_SCORE_NEIGHBOR” includes scores for each mobility neighbor identified in the second column (“neighbor”) based on Equation 1.
- FIG. 16B shows a table of data associated with neighbors from a DSR neighbor list.
- the right hand column, “TILT_SCORE_DSR,” includes tilt scores that have been calculated for each DSR neighbor on the list according to Equation 2 above.
- the summed DSR tilt score is ⁇ 437, and the summed mobility tilt score is ⁇ 30.6. Multiplying the mobility tilt score by a weighting factor of 3, the final tilt score for source cell 1502 is ⁇ 529.0 ( ⁇ 437.2+ ⁇ 30.6*3). A negative score implies that source cell 1502 would benefit from an uptilt adjustment or an increase in transmit power. If the threshold value for applying tilt adjustment is 1000, then the absolute value of the tilt score of ⁇ 529 means that the source cell is not adjusted. If the threshold value for applying tilt adjustment is 500, then source cell 1502 may be tilted upwards, have its transmit power increased, or both.
- a score of ⁇ 529.0 implies that an uptilt adjustment would improve network performance.
- the tilt adjustment algorithm may be run on all the neighbor cells to determine if downtilt of one or more of the neighbor cells would improve network performance. The downtilt could be applied first and after a sufficient period of time, the tilt score for the original source cell can be re-evaluated to determine if an undershoot scenario is still present for the source cell.
Landscapes
- Engineering & Computer Science (AREA)
- Computer Networks & Wireless Communication (AREA)
- Signal Processing (AREA)
- Mobile Radio Communication Systems (AREA)
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US14/195,745 US9473956B2 (en) | 2013-07-02 | 2014-03-03 | Antenna tilt optimization in a wireless communications network |
US14/202,278 US9473957B2 (en) | 2013-07-02 | 2014-03-10 | Antenna tilt optimization in a wireless communications network |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US201361842335P | 2013-07-02 | 2013-07-02 | |
US14/195,745 US9473956B2 (en) | 2013-07-02 | 2014-03-03 | Antenna tilt optimization in a wireless communications network |
Related Child Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US14/202,278 Continuation US9473957B2 (en) | 2013-07-02 | 2014-03-10 | Antenna tilt optimization in a wireless communications network |
Publications (2)
Publication Number | Publication Date |
---|---|
US20150011227A1 US20150011227A1 (en) | 2015-01-08 |
US9473956B2 true US9473956B2 (en) | 2016-10-18 |
Family
ID=52133139
Family Applications (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US14/195,745 Active 2034-07-22 US9473956B2 (en) | 2013-07-02 | 2014-03-03 | Antenna tilt optimization in a wireless communications network |
US14/202,278 Active 2034-06-26 US9473957B2 (en) | 2013-07-02 | 2014-03-10 | Antenna tilt optimization in a wireless communications network |
Family Applications After (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US14/202,278 Active 2034-06-26 US9473957B2 (en) | 2013-07-02 | 2014-03-10 | Antenna tilt optimization in a wireless communications network |
Country Status (3)
Country | Link |
---|---|
US (2) | US9473956B2 (de) |
EP (2) | EP3017620B1 (de) |
WO (1) | WO2015002676A1 (de) |
Families Citing this family (21)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US9854451B2 (en) * | 2013-09-24 | 2017-12-26 | Qatar University Qstp-B | Methods of optimizing tilt angle of an antenna |
CN104969602B (zh) * | 2014-03-10 | 2019-11-05 | 华为技术有限公司 | 电调天线管理装置、远程控制器、基站、系统及方法 |
CN106332130B (zh) * | 2015-07-02 | 2020-03-24 | 中国移动通信集团设计院有限公司 | 一种基站勘察方法、装置及系统 |
US20170013475A1 (en) * | 2015-07-08 | 2017-01-12 | Telefonaktiebolaget L M Ericsson (Publ) | Performance Improvement in Wireless Communications Networks |
US11917480B2 (en) * | 2016-06-21 | 2024-02-27 | T-Mobile Usa, Inc. | Traffic management for wireless communication network |
