US9351332B2 - Method, system, and device for implicit detachment - Google Patents
Method, system, and device for implicit detachment Download PDFInfo
- Publication number
- US9351332B2 US9351332B2 US12/621,482 US62148209A US9351332B2 US 9351332 B2 US9351332 B2 US 9351332B2 US 62148209 A US62148209 A US 62148209A US 9351332 B2 US9351332 B2 US 9351332B2
- Authority
- US
- United States
- Prior art keywords
- network
- isr
- rat
- mme
- sgsn
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related, expires
Links
- 238000000034 method Methods 0.000 title claims abstract description 98
- 230000008569 process Effects 0.000 claims abstract description 47
- 230000009849 deactivation Effects 0.000 claims description 71
- 230000011664 signaling Effects 0.000 claims description 23
- 238000004891 communication Methods 0.000 claims description 6
- 238000005516 engineering process Methods 0.000 claims description 6
- 230000007774 longterm Effects 0.000 claims description 3
- 230000009467 reduction Effects 0.000 claims description 3
- 230000000737 periodic effect Effects 0.000 claims 6
- 230000001960 triggered effect Effects 0.000 abstract description 3
- 241000700159 Rattus Species 0.000 description 103
- 238000001057 Duncan's new multiple range test Methods 0.000 description 68
- 101100490659 Arabidopsis thaliana AGP17 gene Proteins 0.000 description 55
- 101100049938 Neurospora crassa (strain ATCC 24698 / 74-OR23-1A / CBS 708.71 / DSM 1257 / FGSC 987) exr-1 gene Proteins 0.000 description 55
- 101150101384 rat1 gene Proteins 0.000 description 55
- 230000004913 activation Effects 0.000 description 16
- 230000004044 response Effects 0.000 description 15
- CSRZQMIRAZTJOY-UHFFFAOYSA-N trimethylsilyl iodide Substances C[Si](C)(C)I CSRZQMIRAZTJOY-UHFFFAOYSA-N 0.000 description 8
- 230000003213 activating effect Effects 0.000 description 5
- 238000001514 detection method Methods 0.000 description 4
- 230000000694 effects Effects 0.000 description 3
- 230000000717 retained effect Effects 0.000 description 3
- 230000001360 synchronised effect Effects 0.000 description 3
- 230000008901 benefit Effects 0.000 description 2
- 230000008859 change Effects 0.000 description 2
- 230000006870 function Effects 0.000 description 2
- 102000018059 CS domains Human genes 0.000 description 1
- 108050007176 CS domains Proteins 0.000 description 1
- 101100113067 Rattus norvegicus Cfi gene Proteins 0.000 description 1
- ATJFFYVFTNAWJD-UHFFFAOYSA-N Tin Chemical compound [Sn] ATJFFYVFTNAWJD-UHFFFAOYSA-N 0.000 description 1
- 238000004590 computer program Methods 0.000 description 1
- 230000007547 defect Effects 0.000 description 1
- 238000001914 filtration Methods 0.000 description 1
- 230000014759 maintenance of location Effects 0.000 description 1
- 230000007246 mechanism Effects 0.000 description 1
- 238000010295 mobile communication Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 239000002699 waste material Substances 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04W—WIRELESS COMMUNICATION NETWORKS
- H04W76/00—Connection management
- H04W76/30—Connection release
- H04W76/38—Connection release triggered by timers
-
- H04W76/068—
-
- H04W76/046—
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04W—WIRELESS COMMUNICATION NETWORKS
- H04W76/00—Connection management
- H04W76/20—Manipulation of established connections
- H04W76/27—Transitions between radio resource control [RRC] states
Definitions
- the present invention relates to a technical field of mobile communication, and in particular, to a method, system, and device for implicit detachment.
- the Universal Mobile Telecommunication System describes a technical standard of third-generation radio communication network, which is defined by the Third Generation Partnership Project (3GPP).
- a UMTS network consists of a core network and an access network.
- the core network includes Circuit Switching (CS) or Packet Switching (PS) domains.
- the CS domain provides circuit-switched services, such as voice.
- the PS domain provides packet-switched services, such as Internet access.
- LTE Long Term Evolution
- SAE System Architecture Evolution
- the Mobility Management Entity is designed to store User Equipment (UE) mobility management contexts, such as user identity, mobility management status, and location, to process Non Access Stratum (NAS) signaling, and to ensure the security of NAS signaling.
- UE User Equipment
- NAS Non Access Stratum
- SAE gateway consists of two parts: Serving Gateway (S-GW) and Packet Network Gateway (P-GW). As two logical entities, S-GW and P-GW may exist as one or more physical entities.
- the S-GW stores user plane contexts, such as a UE's IP address and routing information, monitors data for validity, and routes packet data.
- S11 exchanges information relating to UE mobility management and session control.
- the P-GW as a User plane anchor, is responsible for connecting UE to a packet data network.
- the entity implements packet routing and forwarding, policy and charging control, and user-specific packet filtering.
- the first and second Routing Areas indicate RAs of existing 2G/3G networks.
- the UE will initiate a Routing Area Update (RAU) process when it changes RA.
- RAU Routing Area Update
- the UE will initiate network registration whenever it changes RAT, on which the UE camps. Frequent network registration processes due to this camped RAT change may cause a huge waste of air interfaces.
- the first, second, third and fourth Tracking Areas (TAs) describe the TAs of an LTE/SAE.
- a multi-mode UE moves in a network and enters the first RA, to allow the network to page the UE within the RAT, the UE needs to register with the SGSN of the 2G/3G network.
- the UE needs to register with the MME of the LTE/SAE network.
- the UE needs again to register with the SGSN of the 2G/3G network. Consequently, frequent registrations may cause a considerable amount of registration signaling overload.
- the UE can activate an Idle State Signaling Reduction (ISR) process, i.e. the UE first initiates an attach procedure and registers with the 2G/3G or SAE network.
- ISR Idle State Signaling Reduction
- the UE needs to register with the other RAT, so that the UE registers with both access networks.
- the UE does not need to launch any registration process, except that the UE initiates periodical location update (RAU/TAU).
- the UE Before the ISR is activated, the UE only registers with the 2G/3G or SAE network. In this situation, two timers (periodical location update timer and Mobile Reachable Timer, MRT) are used to maintain the UE attach status.
- two timers (periodical location update timer and Mobile Reachable Timer, MRT) are used to maintain the UE attach status.
- the UE When the UE is attached to a network, the UE retains a periodical location update timer, while the network retains an MRT.
- the MRT in the network is slightly longer than the periodical location update timer in the UE.
- the network MRT and the periodical location update timer at the UE side starts from their initial values; when the UE goes to active mode, both the timers stop; when the periodical location update timer at the UE side expires, the UE will initiate a periodical location update process on the network.
- the network MRT can detach the UE in an implicit manner immediately or within a preset period of time, that is, the network will delete the UE's Mobility Management (MM) and Session Management (SM) contexts.
- MM Mobility Management
- SM Session Management
- the UE When the ISR is activated, the UE registers with both the 2G/3G and SAE network while it only camps on one RAT. In this situation, four timers—periodical UE location update timer for RAT1, periodical UE location update timer for RAT2, MRT timer for the first network RAT, and MRT timer for the second network RAT—are used to maintain the UE attach status.
- the UE needs to record the expiry information relating to the periodical location update timer for RAT1 and update its location as soon as the UE moves back to RAT1.
