US9271315B2 - Data transmission method, system and related network device based on proxy mobile (PM) IPV6 - Google Patents

Data transmission method, system and related network device based on proxy mobile (PM) IPV6 Download PDF

Info

Publication number
US9271315B2
US9271315B2 US13/266,388 US201013266388A US9271315B2 US 9271315 B2 US9271315 B2 US 9271315B2 US 201013266388 A US201013266388 A US 201013266388A US 9271315 B2 US9271315 B2 US 9271315B2
Authority
US
United States
Prior art keywords
service flow
lma
mag
data packet
binding
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active, expires
Application number
US13/266,388
Other versions
US20120140719A1 (en
Inventor
Min Hui
Hui Deng
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
China Mobile Communications Group Co Ltd
Original Assignee
China Mobile Communications Group Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by China Mobile Communications Group Co Ltd filed Critical China Mobile Communications Group Co Ltd
Assigned to CHINA MOBILE COMMUNICATIONS CORPORATION reassignment CHINA MOBILE COMMUNICATIONS CORPORATION ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: DENG, HUI, HUI, Min
Publication of US20120140719A1 publication Critical patent/US20120140719A1/en
Application granted granted Critical
Publication of US9271315B2 publication Critical patent/US9271315B2/en
Active legal-status Critical Current
Adjusted expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W80/00Wireless network protocols or protocol adaptations to wireless operation
    • H04W80/04Network layer protocols, e.g. mobile IP [Internet Protocol]
    • H04W76/021
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L12/00Data switching networks
    • H04L12/28Data switching networks characterised by path configuration, e.g. LAN [Local Area Networks] or WAN [Wide Area Networks]
    • H04L12/46Interconnection of networks
    • H04L12/4633Interconnection of networks using encapsulation techniques, e.g. tunneling
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W12/00Security arrangements; Authentication; Protecting privacy or anonymity
    • H04W12/04Key management, e.g. using generic bootstrapping architecture [GBA]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W76/00Connection management
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W76/00Connection management
    • H04W76/10Connection setup
    • H04W76/11Allocation or use of connection identifiers
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W8/00Network data management
    • H04W8/02Processing of mobility data, e.g. registration information at HLR [Home Location Register] or VLR [Visitor Location Register]; Transfer of mobility data, e.g. between HLR, VLR or external networks
    • H04W8/08Mobility data transfer
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W76/022
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W76/00Connection management
    • H04W76/10Connection setup
    • H04W76/12Setup of transport tunnels
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W88/00Devices specially adapted for wireless communication networks, e.g. terminals, base stations or access point devices
    • H04W88/08Access point devices

