US9466307B1 - Robust spectral encoding and decoding methods - Google Patents

Robust spectral encoding and decoding methods Download PDF

Info

Publication number
US9466307B1
US9466307B1 US12/125,840 US12584008A US9466307B1 US 9466307 B1 US9466307 B1 US 9466307B1 US 12584008 A US12584008 A US 12584008A US 9466307 B1 US9466307 B1 US 9466307B1
Authority
US
United States
Prior art keywords
data
signal
embedded
frequencies
method
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active, expires
Application number
US12/125,840
Inventor
Ravi K. Sharma
Adnan M. Alattar
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Digimarc Corp
Original Assignee
Digimarc Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority to US93958007P priority Critical
Application filed by Digimarc Corp filed Critical Digimarc Corp
Priority to US12/125,840 priority patent/US9466307B1/en
Assigned to DIGIMARC CORPORATION reassignment DIGIMARC CORPORATION ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: ALATTAR, ADNAN M., SHARMA, RAVI K.
Assigned to DIGIMARC CORPORATION (FORMERLY DMRC CORPORATION) reassignment DIGIMARC CORPORATION (FORMERLY DMRC CORPORATION) CONFIRMATION OF TRANSFER OF UNITED STATES PATENT RIGHTS Assignors: L-1 SECURE CREDENTIALING, INC. (FORMERLY KNOWN AS DIGIMARC CORPORATION)
Assigned to DIGIMARC CORPORATION (AN OREGON CORPORATION) reassignment DIGIMARC CORPORATION (AN OREGON CORPORATION) MERGER (SEE DOCUMENT FOR DETAILS). Assignors: DIGIMARC CORPORATION (A DELAWARE CORPORATION)
Publication of US9466307B1 publication Critical patent/US9466307B1/en
Application granted granted Critical
Application status is Active legal-status Critical
Adjusted expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G10MUSICAL INSTRUMENTS; ACOUSTICS
    • G10LSPEECH ANALYSIS OR SYNTHESIS; SPEECH RECOGNITION; SPEECH OR VOICE PROCESSING; SPEECH OR AUDIO CODING OR DECODING
    • G10L19/00Speech or audio signals analysis-synthesis techniques for redundancy reduction, e.g. in vocoders; Coding or decoding of speech or audio signals, using source filter models or psychoacoustic analysis
    • G10L19/018Audio watermarking, i.e. embedding inaudible data in the audio signal
    • GPHYSICS
    • G10MUSICAL INSTRUMENTS; ACOUSTICS
    • G10LSPEECH ANALYSIS OR SYNTHESIS; SPEECH RECOGNITION; SPEECH OR VOICE PROCESSING; SPEECH OR AUDIO CODING OR DECODING
    • G10L15/00Speech recognition
    • G10L15/08Speech classification or search
    • GPHYSICS
    • G10MUSICAL INSTRUMENTS; ACOUSTICS
    • G10LSPEECH ANALYSIS OR SYNTHESIS; SPEECH RECOGNITION; SPEECH OR VOICE PROCESSING; SPEECH OR AUDIO CODING OR DECODING
    • G10L19/00Speech or audio signals analysis-synthesis techniques for redundancy reduction, e.g. in vocoders; Coding or decoding of speech or audio signals, using source filter models or psychoacoustic analysis
    • G10L19/0019Vocoders specially adapted for particular applications
    • GPHYSICS
    • G10MUSICAL INSTRUMENTS; ACOUSTICS
    • G10LSPEECH ANALYSIS OR SYNTHESIS; SPEECH RECOGNITION; SPEECH OR VOICE PROCESSING; SPEECH OR AUDIO CODING OR DECODING
    • G10L19/00Speech or audio signals analysis-synthesis techniques for redundancy reduction, e.g. in vocoders; Coding or decoding of speech or audio signals, using source filter models or psychoacoustic analysis
    • G10L19/02Speech or audio signals analysis-synthesis techniques for redundancy reduction, e.g. in vocoders; Coding or decoding of speech or audio signals, using source filter models or psychoacoustic analysis using spectral analysis, e.g. transform vocoders or subband vocoders
    • G10L19/022Blocking, i.e. grouping of samples in time; Choice of analysis windows; Overlap factoring
    • GPHYSICS
    • G10MUSICAL INSTRUMENTS; ACOUSTICS
    • G10LSPEECH ANALYSIS OR SYNTHESIS; SPEECH RECOGNITION; SPEECH OR VOICE PROCESSING; SPEECH OR AUDIO CODING OR DECODING
    • G10L19/00Speech or audio signals analysis-synthesis techniques for redundancy reduction, e.g. in vocoders; Coding or decoding of speech or audio signals, using source filter models or psychoacoustic analysis
    • G10L19/04Speech or audio signals analysis-synthesis techniques for redundancy reduction, e.g. in vocoders; Coding or decoding of speech or audio signals, using source filter models or psychoacoustic analysis using predictive techniques
    • G10L19/08Determination or coding of the excitation function; Determination or coding of the long-term prediction parameters
    • G10L19/12Determination or coding of the excitation function; Determination or coding of the long-term prediction parameters the excitation function being a code excitation, e.g. in code excited linear prediction [CELP] vocoders
    • GPHYSICS
    • G10MUSICAL INSTRUMENTS; ACOUSTICS
    • G10LSPEECH ANALYSIS OR SYNTHESIS; SPEECH RECOGNITION; SPEECH OR VOICE PROCESSING; SPEECH OR AUDIO CODING OR DECODING
    • G10L19/00Speech or audio signals analysis-synthesis techniques for redundancy reduction, e.g. in vocoders; Coding or decoding of speech or audio signals, using source filter models or psychoacoustic analysis
    • G10L19/04Speech or audio signals analysis-synthesis techniques for redundancy reduction, e.g. in vocoders; Coding or decoding of speech or audio signals, using source filter models or psychoacoustic analysis using predictive techniques
    • G10L19/26Pre-filtering or post-filtering
    • G10L19/265Pre-filtering, e.g. high frequency emphasis prior to encoding
    • GPHYSICS
    • G10MUSICAL INSTRUMENTS; ACOUSTICS
    • G10LSPEECH ANALYSIS OR SYNTHESIS; SPEECH RECOGNITION; SPEECH OR VOICE PROCESSING; SPEECH OR AUDIO CODING OR DECODING
    • G10L21/00Processing of the speech or voice signal to produce another audible or non-audible signal, e.g. visual or tactile, in order to modify its quality or its intelligibility
    • G10L21/04Time compression or expansion
    • G10L21/055Time compression or expansion for synchronising with other signals, e.g. video signals