- the expiry of the periodical location update for RAT1 will not cause the UE to change its camped RAT or to initiate location update.
- the network MRT for RAT1 expires, UE contexts will not be deleted. Instead, a longer timer 2 is started.
- the network When the Timer 2 for RAT1 expires, the network will contact RAT2. When RAT2 agrees to detach the UE, the network will detach the UE in an implicit manner.
- the S-GW When the MRT for RAT1 expires but Timer 2 for RAT1 does not expire, upon receiving downlink data, the S-GW will send downlink data notification.
- the RAT Core Network (CN) node (MME or SGSN) relating to the expired MRT will not implement the paging process, because the UE does not camp on the RAT, then the RAT node (MME or SGSN) relating to said expired MRT returns downlink data notification to the S-GW.
- CN RAT Core Network
- the inventor has identified the following defects in the existing technology during the implementation of the present technology.
- the S-GW In an SAE network, if the ISR is not activated, and if the UE is idle and the MRT expires at MME or SGSN, the S-GW would still send downlink data notification to the MME to trigger MME paging when download data reaches the S-GW, as MME or S-GW is a separate node and the S-GW serves as the user plane termination point in the idle mode. However, the MME continuously returns Deny messages, thus causing signaling overhead and wasting network resources. If the ISR is activated, the S-GW needs to send downlink data notification to both the SGSN and MME, which triggers SGSN and MME to page UE.
- the UE If the UE camps on RAT2 while the MRT for RAT1 expires; or if the UE camps on RAT1 while the MRT for RAT2 expires, for this idle UE, each time the S-GW receives download data, it will send signaling to the MME and SGSN, thus causing the RAT node (MME or SGSN) whose MRT expires to receive signaling continuously and return failure messages, which in turn may cause considerable overhead.
- the present invention provides no suitable mechanism to detach the UE in an implicit manner.
- a method, system and device for implicit detachment are provided in an embodiment of the present invention to promptly detach idle UEs in an implicit manner, so as to prevent the S-GW from continuously sending messages to control node for these idle UEs, reduce signaling overhead, and save network resources.
- a method of ISR deactivation is provided in an embodiment of the present invention to deactivate the ISR through the process in which the new MME obtains context from the old MME or the new SGSN obtains context from the old SGSN, so as to prevent the S-GW from continuously sending messages to these idle UEs, reduce signaling overhead, and save network resources.
- a method and device for deactivating ISR are provided in an embodiment of the present invention to reduce needless paging and extra signaling.
- a method of supporting ISR and allowing/maintaining ISR is provided in an embodiment of the present invention to prevent the S-GW from deactivating ISR again and thus increasing signaling overload because the node does not support the function.
- a method of implicit detachment is provided in an embodiment of the present invention, including:
- a method of ISR deactivation is provided in an embodiment of the present invention, including:
- a method of ISR deactivation is provided in an embodiment of the present invention, including:
- a device for ISR deactivation is provided in an embodiment of the present invention, including:
- a deactivation unit adapted to be used by the network of the first RAT to deactivate ISR for the UE when Timer 2 for RAT1 of the current network expires;
- a setting unit adapted to be used by a UE to set the first RAT to detach or deactivate ISR when the UE's first RAT deactivation timer expires.
- a method of RAT deactivation is provided in an embodiment of the present invention, including:
- a method of supporting ISR and permitting activation or maintaining ISR in an embodiment of the present invention including:
- request message includes request message of creating bearer or request message of updating bearer that carries information regarding whether the first RAT or the second RAT node supports ISR or whether an ISR message can be created.
- a system for implicit detachment is provided in an embodiment of the present invention, including:
- a second device adapted to send a request message that carries implicit detachment indication to a first device
- the first device adapted to receive a request message from the second device and perform implicit detachment according to the indication.
- a device for implicit detachment is provided in an embodiment of the present invention, including:
- a record unit adapted to record whether the request message carries implicit attachment indication
- a detection unit adapted to perform implicit detachment or restore the original status according to the detection indication.
- the S-GW stops sending downlink data notifications to the MME or SGSN and detaches the idle UE in an implicit manner after the MRT of the MME and/or SGSN expires and the S-GW triggers an implicit detachment process or receives downlink data, thus preventing the S-GW from continuously sending messages to this idle UE, so that signaling overhead is reduced, and network resources are saved.
- the first RAT node obtains context from the old node of the first RAT and triggers ISR deactivation when an ISR-activated UE connects to the first RAT node.
- the second RAT can still obtain information relating to the new node of the first RAT.
- the present embodiment sets a deactivation timer for the UE and/or network of the first and second RATs.
- the network or UE deactivation timer of one RAT expires, the UE is promptly detached from that RAT.
- this embodiment sets a periodical location update timer of the first RAT for the UE.
- the second RAT is detached promptly, helping reduce needless paging and extra signaling.
- the S-GW is notified with respect to whether the S-GW supports or permits ISR activation, when the MME or SGSN creates bearer with the S-GW.
- the S-GW accurately determines whether to activate or maintain ISR. This prevents the S-GW from deactivating, due to the reason that some nodes do not support the functionality, ISR again. As a result, the signaling overload is reduced and network resources are saved.
- FIG. 1 shows the structure of a UMTS and SAE/LTE network
- FIG. 2 shows 2G/3G and LTE deployment
- FIG. 3 provides a flowchart of a method of implicit detachment described in embodiment 1 of the present invention
- FIG. 4 provides a flowchart of a method of implicit detachment described in embodiment 2 of the present invention
- FIG. 5 provides a flowchart of method 1 of implicit detachment described in embodiment 3 of the present invention.
- FIG. 6 provides a flowchart of method 2 of implicit detachment described in embodiment 3 of the present invention.
- FIG. 7 provides a flowchart of method 1 of ISR activation described in embodiment 4 of the present invention.
- FIG. 8 provides a flowchart of method 2 of ISR activation described in embodiment 4 of the present invention.
- FIG. 9 provides a flowchart of a method of ISR activation/holding described in embodiment 6 of the present invention.
- FIG. 10 provides a flowchart of a method of selecting NAS node or S-GW described in embodiment 7 of the present invention.
- solution 1 An implicit detachment process is triggered by notifying the S-GW voluntarily when the MME and/or SGSN MRT expires; or
- solution 2 The S-GW is not voluntarily notified when the MME and/or SGSN MRT expires. Instead, only in the case of downlink data arrives, the S-GW sends downlink data notification to the MME and the SGSN, and then to triggers an implicit detachment process.
- the MME or SGSN will notify the S-GW immediately or after a preset time of period.
- the S-GW sets the UE in MME or SGSN as “paging not allowed”, “out of coverage” or “semi-detached” and then initiates an implicit detachment process immediately or after a preset period of time; if the ISR is activated and the MME or SGSN MRT has expired or had expired after a preset period of time, the MME or SNSN notifies the S-GW.
- the S-GW Upon receiving an MRT expiry message from RAT1, the S-GW does not send downlink data notification to RAT1 but notifies RAT2. When detecting that both the two RAT nodes send MRT expiry messages, the S-GW will initiate an implicit detachment process immediately or after a preset time of period.
- Embodiment 1 of the present invention provides a method.
- the MME or SGSN notifies the S-GW of implicit detachment when the MRT expires.
- ISR activation is taken as an example, as shown in FIG. 3 .