Definitions

  • the present invention relates to the field of mobile communications and particularly to a PMIPv6 (Proxy Mobile Internet Protocol) based data transmission technology.
  • PMIPv6 Proxy Mobile Internet Protocol
  • MIP Mobile Internet Protocol
  • HA Home Agent
  • CN Correspondent Node
  • HoA Home of Address
  • CoA Care of Address
  • the MN registers with the HA in a Binding Update (BU) process and notifies the HA of a mapping relationship between the HoA and the CoA, and the HA maintains a binding list between the HoA and the CoA.
  • BU Binding Update
  • data packet transmitted from the CN to the MN is encapsulated by the HA without changing an inner-layer address of an encapsulated data packet, that is, the inner-layer source address is the address of the CN and the inner-layer destination address is the HoA, and the outer-layer source address is the address of the HA and the outer-layer destination address is the CoA, and the HA forwards the encapsulated data packet to the MN through a tunnel; and the MN transmits a data packet to the CN with the outer-layer source address being the CoA and the outer-layer destination address being the address of the HA, and the inner-layer source address being the HoA and the inner-layer destination address being the address of the CN, and the HA de-
  • the Proxy Mobile IPv6 refers to an extension to the MIPv6 and differs from the MIPv6 in that a Mobile Access Gateway (MAG) emulates the home network by notifying the hosted MN of the prefix of the home network so that the MN believes that it is located in the home network all the time; and the MAG registers with a Local Mobility Anchor (LMA) capable of functioning as the home agent, on behalf of the MN in a Proxy Binding Update (PBU) process, and finally a bidirectional tunnel between the MAG and the LMA is established for transmitting a data packet of the MN with the interface address of the MAG being the CoA.
  • MAG Mobile Access Gateway
  • LMA Local Mobility Anchor
  • the MN transmits a Router Solicitation message to the hosting MAG after accessing the PMIPv6 domain in an attachment process;
  • the MAG registers with the LMA on behalf of the MN by transmitting a Proxy Binding Update (PBU) message to the LMA and notifies the LMA of a mapping relationship between the interface address of the MAG and address information of the MN;
  • the LMA accepts registration of the MAG on behalf of the MN, stores in a Binding Cache Entry (BCE) the mapping relationship between the address information of the MN and the interface address of the MAG and returns a Proxy Binding Ack (PBA) message to the MAG;
  • the MAG returns a Router Advertisement message to the MN upon reception of the PBA message, which indicates successful establishment of a bidirectional tunnel between the MAG and the LMA; and subsequently a data packet of the MN is transmitted over the bidirectional tunnel established between the MAG and the LMA.
  • PBU Proxy Binding Update
  • a separate GTP-U tunnel may be created for each PDP Context/EPS Bearer of the terminal and a Service Data Flow (SDF) may be bound to the GTP-U tunnel corresponding to the PDP Context/EPS Bearer to thereby enable distinguishing and charging control based upon the service data flow.
  • SDF Service Data Flow
  • MIPv6-based multi-connection (Monami) scenario the HoA of the MN is allowed to be bound with a plurality of CoAs, and then one or more flows are bounded onto one of the CoAs to thereby forward the different flows onto different network interfaces.
  • data packets of the MN cannot be distinguished and controlled based on the service flow in the existing PMIPv6-based data transmission solution.
  • Embodiments of the invention provide a PMIPv6-based data transmission method and system to address the problem that data packets of an MN cannot be distinguished and controlled based on a service flow in the existing PMIPv6-based data transmission solution.
  • the embodiments of the invention provide a Mobile Access Gateway, MAG, and a Local Mobility Anchor, LMA.
  • a PMIPv6-based data transmission method includes:
  • a Mobile Access Gateway MAG
  • a Local Mobility Anchor LMA
  • a bidirectional tunnel based upon binding of a service flow through interaction of messages after a Mobile Node, MN, initiates the service flow, wherein a downlink Generic Routing Encapsulation, GRE, key and an uplink GRE key are allocated to the service flow and the LMA adds a binding relationship between a service flow identifier (ID) of the service flow and address information of the MN during establishment of the bidirectional tunnel; and
  • ID service flow identifier
  • a PMIPv6-based data transmission system includes a Mobile Access Gateway, MAG, and a Local Mobility Anchor, LMA, wherein:
  • the MAG and the LMA are configured to establish a bidirectional tunnel based upon binding of a service flow through interaction of messages after a Mobile Node, MN, initiates the service flow, wherein a downlink Generic Routing Encapsulation, GRE, key and an uplink GRE key are allocated to the service flow and the LMA is further configured to add a binding relationship between a service flow identifier of the service flow and address information of the MN during establishment of the bidirectional tunnel; and
  • the MAG and the LMA are further configured to transmit a data packet of the service flow initiated by the MN over the bidirectional tunnel according to the service flow identifier, the binding relationship and the uplink and downlink GRE keys.
  • a Mobile Access Gateway, MAG includes:
  • a sending unit configured to transmit to a Local Mobility Anchor, LMA, a first proxy binding update message instructing to add binding of a service flow upon reception of a first data packet of the service flow initiated by a Mobile Node, MN, wherein the first proxy binding update message includes a service flow identifier generated for the service flow and a downlink Generic Routing Encapsulation, GRE, key allocated to the service flow;
  • LMA Local Mobility Anchor
  • GRE downlink Generic Routing Encapsulation
  • a reception unit configured to receive a first proxy binding ack message returned from the LMA in response to the first proxy binding update message, wherein the first proxy binding ack message includes the service flow identifier and an uplink GRE key allocated to the service flow;
  • a transmission unit configured to transmit a data packet of the service flow over a bidirectional tunnel established, based upon binding of the service flow, with the LMA, according to the service flow identifier and the uplink and downlink GRE keys.
  • a Local Mobility Anchor, LMA includes:
  • a reception unit configured to receive a first proxy binding update message transmitted from a Mobile Access Gateway, MAG, to instruct to add binding of a service flow, wherein the first proxy binding update message includes a service flow identifier generated for the service flow and a downlink Generic Routing Encapsulation, GRE, key allocated to the service flow;
  • a binding processing unit configured to add a binding relationship between the service flow identifier and address information of an MN according to the received first proxy binding update message and return to the MAG a first proxy binding ack message including the service flow identifier and an uplink GRE key allocated to the service flow;
  • a transmission unit configured to transmit a data packet of the service flow over a bidirectional tunnel established, based upon binding of the service flow, with the MAG, according to the service flow identifier, the binding relationship, and the uplink and downlink GRE keys.
  • the MAG and the LMA establish a bidirectional tunnel based upon binding of a service flow through interaction of messages after an MN initiates the service flow, where a downlink GRE key and an uplink GRE key are allocated to the service flow and the LMA adds a binding relationship between a service flow identifier of the service flow and address information of the MN during establishment of the bidirectional tunnel, and then the bidirectional tunnel has been established successfully between the MAG and the LMA, and the service flow is bound with the address information of the MN through an operation of adding binding of the service flow; and the MAG and the LMA transmit a data packet of the service flow initiated by the MN over the bidirectional tunnel between the MAG and the LMA according to the service flow identifier, the binding relationship, and the uplink and downlink GRE keys to thereby distinguish and control data packets based on a service flow.
  • FIG. 1 is a flow chart of PMIPv6-based data transmission in the prior art
  • FIG. 2 is a schematic diagram of a format of a PBU message in the prior art
  • FIG. 3 is a schematic diagram of a format of a service flow identification option according to an embodiment of the invention.
  • FIG. 4 is a schematic diagram of a format of a transport level description according to an embodiment of the invention.
  • FIG. 5 is a flow chart of a PMIPv6-based data transmission method according to an embodiment of the invention.
  • FIG. 6 is a block diagram of a PMIPv6-based data transmission system according to an embodiment of the invention.
  • FIG. 7 is a block diagram of a possible structure of an MAG according to an embodiment of the invention.
  • FIG. 8 is a block diagram of a possible structure of an LMA according to an embodiment of the invention.
  • an improved PMIPv6-based data transmission flow is adapted in embodiments of the invention by defining a new service flow identification option and adding the new service flow identification option into a PBU message and a PBA message to distinguish and control data packets of an MN based on a service flow.
  • a format of an existing PBU message includes fields (domains) of Sequence#, Lifetime, and Mobility Options, where the name, length and means of each of the fields (domains) included in the PBU message are as illustrated in Table.1.
  • a PBA message also includes the field of Mobility Options, and a specific format of the message is not repeated here.
  • a new service flow identification option is added into the PBU message and the PBA message as one of the options included in the Mobility Options.
  • the service flow identification option defines a Service Flow ID of an MN and also may define either or both of a transport level description and an application level description of the service flow so that a message receiver can know the ID of the service flow and further know related attributes of the service flow.
  • a format of the service flow identification option includes fields (domains) of Service Flow ID, Status, Operation Instruction (PRO), Option Type, Option Length (Option Len), and Reserved.
  • the field of Service Flow ID represents a unique identifier of the service flow.
  • the field of Status is enabled in the PBA message to represent a successful or failing operation of binding the service flow.
  • the field of Operation Instruction represents various operations to be performed on binding of the service flow, e.g., an operation of adding binding of a service flow, an operation of deleting binding of a service flow, or an operation of modifying binding of a service flow.
  • the service flow identification option may further include an application level description option for describing application level attributes of the service flow, e.g., a service ID, and an application level protocol in use.
  • an application level description option for describing application level attributes of the service flow, e.g., a service ID, and an application level protocol in use.
  • the service flow identification option may further include a transport level description option for describing a packet filter attribute of the service flow, and referring to FIG. 4 , a format of the transport level description option includes the fields (domains) of Option Type, Option Length (Option Len), Reserved, Type, and Transport Level Description.
  • Option Len Option Length
  • Reserved Reserved
  • Type Type
  • Transport Level Description Different values of the field of Type may represent different combinations of the packet filter attributes.
  • three valid combinations of the packet filter attributes, each of which corresponds to a value of the field of Type are presented in Table 2.
  • a combination of the packet filter attributes may include one or any combination of the attributes of Destination IP Address, Port Range, Flow Label, IPSec Security Parameter Index, Protocol ID of the protocol above IP, and Type of Service/Traffic class and Mask.
  • Both the transport level description option and the application level description option are variable in length.
  • IPv6 IPv4/Traffic class
  • IPv6 IPv6/Tec Security Parameter Index
  • SPI IPSec Security Parameter Index
  • an embodiment of the invention provides a PMIPv6-based data transmission method including: an MAG and an LMA establish a bidirectional tunnel based upon binding of a service flow through interaction of messages after an MN initiates the service flow, where a downlink GRE Key and an uplink GRE Key are allocated to the service flow and the LMA adds a binding relationship between a service flow ID of the service flow and address information of the MN during establishment of the bidirectional tunnel; and the MAG and the LMA transmit a data packet of the service flow initiated by the MN over the established bidirectional tunnel according to the service flow ID, the binding relationship, and the uplink and downlink GRE Keys.