WO2018077420A1 (en) | 2016-10-28 | 2018-05-03 | Telefonaktiebolaget Lm Ericsson (Publ) | Method and apparatus for managing antenna tilt |
KR20180059306A (ko) | 2016-11-25 | 2018-06-04 | 삼성전자주식회사 | 안테나를 포함하는 장치 및 그 제어 방법 |
US10536859B2 (en) | 2017-08-15 | 2020-01-14 | Charter Communications Operating, Llc | Methods and apparatus for dynamic control and utilization of quasi-licensed wireless spectrum |
WO2019056356A1 (zh) * | 2017-09-25 | 2019-03-28 | 深圳传音通讯有限公司 | 一种增强通话体验的方法及系统 |
US11432284B2 (en) | 2018-05-22 | 2022-08-30 | Charter Communications Operating, Llc | Methods and apparatus for intra-cell and inter-frequency mobility optimization and mitigation of session disruption in a quasi-licensed wireless system |
US10542442B2 (en) * | 2018-06-08 | 2020-01-21 | T-Mobile Usa, Inc. | Dominance-based coverage management for wireless communication network |
WO2020176525A1 (en) * | 2019-02-25 | 2020-09-03 | Emory University | Systems, devices, and methods for autonomic formation of wireless networks |
US10790898B1 (en) | 2019-03-06 | 2020-09-29 | RTO Wireless, LLC | Base station altitude automatic adjustment for remote wireless network optimization |
WO2021114185A1 (en) * | 2019-12-12 | 2021-06-17 | Telefonaktiebolaget Lm Ericsson (Publ) | Methods and apparatuses for ret control |
US11363466B2 (en) * | 2020-01-22 | 2022-06-14 | Charter Communications Operating, Llc | Methods and apparatus for antenna optimization in a quasi-licensed wireless system |
US11190925B2 (en) * | 2020-04-16 | 2021-11-30 | T-Mobile Usa, Inc. | Mobile device geofencing for wireless emergency alert messages |
US20210360474A1 (en) * | 2020-05-15 | 2021-11-18 | Samsung Electronics Co., Ltd. | Methods and apparatus for network load balancing optimization |
US12089240B2 (en) | 2020-07-06 | 2024-09-10 | Charter Communications Operating, Llc | Methods and apparatus for access node selection and link optimization in quasi-licensed wireless systems |
US11463912B2 (en) * | 2020-12-16 | 2022-10-04 | Dish Wireless L.L.C. | 5G zero touch traffic management |
FI130462B (en) * | 2021-02-17 | 2023-09-13 | Elisa Oyj | A method for analyzing antenna directions in a communication network |
WO2024144762A1 (en) * | 2022-12-27 | 2024-07-04 | Rakuten Mobile Usa Llc | Systems and methods for optimizing antenna tilt in a cellular site |
Citations (15)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20090023477A1 (en) | 2007-07-19 | 2009-01-22 | Telefonaktiebolaget Lm Ericsson (Publ) | Method and apparatus for reconfiguring a multi-sector base station |
US20090061871A1 (en) * | 2007-08-29 | 2009-03-05 | Motorola, Inc. | Base station neighbor list optimization |
US20100105398A1 (en) | 2006-12-18 | 2010-04-29 | Engstroem Stefan | Network configuration audit |
US20100298015A1 (en) | 2007-07-06 | 2010-11-25 | Jonas Medbo | Method and Apparatus for Improving the Performance of a Mobile Radio Communications System by Adjusting Antenna Patterns |
US20110090820A1 (en) * | 2009-10-16 | 2011-04-21 | Osama Hussein | Self-optimizing wireless network |
US20110092195A1 (en) * | 2009-10-16 | 2011-04-21 | Osama Hussein | Self-optimizing wireless network |
US20110130144A1 (en) * | 2009-12-01 | 2011-06-02 | Spidercloud Wireless, Inc. | Handoff in a self-configuring communication system |
US20110136478A1 (en) * | 2009-12-09 | 2011-06-09 | Hafedh Trigui | Self-optimizing networks for fixed wireless access |
US20110222448A1 (en) | 2003-04-07 | 2011-09-15 | Yoram Ofek | Directional Antenna Sectoring System And Methodology |
US20120225657A1 (en) * | 2009-11-19 | 2012-09-06 | Nec Corporation | Radio communication system, neighbor cell list optimizing system, base station, and neighbor cell list updating method |
US20120252440A1 (en) * | 2009-11-11 | 2012-10-04 | Nec Corporation | Radio communication system, self-optimizing system, radio base station, and radio parameter setting method |