- the method includes the following steps.
- Step 301 If an MME or SGSN MRT expires, the MME or SGSN sends MRT expiry information, e.g. via UE MRT Expiry Notification message, or other messages such as Update Bearer Request message, to the S-GW.
- the MME clears a Paging Proceed Flag (PPF_MME) to indicate that the MME's MRT expires, and that the UE is in semi-detached state or out of LTE coverage.
- PPF_MME Paging Proceed Flag
- the SGSN clears a PPF_SGSN to indicate that the UE's SGSN MRT expires, the UE is in semi-detached state or out of LTE coverage.
- the S-GW no longer sends Downlink Data Notification message to the MME or SGSN which indicates its MRT expiry.
- Step 302 If the UE connects again to an MRT expiry RAT node, for example, an MME whose MRT ever expired, the RAT node will send another UE activity information via a new message such as UE Activity Notification or via an old message such as Update Bearer Request to the S-GW. The S-GW will reset the corresponding PPF. If the MME sends UE activity information to the S-GW, the S-GW sets PPF_MME to indicate that the S-GW can send downlink data notification to the MME to trigger the MME paging when receiving downlink data again.
- an MRT expiry RAT node for example, an MME whose MRT ever expired
- the RAT node will send another UE activity information via a new message such as UE Activity Notification or via an old message such as Update Bearer Request to the S-GW.
- the S-GW will reset the corresponding PPF. If the MME sends UE activity information to the S-GW, the S-GW sets PPF_MME to indicate that
- Step 303 When detecting that MRTs from the MME and SGSN nodes both expire, that is, both MME and SGSN are “paging not allowed” (e.g., PPF_MME and PPF_SGSN are both cleared), the S-GW will initiate an implicit detachment process immediately or after a preset period of time.
- the MME or SGSN does not notify the S-GW voluntarily when the MME or SGSN MRT expires. Instead, only when downlink data reaches the S-GW, the S-GW sends Downlink Data Notification to the MME or SGSN.
- the S-GW When the ISR is not activated and the S-GW receives Downlink Data Notification Reject message from the MME or SGSN, with the cause value being MRT expiry, the S-GW will initiate an implicit detachment process immediately or after a preset period of time.
- the S-GW After the ISR is activated and the S-GW receives “downlink data notification denied” message from MME or SGSN, with the cause value being MRT expiry, the corresponding RAT will be recorded as “paging not allowed”. When detecting that both the two RATs are in the “paging not allowed” state, the S-GW will initiate an implicit detachment process immediately or after a preset period of time.
- Embodiment 2 of the present invention provides a method whereby the MME or SGSN does not notify the S-GW voluntarily but triggers a process of implicit detachment when the MRT expires. As shown in FIG. 4 , Embodiment 2 includes the following steps:
- Step 404 The S-GW receives downlink data.
- Step 402 When the ISR is not activated, the S-GW sends downlink data notification to the SGSN or MME; when the ISR is activated, the S-GW sends downlink data notification to the SGSN and MME.
- Step 403 When the ISR is not activated, the S-GW receives information of Downlink Data Notification Reject, or information of MRT expiry or similar information contained in Update Bearer Request message by carrying a cause value or a new information element from the MME or SGSN. If the S-GW determines that the MME or SGSN MRT expires or is in the state of semi-detached, the S-GW triggers an implicit detachment process. When the ISR is activated and the S-GW receives “Downlink Data Notification Reject” message with the cause value being MRT expiry from both the SGSN and MME, the S-GW triggers an implicit detachment process.
- the S-GW When the ISR is not activated and the S-GW only receives “Downlink Data Notification Reject” message with the cause value being MRT expiry from the MME or SGSN node, the S-GW records that the corresponding MME or SGSN MRT expires or the UE is semi-detached from the corresponding MME or SGSN node in an implicit manner. In this situation, the S-GW no longer sends downlink data notification to the corresponding MME or SGSN within a given time of period. When the UE connects again to the MME or SGSN, the MME or SGSN node sends signaling to the S-GW and the S-GW restores the status of the UE at the MME or SGSN.
- the S-GW initiates an implicit detachment process immediately or after a preset period of time.
- Embodiment 3 of the present invention provides a process of implicit detachment, which can be implemented by adopting the following methods, including:
- Method 1 As shown in FIG. 5 , the S-GW sends Delete Bearer Request message to one or more P-GWs for the UE. After deleting bearer request for the UE, if the ISR is not activated, the S-GW sends a Detach Request or Delete Bearer Request message to the MME or SGSN, requesting that the MME or SGSN to detach the UE or delete all bearers of the UE. When the ISR is activated, the S-GW sends a Detach Request or Delete Bearer Request to both the MME and SGSN, requesting that the MME and SGSN to detach the UE or delete all bearers of the UE.
- This method includes:
- Step 501 The S-GW sends Delete Bearer Request message to a P-GW.
- the P-GW sends a Delete Bearer Response to the S-GW.
- Step 502 The S-GW sends a Delete Bearer Request or Detach Request message to the MME and/or SGSN.
- the MME and/or SGSN send a Delete Bearer Response or Detach Response message to the S-GW.
- Method 2 As shown in FIG. 6 , the S-GW sends release bearer request to the P-GW.
- the P-GW initiates a process of deleting the bearer. Specifically, upon receiving Delete Bearer Request from the P-GW, the S-GW sends Delete Bearer Request message to the SGSN and MME, and the MME initiates bearer release process; the SGSN initiates a radio access bearer (RAB) release process.
- RAB radio access bearer
- the S-GW sends a bearer release request to the P-GW.
- the S-GW receives Delete Bearer Request from the P-GW.
- the S-GW sends Delete Bearer Request to the MME and/or SGSN. (The process of deleting bearer at the SGSN side is omitted. Discussed below is the process of MME bearer release.)
- the MME sends an SAE bearer release command to an eNodeB.
- the eNodeB sends a radio bearer release request for the UE.
- the UE returns a radio bearer release response to the eNodeB.
- the eNodeB sends “SAE bearer release complete” to the MME.
- the MME sends a Delete Bearer Response to the MME.
- the S-GW sends a Delete Bearer Response to the P-GW.
- Method 3 When the ISR is not activated, the S-GW sends a Detach Request or Delete Bearer Request message to the MME or SGSN respectively. The MME or SGSN initiates a delete bearer or detachment process respectively. When the ISR is activated, the S-GW sends a Detach Request or Delete Bearer Request to the MME and SGSN respectively. The MME and SGSN initiate a delete bearer or detach process respectively.
- the S-GW stops sending Downlink Data Notifications to the MME or SGSN and detaches idle UEs in an implicit manner after the MRT of the MME and/or SGSN expires and the S-GW triggers an detachment process or receives downlink data, thus preventing the S-GW from continuously sending messages for this idle UE, as a result, signaling overhead is reduced, and network resources are saved.
- Possible solutions for deactivating the ISR in a 2G/3G or SAE network include:
- One is to trigger ISR deactivation when the MME or SGSN obtains context from the old MME or SGSN; the other is that the UE deactivates another RAT after it camps on one RAT for a long time.
- Embodiment 4 of the present invention relates to a method of triggering ISR deactivation when the MME or SGSN obtains context from the old MME or SGSN.
- a UE has activated ISR and the 2G/3G and SAE network bearers are synchronized, namely, the UE sets Temporary Identity used in Next Update (TIN) to “RAT-related TMSI”, this indicates that the UE always uses the TMSI assigned by the access RAT as its primary TMSI.
