US9271342B2 - Power supply system of one or more lighting modules with light-emitting diodes, associated lighting system and associated power supply method - Google Patents

Power supply system of one or more lighting modules with light-emitting diodes, associated lighting system and associated power supply method Download PDF

Info

Publication number
US9271342B2
US9271342B2 US14/532,340 US201414532340A US9271342B2 US 9271342 B2 US9271342 B2 US 9271342B2 US 201414532340 A US201414532340 A US 201414532340A US 9271342 B2 US9271342 B2 US 9271342B2
Authority
US
United States
Prior art keywords
lighting module
voltage
electrical connection
power supply
lighting
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
US14/532,340
Other versions
US20150130369A1 (en
Inventor
Jean-Louis Lovato
Dominique Persegol
Alain Dentella
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Schneider Electric Industries SAS
Original Assignee
Schneider Electric Industries SAS
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Schneider Electric Industries SAS filed Critical Schneider Electric Industries SAS
Assigned to SCHNEIDER ELECTRIC INDUSTRIES SAS reassignment SCHNEIDER ELECTRIC INDUSTRIES SAS ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: DENTELLA, ALAIN, LOVATO, JEAN-LOUIS, PERSEGOL, DOMINIQUE
Publication of US20150130369A1 publication Critical patent/US20150130369A1/en
Application granted granted Critical
Publication of US9271342B2 publication Critical patent/US9271342B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B45/00Circuit arrangements for operating light-emitting diodes [LED]
    • H05B45/30Driver circuits
    • H05B45/37Converter circuits
    • H05B45/3725Switched mode power supply [SMPS]
    • H05B33/08
    • H05B33/0815
    • H05B33/089
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B45/00Circuit arrangements for operating light-emitting diodes [LED]
    • H05B45/50Circuit arrangements for operating light-emitting diodes [LED] responsive to malfunctions or undesirable behaviour of LEDs; responsive to LED life; Protective circuits