  • the foregoing method may be particularly illustrated in FIG. 5 and include the following steps.
  • An MAG transmits to an LMA a PBU message instructing to add binding of a service flow (referred to as a first PBU message for the sake of distinguishing) upon reception of a first data packet of the service flow initiated by an MN, where the first PBU message includes a service flow ID generated for the service flow and a downlink Generic Routing Encapsulation (GRE) Key allocated to the service flow.
  • a PBU message instructing to add binding of a service flow (referred to as a first PBU message for the sake of distinguishing) upon reception of a first data packet of the service flow initiated by an MN, where the first PBU message includes a service flow ID generated for the service flow and a downlink Generic Routing Encapsulation (GRE) Key allocated to the service flow.
  • GRE Generic Routing Encapsulation
  • the service flow identification option included in the first PBU message includes: Service Flow ID and PRO field, where the Service Flow ID represents the sequence number of the service flow and is logically monotonously incremented for each service flow initiated by the MN, and the Service Flow ID takes the value of 0 for a first service flow initiated by the MN, 1 for a second service flow initiated by the MN, and so on, and the PRO field may take the value of 0 to represent addition of binding of a service flow.
  • the first PBU message may further include either or both a transport level description option and an application level description option to describe related attributes of the service flow.
  • the LMA adds a binding relationship between the service flow ID and address information of the MN according to the received first PBU message and returns to the MAG a PBA message (referred to as a first PBA message for the sake of distinguishing), which includes the service flow ID and an uplink GRE Key allocated to the service flow.
  • a PBA message referred to as a first PBA message for the sake of distinguishing
  • the MAG registers with the LMA on behalf of the MN by transmitting the PBU message to the LMA and notifies the LMA of a mapping relationship between the interface address of the MAG and the address information of the MN. Since the PBU message is extended and the service flow identification option is added, the LMA adds corresponding binding information of the service flow, i.e., the binding relationship between the service flow ID and the address information of the MN, according to the first PBU message, and the binding relationship between the service flow ID and the address information of the MN may be buffered in a local binding cache entry, where the address information of the MN may be an IP address or prefix of the MN.
  • the PBA message may also include either or both of a transport level description option and an application level description option to describe related attributes of the service flow.
  • GRE Generic Routing Encapsulation
  • the MAG and the LMA transmit a data packet of the service flow over the bidirectional tunnel established, based upon binding of the service flow, between the MAG and the LMA, according to the service flow ID and the uplink and downlink GRE Keys.
  • the process may include the following steps:
  • the MAG encapsulates an uplink data packet of the service flow (i.e., a data packet transmitted from the MN to the CN) according to the service flow ID and the uplink GRE Key and forwards the encapsulated uplink data packet to the LMA over the bidirectional tunnel, and the LMA de-encapsulates the encapsulated uplink data packet forwarded from the MAG according to the service flow ID and the uplink GRE Key and forwards the de-encapsulated uplink data packet to the CN; and
  • an uplink data packet of the service flow i.e., a data packet transmitted from the MN to the CN
  • the LMA de-encapsulates the encapsulated uplink data packet forwarded from the MAG according to the service flow ID and the uplink GRE Key and forwards the de-encapsulated uplink data packet to the CN;
  • the LMA encapsulates a downlink data packet of the service flow (i.e., a data packet transmitted from the CN to the MN) according to the service flow ID and the downlink GRE Key and forwards the encapsulated downlink data packet to the MAG over the bidirectional tunnel, and the MAG de-encapsulates the encapsulated downlink data packet forwarded from the LMA according to the service flow ID and the downlink GRE Key and forwards the de-encapsulated downlink data packet to the MN.
  • a downlink data packet of the service flow i.e., a data packet transmitted from the CN to the MN
  • the MAG de-encapsulates the encapsulated downlink data packet forwarded from the LMA according to the service flow ID and the downlink GRE Key and forwards the de-encapsulated downlink data packet to the MN.
  • the MAG transmits to the LMA a PBU message instructing to delete binding of the service flow (referred to as a second PBU message for the sake of distinguishing) upon determining that the MN terminates the service flow, where the second PBU message includes the service flow ID.
  • the service flow identification option included in the second PBU message includes Service Flow ID (the value of which is the same as that in the first PBU message, the Service Flow ID takes the value of 0 for a first service flow initiated by the MN) and PRO field which may take the value of 1 to represent deletion of binding of the service flow.
  • the LMA deletes the locally buffered binding relationship between the service flow ID and the address information of the MN according to the received second PBU message and returns to the MAG a PBA message (referred to as a second PBA message for the sake of distinguishing) including the service flow ID.
  • related attributes of the service flow may also be described in either or both of a transport level description option and an application level description option.
  • the PMIPv6-based data transmission method can address effectively the problem that data packets of the MN cannot be distinguished and controlled based on a service flow, and distinguish and further correspondingly control data packets of a service flow or a type of service flows of the MN; and also the related attributes of the service flow can be described formally in the embodiment of the invention.
  • the PMIPv6-based data transmission method is applicable to a scenario where the MN is a terminal with a single interface and a scenario where the MN is a terminal with a plurality of interfaces.
  • a service flow initiated by the MN may be forwarded to a corresponding MAG, which in turn triggers a PBU flow and generates a unique service flow ID for the service flow to bind the service flow with the address information of the MN, so that the data packets of the MN can be distinguished and controlled based on a service flow.
  • a service flow initiated via one of the interfaces of the MN may be forwarded to a corresponding MAG, which in turn triggers a PBU flow and generates a unique service flow ID for the service flow to bind the service flow with address information of the interface of the MN, so that data packets via the interfaces of the MN can be distinguished and controlled based on a service flow.
  • an embodiment of the invention provides a PMIPv6-based data transmission system, and since the principle for the system to address the problem is consistent with the PMIPv6-based data transmission method, reference can be made to the implementation of the method for details of an implementation of the system, and a repeated description thereof is omitted here.
  • the system includes a Mobile Access Gateway (MAG) 601 and a Local Mobility Anchor (LMA) 602 .
  • MAG Mobile Access Gateway
  • LMA Local Mobility Anchor
  • the MAG 601 and the LMA 602 are configured to establish a bidirectional tunnel based upon binding of a service flow through interaction of messages after an MN initiates the service flow, where a downlink GRE Key and an uplink GRE Key are allocated to the service flow and the LMA 602 is further configured to add a binding relationship between a service flow ID of the service flow and address information of the MN during establishment of the bidirectional tunnel.
  • the MAG 601 and the LMA 602 are further configured to transmit a data packet of the service flow initiated by the MN over the established bidirectional tunnel according to the service flow ID, the binding relationship and the uplink and downlink GRE Keys.
  • the MAG 601 is further configured to transmit to the LMA 602 a first PBU message instructing to add binding of the service flow upon reception of a first data packet of the service flow initiated by the MN, where the first PBU message includes the service flow ID generated for the service flow and the downlink GRE Key allocated to the service flow; and to receive a first PBA message returned from the LMA 602 in response to the first PBU message, where the first PBA message includes the service flow ID and the uplink GRE Key allocated to the service flow.
  • the LMA 602 is further configured to add the binding relationship between the service flow ID and the address information of the MN according to the received first PBU message and return the first PBA message to the MAG 601 .
  • the MAG 601 is further configured to encapsulate an uplink data packet of the service flow from the MN according to the service flow ID and the uplink GRE Key and forward the encapsulated uplink data packet to the LMA 602 over the bidirectional tunnel, and to de-encapsulate an encapsulated downlink data packet according to the service flow ID and the downlink GRE Key and forward the de-encapsulated downlink data packet to the MN.
  • the LMA 602 is further configured to encapsulate a downlink data packet of the service flow from a CN according to the service flow ID and the downlink GRE Key and forward the encapsulated downlink data packet to the MAG 601 over the bidirectional tunnel, and to de-encapsulate an encapsulated uplink data packet according to the service flow ID and the uplink GRE Key and forward the de-encapsulated uplink data packet to the CN.
  • the MAG 601 is further configured to transmit to the LMA a second PBU message instructing to delete binding of the service flow upon determining that the MN terminates the service flow, where the second PBU message includes the service flow ID.
  • the LMA 602 is further configured to delete the locally buffered binding relationship between the service flow ID and the address information of the MN according to the received second PBU message and return to the MAG a second PBA message including the service flow ID.
  • a possible structure of the MAG 601 as illustrated in FIG. 7 includes:
  • a sending unit 701 configured to transmit to an LMA a first PBU message instructing to add binding of a service flow upon reception of a first data packet of the service flow initiated by an MN, where the first PBU message includes a service flow ID generated for the service flow and a downlink GRE Key allocated to the service flow;
  • a reception unit 702 configured to receive a first PBA message returned from the LMA in response to the first PBU message, where the first PBA message includes the service flow ID and an uplink GRE Key allocated to the service flow;
  • a transmission unit 703 configured to transmit a data packet of the service flow over a bidirectional tunnel established, based upon binding of the service flow, with the LMA, according to the service flow ID and the uplink and downlink GRE Keys.
  • the sending unit 701 is further configured to transmit to the LMA a second PBU message instructing to delete binding of the service flow upon determining that the MN terminates the service flow, where the second PBU message includes the service flow ID.
  • a possible structure of the LMA 602 includes:
  • a reception unit 801 configured to receive a first PBU message transmitted from an MAG to instruct to add binding of a service flow, where the first PBU message includes a service flow ID generated for the service flow and a downlink GRE Key allocated to the service flow;
  • a binding processing unit 802 configured to add a binding relationship between the service flow ID and address information of an MN according to the received first PBU message and return to the MAG a first PBA message including the service flow ID and an uplink GRE Key allocated to the service flow;
  • a transmission unit 803 configured to transmit a data packet of the service flow over a bidirectional tunnel established, based upon binding of the service flow, with the MAG, according to the service flow ID, the binding relationship and the uplink and downlink GRE Keys.
  • the binding processing unit 802 is further configured to delete the locally buffered binding relationship between the service flow ID and the address information of the MN according to a received second PBU message and return to the MAG a second PBA message including the service flow ID.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Computer Security & Cryptography (AREA)
  • Databases & Information Systems (AREA)
  • Mobile Radio Communication Systems (AREA)
  • Data Exchanges In Wide-Area Networks (AREA)