- TIN Temporary Identity used in Next Update
- the UE uses the TMSI assigned by the 2G/3G network (i.e. P-TMSI) as the primary TMSI.
- P-TMSI the TMSI assigned by the SAE network
- the UE uses the TMSI assigned by the SAE network (i.e., GUTI) as the primary TMSI.
- the UE When the old MME and SGSN bearers for an ISR-activated UE are synchronized and the UE moves from an SGSN to an new MME, the UE will use Global Unique Temporary Identity (GUTI) for access to the MME. If the MME obtains context from the old MME, the SGSN cannot obtain information relating to the new MME; or when the old MME and SGSN bears are synchronized and the UE moves from the old MME to the new SGSN, the new SGSN obtains context from the old SGSN. As a result, the old MME cannot obtain information relating to the new SGSN. In either of the above situations, the two RAT access nodes (MME/SGSN or old MME/SGSN) cannot be associated. If a new association is established between the two RAT nodes, overload signaling is required.
- MME/SGSN or old MME/SGSN overload signaling is required.
- the ISR should be deactivated if a new MME or a new SGSN obtains context from the old SGSN.
- UE's access to an MME is taken as an example. The deactivation process is detailed below:
- the S-GW receives an Update Bearer Request from the MME, and the message does not carry ISR information or carries information relating to ISR deactivation.
- the S-GW sends a Delete Bearer Request to the SGSN to delete the UE context from the SGSN.
- the ISR is deactivated in the SGSN. If the S-GW changes, the S-GW receives an Update Bearer Request from the old MME, and the message does not carry ISR information or carries information relating to ISR deactivation; the old S-GW sends a Delete Bearer Request to the SGSN to delete the UE context from the SGSN.
- the ISR is deactivated in the SGSN.
- FIG. 7 shows the specific ISR deactivation process when the S-GW remains unchanged, including the following steps:
- Step 701 A UE sends a TA Update Request message to the MME.
- Step 702 The MME sends a Context Request message to the old MME, and updates UE association contexts on the SGSN and MME.
- Step 703 The old MME returns a Context Response to the MME.
- Step 704 The MME sends a Context Acknowledgment message to the old MME.
- Step 705 The MME sends an Update Bearer Request to the S-GW.
- the message does not carry ISR information or carries information relating to ISR deactivation.
- Step 706 The S-GW receives the Update Bearer Request from the MME.
- the message does not carry ISR information or carries information relating to ISR deactivation.
- Step 707 The S-GW sends an Update Bearer Response to the MME.
- Step 708 The S-GW sends Delete Bearer Request to the SGSN.
- Step 709 The S-SGSN sends a Delete Bearer Response to delete the UE context.
- Step 710 The ISR is deactivated in the SGSN side.
- FIG. 8 shows the specific ISR deactivation process when the S-GW changes, including the following steps:
- Step 801 The UE connects to a new RAT node and sends a TA Update Request to the MME.
- Step 802 The MME sends a Context Request for obtaining UE context from the old MME.
- Step 803 The old MME returns a Context Response to the MME.
- Step 804 The MME sends a Context Acknowledgment message to the old MME.
- Step 805 The MME sends an Update Bearer Request to the S-GW. This message does not carry ISR information or carries information relating to ISR deactivation.
- Step 806 The S-GW sends an Update Bearer Response to the MME.
- Step 807 The old MME sends a Delete Bearer Request to the old S-GW.
- Step 808 The old S-GW returns a Delete Bearer Response to the old MME.
- Step 809 The old S-GW sends a Delete Bearer Request to delete the UE context from the SGSN.
- Step 810 The SGSN returns a Delete Bearer Response to the old S-GW.
- Step 811 The UE receives RAU Accept.
- RAT1 node obtains context from the old node of RAT1 and triggers ISR deactivation when an ISR-activated UE connects to RAT1 node, so as to avoid the situation that RAT2 cannot obtain information relating to the new node of RAT1.
- This embodiment relates to implementation of ISR deactivation.
- the UE sets an ISR deactivation timer for each RAT; the periodical location update timer in UE side corresponds to the MRT in network side; the ISR deactivation timer in UE side corresponds to the timer 2 in network side (the network timer 2 in network side may be slightly longer than the deactivation timer in UE side).
- the UE turns idle or switches to another network from an RAT, the corresponding RAT's MRT in network side and the periodical location update timer in UE side are started.
- the MRT in network side, the periodical location update timer in UE side, the timer 2 in network side, and the deactivation timer in UE side are all reset.
- the periodical location update timer in UE side expires and the UE is camping on the corresponding RAT, the UE initiates a periodical location update for the RAT; if the periodical location update timer in UE side expires but does not camp on the corresponding RAT, and the ISR deactivation timer does not expire, the UE initiates location update when it returns the RAT.
- periodical location update timer in UE side for a certain RAT expires but the UE does not camps on the RAT, no location update request can be sent for the RAT, then the UE will initiate the deactivation timer for the RAT.
- timer 2 is started.
- timer 2 in network side for a certain RAT and the deactivation timer in UE side can also be started the same way as a periodical location update timer when the UE turns idle or switches to another RAT.
- the S-GW will send Downlink Data Notification to both the MME and SGSN.
- the MME and SGSN send a paging request to the UE.
- the RAT pages the UE.
- the UE will not be paged in the RAT if downlink data arrives; when the timer 2 in network side for a certain RAT expires, the network will deactivate ISR, delete UE mobility context, and detach the UE in the RAT.
- the UE When an RAT deactivation timer at the UE side also expires, the UE sets the RAT to detached status or deactivates ISR. When returning to the RAT, the UE carries the update type as “ISR synch” or a temporary identity assigned by another RAT, which will be mapped to the accessed RAT's identity in the location update message, enabling the RAT node to obtain context from another RAT node and update bearer information, or initiate an attach process. If both the two RAT deactivation timers expire, the UE initiates an attach process when getting access to a certain RAT.
- the network In order to promptly detach an UE that have left a RAT, such as an UE without battery, when the network's MRT expires, the network sets the UE to “out of coverage” or semi-implicit detach.
- the network node MME or SGSN can notify the S-GW by sending an update message such as MRT Expiry Notification and Update Bearer Request.
- an update message such as MRT Expiry Notification and Update Bearer Request.
- the S-GW does not send downlink data notification to RAT1 when receiving downlink data but sends the message to RAT2. Unless the UE moves to RAT1 again, for instance, the UE sends a location update message to RAT1's MME or SGSN node, the node resends UE movement notification to the S-GW, and if detach status or out of coverage notification has been sent previously, the S-GW will restore the UE status in the RAT to normal, as shown in FIG. 6 , which illustrates ISR activation:
- the corresponding MME or SGSN (after a preset time of period) sends UE MRT Expiry Notification or Update Bearer Request to the S-GW.
- the S-GW records the information. For example, it clears Paging Proceed Flag (PPF_MME) to indicate MME's MRT expiry, UE semi-detached for MME or UE out of LTE coverage; it clears PPF_SGSN to indicate that the UE's MRT in the SGSN expires, UE is semi-detached for SGSN or the UE is out of 2G/3G coverage.
- PPF_MME Paging Proceed Flag
- the S-GW does not send Downlink Data Notification to RAT1 node but to RAT2 when receiving downlink data.