US20130142183A1 (en) * | 2011-12-06 | 2013-06-06 | At&T Intellectual Property I, Lp | Cluster-based derivation of antenna tilts in a wireless network |
US20130170362A1 (en) * | 2010-10-01 | 2013-07-04 | Nec Corporation | Radio communication system and method, radio terminal, radio station, and operation administration and maintenance server apparatus |
US20130242736A1 (en) * | 2011-09-09 | 2013-09-19 | ReVerb Networks, Inc. | Methods and apparatus for implementing a self optimizing-organizing network manager |
CN102638833B (zh) * | 2012-03-30 | 2014-11-26 | 大唐移动通信设备有限公司 | 一种邻区优化的方法和设备 |
Family Cites Families (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP4578346B2 (ja) * | 2005-07-25 | 2010-11-10 | 株式会社エヌ・ティ・ティ・ドコモ | 無線制御装置および通信方法 |
US8498207B2 (en) * | 2008-06-26 | 2013-07-30 | Reverb Networks | Dynamic load balancing |
US8301156B2 (en) * | 2008-09-25 | 2012-10-30 | Optimi Corporation | Load balancing for capacity improvement in mobile wireless communication networks |
CN102480739B (zh) * | 2010-11-25 | 2014-10-22 | 中国移动通信集团北京有限公司 | 邻区优化方法、以及邻区优化装置 |
US8811994B2 (en) * | 2011-12-06 | 2014-08-19 | At&T Mobility Ii Llc | Closed loop heterogeneous network for automatic cell planning |
-
2014
- 2014-03-03 EP EP14820092.6A patent/EP3017620B1/de active Active
- 2014-03-03 EP EP17158266.1A patent/EP3264821A1/de not_active Withdrawn
- 2014-03-03 US US14/195,745 patent/US9473956B2/en active Active
- 2014-03-03 WO PCT/US2014/020020 patent/WO2015002676A1/en active Application Filing
- 2014-03-10 US US14/202,278 patent/US9473957B2/en active Active
Patent Citations (15)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20110222448A1 (en) | 2003-04-07 | 2011-09-15 | Yoram Ofek | Directional Antenna Sectoring System And Methodology |
US20100105398A1 (en) | 2006-12-18 | 2010-04-29 | Engstroem Stefan | Network configuration audit |
US20100298015A1 (en) | 2007-07-06 | 2010-11-25 | Jonas Medbo | Method and Apparatus for Improving the Performance of a Mobile Radio Communications System by Adjusting Antenna Patterns |
US20090023477A1 (en) | 2007-07-19 | 2009-01-22 | Telefonaktiebolaget Lm Ericsson (Publ) | Method and apparatus for reconfiguring a multi-sector base station |
US20090061871A1 (en) * | 2007-08-29 | 2009-03-05 | Motorola, Inc. | Base station neighbor list optimization |
US20110090820A1 (en) * | 2009-10-16 | 2011-04-21 | Osama Hussein | Self-optimizing wireless network |
US20110092195A1 (en) * | 2009-10-16 | 2011-04-21 | Osama Hussein | Self-optimizing wireless network |
US20120252440A1 (en) * | 2009-11-11 | 2012-10-04 | Nec Corporation | Radio communication system, self-optimizing system, radio base station, and radio parameter setting method |
US20120225657A1 (en) * | 2009-11-19 | 2012-09-06 | Nec Corporation | Radio communication system, neighbor cell list optimizing system, base station, and neighbor cell list updating method |
US20110130144A1 (en) * | 2009-12-01 | 2011-06-02 | Spidercloud Wireless, Inc. | Handoff in a self-configuring communication system |
US20110136478A1 (en) * | 2009-12-09 | 2011-06-09 | Hafedh Trigui | Self-optimizing networks for fixed wireless access |
US20130170362A1 (en) * | 2010-10-01 | 2013-07-04 | Nec Corporation | Radio communication system and method, radio terminal, radio station, and operation administration and maintenance server apparatus |
US20130242736A1 (en) * | 2011-09-09 | 2013-09-19 | ReVerb Networks, Inc. | Methods and apparatus for implementing a self optimizing-organizing network manager |
US20130142183A1 (en) * | 2011-12-06 | 2013-06-06 | At&T Intellectual Property I, Lp | Cluster-based derivation of antenna tilts in a wireless network |
CN102638833B (zh) * | 2012-03-30 | 2014-11-26 | 大唐移动通信设备有限公司 | 一种邻区优化的方法和设备 |
Non-Patent Citations (1)
Title |
---|
International Search Report and Written Opinion for PCT/US2014/020020, filed Mar. 3, 2014. |