Definitions

  • the present invention relates to a power supply system for one or more lighting modules with light-emitting diodes, a set of light-emitting diodes including one or more such lighting modules and a power supply system, as well as a method for powering the lighting module(s) using such a power supply system.
  • the or each lighting module comprises at least one light-emitting diode and can be polarized using a direct polarity or an inverse polarity depending on the direction in which it is connected to the power supply system.
  • the light-emitting diode(s) are polarized in direct mode for the direct polarity of the lighting module, and in the inverse mode, respectively, for the inverse polarity of the lighting module.
  • this power supply system comprises means for detecting the connection direction of the lighting module(s), making it possible to determine the direction of the current to be delivered to the or each lighting module, in order to polarize its light-emitting diode(s) in the direct direction.
  • a current pulse is transmitted to the corresponding lighting module so as to flow in a first direction, then in a second direction through that module.
  • Such a system may create a risk of destruction of said light-emitting diode(s) and therefore of the corresponding lighting module. This risk is even higher with organic light-emitting diodes (OLED), which are particularly fragile and sensitive to excesses of their rated current and voltage values.
  • OLED organic light-emitting diodes
  • the aim of the invention is therefore to propose a power supply system for one or more lighting modules, which are easy to install and make it possible to simplify the connection of the lighting module(s) to the power supply system, without any risk of destruction of the lighting module(s).
  • the invention relates to a power supply system for one or more lighting modules with light-emitting diodes, the or each lighting module comprising at least one light-emitting diode and being able to be polarized depending on its connection direction according to a direct polarity or an inverse polarity, the light-emitting diode(s) being polarized in direct mode for the direct polarity of the lighting module and in inverse mode, respectively, for the inverse polarity of the lighting module,
  • the system including:
  • the voltage measured on the corresponding electrical connection is greater than or equal to the first voltage threshold for the direct and inverse polarities of the lighting module, and the first comparison means are capable of incrementing the first voltage threshold by a reference value for one or more future comparisons of said voltage with the first voltage threshold.
  • the power supply system thus makes it possible to limit the voltage across the terminals of the or each lighting module when the connection direction of the or each lighting module is detected, and thus to protect the or each lighting module from any destruction due to the application of an excessively high voltage across its terminals, in particular when the light-emitting diodes are polarized in the inverse mode.
  • the power supply system comprises one or more of the following features, considered alone or according to all technically possible combinations:
  • the invention also relates to a lighting assembly with light-emitting diodes including one or more lighting modules with light-emitting diodes and a power supply system as defined above.
  • the assembly further comprises one or more of the following features, considered alone or according to any technically admissible combinations:
  • the invention also relates to a power supply method for one or more lighting modules with light-emitting diodes using a power supply system, the or each lighting module comprising at least one light-emitting diode and being able to be polarized using a direct polarity or an inverse polarity depending on its connection direction, the light-emitting diodes(s) being polarized in direct mode for the direct polarity of the lighting module, and in inverse mode, respectively, for the inverse polarity of the lighting module, the system including an electrical power supply able to be connected to the or each lighting module via an electrical connection for the or each lighting module, a first measuring device for measuring a voltage delivered to the corresponding lighting module on the or each electrical connection, a second measuring device for measuring a current delivered to the corresponding lighting module on the or each electrical connection, and a detection device for detecting a connection direction of the or each lighting module,
  • the method comprising, for the or each lighting module, the following steps:
  • the method further comprises, for the or each lighting module, the following step:
  • the method further comprises one or more of the following features, considered alone or according to all technically acceptable combinations:
  • FIG. 1 is a diagrammatic illustration of a lighting assembly with light-emitting diodes according to the invention, the assembly including first, second and third lighting modules with light-emitting diodes, and a power supply system for powering the lighting modules via three electrical connections;
  • FIG. 2 is a very diagrammatic illustration of an electrical connection of the power supply system of FIG. 1 , to which the first lighting module with light-emitting diodes is connected;
  • FIG. 3 is a flowchart of a power supply method for the lighting modules of FIG. 1 according to a first embodiment of the invention.
  • FIGS. 4 and 5 are views similar to that of FIG. 3 according to a second and third embodiment of the invention, respectively.
  • a lighting assembly 4 with light-emitting diodes comprises first 6 a , second 6 b and third 6 c lighting modules with light-emitting diodes, a power supply system 8 for the lighting modules 6 a , 6 b , 6 c , and a configuration module 10 for the power supply system 8 .
  • the lighting modules 6 a , 6 b , 6 c each comprise one or more light-emitting diodes 12 able to be polarized in a direct polarity or an inverse polarity depending on their connection direction. More specifically, in FIG. 1 , the first lighting module 6 a comprises a light-emitting diode 12 connected in a first direction, the second lighting module 6 b comprises two light-emitting diodes 12 connected in series and connected in the first direction, and the third lighting module 6 c comprises a light-emitting diode 12 connected in a second direction, opposite the first direction.
  • Each lighting module 6 a , 6 b , 6 c is in a direct polarity when the corresponding light-emitting diode(s) 12 are directly polarized, respectively in an inverse polarity when the corresponding light-emitting diode(s) 12 are polarized in the inverse mode.
  • the power supply system 8 comprises an electrical power supply source 14 able to be connected to each lighting module 6 a , 6 b , 6 c via a respective electrical connection 16 a , 16 b , 16 c .
  • the power supply system 8 also comprises, for each lighting module 6 a , 6 b , 6 c , a first measuring device 18 for measuring a voltage on the corresponding electrical connection 16 a , 16 b , 16 c , a second measuring device 20 for measuring the intensity of the current delivered to the lighting module 6 a , 6 b , 6 c on the corresponding electrical connection 16 a , 16 b , 16 c , and a detection device 22 for detecting a connection direction of the lighting module 6 a , 6 b , 6 c.
  • the power supply system 8 comprises a control member 24 for the electrical power supply source 14 and, for each electrical connection 16 a , 16 b , 16 c , a first software application 28 for computing an instantaneous power consumed by each lighting module 6 a , 6 b , 6 c .
  • the power supply system 8 comprises, for each electrical connection 16 a , 16 b , 16 c , a module 30 for steering the electrical power delivered on each electrical connection 16 a , 16 b , 16 c and an allocation device 32 for allocating polarity to the corresponding lighting module 6 a , 6 b , 6 c.
  • the power supply system 8 also comprises a first wireless transceiver 34 and a first wireless antenna 36 .
  • the configuration module 10 includes a second wireless transceiver 38 , a second wireless antenna 40 and a processing unit 42 .
  • Each wireless connection 16 a , 16 b , 16 c is able to deliver, owing to the electric power supply source 14 , a current and a voltage to the corresponding lighting module 6 a , 6 b , 6 c.
  • Each first measuring device 18 is able to measure the voltage delivered to the corresponding lighting module 6 a , 6 b , 6 c on the corresponding electrical connection 16 a , 16 b , 16 c .
  • Each first measuring device 18 for example comprises, as shown in FIG. 2 , two resistances R1, R2 connected in parallel with the corresponding lighting module 6 a , 6 b , 6 c , the measured voltage being recovered between the two resistances R1, R2 and sent to the detection device 22 in the first computation software 28 .
  • Each second measuring device 20 is able to measure the current delivered to the corresponding lighting module 6 a , 6 b , 6 c on the corresponding electrical connection 16 a , 16 b , 16 c .
  • Each second measuring device 20 for example comprises a shunt 48 able to measure the intensity of the current crossing through it and send the measured intensity to the first computation software 28 and the detection device 22 .
  • Each detection device 22 comprises injection means 50 for injecting a setpoint current on the corresponding electrical connection 16 a , 16 b , 16 c .
  • Each detection device 22 comprises first comparison software 52 , for comparing the voltage measured by the first measuring device 18 on the corresponding electrical connection 16 a , 16 b , 16 c , following the injection of the setpoint by the injection means 50 , to a first voltage threshold S1.
  • the detection device 22 comprises inversion means 54 for inverting the polarity of the corresponding lighting module 6 a , 6 b , 6 c , when the voltage measured on the corresponding electrical connection 16 a , 16 b , 16 c is greater than or equal to the first voltage threshold S1.
  • the first voltage threshold S1 is for example comprised between 3 Volts (V) and 50 V.
  • Each detection device 22 also comprises, for the corresponding lighting module 6 a , 6 b , 6 c , second software 58 for comparing the intensity measured on the corresponding electrical connection 16 a , 16 b , 16 c with a current threshold A1.
  • the current threshold A1 is for example comprised between 20 mA and 50 mA. More specifically, the current threshold A1 is for example equal to the current reference value.
  • Each detection device 22 includes, for the corresponding lighting module 6 a , 6 b , 6 c , software 60 for storing a value of the voltage measured by the corresponding first measuring device 18 , when the intensity measured by the corresponding second measuring device 20 is above the current threshold A1.
  • the stored value corresponds to a minimum operating voltage of the corresponding lighting module 6 a , 6 b , 6 c.
  • the control member 24 is able to control the power supply of each electrical connection 16 a , 16 b , 16 c successively.
  • the control member 24 comprises software 64 for identifying the electrical connection 16 a , 16 b , 16 c associated with each lighting module 6 a , 6 b , 6 c and first software 66 for downloading configuration parameters on the corresponding steering module 30 .
  • the configuration parameters for example correspond to the rated voltage and the rated operating voltage of each lighting module 6 a , 6 b , 6 c , i.e., a current and a voltage corresponding to an optimal operation of said lighting module 6 a , 6 b , 6 c.
  • the control member 24 also comprises second software 68 for computing the remaining available power based on the instantaneous powers consumed by each lighting module 6 a , 6 b , 6 c and computed by each first computation software 28 .
  • the second computation software 68 is also suitable for computing a maximum power that can be delivered by the electrical power supply 14 .
  • the control member 24 includes software 70 for allocating power to the different electrical connections 16 a , 16 b , 16 c , i.e., to the different lighting modules 6 a , 6 b , 6 c.
  • Each steering module 30 can distribute the power allocated by the allocation software 70 to the corresponding electrical connection 16 a , 16 b , 16 c .
  • Each control module 30 can also be controlled via the injection means 50 of the setpoint current, in order to deliver said setpoint current to the corresponding lighting module 6 a , 6 b , 6 c.
  • Each steering module 30 comprises, as shown in FIG. 2 , two control switches 74 for controlling the current and voltage delivered by the electrical power supply 14 on the corresponding electrical connection 16 a , a diode D 1 for protecting against overvoltages, a coil L1 capable of supplying current to the corresponding lighting module 6 a and a capacitor C1 connected in parallel with the lighting module 6 a.
  • the allocation device 32 is able, depending on the connection direction detected by the detection device 22 , to set the polarity of the corresponding lighting module 6 a , 6 b , 6 c , so that the latter is always in a direct polarity and its light-emitting diode(s) 12 light around them.
  • the first transceiver 34 and the first antenna 36 can exchange data with the second wireless transceiver 38 and the second wireless antenna 40 . More specifically, the configuration module 10 and the power supply system 8 are able to communicate via the first 36 and second 40 wireless antennas and the first 34 and second 38 wireless transceivers.
  • the processing unit 42 comprises software 76 for backing up a configuration file including the configuration parameters for each lighting module 6 a , 6 b , 6 c .
  • the processing unit 42 also comprises second downloading software 78 capable of downloading the configuration parameters corresponding to the lighting module 6 a , 6 b , 6 c whereof the light-emitting diode(s) 12 are powered into the control member 24 , when the control member 24 controls the power supply for each electrical connection 16 a , 16 b , 16 c successively.
  • the injection means 50 are able, upon each change in polarity of the corresponding lighting module 6 a , 6 b , 6 c , to inject the setpoint current, in order to increase the voltage delivered to the corresponding lighting module 6 a , 6 b , 6 c . More specifically, the voltage varies between a second voltage threshold S2 and a maximum voltage Umax.
  • the value of the first voltage threshold S1 is comprised between that of the second voltage threshold S2 and that of the maximum voltage Umax.