- both RAT nodes send the information to the S-GW, that is, both the MME and SGSN have “paging not allowed” flag, for example, PPF_MME and PPF_SGSN are cleared, and an implicit detachment process will be triggered.
- the MME or SGSN When the MME or SGSN sends MRT expiry notification and the UE reconnects with the MME or SGSN again, for example, the UE sends a location update message or switches to the RAT, the MME or SGSN will send UE Active Notification or Update Bearer Request to the S-GW.
- the S-GW restores the status of the RAT for the UE, for example, the UE's PPF_MME or PPF_SGSN returns to normal.
- the S-GW When receiving downlink data, the S-GW sends downlink data notification to the RAT to trigger paging. If a User plane is present, data will be sent directly.
- the deactivation timer is started when the periodical location update timer expires.
- the deactivation timer can be started together with the periodical location update timer and the former timer is longer than the latter.
- timer 2 can be started together with the MRT, and the former timer is longer than the latter.
- Embodiment 5 of the present invention if the ISR is activated, the UE camps on RAT1 for a long time and RAT2's ISR deactivation timer or MRT timer 2 expires, the UE or network will deactivate RAT2.
- the S-GW needs to send downlink data notification to both the RAT1 and RAT2 when downlink data arrive.
- the RAT1 and RAT2 will both send a paging message.
- the RAT2 will not send a paging message, but there may be a large amount of downlink data notification/failure messages in the network.
- the benefit is just that the UE does not need to initiate an update request (before the MRT expires) when returning the RAT2.
- the MRT expires, the UE always initiates an update request, thus causing a high signaling overhead.
- the UE should be detached from RAT1 or RAT2 timely, including the following steps:
- Step 901 A UE registers with a 2G/3G or SAE network, the UE retains a periodical location update timer.
- the UE and/or network also set a deactivation timer for RAT1 and RAT2 (the deactivation timer can also be a periodical location update timer, MRT timer or timer 2 ).
- Step 902 When the UE in the RAT1 turns idle or switches to another RAT, or no periodical location update message is sent when the periodical location update timer in UE side expires, or the MRT in network side expires, the deactivation timer of RAT1 for the UE or network is started. When the UE gets access to the network in the RAT1, for example, location update, service request or switch back to the RAT1), the deactivation timer of the RAT stops or resets.
- Step 903 When the UE's deactivation timer of the RAT1 in UE side expires, the UE is set to be detached from RAT1; when the UE's deactivation timer of the RAT1 in network side expires, the network sets the UE to be detached from RAT1. This process is also known as ISR deactivation.
- the RAT1 can be either a 2G/3G or an SAE network).
- the SGSN or MME sends a Delete Bearer Request message to the S-GW, requesting the S-GW to delete the 2G/3G bearer. If both 2G/3G and SAE bearer information for the UE in the S-GW are deleted, the S-GW will initiate a deleting P-GW bearer request. Afterwards, the SGSN or MME deletes the UE's MM/SM context and sets the UE to “Detached”.
- the UE When UE's deactivation timer of RAT1 in the UE side expires, the UE will set the RAT1 to detached state or deactivate ISR. At this time, if UE'sRAT2 in UE side is in registered state, when returning RAT1, the UE will carry the update type as “ISR synch” or a temporary identity assigned by RAT2 which will be mapped to the RAT1's identity in the location update message enabling the RAT1 node to obtain context from the RAT2 node and update bearer information or initiate an attach process. If deactivation timers the RAT1 and RAT2 both expire, both the RATs will be set detached, and then the UE will initiate an attach process when getting access to the RAT1 or RAT2 again.
- the periodical update counter counts each time the UE performs periodical update.
- the RAT1 triggers the deactivation of the RAT2.
- the RAT1 node sends ISR deactivation information, such as Update Bearer Request (no ISR), to the S-GW, requesting the S-GW to delete the information relating to the RAT2.
- ISR deactivation information such as Update Bearer Request (no ISR)
- the S-GW sends Delete Bearer Request message to the RAT2 node, which detaches the UE locally in RAT2; alternatively, the RAT1 node sends ISR deactivation information, such as Detach Request, to the RAT2 node.
- the RAT2 node Upon receiving the message, the RAT2 node sends Delete Bearer Request to the S-GW to delete the RAT2 bearer information from the S-GW.
- the present embodiment sets a deactivation timer of first and second RAT for the UE and/or the network.
- the network or UE deactivation timer of one RAT expires, the UE is promptly detached from the RAT.
- this embodiment sets a periodical location update counter of one RAT for the UE. When the counter reaches the preset threshold, the UE is detached promptly from the other RAT, as a result, needless paging and extra signaling is reduced.
- Embodiment 6 herein provides a method of supporting ISR and permitting activation or maintaining ISR.
- the S-GW cannot decide whether to create ISR with the previous RAT, thus causing the ISR creation failure if the UE registers with the MME or SGSN but the MME or SGSN does not send the information whether it supports ISR or not to the S-GW when it established the bearer.
- this embodiment provides a method of supporting ISR and permitting activation or maintaining ISR.
- the Create Bearer Request from the MME or SGSN to the S-GW carries information whether the MME or SGSN supports ISR and/or permits activating or retaining ISR information or not.
- a Create Bearer Request or Update Bearer Request that carries the ISR parameter indicates that the MME or SGSN supports ISR and permits activating or retaining ISR.
- the node When the UE connects to the RAT2 node (MME or SGSN), the node can carry the ISR parameter in an Update Bearer Request or Create Bearer Request, indicating that the node supports ISR and permits activating or retaining ISR.
- MME Mobility Management Entity
- SGSN the RAT2 node
- the node can carry the ISR parameter in an Update Bearer Request or Create Bearer Request, indicating that the node supports ISR and permits activating or retaining ISR.
- the S-GW When the UE is connected to an MME or SGSN and the S-GW receives Update Bearer Request that carries ISR from the MME or SGSN, this indicates that the MME (or SGSN) node decides to retain or activate ISR. If the SGSN supports ISR, the SGSN (or MME) bearer will not be deleted. If the SGSN (or MME) does not support ISR or does not receive Update Bearer Request with ISR parameter, it will initiate a process of deleting the bearer of the SGSN (or MME). Specifically, the S-GW sends Delete Bearer Request to the SGSN (or MME). The SGSN (or MME) deletes related bearer and deactivates the ISR.
- the returned Update Bearer Request can carry the indication that the ISR is not activated or retained (when the access point requires activation or ISR retention).
- the MME or SGSN returns a message that does not carry ISR activation flag or carries an ISR not activated flag to the UE.
- the present embodiment includes the following steps:
- Step 1001 A UE sends a TA update or attach request to the MME.
- Step 1002 The MME sends Create Bearer Request to the S-GW, requesting that the message carries the ISR parameter, to indicate that the MME supports ISR and permits activating or retaining ISR.
- Step 1003 The UE enters the 2G/3G network.
- Step 1004 The UE sends an RA update request to the SGSN.
- Step 1005 The SGSN sends Update Bearer Request to the S-GW. Likewise, the SGSN also needs to carry information in the update bearer request to indicate whether to support ISR and permit activating or retaining the ISR or not.