Abstract

A data transferring method, a system and a related network device based on proxy mobile (PM) IPv6, which are used for solving the problem that the existing data transferring scheme based on proxy mobile (PM) IPv6 can't distinguishes and controls the mobile node (MN) data packages according to service flow. The data transferring method includes: after the mobile node (MN) initiates the service flow, a mobile access gateway (MAG) and local mobility anchor (LMA) establishes a bidirectional tunnel by information interaction based on service flow binding; in which, in the process of the bidirectional tunnel establishing, the service is distributed the downlink GRE Key and uplink GRE Key, and the local mobility anchor (LMA) adds service flow identifier of the service flow and the binding relationship of the address information of the mobile node (MN); the mobile access gateway (MAG) and local mobility anchor (LMA) transfers the data packages of the service flow initiated by the mobile node (MN) on the bidirectional tunnel between the mobile access gateway (MAG) and local mobility anchor (LMA) according to the service flow identifier and the binding relationship and the uplink, downlink GRE Key.

Description

The present application is a US National Stage of International Application No. PCT/CN2010/072187, filed 26 Apr. 2010, designating the United States, and claiming priority to Chinese Patent Application No. 200910082982.2 filed 27 Apr. 2009.
FIELD OF THE INVENTION
The present invention relates to the field of mobile communications and particularly to a PMIPv6 (Proxy Mobile Internet Protocol) based data transmission technology.
BACKGROUND OF THE INVENTION
Along with evolvement of a network from the IPv4 (Internet Protocol version 4) to the IPv6, the Internet Engineering Task Force (IETF) has established the Mobile Internet Protocol (MIP) in order to support a mobility IPv6 access of a terminal. The MIPv6 relates to three entities, i.e., a Mobile Node (MN), a Home Agent (HA) and a Correspondent Node (CN). When the MN is located in the home network, the MN communicates with the CN by using a Home of Address (HoA). When the MN moves to a foreign network, the MN has the HoA in the home network unchanged and is also provided with a temporary IP address allocated in the foreign network, i.e., a Care of Address (CoA). The MN registers with the HA in a Binding Update (BU) process and notifies the HA of a mapping relationship between the HoA and the CoA, and the HA maintains a binding list between the HoA and the CoA. After the HA accepts registration of the MN, data packet transmitted from the CN to the MN is encapsulated by the HA without changing an inner-layer address of an encapsulated data packet, that is, the inner-layer source address is the address of the CN and the inner-layer destination address is the HoA, and the outer-layer source address is the address of the HA and the outer-layer destination address is the CoA, and the HA forwards the encapsulated data packet to the MN through a tunnel; and the MN transmits a data packet to the CN with the outer-layer source address being the CoA and the outer-layer destination address being the address of the HA, and the inner-layer source address being the HoA and the inner-layer destination address being the address of the CN, and the HA de-encapsulates the data packet upon reception of the data packet transmitted through a reverse tunnel from the MN and forwards the de-encapsulated data packet to the CN. The HA forwards the data packet of the MN in a communication mode referred to as a bidirectional tunnel model.
The Proxy Mobile IPv6 (PMIPv6) refers to an extension to the MIPv6 and differs from the MIPv6 in that a Mobile Access Gateway (MAG) emulates the home network by notifying the hosted MN of the prefix of the home network so that the MN believes that it is located in the home network all the time; and the MAG registers with a Local Mobility Anchor (LMA) capable of functioning as the home agent, on behalf of the MN in a Proxy Binding Update (PBU) process, and finally a bidirectional tunnel between the MAG and the LMA is established for transmitting a data packet of the MN with the interface address of the MAG being the CoA.
In an existing PMIPv6-based data transmission flow as illustrated in FIG. 1, the MN transmits a Router Solicitation message to the hosting MAG after accessing the PMIPv6 domain in an attachment process; the MAG registers with the LMA on behalf of the MN by transmitting a Proxy Binding Update (PBU) message to the LMA and notifies the LMA of a mapping relationship between the interface address of the MAG and address information of the MN; the LMA accepts registration of the MAG on behalf of the MN, stores in a Binding Cache Entry (BCE) the mapping relationship between the address information of the MN and the interface address of the MAG and returns a Proxy Binding Ack (PBA) message to the MAG; the MAG returns a Router Advertisement message to the MN upon reception of the PBA message, which indicates successful establishment of a bidirectional tunnel between the MAG and the LMA; and subsequently a data packet of the MN is transmitted over the bidirectional tunnel established between the MAG and the LMA.
The inventors have identified that in the existing 3GPP Long-Term Evolvement (LTE) system, a separate GTP-U tunnel may be created for each PDP Context/EPS Bearer of the terminal and a Service Data Flow (SDF) may be bound to the GTP-U tunnel corresponding to the PDP Context/EPS Bearer to thereby enable distinguishing and charging control based upon the service data flow. In a MIPv6-based multi-connection (Monami) scenario, the HoA of the MN is allowed to be bound with a plurality of CoAs, and then one or more flows are bounded onto one of the CoAs to thereby forward the different flows onto different network interfaces. However, data packets of the MN cannot be distinguished and controlled based on the service flow in the existing PMIPv6-based data transmission solution.
SUMMARY OF THE INVENTION
Embodiments of the invention provide a PMIPv6-based data transmission method and system to address the problem that data packets of an MN cannot be distinguished and controlled based on a service flow in the existing PMIPv6-based data transmission solution.
Accordingly the embodiments of the invention provide a Mobile Access Gateway, MAG, and a Local Mobility Anchor, LMA.
A PMIPv6-based data transmission method according to an embodiment of the invention includes:
establishing, by a Mobile Access Gateway, MAG, and a Local Mobility Anchor, LMA, a bidirectional tunnel based upon binding of a service flow through interaction of messages after a Mobile Node, MN, initiates the service flow, wherein a downlink Generic Routing Encapsulation, GRE, key and an uplink GRE key are allocated to the service flow and the LMA adds a binding relationship between a service flow identifier (ID) of the service flow and address information of the MN during establishment of the bidirectional tunnel; and
transmitting, by the MAG and the LMA, a data packet of the service flow initiated by the MN over the bidirectional tunnel according to the service flow identifier, the binding relationship, and the uplink and downlink GRE keys.
A PMIPv6-based data transmission system according to an embodiment of the invention includes a Mobile Access Gateway, MAG, and a Local Mobility Anchor, LMA, wherein:
the MAG and the LMA are configured to establish a bidirectional tunnel based upon binding of a service flow through interaction of messages after a Mobile Node, MN, initiates the service flow, wherein a downlink Generic Routing Encapsulation, GRE, key and an uplink GRE key are allocated to the service flow and the LMA is further configured to add a binding relationship between a service flow identifier of the service flow and address information of the MN during establishment of the bidirectional tunnel; and
the MAG and the LMA are further configured to transmit a data packet of the service flow initiated by the MN over the bidirectional tunnel according to the service flow identifier, the binding relationship and the uplink and downlink GRE keys.
A Mobile Access Gateway, MAG, according to an embodiment of the invention includes:
a sending unit configured to transmit to a Local Mobility Anchor, LMA, a first proxy binding update message instructing to add binding of a service flow upon reception of a first data packet of the service flow initiated by a Mobile Node, MN, wherein the first proxy binding update message includes a service flow identifier generated for the service flow and a downlink Generic Routing Encapsulation, GRE, key allocated to the service flow;
a reception unit configured to receive a first proxy binding ack message returned from the LMA in response to the first proxy binding update message, wherein the first proxy binding ack message includes the service flow identifier and an uplink GRE key allocated to the service flow; and
a transmission unit configured to transmit a data packet of the service flow over a bidirectional tunnel established, based upon binding of the service flow, with the LMA, according to the service flow identifier and the uplink and downlink GRE keys.
A Local Mobility Anchor, LMA, according to an embodiment of the invention includes:
a reception unit configured to receive a first proxy binding update message transmitted from a Mobile Access Gateway, MAG, to instruct to add binding of a service flow, wherein the first proxy binding update message includes a service flow identifier generated for the service flow and a downlink Generic Routing Encapsulation, GRE, key allocated to the service flow;
a binding processing unit configured to add a binding relationship between the service flow identifier and address information of an MN according to the received first proxy binding update message and return to the MAG a first proxy binding ack message including the service flow identifier and an uplink GRE key allocated to the service flow; and
a transmission unit configured to transmit a data packet of the service flow over a bidirectional tunnel established, based upon binding of the service flow, with the MAG, according to the service flow identifier, the binding relationship, and the uplink and downlink GRE keys.