  • the second voltage threshold S2 is for example equal to 0.3 V
  • the maximum voltage Umax is for example equal to 50 V. More specifically, as shown in FIG.
  • the injection means 50 are able to vary the voltage across the terminals of the capacitor C1, and thus to increase the voltage delivered to the corresponding lighting module 6 a , until that voltage is sufficient to power the corresponding light-emitting diode 12 or the first voltage threshold S1 is reached.
  • Each first comparison software application 52 is able, when the voltage measured on the corresponding electrical connection 16 a , 16 b , 16 c is greater than or equal to the first voltage threshold S1 for the direct and inverse polarities of the corresponding lighting module 6 a , 6 b , 6 c , to increase the first voltage threshold S1 by a reference value for the next comparison(s) of the measured voltage to the first voltage threshold S1.
  • the inversion means 54 for example include four controllable switches 56 a , 56 b , 56 c , 56 d that can, depending on their position, modify the direction of a current passing through the corresponding lighting module 6 a , 6 b , 6 c , as shown in FIG. 2 . More generally, the inversion means 54 are as shown in FIG. 3 and paragraph [0025] patent application EP-A1-2,464,198.
  • the identification software 64 is able to identify the electrical connection 16 a , 16 b , 16 c associated with each lighting module 6 a , 6 b , 6 c . More specifically, during the successive control of the power supply of each electrical connection 16 a , 16 b , 16 c , the identification software 64 can identify the electrical connections 16 a , 16 b , 16 c supplied with electricity.
  • the downloading software 66 is able to download, onto the control module 30 corresponding to the electrical connection 16 a , 16 b , 16 c identified by the identification software, the configuration parameters downloaded on the control member 24 via the second downloading software 78 .
  • the second computation software 68 computes the remaining available power based on the instantaneous powers consumed, computed by the first computation software 28 , and the maximum power that the electrical power supply 14 can provide.
  • the allocation software 70 is able to allocate electrical power to each lighting module 6 a , 6 b , 6 c .
  • the allocation software 70 is for example able to carry out an allocation and distribution strategy for the electrical power delivered by the electricity supply means 14 between the lighting modules 6 a , 6 b , 6 c .
  • Said allocation and distribution strategy is, for example, stored by the control member 24 .
  • the second computation software 68 is able to compute the remaining available power following connection of one of the lighting modules 6 a , 6 b , 6 c to the power supply system 8 .
  • control member 24 is able to send the configuration module 10 the available remaining power
  • display member not shown, allows an operator, following each connection of one of the lighting modules 6 a , 6 b , 6 c to the corresponding electrical connection 16 a , 16 b , 16 c , to determine the remaining available power and to define the power to be allocated to the next lighting module(s) 6 a , 6 b , 6 c to be connected to the electrical connections 16 a , 16 b , 16 c.
  • the control member 24 commands the power supply of each electrical connection 16 a , 16 b , 16 c , successively, the operator is able to identify the lighting module 6 a , 6 b , 6 c for which the light-emitting diodes are powered on and light around them.
  • the second downloading means 78 are then able to send the first downloading software 66 the configuration parameters corresponding to the lighting module 6 a , 6 b , 6 c identified by the operator.
  • the power supply method shown in FIG. 3 is according to a first embodiment and is applicable to each lighting module 6 a , 6 b , 6 c .
  • the power supply method according to the first embodiment comprises a first starting step 194 , i.e., for launching an algorithm corresponding to the method and applying the algorithm to the corresponding lighting module 6 a , 6 b , 6 c.
  • the polarity of the corresponding lighting module 6 a , 6 b , 6 c is set, and the corresponding lighting module 6 a , 6 b , 6 c has a first polarity, called default polarity.
  • the default polarity corresponds to a predetermined state of the switches 56 a , 56 b , 56 c , 56 d . More specifically, the default polarity corresponds either to a closed position of switches 56 a and 56 d and an open position of the switches 56 b and 56 c , or a closed position of the switches 56 b and 56 c and an open position of the switches 56 a and 56 d.
  • the value of the first voltage threshold S1 is initialized. More specifically, the value of the first threshold voltage S1 is for example set at 5 V.
  • the method comprises a step 200 consisting of the injection, by the detection device 22 , and more specifically by the injection means 50 , of the setpoint current on the corresponding electrical connection 16 a , 16 b , 16 c .
  • the setpoint current is injected in order to increasingly vary the voltage delivered to the corresponding lighting module 6 a , 6 b , 6 c , between the second voltage threshold S2 and the maximum voltage Umax.
  • the intensity of the current crossing through the corresponding second measuring device 20 is measured during a step 202 .
  • the intensity measured on the corresponding electrical connection is compared with the current threshold A1.
  • the first measuring device 18 measures the voltage delivered to the corresponding lighting module 6 a , 6 b , 6 c during a step 206 .
  • the measured voltage is compared to the first voltage threshold S1 during a step 208 .
  • step 200 If the voltage measured during step 208 is below the first voltage threshold S1, the injection step 200 is repeated.
  • the inversion means 54 command the inversion of the polarity of the corresponding lighting module 6 a , 6 b , 6 c.
  • the detection device 22 verifies, during a step 212 , whether the voltage measured by the first corresponding measuring device 18 is greater than or equal to the first voltage threshold S1 for the direct and inverse polarities of the lighting module 6 a , 6 b , 6 c.
  • the injection step 200 is repeated.
  • the first comparison software 52 increments the first voltage threshold S1 by the reference value, for the next comparison(s) done in step 208 for the corresponding lighting module 6 a , 6 b , 6 c.
  • the first measuring device 18 measures the voltage delivered to the corresponding lighting module 6 a , 6 b , 6 c and that value is stored by the storage software 60 .
  • the connection direction i.e., the direct polarity of the corresponding lighting module 6 a , 6 b , 6 c .
  • a non-zero current greater than the current threshold A1 crosses through the corresponding lighting module 6 a , 6 b , 6 c and its light-emitting diode(s) 12 are powered on and then light around them.
  • an ending step 218 i.e., stopping the algorithm for the corresponding lighting module 6 a , 6 b , 6 c , is carried out.
  • connection direction of each lighting module 6 a , 6 b , 6 c is determined for the direct and inverse polarities while limiting the voltage applied across the terminals of the lighting modules 6 a , 6 b , 6 c to the first voltage threshold S1.
  • This makes it possible to avoid the destruction of the light-emitting diode(s) 12 of each lighting module 6 a , 6 b , 6 c , when looking for the connection direction of each lighting module 6 a , 6 b , 6 c .
  • the power supply system 8 in particular makes it possible to avoid applying a voltage to each lighting module that could lead to the destruction of its light-emitting diode(s) 12 .
  • Incrementing the first voltage threshold S1 with a pitch corresponding to the reference value makes it possible to increase the voltage applied to the corresponding lighting module 6 a , 6 b , 6 c little by little, without any risk of destroying the lighting module 6 a , 6 b , 6 c.
  • the search for the polarity is stopped, and the detection device 22 detects an open circuit. More specifically, the detection device 22 detects that no lighting module 6 a , 6 b , 6 c is connected on the corresponding electrical connection 16 a , 16 b , 16 c.
  • step 213 the value of the second voltage threshold S2 is also incremented by the reference value.
  • the detection device 22 performs a step, not shown, for comparing the measured voltage with a third voltage threshold S3.
  • the third voltage threshold S3 is for example comprised between 0.3 V and 2.5 V. Following this step for comparison with the third voltage threshold S3, if the measured voltage is below the third voltage threshold S3, then the detection device 22 detects an error and tells the operator, via the control member 24 and the configuration module 10 , that he must change the corresponding lighting module 6 a , 6 b , 6 c.
  • the measured voltage is below the third voltage threshold S3 both for the direct polarity and the inverse polarity, a short-circuit is detected.
  • the detection device 22 performs a step for comparing the measured voltage with a fourth voltage threshold S4, for example, comprised between 2.5 V and 3 V. If, during the comparison step with the fourth voltage threshold S4, the measured voltage is comprised between the third voltage threshold S3 and the fourth voltage threshold S4, then the presence of a protection diode in the corresponding lighting module 6 a , 6 b , 6 c to protect the light-emitting diodes 12 from overvoltages is detected.
  • a fourth voltage threshold S4 for example, comprised between 2.5 V and 3 V.
  • the detection device 22 indicates to the operator, via the control member and the configuration module 10 , that the corresponding lighting module 6 a , 6 b , 6 c must be changed.
  • the method comprises a first step 300 consisting of connecting the lighting modules 6 a , 6 b , 6 c to each corresponding electrical connection 16 a , 16 b , 16 c .
  • the configuration file is stored in the configuration module 10 .
  • each electrical connection 16 a , 16 b , 16 c is supplied with the setpoint current and the minimum operating voltage is recorded during step 214 .
  • step 306 the position and the electrical connection 16 a , 16 b , 16 c associated with the corresponding lighting module 6 a , 6 b , 6 c are identified after the operator identifies the lighting module 6 a , 6 b , 6 c whereof the light-emitting diodes are powered on and that are then lighting around themselves.
  • the identification means 66 identify the electrical connection that was powered on during step 304 .
  • step 308 the configuration parameters corresponding to the lighting module 6 a , 6 b , 6 c identified by the operator are downloaded onto the control member 24 from the second downloading software 78 .
  • the first downloading software 66 downloads the configuration parameters downloaded during step 308 onto the electrical connection 16 a , 16 b , 16 c identified in step 306 , and more specifically onto the corresponding steering module 30 .
  • the second embodiment makes it possible to connect each lighting module 6 a , 6 b , 6 c randomly to one of the electrical connections 16 a , 16 b , 16 c .
  • the identification software 64 and the first 66 and second 78 downloading software applications make it possible to determine which lighting module 6 a , 6 b , 6 c is associated with which electrical connection 16 a , 16 b , 16 c , and to download the configuration parameters associated with the corresponding lighting module 6 a , 6 b , 6 c onto the steering module 30 of the corresponding electrical connection 16 a , 16 b , 16 c.
  • the second embodiment allows the operator to verify the position of each lighting module 6 a , 6 b , 6 c in a room.
  • a third embodiment of the power supply method is shown in FIG. 5 .
  • a first step 400 consists of using a control member 24 to record the maximum power delivered by the power supply 14 .
  • the first 18 and second 20 measuring devices measure the voltage and the current on each electrical connection 16 a , 16 b , 16 c.
  • each first computation software 28 computes the power consumed by each electrical connection 16 a , 16 b , 16 c .
  • the second computation software 68 determines the remaining available power based on the maximum power of the power supply 14 and the power supplies computed in step 404 .
  • the allocation software 70 allocates the available remaining power computed in step 406 to each electrical connection 16 a , 16 b , 16 c.
  • the control member 24 indicates to the operator, via the configuration module 10 , the remaining available power to be allocated to the electrical connections 16 a , 16 b , 16 c not yet connected to a lighting module 6 a , 6 b , 6 c.
  • control member 24 backs up allocation strategies comprising information relative to the power to be allocated to each electrical connection 16 a , 16 b , 16 c and applies said strategies via the allocation software 70 .
  • the operator sends, via the configuration module 10 , a load shedding order associated with a lighting module 6 a , 6 b , 6 c and an electrical connection 16 a , 16 b , 16 c and the allocation software 70 reduces the power allocated to said electrical connection 16 a , 16 b , 16 c and allocates the remaining electrical power to the other electrical connections 16 a , 16 b , 16 c.
  • the electrical power supply system 8 comprises a single detection device 22 and a single first computation software application 28 able to respectively carry out the detection and the computation of the instantaneous power consumed for each electrical connection 16 a , 16 b , 16 c.
  • the third embodiment allows a dynamic allocation of the power to the different electrical connections 16 a , 16 b , 16 c and the determination, during the successive connection of the lighting modules 6 a , 6 b , 6 c on the electrical connections 16 a , 16 b , 16 c , of the available remaining power and therefore of the type and rated power of the lighting modules that can be subsequently connected.
  • having a centralized allocation software 70 for all of the electrical connections 16 a , 16 b , 16 c makes it possible to calibrate each steering module 30 and each electrical connection 16 a , 16 b , 16 c , based on the maximum electrical power intended to be associated therewith.
  • the third embodiment allows the management of a load shedding order for en electrical power, i.e., the management of a decrease in the power allocated to one of the electrical connections 16 a , 16 b , 16 c.
  • the reference value is for example equal to 5 V and the maximum voltage Umax is for example 10 times greater than the reference value.