- the S-GW can create ISR. If the S-GW remains unchanged and the SGSN retains or activates ISR, the S-GW can create ISR. If the S-GW changes, no ISR can be created. If the SGSN's Create Bearer Request carries information that indicates ISR is not supported, the SGSN does not support or prepare to create ISR. Thus, the S-GW does not create ISR. If the MME carries information in Step 1002 that indicates ISR is not supported, the S-GW does not create ISR. If no ISR is created, the process proceeds to the following steps:
- Step 1006 The S-GW sends Delete Bearer Request message to the MME, because the MME or SGSN does not support ISR or the SGSN does not prepare to create ISR.
- Step 1007 The MME sends Delete Bearer Response to the S-GW.
- Step 1008 The S-GW sends update bearer response to the SGSN.
- the returned Update Bearer Request can carry the indication that the ISR is not activated or retained.
- the SGSN Upon receiving the indication, the SGSN returns a message that does not carry ISR activation flag or carries an ISR not activated flag to the UE;
- Step 1009 The SGSN sends Accept RA Update to the UE.
- the MME or SGSN node When the MME or SGSN node receives a message that indicates ISR is not supported, such as “ISR not activated”, “ISR cannot be activated or retained”, from the S-GW, the node will not send ISR activation flag to the UE. Otherwise, the MME or SGSN node sends ISR activation flag to the UE.
- the S-GW is notified with respect to whether the S-GW supports or permits ISR activation, when the MME or SGSN creates bearer with the S-GW.
- the S-GW accurately determines whether to activate or maintain ISR. This prevents the S-GW from deactivating, due to the reason that some nodes do not support the functionality, ISR again. As a result, the signaling overload is reduced and network resources are saved.
- Embodiment 7 provides a method of selecting NAS node or S-GW described.
- FIG. 10 shows an ISR-enabled UE connects to a network. If the UE enters a new TA or RA, it initiates TAU, RAU or Attach process. The UE carries ISR capability in the RRC part.
- an RAN node such as eNodeB
- an NAS node such as MME or SGSN
- an S-GW is selected, for example, obtaining information such as whether to approach another RAT from the UE's RAN node, and ISR-enabled S-GW is preferable.
- a device for RAT ISR deactivation is provided in an embodiment of the present invention, including:
- a deactivation unit adapted to be used by the network of the first RAT to deactivate ISR of a UE when Timer 2 for the first RAT of the current network expires;
- a setting unit adapted to be used by a UE to set the first RAT to be detached or ISR deactivation status when the UE's first RAT deactivation timer expires.
- a system for implicit detachment is provided in an embodiment of the present invention, including:
- a second device adapted to send a request message that carries implicit detachment indication to a first device
- the first device adapted to receive a request message from the second device and perform implicit detachment according to the indication
- the first device includes:
- a receiving unit adapted to receive a request message from the second device
- a judging unit adapted to determine whether the request message carries timer expiry indication; if such indication is present, implicit detachment is preformed.
- the first device is S-GW and the second devices are RAT1 and RAT2 network node, wherein MME is the network node for RAT1, while SGSN is the network node for RAT2.
- a device for implicit detachment is provided in an embodiment of the present invention, including:
- a recording unit adapted to record whether the request message carries implicit detachment indication
- a detection unit adapted to perform implicit detachment or restore the original status according to the detection indication.
- the program can be stored in computer readable storage media.
- the program may comprise processes for embodiments of the foregoing methods.
- the storage media can be disks, compact disks, Read-Only Memory (ROM) or Random Access Memory (RAM).
- ROM Read-Only Memory
- RAM Random Access Memory
Landscapes
- Engineering & Computer Science (AREA)
- Computer Networks & Wireless Communication (AREA)
- Signal Processing (AREA)
- Mobile Radio Communication Systems (AREA)
Abstract
Description
Claims (17)
Applications Claiming Priority (7)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN200810067042 | 2008-04-30 | ||
CN200810067042 | 2008-04-30 | ||
CN200810067042.1 | 2008-04-30 | ||
CN2008102124272A CN101572942B (en) | 2008-04-30 | 2008-08-20 | Hidden separation method, system and device |
CN200810212427 | 2008-08-20 | ||
CN200810212427.2 | 2008-08-20 | ||
PCT/CN2009/071448 WO2009132567A1 (en) | 2008-04-30 | 2009-04-24 | Method, system and device for hiddenly detaching |
Related Parent Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/CN2009/071448 Continuation WO2009132567A1 (en) | 2008-04-30 | 2009-04-24 | Method, system and device for hiddenly detaching |
Publications (2)
Publication Number | Publication Date |
---|---|
US20100061331A1 US20100061331A1 (en) | 2010-03-11 |
US9351332B2 true US9351332B2 (en) | 2016-05-24 |
Family
ID=41232140
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US12/621,482 Expired - Fee Related US9351332B2 (en) | 2008-04-30 | 2009-11-18 | Method, system, and device for implicit detachment |
Country Status (5)
Country | Link |
---|---|
US (1) | US9351332B2 (en) |
EP (2) | EP2139190B1 (en) |
CN (2) | CN101572942B (en) |
ES (1) | ES2540959T3 (en) |
WO (1) | WO2009132567A1 (en) |
Families Citing this family (33)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101610576B (en) * | 2008-06-18 | 2013-01-30 | 上海华为技术有限公司 | Information processing method under the condition of limiting signaling and related equipment |
US8787362B2 (en) * | 2009-04-01 | 2014-07-22 | Qualcomm Incorporated | Fall back using mobile device assisted terminating access domain selection |
CN102045685B (en) | 2009-10-15 | 2012-06-27 | 华为技术有限公司 | Method and device for establishing cell reselection list |
JP4648479B1 (en) * | 2009-10-16 | 2011-03-09 | 株式会社エヌ・ティ・ティ・ドコモ | Mobile communication method, mobile management node and packet switch |
US8441985B2 (en) * | 2009-10-21 | 2013-05-14 | Lg Electronics Inc. | Method for determining ISR activation in mobile communications system |
US9215582B2 (en) * | 2009-11-02 | 2015-12-15 | Telefonaktiebolaget L M Ericsson (Publ) | Node selection in a communication network |
WO2011095256A1 (en) * | 2010-02-02 | 2011-08-11 | Telefonaktiebolaget L M Ericsson (Publ) | Restart of peer node |
KR101609580B1 (en) | 2010-02-10 | 2016-04-07 | 삼성전자주식회사 | Wireless communication system and method for establishing connection between user equipment and mobility management entity |