In the PMIPv6-based data transmission method, system and related network devices according to the embodiments of the invention, the MAG and the LMA establish a bidirectional tunnel based upon binding of a service flow through interaction of messages after an MN initiates the service flow, where a downlink GRE key and an uplink GRE key are allocated to the service flow and the LMA adds a binding relationship between a service flow identifier of the service flow and address information of the MN during establishment of the bidirectional tunnel, and then the bidirectional tunnel has been established successfully between the MAG and the LMA, and the service flow is bound with the address information of the MN through an operation of adding binding of the service flow; and the MAG and the LMA transmit a data packet of the service flow initiated by the MN over the bidirectional tunnel between the MAG and the LMA according to the service flow identifier, the binding relationship, and the uplink and downlink GRE keys to thereby distinguish and control data packets based on a service flow.
BRIEF DESCRIPTION OF THE DRAWINGS
FIG. 1 is a flow chart of PMIPv6-based data transmission in the prior art;
FIG. 2 is a schematic diagram of a format of a PBU message in the prior art;
FIG. 3 is a schematic diagram of a format of a service flow identification option according to an embodiment of the invention;
FIG. 4 is a schematic diagram of a format of a transport level description according to an embodiment of the invention;
FIG. 5 is a flow chart of a PMIPv6-based data transmission method according to an embodiment of the invention;
FIG. 6 is a block diagram of a PMIPv6-based data transmission system according to an embodiment of the invention;
FIG. 7 is a block diagram of a possible structure of an MAG according to an embodiment of the invention; and
FIG. 8 is a block diagram of a possible structure of an LMA according to an embodiment of the invention.
DETAILED DESCRIPTION OF THE EMBODIMENTS
In view of the problem that data packets of an MN cannot be distinguished and controlled based on a service flow in the existing PMIPv6-based data transmission solution, an improved PMIPv6-based data transmission flow is adapted in embodiments of the invention by defining a new service flow identification option and adding the new service flow identification option into a PBU message and a PBA message to distinguish and control data packets of an MN based on a service flow.
Referring to FIG. 2, a format of an existing PBU message includes fields (domains) of Sequence#, Lifetime, and Mobility Options, where the name, length and means of each of the fields (domains) included in the PBU message are as illustrated in Table.1. A PBA message also includes the field of Mobility Options, and a specific format of the message is not repeated here.
TABLE 1
Field (domain) Length (bit) Meaning
Sequence # 16 Sequence number with a logically
monotonously incremented value
A
1 It is set as 1 to indicate that
returning a PBA message is required
H 1 Require a receiving node to function
as a home agent of the mobile node
L
1 Compatibility of a local address of a link
K
1 Key management mobility
M
1 It is set as 1 to indicate that the binding
update relates to MAP registration
R
1 It is set as 1 to indicate that the binding
update originates from a mobile router
P
1 It is set as 1 to indicate that the binding
update relates to proxy registration
Lifetime 16 Lifetime
Mobility Variable Include zero or several mobility options in
Options length the TLV format
A new service flow identification option is added into the PBU message and the PBA message as one of the options included in the Mobility Options. The service flow identification option defines a Service Flow ID of an MN and also may define either or both of a transport level description and an application level description of the service flow so that a message receiver can know the ID of the service flow and further know related attributes of the service flow.
Referring to FIG. 3, a format of the service flow identification option includes fields (domains) of Service Flow ID, Status, Operation Instruction (PRO), Option Type, Option Length (Option Len), and Reserved.
The field of Service Flow ID represents a unique identifier of the service flow.
The field of Status is enabled in the PBA message to represent a successful or failing operation of binding the service flow.
The field of Operation Instruction (PRO) represents various operations to be performed on binding of the service flow, e.g., an operation of adding binding of a service flow, an operation of deleting binding of a service flow, or an operation of modifying binding of a service flow.
Optionally, the service flow identification option may further include an application level description option for describing application level attributes of the service flow, e.g., a service ID, and an application level protocol in use.
Optionally, the service flow identification option may further include a transport level description option for describing a packet filter attribute of the service flow, and referring to FIG. 4, a format of the transport level description option includes the fields (domains) of Option Type, Option Length (Option Len), Reserved, Type, and Transport Level Description. Different values of the field of Type may represent different combinations of the packet filter attributes. By way of an example, three valid combinations of the packet filter attributes, each of which corresponds to a value of the field of Type, are presented in Table 2. In a specific implementation, a combination of the packet filter attributes may include one or any combination of the attributes of Destination IP Address, Port Range, Flow Label, IPSec Security Parameter Index, Protocol ID of the protocol above IP, and Type of Service/Traffic class and Mask.
Both the transport level description option and the application level description option are variable in length.
TABLE 2
The field
of Type The field of Transport level description
0 Destination IP Address; Source Port Range; Destination
Port Range; Protocol ID of the protocol above IP; Type
of Service (TOS) (IPv4)/Traffic class (IPv6) and Mask
1 Destination IP Address; Protocol ID of the protocol
above IP; Type of Service (TOS) (IPv4)/Traffic class
(IPv6) and Mask; IPSec Security Parameter Index (SPI)
2 Destination IP Address; Type of Service (TOS) (IPv4)/
Traffic class (IPv6) and Mask; Flow Label (IPv6)
Based upon the new service flow identification option, an embodiment of the invention provides a PMIPv6-based data transmission method including: an MAG and an LMA establish a bidirectional tunnel based upon binding of a service flow through interaction of messages after an MN initiates the service flow, where a downlink GRE Key and an uplink GRE Key are allocated to the service flow and the LMA adds a binding relationship between a service flow ID of the service flow and address information of the MN during establishment of the bidirectional tunnel; and the MAG and the LMA transmit a data packet of the service flow initiated by the MN over the established bidirectional tunnel according to the service flow ID, the binding relationship, and the uplink and downlink GRE Keys.
The foregoing method may be particularly illustrated in FIG. 5 and include the following steps.
S501. An MAG transmits to an LMA a PBU message instructing to add binding of a service flow (referred to as a first PBU message for the sake of distinguishing) upon reception of a first data packet of the service flow initiated by an MN, where the first PBU message includes a service flow ID generated for the service flow and a downlink Generic Routing Encapsulation (GRE) Key allocated to the service flow.
In a specific implementation, the service flow identification option included in the first PBU message includes: Service Flow ID and PRO field, where the Service Flow ID represents the sequence number of the service flow and is logically monotonously incremented for each service flow initiated by the MN, and the Service Flow ID takes the value of 0 for a first service flow initiated by the MN, 1 for a second service flow initiated by the MN, and so on, and the PRO field may take the value of 0 to represent addition of binding of a service flow. The first PBU message may further include either or both a transport level description option and an application level description option to describe related attributes of the service flow.
S502: The LMA adds a binding relationship between the service flow ID and address information of the MN according to the received first PBU message and returns to the MAG a PBA message (referred to as a first PBA message for the sake of distinguishing), which includes the service flow ID and an uplink GRE Key allocated to the service flow.
Like the prior art, the MAG registers with the LMA on behalf of the MN by transmitting the PBU message to the LMA and notifies the LMA of a mapping relationship between the interface address of the MAG and the address information of the MN. Since the PBU message is extended and the service flow identification option is added, the LMA adds corresponding binding information of the service flow, i.e., the binding relationship between the service flow ID and the address information of the MN, according to the first PBU message, and the binding relationship between the service flow ID and the address information of the MN may be buffered in a local binding cache entry, where the address information of the MN may be an IP address or prefix of the MN. Like the PBU message, the PBA message may also include either or both of a transport level description option and an application level description option to describe related attributes of the service flow. The Generic Routing Encapsulation (GRE) refers to tunneling adopted for the mobility IP to allow a data packet in one protocol to be encapsulated in a payload of a data packet in another protocol.
Then a bidirectional tunnel has been established successfully between the MAG and the LMA, and the service flow has been bound to the address information of the MN through an operation of adding binding of the service flow to thereby facilitate distinguishing and control of data packets based on a service flow.
S503. The MAG and the LMA transmit a data packet of the service flow over the bidirectional tunnel established, based upon binding of the service flow, between the MAG and the LMA, according to the service flow ID and the uplink and downlink GRE Keys.