Landscapes

  • Circuit Arrangement For Electric Light Sources In General (AREA)

Abstract

The power supply system for one or more lighting modules with light-emitting diodes comprises an electrical power source able to be connected to each lighting module via an electrical connection and a detection device to detect a connection direction of each lighting module. The detection device comprises an injection circuit to inject a setpoint current, a first comparison circuit to compute a voltage measured on the corresponding electrical connection following the injection of the setpoint with a first voltage threshold, and an inversion circuit to invert the polarity of the lighting module when the voltage measured on the corresponding electrical connection is greater than or equal to the first voltage threshold.

Description

The present invention relates to a power supply system for one or more lighting modules with light-emitting diodes, a set of light-emitting diodes including one or more such lighting modules and a power supply system, as well as a method for powering the lighting module(s) using such a power supply system.
The or each lighting module comprises at least one light-emitting diode and can be polarized using a direct polarity or an inverse polarity depending on the direction in which it is connected to the power supply system. The light-emitting diode(s) are polarized in direct mode for the direct polarity of the lighting module, and in the inverse mode, respectively, for the inverse polarity of the lighting module.
In the field of the power supply for lighting modules with light-emitting diodes, it is known to use power supply systems that make it possible to group several electrical connections together in the same housing for powering a plurality of lighting modules. The power supply of the lighting modules is thus centralized and the connection of the lighting modules to the power supply system is simplified. However, during the installation of such power supply systems, it is generally necessary for an operator to know and respect the polarity of the light-emitting diode(s) of the lighting modules in order to connect them to the power supply system. Furthermore, each lighting module must be connected to a predetermined electrical power supply connection. Moreover, the power necessary to power the lighting modules must be known and allocated to the corresponding electrical power supply connections. It therefore appears that such power supply systems for lighting modules with light-emitting diodes are complex to implement, in particular when there is a large number of lighting modules.
Furthermore, known from document EP-A1-2,464,198 is a power supply system for one or more lighting modules with light-emitting diodes making it possible to connect the lighting module(s) to the power supply system, without taking the polarity of the light-emitting diode(s) into account. In fact, this power supply system comprises means for detecting the connection direction of the lighting module(s), making it possible to determine the direction of the current to be delivered to the or each lighting module, in order to polarize its light-emitting diode(s) in the direct direction. In such a system, in order to detect the connection direction, a current pulse is transmitted to the corresponding lighting module so as to flow in a first direction, then in a second direction through that module. However, such a system may create a risk of destruction of said light-emitting diode(s) and therefore of the corresponding lighting module. This risk is even higher with organic light-emitting diodes (OLED), which are particularly fragile and sensitive to excesses of their rated current and voltage values.
The aim of the invention is therefore to propose a power supply system for one or more lighting modules, which are easy to install and make it possible to simplify the connection of the lighting module(s) to the power supply system, without any risk of destruction of the lighting module(s).
To that end, the invention relates to a power supply system for one or more lighting modules with light-emitting diodes, the or each lighting module comprising at least one light-emitting diode and being able to be polarized depending on its connection direction according to a direct polarity or an inverse polarity, the light-emitting diode(s) being polarized in direct mode for the direct polarity of the lighting module and in inverse mode, respectively, for the inverse polarity of the lighting module,
the system including:
    • an electrical power source able to be connected to the or each lighting module via an electrical connection for the or each lighting module,
    • a first measuring device for measuring, on the or each electrical connection, a voltage delivered to the corresponding lighting module and a second measuring device for measuring, on the or each electrical connection, a current delivered to the corresponding lighting module,
    • a detection device for detecting a connection direction of the or each lighting module comprising, for the or each lighting module, injection means for injecting a setpoint current on the corresponding electrical connection, first comparison means for comparing with a first voltage threshold, the voltage measured on the corresponding electrical connection following the injection of the setpoint current and inversion means for inverting the polarity of the lighting module when the voltage measured on the corresponding electrical connection is greater than or equal to the first voltage threshold.
According to the invention, the voltage measured on the corresponding electrical connection is greater than or equal to the first voltage threshold for the direct and inverse polarities of the lighting module, and the first comparison means are capable of incrementing the first voltage threshold by a reference value for one or more future comparisons of said voltage with the first voltage threshold.
Owing to the invention, when the connection direction of the or each lighting module is detected, the voltage delivered on the corresponding electrical connection is measured, and the direction of the current flowing through the lighting module is inverted when the measured voltage exceeds the first voltage threshold. The power supply system thus makes it possible to limit the voltage across the terminals of the or each lighting module when the connection direction of the or each lighting module is detected, and thus to protect the or each lighting module from any destruction due to the application of an excessively high voltage across its terminals, in particular when the light-emitting diodes are polarized in the inverse mode.
According to other aspects of the invention, the power supply system comprises one or more of the following features, considered alone or according to all technically possible combinations:
    • the detection device comprises, for the or each lighting module, second comparison means for comparing the intensity of the current measured on the corresponding electrical connection with a current threshold, the second comparison means being able to detect the direct polarity of the lighting module when the measured intensity is above the current threshold;
    • for the or each lighting module, the injection means are able, upon each change in polarity of the lighting module, to inject the setpoint current in order to increasingly vary the voltage delivered to the lighting module, between a second voltage threshold and a maximum voltage, the value of the first voltage threshold being comprised between that of the second voltage threshold and that of the maximum voltage;
    • the detection device comprises storage means for the or each lighting module, for the value of the voltage measured by the first measuring device, when the intensity of the current measured by the second measuring device is greater than the current threshold, the stored value corresponding to a minimum operating voltage of the corresponding lighting module.
The invention also relates to a lighting assembly with light-emitting diodes including one or more lighting modules with light-emitting diodes and a power supply system as defined above.
According to other advantageous aspects of the invention, the assembly further comprises one or more of the following features, considered alone or according to any technically admissible combinations:
    • the assembly comprises several lighting modules, while the power supply system comprises a control member for the electrical power supply capable of successively powering each electrical connection, the control member comprising identification means for the electrical connection associated with each lighting module;
    • the assembly further comprises a configuration module for the power supply system, the configuration module comprising means for backing up a configuration file, the configuration file including configuration parameters for each lighting module, whereas following the identification of each electrical connection, the configuration module is able to download the configuration parameters into the control member and associate them with the corresponding electrical connection;
    • for each lighting module, the power supply system comprises first computation means for computing an instantaneous consumed power, while the first computation means are able to send the control member the instantaneous powers computed for each electrical connection, and whereas the control member comprises a second computation means for computing a remaining available power based on the instantaneous consumed powers, and allocation means for allocating power to the various electrical connections.
The invention also relates to a power supply method for one or more lighting modules with light-emitting diodes using a power supply system, the or each lighting module comprising at least one light-emitting diode and being able to be polarized using a direct polarity or an inverse polarity depending on its connection direction, the light-emitting diodes(s) being polarized in direct mode for the direct polarity of the lighting module, and in inverse mode, respectively, for the inverse polarity of the lighting module, the system including an electrical power supply able to be connected to the or each lighting module via an electrical connection for the or each lighting module, a first measuring device for measuring a voltage delivered to the corresponding lighting module on the or each electrical connection, a second measuring device for measuring a current delivered to the corresponding lighting module on the or each electrical connection, and a detection device for detecting a connection direction of the or each lighting module,
the method comprising, for the or each lighting module, the following steps:
    • a) using the detection device to inject a setpoint current on the corresponding electrical connection,
    • b) measuring the voltage delivered to the lighting module,
    • c) comparing the measured voltage with a first voltage threshold, during the measuring step,
    • d) inverting the polarity of the corresponding lighting module, when the voltage measured on the corresponding electrical connection is greater than or equal to the first threshold voltage, and returning to the injection step.
According to the invention, the method further comprises, for the or each lighting module, the following step:
    • e) when said voltage is greater than or equal to the first voltage threshold for the direct and inverse polarities of the lighting module, incrementing the first voltage threshold by a reference value, for one or more future comparisons of the voltage measured on the corresponding electrical connection with the first voltage threshold.
According to other advantageous aspects of the invention, the method further comprises one or more of the following features, considered alone or according to all technically acceptable combinations:
    • for the or each lighting module, the method comprises the following steps before the step for measuring the voltage:
      • a1) measuring the current circulating in the corresponding electrical connection,
      • a2) comparing the intensity measured in the corresponding electrical connection with a current threshold,
    • and whereas after the intensity comparison step, if the measured intensity is greater than or equal to the current threshold, the method further comprises the following step:
      • a3) detecting the direct polarity of the lighting module;
    • during the injection step, the setpoint current is injected to cause the voltage delivered to the lighting module to vary increasingly, between a second voltage threshold and a maximum voltage, the value of the first voltage threshold being comprised between that of the second voltage threshold and that of the maximum voltage.
The invention will be better understood and other advantages thereof will appear more clearly in light of the following description, provided solely as a non-limiting example, and done in reference to the drawings, in which:
FIG. 1 is a diagrammatic illustration of a lighting assembly with light-emitting diodes according to the invention, the assembly including first, second and third lighting modules with light-emitting diodes, and a power supply system for powering the lighting modules via three electrical connections;