Abstract

Spectral encoding methods are more robust when used with improved weak signal detection and synchronizations methods. Further robustness gains are achieved by using informed embedding, error correction and embedding protocols that enable signal to noise enhancements by folding and pre-filtering the received signal.

Description

RELATED APPLICATION DATA

This application claims benefit of Provisional Application No. 60/939,580, filed May 22, 2007, which is incorporated herein by reference.

TECHNICAL FIELD

The invention relates to signal processing, and specifically, media signal processing for encoding and decoding auxiliary data.

BACKGROUND AND SUMMARY

U.S. Pat. Nos. 7,006,555, 6,968,564, and 6,272,176 and U.S. Patent Publication 2005-0177361, which are hereby incorporated by reference, disclose methods of encoding and decoding inaudible auxiliary data in audio signals. These techniques have been used to encode data in the audio portion of TV programs for broadcast monitoring and audience measurement. In these applications, the inaudible codes must be recoverable from the audio signal despite distortions of the audio signal incurred during the broadcast of the programs. These distortions may include digital to analog (D/A) and analog to digital (A/D) conversions (and associated sampling operations) as well as lossy compression. While the methods have been developed to enable reasonable recovery of the encoded auxiliary data, they are not sufficiently robust for applications in which the audio signal is subjected to greater distortions, such as repeated sampling operations (e.g., including re-sampling occurring in a series of D/A and A/D conversions), time scale changes, speed changes, successive compression/decompression operations (e.g., including transcoding into different compression formats). These additional distortions occur when the program content is captured at a receiver, re-formatted and uploaded to the Internet, such as the case when TV programs are uploaded to web sites. For example, the audio portion of the TV program is captured from an analog output, converted to digital (which includes re-sampling), compressed in a format compatible with the content hosting web site, uploaded, and then transcoded into a format for storage on the content distribution servers of the web site and suitable for streaming in response to requests from the web site visitors.

Such distortions tend to weaken the embedded inaudible code signal preventing its recovery. Further, they make it more difficult for the decoder to synchronize the reading of the inaudible code. The start codes included with the code signal are often insufficient, or not processed effectively, to enable the decoder to ascertain the location and time scale of the inaudible code signal in the received audio signal.

This document describes methods for making spectral encoding methods more robust. These methods include methods for decoding that address weak signal and/or synchronization issues caused by distortions to the encoded audio signal. These methods also include improvements to the encoding method and corresponding decoding methods that improve the robustness of the embedded data to distortion.

One aspect of the invention comprises a method of embedding data in a media signal, wherein the data is embedded in the media signal by adjusting signal values at frequencies selected from among set of frequency locations in predetermined frequency bands, the method comprising:

using signal characteristics of the media signal to select a pattern of frequencies from among the set of frequency locations that satisfy a desired performance criteria for embedding data; and

embedding the data at the selected pattern of frequencies by adjusting the signal values at the frequencies, wherein the selected pattern of frequencies varies according to the signal characteristics and the desired performance criteria.

Another aspect of the invention comprises a method of decoding data embedded in a media signal, wherein the data is embedded in the media signal by adjusting signal values at frequencies, the method comprising:

performing an initial approximation of time scale changes of the media signal using at least a portion of the embedded data in a first domain;

performing synchronization of the embedded data in a second domain, different from the first domain; and

decoding the embedded data.

Another aspect of the invention comprises a method of decoding data embedded in a media signal, wherein the data is embedded in the media signal by adjusting signal values at frequencies, the method comprising:

performing a least squares method to detect embedded data at the frequencies; and

using the results of the least squares method to decode the embedded data from the media signal.