In a specific implementation, assumed that communication is conducted between the MN and the CN, the process may include the following steps:
the MAG encapsulates an uplink data packet of the service flow (i.e., a data packet transmitted from the MN to the CN) according to the service flow ID and the uplink GRE Key and forwards the encapsulated uplink data packet to the LMA over the bidirectional tunnel, and the LMA de-encapsulates the encapsulated uplink data packet forwarded from the MAG according to the service flow ID and the uplink GRE Key and forwards the de-encapsulated uplink data packet to the CN; and
the LMA encapsulates a downlink data packet of the service flow (i.e., a data packet transmitted from the CN to the MN) according to the service flow ID and the downlink GRE Key and forwards the encapsulated downlink data packet to the MAG over the bidirectional tunnel, and the MAG de-encapsulates the encapsulated downlink data packet forwarded from the LMA according to the service flow ID and the downlink GRE Key and forwards the de-encapsulated downlink data packet to the MN.
Subsequently the following steps may further be included if the MN terminates the service flow.
In the step A, the MAG transmits to the LMA a PBU message instructing to delete binding of the service flow (referred to as a second PBU message for the sake of distinguishing) upon determining that the MN terminates the service flow, where the second PBU message includes the service flow ID.
Correspondingly, the service flow identification option included in the second PBU message includes Service Flow ID (the value of which is the same as that in the first PBU message, the Service Flow ID takes the value of 0 for a first service flow initiated by the MN) and PRO field which may take the value of 1 to represent deletion of binding of the service flow.
In the step B, the LMA deletes the locally buffered binding relationship between the service flow ID and the address information of the MN according to the received second PBU message and returns to the MAG a PBA message (referred to as a second PBA message for the sake of distinguishing) including the service flow ID.
In the second PBU message and the second PBA message, related attributes of the service flow may also be described in either or both of a transport level description option and an application level description option.
Then the bidirectional tunnel between the MAG and the LMA has been removed, and binding between the service flow and the address information of the MN has been canceled through an operation of deleting binding of the service flow.
The PMIPv6-based data transmission method according to the embodiment of the invention can address effectively the problem that data packets of the MN cannot be distinguished and controlled based on a service flow, and distinguish and further correspondingly control data packets of a service flow or a type of service flows of the MN; and also the related attributes of the service flow can be described formally in the embodiment of the invention.
The PMIPv6-based data transmission method according to the embodiment of the invention is applicable to a scenario where the MN is a terminal with a single interface and a scenario where the MN is a terminal with a plurality of interfaces. For the scenario where the MN is a terminal with a single interface, a service flow initiated by the MN may be forwarded to a corresponding MAG, which in turn triggers a PBU flow and generates a unique service flow ID for the service flow to bind the service flow with the address information of the MN, so that the data packets of the MN can be distinguished and controlled based on a service flow. For the scenario where the MN is a terminal with a plurality of interfaces, a service flow initiated via one of the interfaces of the MN may be forwarded to a corresponding MAG, which in turn triggers a PBU flow and generates a unique service flow ID for the service flow to bind the service flow with address information of the interface of the MN, so that data packets via the interfaces of the MN can be distinguished and controlled based on a service flow.
Based upon the same technical concept, an embodiment of the invention provides a PMIPv6-based data transmission system, and since the principle for the system to address the problem is consistent with the PMIPv6-based data transmission method, reference can be made to the implementation of the method for details of an implementation of the system, and a repeated description thereof is omitted here. As illustrated in FIG. 6, the system includes a Mobile Access Gateway (MAG) 601 and a Local Mobility Anchor (LMA) 602.
The MAG 601 and the LMA 602 are configured to establish a bidirectional tunnel based upon binding of a service flow through interaction of messages after an MN initiates the service flow, where a downlink GRE Key and an uplink GRE Key are allocated to the service flow and the LMA 602 is further configured to add a binding relationship between a service flow ID of the service flow and address information of the MN during establishment of the bidirectional tunnel.
The MAG 601 and the LMA 602 are further configured to transmit a data packet of the service flow initiated by the MN over the established bidirectional tunnel according to the service flow ID, the binding relationship and the uplink and downlink GRE Keys.
In a specific implementation, the MAG 601 is further configured to transmit to the LMA 602 a first PBU message instructing to add binding of the service flow upon reception of a first data packet of the service flow initiated by the MN, where the first PBU message includes the service flow ID generated for the service flow and the downlink GRE Key allocated to the service flow; and to receive a first PBA message returned from the LMA 602 in response to the first PBU message, where the first PBA message includes the service flow ID and the uplink GRE Key allocated to the service flow.
The LMA 602 is further configured to add the binding relationship between the service flow ID and the address information of the MN according to the received first PBU message and return the first PBA message to the MAG 601.
In a specific implementation, the MAG 601 is further configured to encapsulate an uplink data packet of the service flow from the MN according to the service flow ID and the uplink GRE Key and forward the encapsulated uplink data packet to the LMA 602 over the bidirectional tunnel, and to de-encapsulate an encapsulated downlink data packet according to the service flow ID and the downlink GRE Key and forward the de-encapsulated downlink data packet to the MN.
The LMA 602 is further configured to encapsulate a downlink data packet of the service flow from a CN according to the service flow ID and the downlink GRE Key and forward the encapsulated downlink data packet to the MAG 601 over the bidirectional tunnel, and to de-encapsulate an encapsulated uplink data packet according to the service flow ID and the uplink GRE Key and forward the de-encapsulated uplink data packet to the CN.
Preferably, the MAG 601 is further configured to transmit to the LMA a second PBU message instructing to delete binding of the service flow upon determining that the MN terminates the service flow, where the second PBU message includes the service flow ID.
The LMA 602 is further configured to delete the locally buffered binding relationship between the service flow ID and the address information of the MN according to the received second PBU message and return to the MAG a second PBA message including the service flow ID.
A possible structure of the MAG 601 as illustrated in FIG. 7 includes:
a sending unit 701 configured to transmit to an LMA a first PBU message instructing to add binding of a service flow upon reception of a first data packet of the service flow initiated by an MN, where the first PBU message includes a service flow ID generated for the service flow and a downlink GRE Key allocated to the service flow;
a reception unit 702 configured to receive a first PBA message returned from the LMA in response to the first PBU message, where the first PBA message includes the service flow ID and an uplink GRE Key allocated to the service flow; and
a transmission unit 703 configured to transmit a data packet of the service flow over a bidirectional tunnel established, based upon binding of the service flow, with the LMA, according to the service flow ID and the uplink and downlink GRE Keys.
Preferably, the sending unit 701 is further configured to transmit to the LMA a second PBU message instructing to delete binding of the service flow upon determining that the MN terminates the service flow, where the second PBU message includes the service flow ID.
As illustrated in FIG. 8, a possible structure of the LMA 602 includes:
a reception unit 801 configured to receive a first PBU message transmitted from an MAG to instruct to add binding of a service flow, where the first PBU message includes a service flow ID generated for the service flow and a downlink GRE Key allocated to the service flow;
a binding processing unit 802 configured to add a binding relationship between the service flow ID and address information of an MN according to the received first PBU message and return to the MAG a first PBA message including the service flow ID and an uplink GRE Key allocated to the service flow; and
a transmission unit 803 configured to transmit a data packet of the service flow over a bidirectional tunnel established, based upon binding of the service flow, with the MAG, according to the service flow ID, the binding relationship and the uplink and downlink GRE Keys.
Preferably, the binding processing unit 802 is further configured to delete the locally buffered binding relationship between the service flow ID and the address information of the MN according to a received second PBU message and return to the MAG a second PBA message including the service flow ID.
It will be appreciated that one skilled in the art may make various modifications and alterations to the present invention without departing from the scope of the present invention. Accordingly, if these modifications and alterations to the present invention fall within the scope of the claims of the present invention and their equivalents, the present invention intends to include all these modifications and alterations.