FIG. 2 is a very diagrammatic illustration of an electrical connection of the power supply system of FIG. 1, to which the first lighting module with light-emitting diodes is connected;
FIG. 3 is a flowchart of a power supply method for the lighting modules of FIG. 1 according to a first embodiment of the invention; and
FIGS. 4 and 5 are views similar to that of FIG. 3 according to a second and third embodiment of the invention, respectively.
In FIG. 1, a lighting assembly 4 with light-emitting diodes comprises first 6 a, second 6 b and third 6 c lighting modules with light-emitting diodes, a power supply system 8 for the lighting modules 6 a, 6 b, 6 c, and a configuration module 10 for the power supply system 8.
The lighting modules 6 a, 6 b, 6 c each comprise one or more light-emitting diodes 12 able to be polarized in a direct polarity or an inverse polarity depending on their connection direction. More specifically, in FIG. 1, the first lighting module 6 a comprises a light-emitting diode 12 connected in a first direction, the second lighting module 6 b comprises two light-emitting diodes 12 connected in series and connected in the first direction, and the third lighting module 6 c comprises a light-emitting diode 12 connected in a second direction, opposite the first direction. Each lighting module 6 a, 6 b, 6 c is in a direct polarity when the corresponding light-emitting diode(s) 12 are directly polarized, respectively in an inverse polarity when the corresponding light-emitting diode(s) 12 are polarized in the inverse mode.
The power supply system 8 comprises an electrical power supply source 14 able to be connected to each lighting module 6 a, 6 b, 6 c via a respective electrical connection 16 a, 16 b, 16 c. The power supply system 8 also comprises, for each lighting module 6 a, 6 b, 6 c, a first measuring device 18 for measuring a voltage on the corresponding electrical connection 16 a, 16 b, 16 c, a second measuring device 20 for measuring the intensity of the current delivered to the lighting module 6 a, 6 b, 6 c on the corresponding electrical connection 16 a, 16 b, 16 c, and a detection device 22 for detecting a connection direction of the lighting module 6 a, 6 b, 6 c.
The power supply system 8 comprises a control member 24 for the electrical power supply source 14 and, for each electrical connection 16 a, 16 b, 16 c, a first software application 28 for computing an instantaneous power consumed by each lighting module 6 a, 6 b, 6 c. The power supply system 8 comprises, for each electrical connection 16 a, 16 b, 16 c, a module 30 for steering the electrical power delivered on each electrical connection 16 a, 16 b, 16 c and an allocation device 32 for allocating polarity to the corresponding lighting module 6 a, 6 b, 6 c.
The power supply system 8 also comprises a first wireless transceiver 34 and a first wireless antenna 36.
The configuration module 10 includes a second wireless transceiver 38, a second wireless antenna 40 and a processing unit 42.
Each wireless connection 16 a, 16 b, 16 c is able to deliver, owing to the electric power supply source 14, a current and a voltage to the corresponding lighting module 6 a, 6 b, 6 c.
Each first measuring device 18 is able to measure the voltage delivered to the corresponding lighting module 6 a, 6 b, 6 c on the corresponding electrical connection 16 a, 16 b, 16 c. Each first measuring device 18 for example comprises, as shown in FIG. 2, two resistances R1, R2 connected in parallel with the corresponding lighting module 6 a, 6 b, 6 c, the measured voltage being recovered between the two resistances R1, R2 and sent to the detection device 22 in the first computation software 28.
Each second measuring device 20 is able to measure the current delivered to the corresponding lighting module 6 a, 6 b, 6 c on the corresponding electrical connection 16 a, 16 b, 16 c. Each second measuring device 20 for example comprises a shunt 48 able to measure the intensity of the current crossing through it and send the measured intensity to the first computation software 28 and the detection device 22.
Each detection device 22 comprises injection means 50 for injecting a setpoint current on the corresponding electrical connection 16 a, 16 b, 16 c. Each detection device 22 comprises first comparison software 52, for comparing the voltage measured by the first measuring device 18 on the corresponding electrical connection 16 a, 16 b, 16 c, following the injection of the setpoint by the injection means 50, to a first voltage threshold S1. The detection device 22 comprises inversion means 54 for inverting the polarity of the corresponding lighting module 6 a, 6 b, 6 c, when the voltage measured on the corresponding electrical connection 16 a, 16 b, 16 c is greater than or equal to the first voltage threshold S1. The first voltage threshold S1 is for example comprised between 3 Volts (V) and 50 V.
Each detection device 22 also comprises, for the corresponding lighting module 6 a, 6 b, 6 c, second software 58 for comparing the intensity measured on the corresponding electrical connection 16 a, 16 b, 16 c with a current threshold A1. The current threshold A1 is for example comprised between 20 mA and 50 mA. More specifically, the current threshold A1 is for example equal to the current reference value.
Each detection device 22 includes, for the corresponding lighting module 6 a, 6 b, 6 c, software 60 for storing a value of the voltage measured by the corresponding first measuring device 18, when the intensity measured by the corresponding second measuring device 20 is above the current threshold A1. The stored value corresponds to a minimum operating voltage of the corresponding lighting module 6 a, 6 b, 6 c.
The control member 24 is able to control the power supply of each electrical connection 16 a, 16 b, 16 c successively. The control member 24 comprises software 64 for identifying the electrical connection 16 a, 16 b, 16 c associated with each lighting module 6 a, 6 b, 6 c and first software 66 for downloading configuration parameters on the corresponding steering module 30. The configuration parameters for example correspond to the rated voltage and the rated operating voltage of each lighting module 6 a, 6 b, 6 c, i.e., a current and a voltage corresponding to an optimal operation of said lighting module 6 a, 6 b, 6 c.
The control member 24 also comprises second software 68 for computing the remaining available power based on the instantaneous powers consumed by each lighting module 6 a, 6 b, 6 c and computed by each first computation software 28. The second computation software 68 is also suitable for computing a maximum power that can be delivered by the electrical power supply 14. The control member 24 includes software 70 for allocating power to the different electrical connections 16 a, 16 b, 16 c, i.e., to the different lighting modules 6 a, 6 b, 6 c.
Each steering module 30 can distribute the power allocated by the allocation software 70 to the corresponding electrical connection 16 a, 16 b, 16 c. Each control module 30 can also be controlled via the injection means 50 of the setpoint current, in order to deliver said setpoint current to the corresponding lighting module 6 a, 6 b, 6 c.
Each steering module 30 comprises, as shown in FIG. 2, two control switches 74 for controlling the current and voltage delivered by the electrical power supply 14 on the corresponding electrical connection 16 a, a diode D1 for protecting against overvoltages, a coil L1 capable of supplying current to the corresponding lighting module 6 a and a capacitor C1 connected in parallel with the lighting module 6 a.
The allocation device 32 is able, depending on the connection direction detected by the detection device 22, to set the polarity of the corresponding lighting module 6 a, 6 b, 6 c, so that the latter is always in a direct polarity and its light-emitting diode(s) 12 light around them.
The first transceiver 34 and the first antenna 36 can exchange data with the second wireless transceiver 38 and the second wireless antenna 40. More specifically, the configuration module 10 and the power supply system 8 are able to communicate via the first 36 and second 40 wireless antennas and the first 34 and second 38 wireless transceivers.
The processing unit 42 comprises software 76 for backing up a configuration file including the configuration parameters for each lighting module 6 a, 6 b, 6 c. The processing unit 42 also comprises second downloading software 78 capable of downloading the configuration parameters corresponding to the lighting module 6 a, 6 b, 6 c whereof the light-emitting diode(s) 12 are powered into the control member 24, when the control member 24 controls the power supply for each electrical connection 16 a, 16 b, 16 c successively.
The injection means 50 are able, upon each change in polarity of the corresponding lighting module 6 a, 6 b, 6 c, to inject the setpoint current, in order to increase the voltage delivered to the corresponding lighting module 6 a, 6 b, 6 c. More specifically, the voltage varies between a second voltage threshold S2 and a maximum voltage Umax. The value of the first voltage threshold S1 is comprised between that of the second voltage threshold S2 and that of the maximum voltage Umax. The second voltage threshold S2 is for example equal to 0.3 V, and the maximum voltage Umax is for example equal to 50 V. More specifically, as shown in FIG. 2, the injection means 50 are able to vary the voltage across the terminals of the capacitor C1, and thus to increase the voltage delivered to the corresponding lighting module 6 a, until that voltage is sufficient to power the corresponding light-emitting diode 12 or the first voltage threshold S1 is reached.
Each first comparison software application 52 is able, when the voltage measured on the corresponding electrical connection 16 a, 16 b, 16 c is greater than or equal to the first voltage threshold S1 for the direct and inverse polarities of the corresponding lighting module 6 a, 6 b, 6 c, to increase the first voltage threshold S1 by a reference value for the next comparison(s) of the measured voltage to the first voltage threshold S1.
The inversion means 54 for example include four controllable switches 56 a, 56 b, 56 c, 56 d that can, depending on their position, modify the direction of a current passing through the corresponding lighting module 6 a, 6 b, 6 c, as shown in FIG. 2. More generally, the inversion means 54 are as shown in FIG. 3 and paragraph [0025] patent application EP-A1-2,464,198.
The identification software 64 is able to identify the electrical connection 16 a, 16 b, 16 c associated with each lighting module 6 a, 6 b, 6 c. More specifically, during the successive control of the power supply of each electrical connection 16 a, 16 b, 16 c, the identification software 64 can identify the electrical connections 16 a, 16 b, 16 c supplied with electricity.
The downloading software 66 is able to download, onto the control module 30 corresponding to the electrical connection 16 a, 16 b, 16 c identified by the identification software, the configuration parameters downloaded on the control member 24 via the second downloading software 78.
The second computation software 68 computes the remaining available power based on the instantaneous powers consumed, computed by the first computation software 28, and the maximum power that the electrical power supply 14 can provide.
The allocation software 70 is able to allocate electrical power to each lighting module 6 a, 6 b, 6 c. The allocation software 70 is for example able to carry out an allocation and distribution strategy for the electrical power delivered by the electricity supply means 14 between the lighting modules 6 a, 6 b, 6 c. Said allocation and distribution strategy is, for example, stored by the control member 24.
Additionally, in the context of an installation and successive connection of the lighting modules 6 a, 6 b, 6 c to the power supply system 8, i.e., the electrical connections 16 a, 16 b, 16 c, the second computation software 68 is able to compute the remaining available power following connection of one of the lighting modules 6 a, 6 b, 6 c to the power supply system 8. Thus, the control member 24 is able to send the configuration module 10 the available remaining power, and the display member, not shown, allows an operator, following each connection of one of the lighting modules 6 a, 6 b, 6 c to the corresponding electrical connection 16 a, 16 b, 16 c, to determine the remaining available power and to define the power to be allocated to the next lighting module(s) 6 a, 6 b, 6 c to be connected to the electrical connections 16 a, 16 b, 16 c.
When the control member 24 commands the power supply of each electrical connection 16 a, 16 b, 16 c, successively, the operator is able to identify the lighting module 6 a, 6 b, 6 c for which the light-emitting diodes are powered on and light around them. The second downloading means 78 are then able to send the first downloading software 66 the configuration parameters corresponding to the lighting module 6 a, 6 b, 6 c identified by the operator.