Further features will become apparent with reference to the following detailed description and accompanying drawings.

BRIEF DESCRIPTION OF DRAWINGS

FIG. 1 is a diagram illustrating methods for decoding date embedded in media signal, including synchronization of embedded data and decoding auxiliary data.

FIG. 2 is a diagram illustrating methods for embedding data in a media signal.

DETAILED DESCRIPTION

The following embodiments improve the robustness of the spectral encoding and decoding methods of U.S. Pat. Nos. 7,006,555, 6,968,564, and 6,272,176 and U.S. Patent Publication 2005-0177361. A description of these methods is substantially covered in U.S. Pat. No. 7,006,555 ('555 patent) and 2005-0177361 ('361 publication). For the sake of illustration, the following embodiments are designed for the encoding and decoding methods of these patents that encode inaudible auxiliary codes by selectively increasing/decreasing the audio signal energy at a set of frequencies relative to the energy of neighboring frequencies. The basic signal processing improvements described for these embodiments can be adapted for alternative encoding and decoding schemes.

Decoder Improvements

Detector improvements enable accurate recovery of the auxiliary data in the inaudible code signal weakened through distortions or distorted in a manner (e.g., time scale changes) that undermines synchronization. One advantage to detector-only improvements is that it enables recovery from previously encoded audio without requiring changes to the encoder and re-encoding of the audio signal.

These detector improvements fall in two categories: synchronization methods and weak signal methods. These methods, which often overlap due to the similarities of the synchronization and data components of the inaudible code signal, are described below.

As summarized above, one aspect of the invention comprises a method of decoding data embedded in a media signal, wherein the data is embedded in the media signal by adjusting signal values at frequencies. FIG. 1 is a diagram illustrating methods for decoding date embedded in a media signal. One decoding method comprises performing an initial approximation of time scale changes of the media signal using at least a portion of the embedded data in a first domain (as shown in block 100); performing synchronization of the embedded data in a second domain, different from the first domain (as shown in block 102); and decoding the embedded data (as shown in block (104). Further detail about alternative implementations of this signal processing is shown to the right of blocks 100-104 in FIG. 1 and described below. Also as summarized above, another aspect of the invention is a method of decoding data embedded in a media signal, wherein the data is embedded in the media signal by adjusting signal values at frequencies. This decoding method comprises performing a least squares method (116 and 118-124) to detect embedded data at the frequencies and using the results of the least squares method to decode the embedded data from the media signal (104, and 132-138). Block 116 depicts an example of where a least squares method may reside in the processing flow of a particular embedded data decoder, and blocks 118-124 show a specific example of performing a least squares method.

Re-sampling of the audio and time scale changes introduce distortions to the positions and time scale of the inaudible code relative to the original positions and times scale at the time of its encoding. This causes the location of the changes made to frequencies (e.g., the local maxima and minima) to encode elements of the code signal to shift.

One approach is to do a conversion of the Fourier magnitude data (110) to the log scale (112). To perform synchronization, this log conversion step is inserted into the method of the '361 publication after FFT of the received audio signal. This log conversion of the Fourier magnitude data removes time scale distortion due to re-sampling.

Further distortion (e.g., non-linear distortion) is measured and compensated for in additional detector refinement stages. One such stage correlates a synchronization and/or data signal pattern at the frequency locations of the pattern with the Fourier magnitude data in the log domain as described in U.S. Pat. No. 6,424,725, which is hereby incorporated by reference.

Preferably, the correlator applies a “soft” correlation of the 5 frequency locations of the synch signal in the method of the '361 publication (114). The same applies for three bit data codes in each of the data blocks described in the '361 publication (138).

Another approach is to use a least squares optimization method (116) to compute the time scale changes between the original embedded code signal and the received embedded code signal. These time scale changes are approximated by an affine transform. Generally speaking, an affine (strictly, linear) mapping in the frequency domain is fully defined by 2 points. Knowing the original locations of 2 points, and their transformed locations, one can derive the linear mapping (e.g., there are 4 equations, 4 unknowns). In this approach, the decoder uses “Least Squares” estimation for obtaining the solution. This gives a maximum likelihood estimate if errors (in code signal frequency locations) are independently and normally distributed. One embodiment of the method is:

    • 1. Peak identification—identify peaks (potential code signal frequency locations) in Fourier magnitude domain for given signal (118)
    • 2. Correspondence determination—determine which peak (transformed code signal frequency location) corresponds to which code signal element (120)
    • 3. Least squares solution—calculate affine transform using least squares—requires the location of the original code signal frequencies and the transformed code signal frequencies. (122)
    • 4. Iteration—use the solution in Step 3 as a starting point to find a better estimate if required (124)

All decoding (both of synchronization and variable code data) is preferably performed in the log domain (112) so that re-sampling and other time scale errors are reduced or eliminated.

Alternatively, after time scale distortions are approximated, further synchronization and data signal extraction can be performed in other domains. For example, one embodiment uses the phase (126) of the encoded signal (e.g., correlates the phase of the original encoded signal with the received signal (128)) to identify the start location more accurately.