Claims (14)

The invention claimed is:
1. A data transmission method based upon a Proxy Mobile Internet Protocol version 6, PMIPv6, comprising:
establishing, by a Mobile Access Gateway, MAG, and a Local Mobility Anchor, LMA, a bidirectional tunnel based upon binding of a service flow through interaction of messages after a Mobile Node, MN, initiates the service flow, wherein a downlink Generic Routing Encapsulation, GRE, key and an uplink GRE key are allocated to the service flow and the LMA adds a binding relationship between a service flow identifier of the service flow and address information of the MN during establishment of the bidirectional tunnel; and
transmitting, by the MAG and the LMA, a data packet of the service flow initiated by the MN over the bidirectional tunnel according to the service flow identifier, the binding relationship, and the uplink and downlink GRE keys, wherein establishing by the MAG and the LMA the bidirectional tunnel through interaction of messages after the MN initiates the service flow comprises:
transmitting, by the MAG, to the LMA a first proxy binding update message instructing to add binding of the service flow upon reception of a first data packet of the service flow initiated by the MN, wherein the first proxy binding update message comprises the service flow identifier generated for the service flow and the downlink GRE key allocated to the service flow; and
adding, by the LMA, the binding relationship between the service flow identifier and the address information of the MN according to the received first proxy binding update message and returning to the MAG a first proxy binding acknowledge, ack, message comprising the service flow identifier and the uplink GRE key allocated to the service flow.
2. The method of claim 1, wherein transmitting by the MAG and the LMA a data packet of the service flow initiated by the MN over the bidirectional tunnel according to the service flow identifier, the binding relationship, and the uplink and downlink GRE keys comprises:
encapsulating, by the MAG, an uplink data packet of the service flow from the MN according to the service flow identifier and the uplink GRE key and forwarding the encapsulated uplink data packet to the LMA over the bidirectional tunnel, and de-encapsulating, by the LMN, the encapsulated uplink data packet according to the service flow identifier and the uplink GRE key and forwarding the de-encapsulated uplink data packet to a Correspondent Node, CN; and
encapsulating, by the LMA, a downlink data packet of the service flow from the CN according to the service flow identifier and the downlink GRE key and forwarding the encapsulated downlink data packet to the MAG over the bidirectional tunnel, and de-encapsulating, by the MAG, the encapsulated downlink data packet according to the service flow identifier and the downlink GRE key and forwarding the de-encapsulated downlink data packet to the MN.
3. The method of claim 1, wherein transmitting, by the MAG, to the LMA a second proxy binding update message instructing to delete binding of the service flow upon determining that the MN terminates the service flow, wherein the second proxy binding update message comprises the service flow identifier; and
deleting, by the LMA, the locally buffered binding relationship between the service flow identifier and the address information of the MN according to the received second proxy binding update message and returning to the MAG a second proxy binding ack message comprising the service flow identifier.
4. The method of claim 1, wherein the proxy binding update message further comprises an application level description and/or a transport level description of the service flow.
5. The method of claim 1, wherein the proxy binding ack message further comprises an application level description and/or a transport level description of the service flow.
6. The method of claim 4, wherein the application level description comprises a service identifier and/or an application level protocol in use.
7. The method of claim 4, wherein the transport level description comprises one or any combination of Destination, Internet Protocol, IP Address, Port Range, Flow Label, Security Parameter Index, Protocol Identifier of the protocol above IP, and Type of Service/Traffic class and Mask.
8. The method of claim 5, wherein the application level description comprises a service identifier and/or an application level protocol in use.
9. The method of claim 5, wherein the transport level description comprises one or any combination of Destination, Internet Protocol, IP Address, Port Range, Flow Label, Security Parameter Index, Protocol Identifier of the protocol above IP, and Type of Service/Traffic class and Mask.
10. A data transmission system based upon a Proxy Mobile Internet Protocol version 6, PMIPv6, comprising a Mobile Access Gateway, MAG, and a Local Mobility Anchor, LMA, the MAG comprising a first memory storing a first set of instructions instructing a first processor to perform first operations, the LMA comprising a second memory storing a second set of instructions instructing a second processor to perform second operations, wherein: the first and second operations comprise: establishing a bidirectional tunnel based upon binding of a service flow through interaction of messages after a Mobile Node, MN, initiates the service flow, wherein a downlink Generic Routing Encapsulation, GRE, key and an uplink GRE key are allocated to the service flow and the LMA is further configured to add a binding relationship between a service flow identifier of the service flow and address information of the MN during establishment of the bidirectional tunnel; and
transmit a data packet of the service flow initiated by the MN over the bidirectional tunnel according to the service flow identifier, the binding relationship and the uplink and downlink GRE keys, wherein:
the first operations further comprises transmitting to the LMA a first proxy binding update message instructing to add binding of the service flow upon reception of a first data packet of the service flow initiated by the MN, wherein the first proxy binding update message comprises the service flow identifier generated for the service flow and the downlink GRE key allocated to the service flow; and to receive a first proxy binding acknowledge, ack, message returned from the LMA in response to the first proxy binding update message, wherein the first proxy binding ack message comprises the service flow identifier and the allocated uplink GRE key; and
the second operations further comprise adding the binding relationship between the service flow identifier and the address information of the MN according to the received first proxy binding update message and return the first proxy binding ack message to the MAG.
11. The system of claim 10, wherein:
the MAG is first operations further comprise encapsulating an uplink data packet of the service flow from the MN according to the service flow identifier and the uplink GRE key and forward the encapsulated uplink data packet to the LMA over the bidirectional tunnel, and de-capsulating an encapsulated downlink data packet data packet according to the service flow identifier and the downlink GRE key and forward the de-encapsulated downlink data packet to the MN; and
the second operations further comprise encapsulating a downlink data packet of the service flow from a Correspondent Node, CN, according to the service flow identifier and the downlink GRE key and forward the encapsulated downlink data packet to the MAG over the bidirectional tunnel, and de-capsulating an encapsulated uplink data packet according to the service flow identifier and the uplink GRE key and forward de-encapsulated uplink data packet to the CN.
12. The system of claim 10, wherein:
the first operations further comprise transmitting to the LMA a second proxy binding update message instructing to delete binding of the service flow upon determining that the MN terminates the service flow, wherein the second proxy binding update message comprises the service flow identifier; and the second operations further comprise deleting the locally buffered binding relationship between the service flow identifier and the address information of the MN according to the received second proxy binding update message and return to the MAG a second proxy binding ack message comprising the service flow identifier.
13. A Mobile Access Gateway, MAG, comprising: a microprocessor; a non-transitory computer readable storage medium with an executable program stored thereon, wherein the program instructs the microprocessor to perform operations comprising: transmitting to a Local Mobility Anchor, LMA, a first proxy binding update message instructing to add binding of a service flow upon reception of a first data packet of the service flow initiated by a Mobile Node, MN, wherein the first proxy binding update message comprises a service flow identifier generated for the service flow and a downlink Generic Routing Encapsulation, GRE, key allocated to the service flow;
receiving a first proxy binding acknowledge, ack, message returned from the LMA in response to the first proxy binding update message, wherein the first proxy binding ack message comprises the service flow identifier and an uplink GRE key allocated to the service flow; and transmitting a data packet of the service flow over a bidirectional tunnel established, based upon binding of the service flow, with the LMA, according to the service flow identifier and the uplink and downlink GRE keys.
14. The MAG of claim 13, wherein the operations further comprise transmitting to the LMA a second proxy binding update message instructing to delete binding of the service flow upon determining that the MN terminates the service flow, wherein the second proxy binding update message comprises the service flow identifier.
US13/266,388 2009-04-27 2010-04-26 Data transmission method, system and related network device based on proxy mobile (PM) IPV6 Active 2033-06-23 US9271315B2 (en)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
CN200910082982 2009-04-27
CN200910082982A CN101873572B (en) 2009-04-27 2009-04-27 Data transmission method, system and relevant network equipment based on PMIPv6
CN200910082982.2 2009-04-27
PCT/CN2010/072187 WO2010124603A1 (en) 2009-04-27 2010-04-26 Data transferring method, system and related network device based on proxy mobile (pm) ipv6

Publications (2)

Publication Number Publication Date
US20120140719A1 US20120140719A1 (en) 2012-06-07
US9271315B2 true US9271315B2 (en) 2016-02-23

Family

ID=42998182

Family Applications (1)

Application Number Title Priority Date Filing Date
US13/266,388 Active 2033-06-23 US9271315B2 (en) 2009-04-27 2010-04-26 Data transmission method, system and related network device based on proxy mobile (PM) IPV6

Country Status (6)

Country Link
US (1) US9271315B2 (en)
EP (1) EP2426956B1 (en)
JP (1) JP5362904B2 (en)
KR (1) KR101373418B1 (en)
CN (1) CN101873572B (en)
WO (1) WO2010124603A1 (en)

Families Citing this family (38)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8824353B2 (en) * 2009-10-02 2014-09-02 Futurewei Technologies, Inc. Mobility route optimization in a network having distributed local mobility anchors
US8873507B2 (en) * 2009-10-02 2014-10-28 Futurewei Technologies, Inc. Distributed local mobility anchors for achieving optimized mobility routing
US8842607B2 (en) 2010-01-08 2014-09-23 Futurewei Technologies, Inc. Mobility management system and method
US8824487B1 (en) 2010-04-29 2014-09-02 Centurylink Intellectual Property Llc Multi-access gateway for direct to residence communication services
CN102480468B (en) * 2010-11-25 2015-08-19 中国移动通信集团公司 A kind of data flow transmission method, Apparatus and system
KR20140106620A (en) * 2011-11-29 2014-09-03 인터디지탈 패튼 홀딩스, 인크 Methods for ip mobility management
CN103516603B (en) * 2012-06-15 2019-01-15 中兴通讯股份有限公司 A kind of routing optimization method, apparatus and system
US9872321B2 (en) * 2012-10-09 2018-01-16 Telefonaktiebolaget Lm Ericsson (Publ) Method and apparatus for establishing and using PDN connections
US9225638B2 (en) 2013-05-09 2015-12-29 Vmware, Inc. Method and system for service switching using service tags
CN104519097B (en) * 2013-09-29 2019-05-07 中兴通讯股份有限公司 The acquisition of port block resource, port block resource distribution method and device
JP6123035B1 (en) * 2014-05-05 2017-04-26 テレフオンアクチーボラゲット エルエム エリクソン(パブル) Protection of WLCP message exchange between TWAG and UE
CN105453498B (en) 2014-06-18 2019-04-12 华为技术有限公司 A kind of method and device controlling business data flow
CN104301133B (en) * 2014-08-08 2018-03-16 新华三技术有限公司 A kind of management method and equipment of generic route encapsulation key assignments
CN104185165B (en) * 2014-08-14 2017-12-05 北京交通大学 A kind of mobile subnetwork multiplex roles access implementing method and system based on N PMIPv6
US10135737B2 (en) 2014-09-30 2018-11-20 Nicira, Inc. Distributed load balancing systems
US11296930B2 (en) 2014-09-30 2022-04-05 Nicira, Inc. Tunnel-enabled elastic service model
US9935827B2 (en) 2014-09-30 2018-04-03 Nicira, Inc. Method and apparatus for distributing load among a plurality of service nodes
US10609091B2 (en) 2015-04-03 2020-03-31 Nicira, Inc. Method, apparatus, and system for implementing a content switch
US9763078B1 (en) * 2015-07-07 2017-09-12 Cisco Technology, Inc. Subscriber awareness for a mobile private network routing service in a network environment
CN106507355B (en) * 2016-12-07 2019-05-21 东北大学 A kind of the PMIPv6 Verification System and method of identity-based allograph
US10805181B2 (en) 2017-10-29 2020-10-13 Nicira, Inc. Service operation chaining
US11012420B2 (en) 2017-11-15 2021-05-18 Nicira, Inc. Third-party service chaining using packet encapsulation in a flow-based forwarding element
US10797910B2 (en) 2018-01-26 2020-10-06 Nicira, Inc. Specifying and utilizing paths through a network
US10659252B2 (en) 2018-01-26 2020-05-19 Nicira, Inc Specifying and utilizing paths through a network
US10805192B2 (en) 2018-03-27 2020-10-13 Nicira, Inc. Detecting failure of layer 2 service using broadcast messages
US10728174B2 (en) 2018-03-27 2020-07-28 Nicira, Inc. Incorporating layer 2 service between two interfaces of gateway device
US11595250B2 (en) 2018-09-02 2023-02-28 Vmware, Inc. Service insertion at logical network gateway
US10944673B2 (en) 2018-09-02 2021-03-09 Vmware, Inc. Redirection of data messages at logical network gateway
US11042397B2 (en) 2019-02-22 2021-06-22 Vmware, Inc. Providing services with guest VM mobility
US11140218B2 (en) 2019-10-30 2021-10-05 Vmware, Inc. Distributed service chain across multiple clouds
US11283717B2 (en) 2019-10-30 2022-03-22 Vmware, Inc. Distributed fault tolerant service chain
US11223494B2 (en) 2020-01-13 2022-01-11 Vmware, Inc. Service insertion for multicast traffic at boundary
US11153406B2 (en) 2020-01-20 2021-10-19 Vmware, Inc. Method of network performance visualization of service function chains
US11659061B2 (en) 2020-01-20 2023-05-23 Vmware, Inc. Method of adjusting service function chains to improve network performance
US11212356B2 (en) 2020-04-06 2021-12-28 Vmware, Inc. Providing services at the edge of a network using selected virtual tunnel interfaces
US11734043B2 (en) 2020-12-15 2023-08-22 Vmware, Inc. Providing stateful services in a scalable manner for machines executing on host computers
US11611625B2 (en) 2020-12-15 2023-03-21 Vmware, Inc. Providing stateful services in a scalable manner for machines executing on host computers
WO2024076010A1 (en) * 2022-10-06 2024-04-11 삼성전자 주식회사 Electronic device for performing data communication and operation method thereof