Also Published As
Publication number | Publication date |
---|---|
US20150011198A1 (en) | 2015-01-08 |
US20150011227A1 (en) | 2015-01-08 |
US9473957B2 (en) | 2016-10-18 |
EP3017620B1 (de) | 2019-07-24 |
WO2015002676A1 (en) | 2015-01-08 |
EP3264821A1 (de) | 2018-01-03 |
EP3017620A1 (de) | 2016-05-11 |
EP3017620A4 (de) | 2017-03-01 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US9473956B2 (en) | Antenna tilt optimization in a wireless communications network | |
US10039016B1 (en) | Machine-learning-based RF optimization | |
US10050844B2 (en) | Techniques for dynamic network optimization using geolocation and network modeling | |
US10701574B2 (en) | Downlink interference detection using transmission matrices | |
US9736705B2 (en) | Method and system for proxy base station | |
US9923700B2 (en) | Method and system for localizing interference in spectrum co-existence network | |
US8983470B1 (en) | Automatic identification of clustered near neighbor cells in wireless networks | |
EP3046358B1 (de) | Verfahren zur dynamischen netzwerk mithilfe von geolokalisierung und netzwerkmodellierung | |
US20160157252A1 (en) | Telecommunications control with service aware optimization in a self-organizing network | |
JP2015525027A (ja) | セルラーネットワーク負荷バランシングのための方法及びシステム | |
EP3097718A1 (de) | Dynamische automatisierte nachbarlistenverwaltung in einem selbstoptimierenden netzwerk | |
US20170251377A1 (en) | Method and system for neighbor tier determination | |
WO2021013367A1 (en) | Kpi-based tilt range selection | |
CN112514451A (zh) | 自动优化服务基站的小区参数 | |
Lee et al. | Design of handover self-optimization using big data analytics | |
US20170251414A1 (en) | Cell outage compensation using best neighbor cell candidate | |
EP2949143B1 (de) | Verfahren für automatisierte nachbarlisteninitialisierung in einem mobilfunknetz | |
US9237502B1 (en) | Systems and methods for balancing wireless network load between band classes using automatic neighbor relations | |
US20230110023A1 (en) | Method and system for mobility management | |
EP3178251B1 (de) | Funknetzknoten und verfahren zur bestimmung der eignung einer drahtlosen vorrichtung zur übergabe an eine zielzelle zwecks lastausgleich | |
WO2019185143A1 (en) | Method and apparatus for characterizing a radio frequency environment in a telecommunications network | |
EP3127368B1 (de) | System und verfahren für lastausgleich | |
US10327157B2 (en) | Dynamically targeting optimization of network elements | |
Gebremariam et al. | Techniques of candidate cell selection for antenna tilt adaptation in lte-advanced |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
AS | Assignment |
Owner name: EDEN ROCK COMMUNICATIONS, LLC, WASHINGTON Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:WELLINGTON, DANIEL;REEL/FRAME:035279/0743 Effective date: 20150324 |
|
FEPP | Fee payment procedure |
Free format text: PAYOR NUMBER ASSIGNED (ORIGINAL EVENT CODE: ASPN); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY |
|
AS | Assignment |
Owner name: NOKIA SOLUTIONS AND NETWORKS OY, FINLAND Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:NOKIA NETWORKS US SON LLC;REEL/FRAME:037856/0920 Effective date: 20160210 Owner name: NOKIA NETWORKS US SON, LLC, WASHINGTON Free format text: MERGER AND CHANGE OF NAME;ASSIGNORS:EDEN ROCK COMMUNICATIONS, LLC;NOKIA NETWORKS US SON, LLC;REEL/FRAME:037856/0904 Effective date: 20150710 |
|
STCF | Information on status: patent grant |
Free format text: PATENTED CASE |
|
MAFP | Maintenance fee payment |
Free format text: PAYMENT OF MAINTENANCE FEE, 4TH YEAR, LARGE ENTITY (ORIGINAL EVENT CODE: M1551); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY Year of fee payment: 4 |
|
MAFP | Maintenance fee payment |
Free format text: PAYMENT OF MAINTENANCE FEE, 8TH YEAR, LARGE ENTITY (ORIGINAL EVENT CODE: M1552); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY Year of fee payment: 8 |