Another enhancement is to capture a sufficiently long block of audio such that multiple instances of the synchronization data are included in the captured block. The detector then detects the code signal using a match filtering and/or least squares approximation over a longer window (e.g., one in which multiple sync blocks are included). For example, in the '361 publication, sync blocks occur about every 3 seconds in the original audio. Multiple sync blocks can be used together to form the above mentioned synchronization pattern, which is then detected using the above improvements.

A related improvement is to retain received data for further decoding analysis, even if a first pass decoding does not yield an accurate data recovery. In particular, the decoder retains decoding results and Fourier magnitude data of candidate synch block information, even if the next block yields no code data at first. The current approach discards the current synch if the next block yields no data. In contrast, this improvement enables the detector to accumulate evidence of a code signal, and then go back to the previous block if subsequent detection results indicate that the inaudible code signal is likely present.

Another improvement is to pre-filter the Fourier magnitude data to sharpen the peaks of the sync and data signals encoded by the spectral encoding methods referenced above (e.g., 130 for sync signal, 132 for data signal). Specifically, a pre-filter is applied to increase the signal to noise ratio of the code signal. A Fourier Magnitude pre-filter is particular useful when used as a pre-process for the soft correlation described above. Filtering techniques are described in U.S. Pat. Nos. 6,614,914, 6,988,202 and 7,076,082, which are hereby incorporated by reference.

Additional pre-filtering, synchronization and weak signal decoding methods are also described in U.S. Pat. No. 6,122,403, which is hereby incorporated by reference.

Another improvement is to fold together (e.g., sum) successive blocks of the Fourier magnitude data to increase inaudible code signal to noise ratio (134, 136). Depending on how frequencies are selected to encode the synchronization and data components, this approach may require changes to the embedder so that frequencies that represent the same code data are accumulated over time (rather than causing destructive interference among different data elements).

A combination of filtering and folding of Fourier magnitude data, accumulated over time, improves robustness further. One embodiment of the decoder uses accumulation of the received data and/or moving average or exponential moving average filtering of the received data to improve signal to noise ratio of the inaudible code signal.

Encoder Improvements

As summarized above, and shown in FIG. 2, one aspect of the invention comprises a method of embedding data in a media signal (140), wherein the data is embedded in the media signal by adjusting signal values at frequencies selected from among a set of frequency locations in predetermined frequency bands (146). The method comprises using signal characteristics of the media signal (142) to select a pattern of frequencies from among the set of frequency locations that satisfy a performance criteria for embedding data (144); and embedding the data at the selected pattern of frequencies by adjusting the signal values at the frequencies, wherein the selected pattern of frequencies varies according to the signal characteristics and the performance criteria (146).

The '361 publication describes a spectral encoding example in which the encoder selects frequency locations of the inaudible code signal from among 8 frequency locations in each of 5 frequency bands. An improved encoder uses “informed” encoding to select the code signal pattern from among some number of various other patterns which all convey the same data. The “informed” aspect of the encoding refers to the encoder's selection of the pattern that uses information about the host audio signal characteristics (142) to select the pattern that gives the best performance in terms of desired criteria, such as detection performance, robustness, and/or inaudibility of the selected pattern in the given audio data (144).

Another improvement that involves updates to the embedder are changes to the data encoding protocol to include error correction. More effective error correction coding than repetition coding should be included. One option is to use block codes. Examples of error correction include BCH and Reed Solomon encoding. Convolution and turbo codes may be used as well, along with Viterbi decoding of soft errors.

See, for example, U.S. Pat. No. 6,614,914, which is hereby incorporated by reference, which includes decoding and encoding enhancements, including pre-filtering, error correction, soft correlation, refinement stages in the detector, folding of received data to improve SNR of the embedded data, etc.

Concluding Remarks

Having described and illustrated the principles of the technology with reference to specific implementations, it will be recognized that the technology can be implemented in many other, different, forms. To provide a comprehensive disclosure without unduly lengthening the specification, applicants incorporate by reference the patents and patent applications referenced above.

The methods, processes, and systems described above may be implemented in hardware, software or a combination of hardware and software. For example, the auxiliary data encoding processes may be implemented in a programmable computer or a special purpose digital circuit. Similarly, auxiliary data decoding may be implemented in software, firmware, hardware, or combinations of software, firmware and hardware. The methods and processes described above may be implemented in programs executed from a system's memory (a computer readable medium, such as an electronic, optical or magnetic storage device).

The particular combinations of elements and features in the above-detailed embodiments are exemplary only; the interchanging and substitution of these teachings with other teachings in this and the incorporated-by-reference patents/applications are also contemplated.