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1463130A (en) 2002-05-29 2003-12-24 三星电子株式会社 Method and appts, for communicating data between IPv4 and IPv6
CN101047614A (en) 2006-05-01 2007-10-03 华为技术有限公司 Flow transmission route set-up method and data transmission system in IPv6 network environment
US20090010271A1 (en) * 2005-09-29 2009-01-08 Matsushita Electric Industrial Co., Ltd. Policy control in the evolved system architecture
US20090047952A1 (en) * 2007-08-16 2009-02-19 Qualcomm Incorporated Idle mode mobility management in a multi-access system using pmip
US20090094693A1 (en) * 2007-10-04 2009-04-09 Nokia Siemens Networks Oy Access technology indication for proxy mobile internet protocol version 6
US20090245149A1 (en) * 2008-03-31 2009-10-01 Futurewei Technologies, Inc. Multi-Protocol Label Switching Support for Proxy Mobile Internet Protocol Version 6
US20100290621A1 (en) * 2007-03-12 2010-11-18 Nortel Networks Limited Tunneling support for mobile ip using a key for flow identification

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3990976B2 (en) * 2002-12-19 2007-10-17 株式会社エヌ・ティ・ティ・ドコモ Mobile node, mobility control device, communication control method, and communication system
CN1942003A (en) * 2005-09-29 2007-04-04 华为技术有限公司 Telecommunication between mobile nodes and mobile nodes
CN101051996B (en) * 2006-06-16 2010-12-08 华为技术有限公司 Device, system and method for realizing ether net passing through mobile IP
EP1953991A1 (en) * 2007-01-30 2008-08-06 Matsushita Electric Industrial Co., Ltd. Race condition resolution in mixed network- and host-based mobility mangement scenarios
RU2009146556A (en) * 2007-05-16 2011-06-27 Панасоник Корпорэйшн (Jp) WAYS OF MIXED MOBILITY MANAGEMENT AT THE NETWORK AND HOST LEVEL
KR100969152B1 (en) * 2007-06-27 2010-07-08 한국전자통신연구원 METHOD AND SYSTEM FOR OPTIMIZING ROUTING BETWEEN NODES IN PROXY MOBILE IPv6 NETWORK
JP5038504B2 (en) * 2007-08-20 2012-10-03 テレフオンアクチーボラゲット エル エム エリクソン(パブル) Method and apparatus for providing local breakout in a mobile communication network
US8279807B2 (en) 2007-10-05 2012-10-02 Panasonic Corporation Communication control method, network node, and mobile terminal

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1463130A (en) 2002-05-29 2003-12-24 三星电子株式会社 Method and appts, for communicating data between IPv4 and IPv6
US20090010271A1 (en) * 2005-09-29 2009-01-08 Matsushita Electric Industrial Co., Ltd. Policy control in the evolved system architecture
CN101047614A (en) 2006-05-01 2007-10-03 华为技术有限公司 Flow transmission route set-up method and data transmission system in IPv6 network environment
US20100290621A1 (en) * 2007-03-12 2010-11-18 Nortel Networks Limited Tunneling support for mobile ip using a key for flow identification
US20090047952A1 (en) * 2007-08-16 2009-02-19 Qualcomm Incorporated Idle mode mobility management in a multi-access system using pmip
US20090094693A1 (en) * 2007-10-04 2009-04-09 Nokia Siemens Networks Oy Access technology indication for proxy mobile internet protocol version 6
US20090245149A1 (en) * 2008-03-31 2009-10-01 Futurewei Technologies, Inc. Multi-Protocol Label Switching Support for Proxy Mobile Internet Protocol Version 6

Also Published As

Publication number Publication date
JP5362904B2 (en) 2013-12-11
EP2426956A1 (en) 2012-03-07
CN101873572A (en) 2010-10-27
KR20120024643A (en) 2012-03-14
WO2010124603A1 (en) 2010-11-04
CN101873572B (en) 2012-08-29
EP2426956A4 (en) 2017-07-19
JP2012525099A (en) 2012-10-18
US20120140719A1 (en) 2012-06-07
EP2426956B1 (en) 2020-06-03
KR101373418B1 (en) 2014-03-13

Similar Documents

Publication Publication Date Title
US9271315B2 (en) Data transmission method, system and related network device based on proxy mobile (PM) IPV6
US9167482B2 (en) Method and system for realizing network switching
US9750071B1 (en) Method and apparatus for supporting multiple connections over different types of access in 3GPP systems
US8279807B2 (en) Communication control method, network node, and mobile terminal
CN102450053B (en) Adopt the RFDC of IP flow mobility
KR101667243B1 (en) Support of user plane transactions over a mobile network
EP2007078A1 (en) Header size reduction of data packets
US20050232146A1 (en) System and method for recovering a damaged routing path in a mobile network
US9693218B2 (en) Mobility management system, mobility management method, access GW apparatus, mobility management control apparatus, and computer-readable medium
JP4426451B2 (en) telecommunication
JP2007110734A (en) Communication method between ipv6 mobile node and ipv4-based node using dstm in mobile ipv6 environment
US7190668B1 (en) Method of anchoring flows
US20090116452A1 (en) APPARATUS AND METHOD FOR A MOBILE NODE ROAMING IN AN IPv6 NETWORK
JP4834133B2 (en) telecommunication
CN101534289B (en) Method, node device and system for traversing firewall
CN102882788A (en) Message forwarding processing method, net element and system
US9030994B2 (en) Initializing a communication between a mobile host and a correspondent node
US10512112B1 (en) Method and apparatus for supporting multiple connections over different types of access in 3GPP systems
Giust IP flow mobility support for proxy mobile IPv6 based networks
CN106465093B (en) Method, device and system for mobility management
KR20240145862A (en) Apparatus and method for performging session management in mobile communication system
Sharmin Afroze et al. Study Of Proxy Mobile IPv6

Legal Events

Date Code Title Description
AS Assignment

Owner name: CHINA MOBILE COMMUNICATIONS CORPORATION, CHINA

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:HUI, MIN;DENG, HUI;REEL/FRAME:027603/0607

Effective date: 20111103

STCF Information on status: patent grant

Free format text: PATENTED CASE

MAFP Maintenance fee payment

Free format text: PAYMENT OF MAINTENANCE FEE, 4TH YEAR, LARGE ENTITY (ORIGINAL EVENT CODE: M1551); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY

Year of fee payment: 4

MAFP Maintenance fee payment

Free format text: PAYMENT OF MAINTENANCE FEE, 8TH YEAR, LARGE ENTITY (ORIGINAL EVENT CODE: M1552); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY

Year of fee payment: 8