KR20110114904A (en) * | 2010-04-14 | 2011-10-20 | 삼성전자주식회사 | Apparatus and method for reducing resource consumption in portable terminal |
KR101495413B1 (en) * | 2010-04-28 | 2015-02-24 | 닛본 덴끼 가부시끼가이샤 | Radio access system and portable terminal device |
WO2011147446A1 (en) * | 2010-05-26 | 2011-12-01 | Telefonaktiebolaget L M Ericsson (Publ) | Connection states for a user entity in a serving gateway of an evolved packet core system |
CN102083047B (en) | 2010-06-18 | 2014-12-10 | 电信科学技术研究院 | Optimization method for activating/deactivating ISR (Interrupt Service Routine) and network side equipment |
CN102448045B (en) * | 2010-09-30 | 2015-05-20 | 电信科学技术研究院 | Method and equipment for processing mobile management context |
US20120082107A1 (en) * | 2010-10-05 | 2012-04-05 | Ou Meng-Hui | Method and apparatus for implicit scell deactivation in a wireless communication system |
EP2451228B1 (en) * | 2010-11-04 | 2016-08-03 | HTC Corporation | Methods for timer configuration in a wireless communication system |
KR101746668B1 (en) * | 2010-12-21 | 2017-06-13 | 한국전자통신연구원 | Method for Transmitting Data for Detached MTC Devices and Cellular Communication Systems Using the Method |
JP5011439B2 (en) * | 2011-01-07 | 2012-08-29 | 株式会社エヌ・ティ・ティ・ドコモ | Mobile communication method, mobility management node, and serving gateway device |
WO2011116722A2 (en) * | 2011-04-29 | 2011-09-29 | 华为技术有限公司 | Method and device for processing failures of mobility management device in idle mode signaling reduction activated scene |
CN102884832B (en) * | 2011-05-11 | 2015-06-03 | 华为技术有限公司 | Method and system for network congestion processing |
WO2013025008A1 (en) * | 2011-08-12 | 2013-02-21 | Lg Electronics Inc. | Method for processing data associated with idle mode signaling reduction in a wireless communication system |
CN103037502B (en) * | 2011-09-30 | 2019-06-14 | 中兴通讯股份有限公司 | A kind of method and system of processing terminal triggering message |
CN103037348B (en) * | 2011-09-30 | 2017-11-07 | 中兴通讯股份有限公司 | A kind of tracing section updating method and system |
WO2013063764A1 (en) * | 2011-11-01 | 2013-05-10 | 华为技术有限公司 | Separation processing method and serving gateway |
CN103179542B (en) * | 2011-12-23 | 2019-04-02 | 中兴通讯股份有限公司 | Terminal trigger message processing method, system and related network elements |
US9730267B2 (en) * | 2012-03-14 | 2017-08-08 | Telefonaktiebolaget Lm Ericsson (Publ) | Methods and devices for radio bearer release |
JP6033401B2 (en) * | 2012-04-10 | 2016-11-30 | 華為技術有限公司Huawei Technologies Co.,Ltd. | Service processing method and apparatus in communication network |
GB2501954B (en) | 2012-11-05 | 2015-01-07 | Broadcom Corp | Triggering location area update |
JP5606603B1 (en) | 2013-05-20 | 2014-10-15 | 日本電気通信システム株式会社 | Mobile communication system, SGW, terminal, communication method and control method |
CN105265011B (en) | 2013-06-07 | 2017-05-10 | 英派尔科技开发有限公司 | Method and device for adaptive transition of wireless communication equipment |
CN106465462B (en) * | 2014-09-10 | 2019-12-06 | 华为技术有限公司 | Multi-mode terminal position updating method and equipment |
EP3282732B1 (en) | 2015-04-05 | 2020-06-03 | LG Electronics Inc. | Method for adjusting tracking area update timing in wireless communication system |
CN106982425A (en) * | 2016-01-19 | 2017-07-25 | 中兴通讯股份有限公司 | A kind of methods, devices and systems for realizing MTC event-monitorings |
CN108476384B (en) * | 2016-04-01 | 2021-03-23 | 华为技术有限公司 | Data transmission method and related device |
Citations (16)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20050119008A1 (en) * | 2002-01-22 | 2005-06-02 | Serge Haumont | Method, device and system for adjusting mobility management |
US20050265279A1 (en) * | 2002-10-18 | 2005-12-01 | Milan Markovic | Apparatus and messages for interworking between unlicensed access network and GPRS network for data services |
US20070091846A1 (en) * | 2005-04-14 | 2007-04-26 | Lg Electronics Inc. | Method of reconfiguring an internet protocol address in handover between heterogeneous networks |
CN1992958A (en) | 2005-12-28 | 2007-07-04 | 上海原动力通信科技有限公司 | Network attached method of multi-mode terminal at the coexistence of different access systems |
CN101001262A (en) | 2006-01-11 | 2007-07-18 | 上海原动力通信科技有限公司 | IP address release method |
US20070218926A1 (en) * | 2006-02-16 | 2007-09-20 | Huawei Technologies Co., Ltd. | System and method for handling mobile station location update |
CN101064953A (en) | 2006-04-30 | 2007-10-31 | 中兴通讯股份有限公司 | Register method for mobile communication system and the used bimodule terminal |
CN101064923A (en) | 2006-04-28 | 2007-10-31 | 华为技术有限公司 | Method for realizing limitation signaling in evolvement network |
CN101075947A (en) | 2006-05-15 | 2007-11-21 | 华为技术有限公司 | Method for registering to different access technologies |
US20080014959A1 (en) * | 2004-12-03 | 2008-01-17 | Telefonaktiebolaget Lm Ericsson ( Publ) | Radio Resource Management Based On Load And Channel Inactivity |
US20080039086A1 (en) * | 2006-07-14 | 2008-02-14 | Gallagher Michael D | Generic Access to the Iu Interface |
US20080037468A1 (en) | 2006-08-11 | 2008-02-14 | Ipwireless, Inc. | Direct user plane tunnel delivery of broadcast and multicast traffic |
US20080102831A1 (en) * | 2006-10-18 | 2008-05-01 | Ivan Ore | Method, system, network and device enabling deactivating a signalling free mode |
US20080220800A1 (en) * | 2003-11-12 | 2008-09-11 | Research In Motion Limited | Data-capable network prioritization with reduced delays in data service |
US20090111458A1 (en) * | 2005-10-05 | 2009-04-30 | Vodafone Group Plc | Gateway for a system having multiple radio access technologies |
US20100137016A1 (en) * | 2007-04-23 | 2010-06-03 | Mitsubishi Electric Infor. Tech. Ctr. Europe B.V. | Method for controlling the operation of a base station of a wireless cellular telecommunication network |
-
2008
- 2008-08-20 CN CN2008102124272A patent/CN101572942B/en not_active Expired - Fee Related
-
2009
- 2009-04-24 CN CN200980113853.3A patent/CN102217268B/en active Active
- 2009-04-24 EP EP09737677.6A patent/EP2139190B1/en active Active
- 2009-04-24 WO PCT/CN2009/071448 patent/WO2009132567A1/en active Application Filing
- 2009-04-24 ES ES09737677.6T patent/ES2540959T3/en active Active
- 2009-04-24 EP EP15162299.0A patent/EP2953408A1/en not_active Withdrawn
- 2009-11-18 US US12/621,482 patent/US9351332B2/en not_active Expired - Fee Related
Patent Citations (16)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20050119008A1 (en) * | 2002-01-22 | 2005-06-02 | Serge Haumont | Method, device and system for adjusting mobility management |
US20050265279A1 (en) * | 2002-10-18 | 2005-12-01 | Milan Markovic | Apparatus and messages for interworking between unlicensed access network and GPRS network for data services |
US20080220800A1 (en) * | 2003-11-12 | 2008-09-11 | Research In Motion Limited | Data-capable network prioritization with reduced delays in data service |