Claims (7)

We claim:
1. A method of decoding data embedded in a media signal, wherein the data is embedded in the media signal by adjusting signal values at frequencies, the method comprising:
performing an initial approximation of time scale changes of the media signal using at least a portion of the embedded data in a first domain; wherein the initial approximation is performed in a log domain;
based on the initial approximation of time scale changes, performing synchronization of the embedded data in a second domain, different from the first domain; and
decoding at least a portion of the embedded data using the synchronization; wherein magnitude data at frequencies corresponding to the embedded data in the media signal is accumulated over time using a moving average, and the decoding is performed on the accumulated data.
2. The method of claim 1 wherein the initial approximation is performed in a pre-filtered magnitude frequency domain.
3. The method of claim 1 wherein the initial approximation includes performing a least squares method to approximate scale changes.
4. The method of claim 1 wherein the initial approximation includes performing a soft correlation between a pattern signal at selected frequencies and the media signal.
5. The method of claim 1 wherein detection information from at least the initial approximation is accumulated over plural blocks of the media signal, and subsequent detection of the embedded data is performed using the accumulated detection information.
6. The method of claim 1, wherein the magnitude data is accumulated using an exponential moving average.
7. A method of embedding data in a media signal, wherein the data is embedded in the media signal by adjusting signal values at frequencies selected from among a set of frequency locations in predetermined frequency bands, the method comprising:
using signal characteristics of the media signal to select a pattern of frequencies from among different sets of patterns that convey the same data that satisfy a performance criteria for embedding the data; and
embedding the data at the selected pattern of frequencies by adjusting the signal values at the frequencies, wherein the selected pattern of frequencies varies according to the signal characteristics and the performance criteria, wherein the performance criteria comprises detection performance of the embedded data and inaudibility of the embedded data of the selected pattern.
US12/125,840 2007-05-22 2008-05-22 Robust spectral encoding and decoding methods Active 2035-03-05 US9466307B1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US93958007P true 2007-05-22 2007-05-22
US12/125,840 US9466307B1 (en) 2007-05-22 2008-05-22 Robust spectral encoding and decoding methods

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US12/125,840 US9466307B1 (en) 2007-05-22 2008-05-22 Robust spectral encoding and decoding methods
US15/289,792 US9773504B1 (en) 2007-05-22 2016-10-10 Robust spectral encoding and decoding methods
US15/714,642 US10192560B2 (en) 2007-05-22 2017-09-25 Robust spectral encoding and decoding methods

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US15/289,792 Continuation US9773504B1 (en) 2007-05-22 2016-10-10 Robust spectral encoding and decoding methods

Publications (1)

Publication Number Publication Date
US9466307B1 true US9466307B1 (en) 2016-10-11

Family

ID=57046319

Family Applications (3)

Application Number Title Priority Date Filing Date
US12/125,840 Active 2035-03-05 US9466307B1 (en) 2007-05-22 2008-05-22 Robust spectral encoding and decoding methods
US15/289,792 Active US9773504B1 (en) 2007-05-22 2016-10-10 Robust spectral encoding and decoding methods
US15/714,642 Active US10192560B2 (en) 2007-05-22 2017-09-25 Robust spectral encoding and decoding methods

Family Applications After (2)

Application Number Title Priority Date Filing Date
US15/289,792 Active US9773504B1 (en) 2007-05-22 2016-10-10 Robust spectral encoding and decoding methods
US15/714,642 Active US10192560B2 (en) 2007-05-22 2017-09-25 Robust spectral encoding and decoding methods

Country Status (1)

Country Link
US (3) US9466307B1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9953390B2 (en) 2010-09-03 2018-04-24 Digimarc Corporation Signal processors and methods for estimating transformations between signals with least squares
US10147433B1 (en) 2015-05-03 2018-12-04 Digimarc Corporation Digital watermark encoding and decoding with localization and payload replacement
US10236031B1 (en) 2016-04-05 2019-03-19 Digimarc Corporation Timeline reconstruction using dynamic path estimation from detections in audio-video signals