Three embodiments of a method for powering on the lighting modules 6 a, 6 b, 6 c using the power supply system 8 will be described below.
The power supply method shown in FIG. 3 is according to a first embodiment and is applicable to each lighting module 6 a, 6 b, 6 c. The power supply method according to the first embodiment comprises a first starting step 194, i.e., for launching an algorithm corresponding to the method and applying the algorithm to the corresponding lighting module 6 a, 6 b, 6 c.
Then, during the step 196 for initializing polarity, the polarity of the corresponding lighting module 6 a, 6 b, 6 c is set, and the corresponding lighting module 6 a, 6 b, 6 c has a first polarity, called default polarity. The default polarity corresponds to a predetermined state of the switches 56 a, 56 b, 56 c, 56 d. More specifically, the default polarity corresponds either to a closed position of switches 56 a and 56 d and an open position of the switches 56 b and 56 c, or a closed position of the switches 56 b and 56 c and an open position of the switches 56 a and 56 d.
Next, during step 198, the value of the first voltage threshold S1 is initialized. More specifically, the value of the first threshold voltage S1 is for example set at 5 V.
Then, the method comprises a step 200 consisting of the injection, by the detection device 22, and more specifically by the injection means 50, of the setpoint current on the corresponding electrical connection 16 a, 16 b, 16 c. The setpoint current is injected in order to increasingly vary the voltage delivered to the corresponding lighting module 6 a, 6 b, 6 c, between the second voltage threshold S2 and the maximum voltage Umax.
Following the injection step 200, the intensity of the current crossing through the corresponding second measuring device 20 is measured during a step 202.
During a following step 204, the intensity measured on the corresponding electrical connection is compared with the current threshold A1.
Next, if the intensity measured during step 204 is below the current threshold A1, the first measuring device 18 then measures the voltage delivered to the corresponding lighting module 6 a, 6 b, 6 c during a step 206. Following step 206, the measured voltage is compared to the first voltage threshold S1 during a step 208.
If the voltage measured during step 208 is below the first voltage threshold S1, the injection step 200 is repeated.
If, during step 208, the measured voltage is greater than or equal to the first voltage threshold S1, then, during step 210, the inversion means 54 command the inversion of the polarity of the corresponding lighting module 6 a, 6 b, 6 c.
Furthermore, following step 210, the detection device 22 verifies, during a step 212, whether the voltage measured by the first corresponding measuring device 18 is greater than or equal to the first voltage threshold S1 for the direct and inverse polarities of the lighting module 6 a, 6 b, 6 c.
If the voltage measured by the first corresponding measuring device 18 is below the first voltage threshold S1 for one of the direct and inverse polarities of the lighting module 6 a, 6 b, 6 c, then the injection step 200 is repeated.
If the voltage measured by the first corresponding measuring device 18 is greater than or equal to the first voltage threshold S1 both for the direct polarity and the inverse polarity of the lighting module 6 a, 6 b, 6 c, then, during a step 213, the first comparison software 52 increments the first voltage threshold S1 by the reference value, for the next comparison(s) done in step 208 for the corresponding lighting module 6 a, 6 b, 6 c.
If, during step 204, the measured intensity is greater than or equal to the current threshold A1, during the step 214, the first measuring device 18 measures the voltage delivered to the corresponding lighting module 6 a, 6 b, 6 c and that value is stored by the storage software 60. Next, during step 216, the connection direction, i.e., the direct polarity of the corresponding lighting module 6 a, 6 b, 6 c, is detected. In fact, a non-zero current greater than the current threshold A1 crosses through the corresponding lighting module 6 a, 6 b, 6 c and its light-emitting diode(s) 12 are powered on and then light around them.
Lastly, following step 216, an ending step 218, i.e., stopping the algorithm for the corresponding lighting module 6 a, 6 b, 6 c, is carried out.
Thus, the connection direction of each lighting module 6 a, 6 b, 6 c is determined for the direct and inverse polarities while limiting the voltage applied across the terminals of the lighting modules 6 a, 6 b, 6 c to the first voltage threshold S1. This makes it possible to avoid the destruction of the light-emitting diode(s) 12 of each lighting module 6 a, 6 b, 6 c, when looking for the connection direction of each lighting module 6 a, 6 b, 6 c. The power supply system 8 in particular makes it possible to avoid applying a voltage to each lighting module that could lead to the destruction of its light-emitting diode(s) 12. Incrementing the first voltage threshold S1 with a pitch corresponding to the reference value makes it possible to increase the voltage applied to the corresponding lighting module 6 a, 6 b, 6 c little by little, without any risk of destroying the lighting module 6 a, 6 b, 6 c.
Additionally, when, following the incrementation step 213, the first incremented voltage threshold has a value greater than or equal to the maximum voltage, the search for the polarity is stopped, and the detection device 22 detects an open circuit. More specifically, the detection device 22 detects that no lighting module 6 a, 6 b, 6 c is connected on the corresponding electrical connection 16 a, 16 b, 16 c.
Also additionally, during step 213, the value of the second voltage threshold S2 is also incremented by the reference value.
Also additionally, following the measuring steps 206, 214, the detection device 22 performs a step, not shown, for comparing the measured voltage with a third voltage threshold S3. The third voltage threshold S3 is for example comprised between 0.3 V and 2.5 V. Following this step for comparison with the third voltage threshold S3, if the measured voltage is below the third voltage threshold S3, then the detection device 22 detects an error and tells the operator, via the control member 24 and the configuration module 10, that he must change the corresponding lighting module 6 a, 6 b, 6 c.
Also additionally, if, following the comparison step with the third voltage threshold, the measured voltage is below the third voltage threshold S3 both for the direct polarity and the inverse polarity, a short-circuit is detected.
Also additionally, following the comparison step with the third voltage threshold, the detection device 22 performs a step for comparing the measured voltage with a fourth voltage threshold S4, for example, comprised between 2.5 V and 3 V. If, during the comparison step with the fourth voltage threshold S4, the measured voltage is comprised between the third voltage threshold S3 and the fourth voltage threshold S4, then the presence of a protection diode in the corresponding lighting module 6 a, 6 b, 6 c to protect the light-emitting diodes 12 from overvoltages is detected. Furthermore, if the measured voltage is comprised between the third voltage threshold S3 and the fourth voltage threshold S4 for the direct and inverse polarities, then an error is detected and the detection device 22 indicates to the operator, via the control member and the configuration module 10, that the corresponding lighting module 6 a, 6 b, 6 c must be changed.
According to the second embodiment of the power supply method, shown in FIG. 4, the method comprises a first step 300 consisting of connecting the lighting modules 6 a, 6 b, 6 c to each corresponding electrical connection 16 a, 16 b, 16 c. Next, during a step 302, the configuration file is stored in the configuration module 10.
Then, during a step 304, the control member 24 commands the electrical power supply 14, in order to deliver electricity successively on each electrical connection 16 a, 16 b, 16 c. Additionally, each electrical connection 16 a, 16 b, 16 c is supplied with the setpoint current and the minimum operating voltage is recorded during step 214.
Next, during step 306, the position and the electrical connection 16 a, 16 b, 16 c associated with the corresponding lighting module 6 a, 6 b, 6 c are identified after the operator identifies the lighting module 6 a, 6 b, 6 c whereof the light-emitting diodes are powered on and that are then lighting around themselves. During step 306, the identification means 66 identify the electrical connection that was powered on during step 304.
Next, during step 308, the configuration parameters corresponding to the lighting module 6 a, 6 b, 6 c identified by the operator are downloaded onto the control member 24 from the second downloading software 78.
Then, during a step 310, the first downloading software 66 downloads the configuration parameters downloaded during step 308 onto the electrical connection 16 a, 16 b, 16 c identified in step 306, and more specifically onto the corresponding steering module 30.
The second embodiment makes it possible to connect each lighting module 6 a, 6 b, 6 c randomly to one of the electrical connections 16 a, 16 b, 16 c. In fact, owing to the successive power supply of the various lighting modules, the identification software 64 and the first 66 and second 78 downloading software applications make it possible to determine which lighting module 6 a, 6 b, 6 c is associated with which electrical connection 16 a, 16 b, 16 c, and to download the configuration parameters associated with the corresponding lighting module 6 a, 6 b, 6 c onto the steering module 30 of the corresponding electrical connection 16 a, 16 b, 16 c.
Furthermore, the second embodiment allows the operator to verify the position of each lighting module 6 a, 6 b, 6 c in a room.
A third embodiment of the power supply method is shown in FIG. 5. In the third embodiment, a first step 400 consists of using a control member 24 to record the maximum power delivered by the power supply 14.
Then, during a following step 402, the first 18 and second 20 measuring devices measure the voltage and the current on each electrical connection 16 a, 16 b, 16 c.
During a step 404, each first computation software 28 computes the power consumed by each electrical connection 16 a, 16 b, 16 c. Next, during a step 406, the second computation software 68 determines the remaining available power based on the maximum power of the power supply 14 and the power supplies computed in step 404.
Lastly, during a step 408, the allocation software 70 allocates the available remaining power computed in step 406 to each electrical connection 16 a, 16 b, 16 c.
Thus, in the context of the installation and successive connection of the lighting modules 6 a, 6 b, 6 c to the various electrical connections 16 a, 16 b, 16 c, the control member 24 indicates to the operator, via the configuration module 10, the remaining available power to be allocated to the electrical connections 16 a, 16 b, 16 c not yet connected to a lighting module 6 a, 6 b, 6 c.
Also alternatively, the control member 24 backs up allocation strategies comprising information relative to the power to be allocated to each electrical connection 16 a, 16 b, 16 c and applies said strategies via the allocation software 70.
Also additionally, the operator sends, via the configuration module 10, a load shedding order associated with a lighting module 6 a, 6 b, 6 c and an electrical connection 16 a, 16 b, 16 c and the allocation software 70 reduces the power allocated to said electrical connection 16 a, 16 b, 16 c and allocates the remaining electrical power to the other electrical connections 16 a, 16 b, 16 c.
One skilled in the art will understand that the technical features of the embodiments described above can be combined with each other.
Additionally, the electrical power supply system 8 comprises a single detection device 22 and a single first computation software application 28 able to respectively carry out the detection and the computation of the instantaneous power consumed for each electrical connection 16 a, 16 b, 16 c.
The third embodiment allows a dynamic allocation of the power to the different electrical connections 16 a, 16 b, 16 c and the determination, during the successive connection of the lighting modules 6 a, 6 b, 6 c on the electrical connections 16 a, 16 b, 16 c, of the available remaining power and therefore of the type and rated power of the lighting modules that can be subsequently connected.
Furthermore, having a centralized allocation software 70 for all of the electrical connections 16 a, 16 b, 16 c makes it possible to calibrate each steering module 30 and each electrical connection 16 a, 16 b, 16 c, based on the maximum electrical power intended to be associated therewith.
Lastly, the third embodiment allows the management of a load shedding order for en electrical power, i.e., the management of a decrease in the power allocated to one of the electrical connections 16 a, 16 b, 16 c.
In the first embodiment described above, the reference value is for example equal to 5 V and the maximum voltage Umax is for example 10 times greater than the reference value.