US20080014959A1 (en) * | 2004-12-03 | 2008-01-17 | Telefonaktiebolaget Lm Ericsson ( Publ) | Radio Resource Management Based On Load And Channel Inactivity |
US20070091846A1 (en) * | 2005-04-14 | 2007-04-26 | Lg Electronics Inc. | Method of reconfiguring an internet protocol address in handover between heterogeneous networks |
US20090111458A1 (en) * | 2005-10-05 | 2009-04-30 | Vodafone Group Plc | Gateway for a system having multiple radio access technologies |
CN1992958A (en) | 2005-12-28 | 2007-07-04 | 上海原动力通信科技有限公司 | Network attached method of multi-mode terminal at the coexistence of different access systems |
CN101001262A (en) | 2006-01-11 | 2007-07-18 | 上海原动力通信科技有限公司 | IP address release method |
US20070218926A1 (en) * | 2006-02-16 | 2007-09-20 | Huawei Technologies Co., Ltd. | System and method for handling mobile station location update |
CN101064923A (en) | 2006-04-28 | 2007-10-31 | 华为技术有限公司 | Method for realizing limitation signaling in evolvement network |
CN101064953A (en) | 2006-04-30 | 2007-10-31 | 中兴通讯股份有限公司 | Register method for mobile communication system and the used bimodule terminal |
CN101075947A (en) | 2006-05-15 | 2007-11-21 | 华为技术有限公司 | Method for registering to different access technologies |
US20080039086A1 (en) * | 2006-07-14 | 2008-02-14 | Gallagher Michael D | Generic Access to the Iu Interface |
US20080037468A1 (en) | 2006-08-11 | 2008-02-14 | Ipwireless, Inc. | Direct user plane tunnel delivery of broadcast and multicast traffic |
US20080102831A1 (en) * | 2006-10-18 | 2008-05-01 | Ivan Ore | Method, system, network and device enabling deactivating a signalling free mode |
US20100137016A1 (en) * | 2007-04-23 | 2010-06-03 | Mitsubishi Electric Infor. Tech. Ctr. Europe B.V. | Method for controlling the operation of a base station of a wireless cellular telecommunication network |
Non-Patent Citations (14)
Title |
---|
3GPP TSG SA WG2 Architecture-SA2#55 S2-063702,"Clarification on "signaling free" idle mode solution",Nokia, Oct. 23-27, 2006,total 2 pages. |
3GPP, "General Packet Radio Service (GPRS) enhancements for Evolved Universal Terrestrial Radio Access Network (E-UTRAN) access (Release 8)," 3GPP Technical Specification 23.401, V8.1.0, Mar. 2008, 171 pages. |
3GPP, "General Packet Radio Service (GPRS) enhancements for Evolved Universal Terrestrial Radio Access Network (E-UTRAN) access (Release 8)," 3GPP Technical Specification 23.401, V8.4.1, Dec. 2008, 220 pages. |
Chinese Office Action, Chinese Application No. 200810212427.2, Applicant: Huawei Technologies Co., Ltd., Dated: Mar. 31, 2011, 9 pages. |
English Translation of the Written Opinion of the International Searching Authority, PCT/CN2009/071448, date of mailing Aug. 6, 2009, 5 pages. |
First office action issued in corresponding European patent application No. 09737677.6, dated Jul. 10, 2012, 5 pages total. |
Huawei, "Discussion on the trigger to deactivate ISR," 3GPP TSG SA WG2 Meeting #60, S2-073980, Temporary Document for Discussion, XP-050260846, Oct. 8-12, 2007, 2 pages, Kobe, Japan. |
Huawei, "Introduction of ISR (Idle-mode Signalling Reduction)," 3GPP TSG CT WG1 Meeting #52, C1-081416 (Revision of C1-081030), Document for Information and Approval, XP-050028665, Apr. 7-11, 2008, 3 pages, Jeju Island, Korea. |
Huawei, "Procedure of ISR Deactivation," 3GPP TSG SA WG2 Meeting #60, S2-073981, Temporary Document for Discussion and Approval, XP-050260847, Oct. 8-12, 2007, 4 pages, Kobe, Japan. |
Nortel, "MRT handling with ISR," 3GPP TSG SA WG2 Architecture-S2#59, S2-073513, Temporary Document for Discussion and Approval, XP-007912556, Aug. 27-31, 2007, 4 pages, Helsinki, Finland. |
Office action issued in corresponding Chinese application No. 200980113853.3,dated Feb. 27, 2013,and an English translation thereof,total 17 pages. |
Office action issued in corresponding European application No. EP09737677.6,dated Apr. 17,total 5 pages. |
Supplementary European Search Report, European Application No. 09737677.6-2413, Dated: Apr. 20, 2010, 11 pages. |
Vodafone, "P-CR (TS24.301), Adding E-UTRAN Deactivate ISR Timer description," 3GPP TSG CT WG1 Meeting #56, C1-084765, Document for Approval, XP-050309762, Nov. 10-14, 2008, 6 pages, Shanghai, P.R. China. |
Also Published As
Publication number | Publication date |
---|---|
CN101572942B (en) | 2012-04-04 |
US20100061331A1 (en) | 2010-03-11 |
CN102217268B (en) | 2014-08-13 |
WO2009132567A1 (en) | 2009-11-05 |
CN101572942A (en) | 2009-11-04 |
ES2540959T3 (en) | 2015-07-15 |
EP2139190B1 (en) | 2015-04-08 |
EP2139190A4 (en) | 2010-05-19 |
EP2139190A1 (en) | 2009-12-30 |
CN102217268A (en) | 2011-10-12 |
EP2953408A1 (en) | 2015-12-09 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US9351332B2 (en) | Method, system, and device for implicit detachment | |
JP5967258B2 (en) | Mobile communication network | |
EP2582191B1 (en) | Mobile communication method, mobile communication system and access entity | |
US9143990B2 (en) | Method and device for handling failure of mobility management device in ISR activated scenario | |
US20100120427A1 (en) | Method and system for dual registration processing | |
US20110110308A1 (en) | Method for detaching network, a method for deactivating isr and an indicating device thereof | |
US20120087340A1 (en) | Circuit Switch FallBack Reselection |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
AS | Assignment |
Owner name: HUAWEI TECHNOLOGIES CO., LTD.,CHINA Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:GUO, XIAOLONG;LIU, LAN;ZHANG, WANQIANG;REEL/FRAME:023548/0415 Effective date: 20091112 Owner name: HUAWEI TECHNOLOGIES CO., LTD., CHINA Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:GUO, XIAOLONG;LIU, LAN;ZHANG, WANQIANG;REEL/FRAME:023548/0415 Effective date: 20091112 |
|
ZAAA | Notice of allowance and fees due |
Free format text: ORIGINAL CODE: NOA |
|
ZAAB | Notice of allowance mailed |
Free format text: ORIGINAL CODE: MN/=. |
|
STCF | Information on status: patent grant |
Free format text: PATENTED CASE |
|
AS | Assignment |
Owner name: NOKIA TECHNOLOGIES OY, FINLAND Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:HUAWEI TECHNOLOGIES CO., LTD.;REEL/FRAME:045337/0001 Effective date: 20171221 |
|
MAFP | Maintenance fee payment |
Free format text: PAYMENT OF MAINTENANCE FEE, 4TH YEAR, LARGE ENTITY (ORIGINAL EVENT CODE: M1551); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY Year of fee payment: 4 |
|
FEPP | Fee payment procedure |
Free format text: MAINTENANCE FEE REMINDER MAILED (ORIGINAL EVENT CODE: REM.); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY |
|
STCH | Information on status: patent discontinuation |
Free format text: PATENT EXPIRED DUE TO NONPAYMENT OF MAINTENANCE FEES UNDER 37 CFR 1.362 |
|
FP | Lapsed due to failure to pay maintenance fee |
Effective date: 20240524 |