Citations (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5497435A (en) * 1993-02-07 1996-03-05 Image Compression Technology Ltd. Apparatus and method for encoding and decoding digital signals
US5956674A (en) * 1995-12-01 1999-09-21 Digital Theater Systems, Inc. Multi-channel predictive subband audio coder using psychoacoustic adaptive bit allocation in frequency, time and over the multiple channels
US6061793A (en) * 1996-08-30 2000-05-09 Regents Of The University Of Minnesota Method and apparatus for embedding data, including watermarks, in human perceptible sounds
US6272176B1 (en) 1998-07-16 2001-08-07 Nielsen Media Research, Inc. Broadcast encoding system and method
US20010047256A1 (en) * 1993-12-07 2001-11-29 Katsuaki Tsurushima Multi-format recording medium
US6424725B1 (en) 1996-05-16 2002-07-23 Digimarc Corporation Determining transformations of media signals with embedded code signals
US6483927B2 (en) * 2000-12-18 2002-11-19 Digimarc Corporation Synchronizing readers of hidden auxiliary data in quantization-based data hiding schemes
US6614914B1 (en) 1995-05-08 2003-09-02 Digimarc Corporation Watermark embedder and reader
US6785353B1 (en) * 2000-09-06 2004-08-31 Telogy Networks, Inc. Synchronization loss detection in a V.34 receiver
US20050055214A1 (en) * 2003-07-15 2005-03-10 Microsoft Corporation Audio watermarking with dual watermarks
US6904151B2 (en) * 2002-01-17 2005-06-07 Deguillaume Frederic Method for the estimation and recovering of general affine transform
US20050177332A1 (en) * 2002-03-28 2005-08-11 Lemma Aweke N. Watermark time scale searching
US20050177361A1 (en) 2000-04-06 2005-08-11 Venugopal Srinivasan Multi-band spectral audio encoding
US6988202B1 (en) 1995-05-08 2006-01-17 Digimarc Corporation Pre-filteriing to increase watermark signal-to-noise ratio
US7006555B1 (en) 1998-07-16 2006-02-28 Nielsen Media Research, Inc. Spectral audio encoding
US7058570B1 (en) * 2000-02-10 2006-06-06 Matsushita Electric Industrial Co., Ltd. Computer-implemented method and apparatus for audio data hiding
US7095811B1 (en) * 2002-08-31 2006-08-22 National Semiconductor Corporation Apparatus and method for secondary synchronization channel detection in a 3GPP WCDMA receiver
US7272556B1 (en) * 1998-09-23 2007-09-18 Lucent Technologies Inc. Scalable and embedded codec for speech and audio signals
US7298841B2 (en) * 2000-07-27 2007-11-20 Activated Content Corporation Stegotext encoder and decoder
US20080114606A1 (en) * 2006-10-18 2008-05-15 Nokia Corporation Time scaling of multi-channel audio signals
US7610205B2 (en) * 2002-02-12 2009-10-27 Dolby Laboratories Licensing Corporation High quality time-scaling and pitch-scaling of audio signals
US7657102B2 (en) * 2003-08-27 2010-02-02 Microsoft Corp. System and method for fast on-line learning of transformed hidden Markov models
US7769202B2 (en) * 2001-03-22 2010-08-03 Digimarc Corporation Quantization-based data embedding in mapped data
US7809154B2 (en) * 2003-03-07 2010-10-05 Technology, Patents & Licensing, Inc. Video entity recognition in compressed digital video streams
US8023525B2 (en) * 2007-07-02 2011-09-20 Lg Electronics Inc. Broadcasting receiver and broadcast signal processing method
US8331497B2 (en) * 2003-09-12 2012-12-11 Advantech Advanced Microwave Technologies, Inc. Joint synchronizer and decoder

Family Cites Families (31)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5042069A (en) * 1989-04-18 1991-08-20 Pacific Communications Sciences, Inc. Methods and apparatus for reconstructing non-quantized adaptively transformed voice signals
US5012517A (en) * 1989-04-18 1991-04-30 Pacific Communication Science, Inc. Adaptive transform coder having long term predictor
US6381341B1 (en) * 1996-05-16 2002-04-30 Digimarc Corporation Watermark encoding method exploiting biases inherent in original signal
US6334219B1 (en) * 1994-09-26 2001-12-25 Adc Telecommunications Inc. Channel selection for a hybrid fiber coax network
US6356555B1 (en) * 1995-08-25 2002-03-12 Terayon Communications Systems, Inc. Apparatus and method for digital data transmission using orthogonal codes
EP0981900A2 (en) 1998-03-04 2000-03-01 Philips Electronics N.V. Watermark detection
US6209094B1 (en) 1998-10-14 2001-03-27 Liquid Audio Inc. Robust watermark method and apparatus for digital signals
WO2000026860A1 (en) 1998-10-29 2000-05-11 Koninklijke Philips Electronics N.V. Watermark detection
AU3462500A (en) 1999-03-29 2000-10-16 Markany Inc. Digital watermarking method and apparatus
US7543148B1 (en) 1999-07-13 2009-06-02 Microsoft Corporation Audio watermarking with covert channel and permutations
US6771695B1 (en) * 1999-07-30 2004-08-03 Agere Systems Inc. Low-complexity DMT transceiver
EP1118063B1 (en) 1999-08-05 2016-07-13 Civolution B.V. Detection of auxiliary data in an information signal
US6496798B1 (en) * 1999-09-30 2002-12-17 Motorola, Inc. Method and apparatus for encoding and decoding frames of voice model parameters into a low bit rate digital voice message
JP3659321B2 (en) 2000-06-29 2005-06-15 インターナショナル・ビジネス・マシーンズ・コーポレーションInternational Business Maschines Corporation Electronic watermark method and system
US6674876B1 (en) 2000-09-14 2004-01-06 Digimarc Corporation Watermarking in the time-frequency domain
EP1393313A1 (en) 2001-05-08 2004-03-03 Philips Electronics N.V. Watermarking
KR20030016381A (en) 2001-05-08 2003-02-26 코닌클리케 필립스 일렉트로닉스 엔.브이. Watermarking
SE0202159D0 (en) * 2001-07-10 2002-07-09 Coding Technologies Sweden Ab Efficientand scalable parametric stereo coding for low bit rate applications
US7117148B2 (en) * 2002-04-05 2006-10-03 Microsoft Corporation Method of noise reduction using correction vectors based on dynamic aspects of speech and noise normalization
RU2005104835A (en) 2002-07-22 2005-07-20 Конинклейке Филипс Электроникс Н.В. (Nl) watermark detection method
DE602004007786T2 (en) * 2003-05-01 2008-04-30 Nokia Corp. Method and device for quantizing the gain factor in a variable bitrate broadband language codier
WO2005055201A1 (en) * 2003-12-01 2005-06-16 Aic A highly optimized method for modelling a windowed signal
EP1542226A1 (en) 2003-12-11 2005-06-15 Deutsche Thomson-Brandt Gmbh Method and apparatus for transmitting watermark data bits using a spread spectrum, and for regaining watermark data bits embedded in a spread spectrum
EP1761895A1 (en) 2004-06-16 2007-03-14 Philips Electronics N.V. Searching for a scaling factor for watermark detection
BRPI0517780A2 (en) * 2004-11-05 2011-04-19 Matsushita Electric Ind Co Ltd scalable decoding device and scalable coding device
US8009775B2 (en) * 2005-03-11 2011-08-30 Qualcomm Incorporated Automatic frequency control for a wireless communication system with multiple subcarriers
US8266196B2 (en) * 2005-03-11 2012-09-11 Qualcomm Incorporated Fast Fourier transform twiddle multiplication
EP1764780A1 (en) 2005-09-16 2007-03-21 Deutsche Thomson-Brandt Gmbh Blind watermarking of audio signals by using phase modifications
GB2431838A (en) * 2005-10-28 2007-05-02 Sony Uk Ltd Audio processing
US7953604B2 (en) * 2006-01-20 2011-05-31 Microsoft Corporation Shape and scale parameters for extended-band frequency coding
US20090248407A1 (en) * 2006-03-31 2009-10-01 Panasonic Corporation Sound encoder, sound decoder, and their methods