Claims (13)

The invention claimed is:
1. A power supply system for one or more lighting modules with light-emitting diodes, each lighting module comprising at least one light-emitting diode and being able to be polarized depending on its connection direction according to a direct polarity or an inverse polarity, the light-emitting diode(s) being polarized in direct mode for the direct polarity of the lighting module and in inverse mode, respectively, for the inverse polarity of the lighting module,
the system comprising:
an electrical power source that is connectable to each lighting module via an electrical connection for the lighting module,
a first measuring device to measure, on each electrical connection, a voltage delivered to the corresponding lighting module, and a second measuring device to measure, on each electrical connection, a current delivered to the corresponding lighting module, and
a detection device to detect a connection direction of each lighting module comprising an injection circuit to inject a setpoint current on the corresponding electrical connection, a first comparison circuit to compare with a first voltage threshold, the voltage measured on the corresponding electrical connection following an injection of the setpoint current, and an inversion circuit to invert the polarity of the lighting module when the voltage measured on the corresponding electrical connection is greater than or equal to the first voltage threshold,
wherein when the voltage measured on the corresponding electrical connection is greater than or equal to the first voltage threshold for the direct and inverse polarities of the lighting module, the first comparison circuit increments the first voltage threshold by a reference value for one or more future comparisons of said voltage with the first voltage threshold.
2. The system according to claim 1, wherein the detection device comprises a second comparison circuit to compare an intensity of the current measured on the corresponding electrical connection with a current threshold, and the second comparison circuit detects the direct polarity of the lighting module when the measured intensity is above the current threshold.
3. The system according to claim 1, wherein the injection circuit, upon each change in polarity of the lighting module, injects the setpoint current in order to increasingly vary the voltage delivered to the lighting module, between a second voltage threshold and a maximum voltage, a value of the first voltage threshold being comprised between that of the second voltage threshold and that of the maximum voltage.
4. The system according to claim 1, wherein the detection device comprises a storage medium to store a value of the voltage measured by the first measuring device, when an intensity of the current measured by the second measuring device is greater than a current threshold, the stored value corresponding to a minimum operating voltage of the corresponding lighting module.
5. A lighting assembly with light-emitting diodes comprising:
one or more lighting modules with light-emitting diodes; and
the power supply system according to claim 1, wherein the power supply system is provided for the lighting modules.
6. The assembly according to claim 5, wherein the assembly comprises several lighting modules, and wherein the power supply system comprises a control member to successively power each electrical connection, the control member comprising an identification circuit for the electrical connection associated with each lighting module.
7. The assembly according to claim 6, wherein the assembly further comprises a configuration module for the power supply system, the configuration module comprising a circuit to back up a configuration file, the configuration file including configuration parameters for each lighting module, and wherein following an identification of each electrical connection, the configuration module is configured to download the configuration parameters into the control member and associate them with the corresponding electrical connection.
8. The assembly according to claim 7, wherein the power supply system comprises a first computation circuit to compute an instantaneous consumed power, wherein the first computation circuit sends the control member the instantaneous power computed for each electrical connection, and wherein the control member comprises a second computation circuit to compute a remaining available power based on the instantaneous consumed power, and an allocation circuit to allocate power to various electrical connections.
9. The assembly according to claim 6, wherein the power supply system comprises a first computation circuit to compute an instantaneous consumed power, wherein the first computation circuit sends the control member the instantaneous power computed for each electrical connection, and wherein the control member comprises a second computation circuit to compute a remaining available power based on the instantaneous consumed power, and an allocation circuit to allocate power to various electrical connections.
10. A power supply method for one or more lighting modules with light-emitting diodes using a power supply system, each lighting module comprising at least one light-emitting diode and being able to be polarized using a direct polarity or an inverse polarity depending on its connection direction, the light-emitting diodes(s) being polarized in direct mode for the direct polarity of the lighting module, and in inverse mode, respectively, for the inverse polarity of the lighting module, the system including an electrical power supply that is connectable to the lighting module via an electrical connection for the lighting module, a first measuring device to measure a voltage delivered to the corresponding lighting module on the electrical connection, a second measuring device to measure a current delivered to the corresponding lighting module on the electrical connection, and a detection device to detect a connection direction of the lighting module,
the method comprising:
injecting a setpoint current on the corresponding electrical connection using the detection device,
measuring the voltage delivered to the corresponding lighting module,
comparing the measured voltage with a first voltage threshold, during the measuring,
inverting the polarity of the corresponding lighting module, when the voltage measured on the corresponding electrical connection is greater than or equal to the first threshold voltage, and returning to the injecting,
wherein the method further comprises, for each lighting module:
when said measured voltage is greater than or equal to the first voltage threshold for the direct and inverse polarities of the lighting module, incrementing the first voltage threshold by a reference value, for one or more future comparisons of the voltage measured on the corresponding electrical connection with the first voltage threshold.
11. The method according to claim 10, wherein before the measuring of the voltage, the method comprises:
measuring the current circulating in the corresponding electrical connection,
comparing an intensity of the current measured in the corresponding electrical connection with a current threshold,
and wherein after the comparing of the intensity, when the measured intensity is greater than or equal to the current threshold, the method further comprises:
detecting the direct polarity of the lighting module.
12. The method according to claim 11, wherein, during the injecting, the setpoint current is injected to cause the voltage delivered to the lighting module to vary increasingly, between a second voltage threshold and a maximum voltage, the value of the first voltage threshold being comprised between that of the second voltage threshold and that of the maximum voltage.
13. The method according to claim 10, wherein, during the injecting, the setpoint current is injected to cause the voltage delivered to the lighting module to vary increasingly, between a second voltage threshold and a maximum voltage, the value of the first voltage threshold being comprised between that of the second voltage threshold and that of the maximum voltage.
US14/532,340 2013-11-12 2014-11-04 Power supply system of one or more lighting modules with light-emitting diodes, associated lighting system and associated power supply method Active US9271342B2 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR1361014 2013-11-12
FR1361014A FR3013178B1 (en) 2013-11-12 2013-11-12 POWER SUPPLY SYSTEM OF ONE OR MORE LIGHT EMITTING DIODE LIGHTING MODULES, ASSOCIATED LIGHTING ASSEMBLY AND POWER SUPPLY METHOD THEREOF