Patent Citations (29)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5497435A (en) * 1993-02-07 1996-03-05 Image Compression Technology Ltd. Apparatus and method for encoding and decoding digital signals
US20010047256A1 (en) * 1993-12-07 2001-11-29 Katsuaki Tsurushima Multi-format recording medium
US6614914B1 (en) 1995-05-08 2003-09-02 Digimarc Corporation Watermark embedder and reader
US6988202B1 (en) 1995-05-08 2006-01-17 Digimarc Corporation Pre-filteriing to increase watermark signal-to-noise ratio
US5956674A (en) * 1995-12-01 1999-09-21 Digital Theater Systems, Inc. Multi-channel predictive subband audio coder using psychoacoustic adaptive bit allocation in frequency, time and over the multiple channels
US6424725B1 (en) 1996-05-16 2002-07-23 Digimarc Corporation Determining transformations of media signals with embedded code signals
US6061793A (en) * 1996-08-30 2000-05-09 Regents Of The University Of Minnesota Method and apparatus for embedding data, including watermarks, in human perceptible sounds
US6272176B1 (en) 1998-07-16 2001-08-07 Nielsen Media Research, Inc. Broadcast encoding system and method
US7006555B1 (en) 1998-07-16 2006-02-28 Nielsen Media Research, Inc. Spectral audio encoding
US7272556B1 (en) * 1998-09-23 2007-09-18 Lucent Technologies Inc. Scalable and embedded codec for speech and audio signals
US7058570B1 (en) * 2000-02-10 2006-06-06 Matsushita Electric Industrial Co., Ltd. Computer-implemented method and apparatus for audio data hiding
US20050177361A1 (en) 2000-04-06 2005-08-11 Venugopal Srinivasan Multi-band spectral audio encoding
US6968564B1 (en) 2000-04-06 2005-11-22 Nielsen Media Research, Inc. Multi-band spectral audio encoding
US7298841B2 (en) * 2000-07-27 2007-11-20 Activated Content Corporation Stegotext encoder and decoder
US6785353B1 (en) * 2000-09-06 2004-08-31 Telogy Networks, Inc. Synchronization loss detection in a V.34 receiver
US7076082B2 (en) * 2000-12-18 2006-07-11 Digimarc Corporation Media signal filtering for use in digital watermark reading
US6483927B2 (en) * 2000-12-18 2002-11-19 Digimarc Corporation Synchronizing readers of hidden auxiliary data in quantization-based data hiding schemes
US7769202B2 (en) * 2001-03-22 2010-08-03 Digimarc Corporation Quantization-based data embedding in mapped data
US7454033B2 (en) * 2001-03-22 2008-11-18 Digimarc Corporation Quantization-based data hiding employing calibration and locally adaptive quantization
US6904151B2 (en) * 2002-01-17 2005-06-07 Deguillaume Frederic Method for the estimation and recovering of general affine transform
US7610205B2 (en) * 2002-02-12 2009-10-27 Dolby Laboratories Licensing Corporation High quality time-scaling and pitch-scaling of audio signals
US20050177332A1 (en) * 2002-03-28 2005-08-11 Lemma Aweke N. Watermark time scale searching
US7095811B1 (en) * 2002-08-31 2006-08-22 National Semiconductor Corporation Apparatus and method for secondary synchronization channel detection in a 3GPP WCDMA receiver
US7809154B2 (en) * 2003-03-07 2010-10-05 Technology, Patents & Licensing, Inc. Video entity recognition in compressed digital video streams
US20050055214A1 (en) * 2003-07-15 2005-03-10 Microsoft Corporation Audio watermarking with dual watermarks
US7657102B2 (en) * 2003-08-27 2010-02-02 Microsoft Corp. System and method for fast on-line learning of transformed hidden Markov models
US8331497B2 (en) * 2003-09-12 2012-12-11 Advantech Advanced Microwave Technologies, Inc. Joint synchronizer and decoder
US20080114606A1 (en) * 2006-10-18 2008-05-15 Nokia Corporation Time scaling of multi-channel audio signals
US8023525B2 (en) * 2007-07-02 2011-09-20 Lg Electronics Inc. Broadcasting receiver and broadcast signal processing method