Publications (2)

Publication Number Publication Date
US20150130369A1 US20150130369A1 (en) 2015-05-14
US9271342B2 true US9271342B2 (en) 2016-02-23

Family

ID=49949897

Family Applications (1)

Application Number Title Priority Date Filing Date
US14/532,340 Active US9271342B2 (en) 2013-11-12 2014-11-04 Power supply system of one or more lighting modules with light-emitting diodes, associated lighting system and associated power supply method

Country Status (5)

Country Link
US (1) US9271342B2 (en)
EP (1) EP2871917B1 (en)
CN (1) CN104640258B (en)
ES (1) ES2717749T3 (en)
FR (1) FR3013178B1 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9647459B2 (en) * 2014-05-28 2017-05-09 Cooper Technologies Company Distributed low voltage power systems
US10455654B1 (en) 2014-05-28 2019-10-22 Cooper Technologies Company Distributed low voltage power systems

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5818130A (en) 1995-07-25 1998-10-06 Gebhard Balluff Gmbh & Co. Method and arrangement for appropriately polarity recognition and switchover of an output stage
JP2011034847A (en) 2009-08-03 2011-02-17 Toshiba Lighting & Technology Corp Power supply device and lighting fixture
EP2464198A1 (en) 2010-12-13 2012-06-13 Schneider Electric Industries SAS Apparatus and method for power system LED lighting and lighting assembly comprising such a device
US8242704B2 (en) * 2008-09-09 2012-08-14 Point Somee Limited Liability Company Apparatus, method and system for providing power to solid state lighting

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1198250C (en) * 2002-08-07 2005-04-20 友达光电股份有限公司 Pixel unit of organic light-emitting diode

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5818130A (en) 1995-07-25 1998-10-06 Gebhard Balluff Gmbh & Co. Method and arrangement for appropriately polarity recognition and switchover of an output stage
US8242704B2 (en) * 2008-09-09 2012-08-14 Point Somee Limited Liability Company Apparatus, method and system for providing power to solid state lighting
US8742679B2 (en) * 2008-09-09 2014-06-03 Point Somee Limited Liability Company Apparatus and system for providing power to solid state lighting
US20140265860A1 (en) * 2008-09-09 2014-09-18 Point Somee Limited Liability Company Apparatus and System for Providing Power to Solid State Lighting
JP2011034847A (en) 2009-08-03 2011-02-17 Toshiba Lighting & Technology Corp Power supply device and lighting fixture
EP2464198A1 (en) 2010-12-13 2012-06-13 Schneider Electric Industries SAS Apparatus and method for power system LED lighting and lighting assembly comprising such a device
US20120146547A1 (en) 2010-12-13 2012-06-14 Schneider Electric Industries Sas Power Supply Device and Method for a Lighting System with Light-Emitting Diodes and Lighting Assembly Comprising One Such Device

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
French Preliminary Search Report issued Jul. 1, 2014, in French Application No. 13 61014 filed Nov. 12, 2013 (with English Translation of Categories of Cited Documents).

Also Published As

Publication number Publication date
FR3013178A1 (en) 2015-05-15
EP2871917A1 (en) 2015-05-13
CN104640258A (en) 2015-05-20
CN104640258B (en) 2018-04-06
ES2717749T3 (en) 2019-06-25
EP2871917B1 (en) 2019-01-02
FR3013178B1 (en) 2016-01-08
US20150130369A1 (en) 2015-05-14

Similar Documents

Publication Publication Date Title
KR102401905B1 (en) Engine start and battery support module
US8525483B2 (en) Control of battery charging power
US20200106286A1 (en) Battery quick charging method, device to-be-charged, charging apparatus
US20110048485A1 (en) Integrated battery management system for vehicles
US9271342B2 (en) Power supply system of one or more lighting modules with light-emitting diodes, associated lighting system and associated power supply method
US20140362625A1 (en) Motor Vehicle Electrical System Having An Active Bridge Rectifier And Overvoltage Protection During A Load Dump, Rectifier System, Associated Operating Method And Means For Its Implementation
JP2009526505A (en) Method for monitoring and / or controlling or regulating the voltage of at least one cell group in a cell combination of an energy store
US20110227525A1 (en) Charging Circuit, Method, and System
KR20120026597A (en) On-board electrical system for a vehicle and also control apparatus for an on-board electrical system
KR102261255B1 (en) Apparatus for supplying at least one consumer with electrical energy or for providing electrical power for at least one consumer
US9793709B2 (en) Current drivers that utilize short circuit protection
US10571524B2 (en) In-vehicle power supply device
US20140225525A1 (en) Constant-power power supply apparatus and method of supplying constant-power power
US10186882B2 (en) Battery pack and method of driving the same
US10218039B2 (en) Method and apparatus for detecting state of safety plug
CN111225472B (en) Temperature detection and LED drive pin multiplexing circuit, power supply chip and working method of pin multiplexing circuit
US20150130418A1 (en) Battery charging apparatus and charging method thereof
US20190036454A1 (en) Control system for transitioning a dc-dc voltage converter from a buck operational mode to a safe operational mode utilizing a task deadline monitoring application
KR102363568B1 (en) Over charge protection system for battery module
US20140177116A1 (en) Power-off protection system and method
US10497404B2 (en) Clamping circuit
KR102380003B1 (en) Apparatus for protecting circuit by controlling battery relay of construction equipment
WO2015112153A1 (en) Engine electronic control unit battery charge controller
US20130181658A1 (en) Control of electrical power used to charge an energy storage device
TWI523570B (en) Multi - specification hybrid light - emitting diode driver method

Legal Events

Date Code Title Description
AS Assignment

Owner name: SCHNEIDER ELECTRIC INDUSTRIES SAS, FRANCE

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:LOVATO, JEAN-LOUIS;PERSEGOL, DOMINIQUE;DENTELLA, ALAIN;REEL/FRAME:034098/0613

Effective date: 20140926

STCF Information on status: patent grant

Free format text: PATENTED CASE

MAFP Maintenance fee payment

Free format text: PAYMENT OF MAINTENANCE FEE, 4TH YEAR, LARGE ENTITY (ORIGINAL EVENT CODE: M1551); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY

Year of fee payment: 4

MAFP Maintenance fee payment

Free format text: PAYMENT OF MAINTENANCE FEE, 8TH YEAR, LARGE ENTITY (ORIGINAL EVENT CODE: M1552); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY

Year of fee payment: 8