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
Feature Matching and Signal Recognition Using Wavelet Analysis by Robert J. Barsanti, Edwin Spencer, James Cares and Lucas Parobek, Department of Electrical and Computer Engineering, The Citadel, Charleston, SC as published in Proceedings of the 38th Southeastern Symposium on System Theory, Tennessee Technological University, Cookeville, TN, USA, M. *

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9953390B2 (en) 2010-09-03 2018-04-24 Digimarc Corporation Signal processors and methods for estimating transformations between signals with least squares
US10402929B2 (en) 2010-09-03 2019-09-03 Digimarc Corporation Signal processors and methods for estimating transformations between signals with least squares
US10147433B1 (en) 2015-05-03 2018-12-04 Digimarc Corporation Digital watermark encoding and decoding with localization and payload replacement
US10236031B1 (en) 2016-04-05 2019-03-19 Digimarc Corporation Timeline reconstruction using dynamic path estimation from detections in audio-video signals

Also Published As

Publication number Publication date
US20180130477A1 (en) 2018-05-10
US9773504B1 (en) 2017-09-26
US10192560B2 (en) 2019-01-29

Similar Documents

Publication Publication Date Title
CN102177726B (en) Feature optimization and reliability estimation for audio and video signature generation and detection
US6714683B1 (en) Wavelet based feature modulation watermarks and related applications
US20120022879A1 (en) Methods and apparatus for embedding codes in compressed audio data streams
DE60031906T2 (en) Method for inserting a watermark and associated decoding method
US6061793A (en) Method and apparatus for embedding data, including watermarks, in human perceptible sounds
JP2011503659A (en) Method and apparatus for performing audio watermarking, watermark detection, and watermark extraction
CN1244900C (en) Silence detector in sound signal and receiver for receiving compressed sound signal
US8315427B2 (en) Adaptive prediction filtering for encoding/decoding digital signals in media content
US8923548B2 (en) Extraction of embedded watermarks from a host content using a plurality of tentative watermarks
Langelaar et al. Optimal differential energy watermarking of DCT encoded images and video
US20070143617A1 (en) Method for embedding and detecting a watermark in a digital audio signal
US8533481B2 (en) Extraction of embedded watermarks from a host content based on extrapolation techniques
US20090022360A1 (en) Quantization-Based Data Embedding in Mapped Data
US8682026B2 (en) Efficient extraction of embedded watermarks in the presence of host content distortions
JP5826291B2 (en) Extracting and matching feature fingerprints from speech signals
US8615104B2 (en) Watermark extraction based on tentative watermarks
US7068809B2 (en) Segmentation in digital watermarking
JP5710604B2 (en) Combination of watermarking and fingerprinting
US7711144B2 (en) Watermarking employing the time-frequency domain
US8130811B2 (en) Assessing quality of service using digital watermark information
US8346567B2 (en) Efficient and secure forensic marking in compressed domain
KR20100014902A (en) Modifying a coded bitstream
US7676060B2 (en) Distributed content identification
CN101346760B (en) Encoder-assisted frame loss concealment techniques for audio coding
US20020076084A1 (en) Measuring quality of service of broadcast multimedia signals using digital watermark analyses

Legal Events

Date Code Title Description
AS Assignment

Owner name: DIGIMARC CORPORATION, OREGON

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:SHARMA, RAVI K.;ALATTAR, ADNAN M.;REEL/FRAME:021268/0467

Effective date: 20080703

AS Assignment

Owner name: DIGIMARC CORPORATION (FORMERLY DMRC CORPORATION),

Free format text: CONFIRMATION OF TRANSFER OF UNITED STATES PATENT RIGHTS;ASSIGNOR:L-1 SECURE CREDENTIALING, INC. (FORMERLY KNOWN AS DIGIMARC CORPORATION);REEL/FRAME:021785/0796

Effective date: 20081024

AS Assignment

Owner name: DIGIMARC CORPORATION (AN OREGON CORPORATION), OREG

Free format text: MERGER;ASSIGNOR:DIGIMARC CORPORATION (A DELAWARE CORPORATION);REEL/FRAME:024369/0582

Effective date: 20100430

STCF Information on status: patent grant

Free format text: PATENTED CASE