US9270394B2 - Transmission device and transmission method thereof, and reception device of connected transmission channels in a 13-segment format - Google Patents

Transmission device and transmission method thereof, and reception device of connected transmission channels in a 13-segment format Download PDF

Info

Publication number
US9270394B2
US9270394B2 US13/823,123 US201113823123A US9270394B2 US 9270394 B2 US9270394 B2 US 9270394B2 US 201113823123 A US201113823123 A US 201113823123A US 9270394 B2 US9270394 B2 US 9270394B2
Authority
US
United States
Prior art keywords
transmission
segment format
channels
segment
information
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
US13/823,123
Other languages
English (en)
Other versions
US20130177101A1 (en
Inventor
Tamotsu Ikeda
Takuya Okamoto
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Saturn Licensing LLC
Original Assignee
Sony Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sony Corp filed Critical Sony Corp
Assigned to SONY CORPORATION reassignment SONY CORPORATION ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: IKEDA, TAMOTSU, OKAMOTO, TAKUYA
Publication of US20130177101A1 publication Critical patent/US20130177101A1/en
Application granted granted Critical
Publication of US9270394B2 publication Critical patent/US9270394B2/en
Assigned to SATURN LICENSING LLC reassignment SATURN LICENSING LLC ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: SONY CORPORATION
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04HBROADCAST COMMUNICATION
    • H04H20/00Arrangements for broadcast or for distribution combined with broadcast
    • H04H20/86Arrangements characterised by the broadcast information itself
    • H04H20/95Arrangements characterised by the broadcast information itself characterised by a specific format, e.g. an encoded audio stream
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04HBROADCAST COMMUNICATION
    • H04H20/00Arrangements for broadcast or for distribution combined with broadcast
    • H04H20/42Arrangements for resource management
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04HBROADCAST COMMUNICATION
    • H04H60/00Arrangements for broadcast applications with a direct linking to broadcast information or broadcast space-time; Broadcast-related systems
    • H04H60/35Arrangements for identifying or recognising characteristics with a direct linkage to broadcast information or to broadcast space-time, e.g. for identifying broadcast stations or for identifying users
    • H04H60/38Arrangements for identifying or recognising characteristics with a direct linkage to broadcast information or to broadcast space-time, e.g. for identifying broadcast stations or for identifying users for identifying broadcast time or space
    • H04H60/41Arrangements for identifying or recognising characteristics with a direct linkage to broadcast information or to broadcast space-time, e.g. for identifying broadcast stations or for identifying users for identifying broadcast time or space for identifying broadcast space, i.e. broadcast channels, broadcast stations or broadcast areas
    • H04H60/43Arrangements for identifying or recognising characteristics with a direct linkage to broadcast information or to broadcast space-time, e.g. for identifying broadcast stations or for identifying users for identifying broadcast time or space for identifying broadcast space, i.e. broadcast channels, broadcast stations or broadcast areas for identifying broadcast channels
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0001Arrangements for dividing the transmission path
    • H04L5/0003Two-dimensional division
    • H04L5/0005Time-frequency
    • H04L5/0007Time-frequency the frequencies being orthogonal, e.g. OFDM(A) or DMT
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0053Allocation of signalling, i.e. of overhead other than pilot signals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0091Signalling for the administration of the divided path, e.g. signalling of configuration information
    • H04L5/0092Indication of how the channel is divided
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N21/00Selective content distribution, e.g. interactive television or video on demand [VOD]
    • H04N21/60Network structure or processes for video distribution between server and client or between remote clients; Control signalling between clients, server and network components; Transmission of management data between server and client, e.g. sending from server to client commands for recording incoming content stream; Communication details between server and client 
    • H04N21/61Network physical structure; Signal processing
    • H04N21/6106Network physical structure; Signal processing specially adapted to the downstream path of the transmission network
    • H04N21/6112Network physical structure; Signal processing specially adapted to the downstream path of the transmission network involving terrestrial transmission, e.g. DVB-T
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/26Systems using multi-frequency codes
    • H04L27/2601Multicarrier modulation systems
    • H04L27/2626Arrangements specific to the transmitter only

Definitions

  • the present invention relates to transmission devices and transmission methods thereof, and to reception devices. More particularly, the present invention relates to a transmission device that enables transmission and reception of connected transmission channels in a 13-segment format, and a transmission method thereof, and to a reception device.
  • the applicant has suggested a method of connecting data of transmission channels in the direction of a frequency axis and transmitting the data while the guard band of each channel is removed in terrestrial digital broadcasting (see Patent Documents 1 and 2, for example).
  • This connected transmission method is also specified in ISDB-Tsb, which is the transmission method standard in terrestrial digital sound broadcasting.
  • the reception device can simplify the synchronization regenerating operation for demodulation, and shorten the channel switching time.
  • Multimedia broadcasting for mobile terminals is planned by using part of the frequency band not to be used after the end of terrestrial analog broadcasting, or more specifically, by using the frequency band from 207.5 to 222 MHz.
  • the frequency band from 207.5 to 222 MHz.
  • up to 33 segments that are equivalent to two transmission channels in a 13-segment format for one channel of terrestrial digital television broadcasting, and seven transmission channels in a one-segment format can be secured.
  • Patent Document 1 Japanese Patent No. 4062317
  • Patent Document 2 Japanese Patent No. 4352701
  • Efficient band use is also preferred in the band from 207.5 to 222 MHz for multimedia broadcasting for mobile terminals.
  • up to 33 segments are preferably connected and transmitted.
  • the present invention has been made in view of those circumstances, and is to enable transmission and reception of connected transmission channels in the 13-segment format.
  • a transmission device transmits connected transmission information that indicates that connected transmission of transmission channels is being performed, and includes a field describing that the segment format of a transmission channel is a 13-segment format when the transmission channel in the 13-segment format is transmitted as at least one of the transmission channels.
  • a transmission method of the transmission device transmits connected transmission information that indicates that connected transmission of transmission channels is being performed, and includes a field describing that the segment format of a transmission channel is a 13-segment format when the transmission channel in the 13-segment format is transmitted as at least one of the transmission channels.
  • connected transmission information indicating that connected transmission of transmission channels is being performed is transmitted.
  • the connected transmission information includes a field describing that the segment format of a transmission channel is a 13-segment format when the transmission channel in the 13-segment format is transmitted as at least one of the transmission channels.
  • a reception device receives connected transmission information that indicates that connected transmission of transmission channels is being performed, and includes a field describing that the segment format of a transmission channel is a 13-segment format when the transmission channel in the 13-segment format is transmitted as at least one of the transmission channels.
  • connected transmission information indicating that connected transmission of transmission channels is being performed is received.
  • the connected transmission information includes a field describing that the segment format of a transmission channel is a 13-segment format when the transmission channel in the 13-segment format is transmitted as at least one of the transmission channels.
  • transmission data in the 13-segment format can be connected and transmitted.
  • signals transmitted by connecting transmission data in the 13-segment format can be received.
  • FIG. 1 is a diagram for explaining a connected transmission method according to the present invention.
  • FIG. 2 is a diagram for explaining the connected transmission method according to the present invention.
  • FIG. 3 is a diagram for explaining the connected transmission method according to the present invention.
  • FIG. 4 is a diagram for explaining transmission data in a 13-segment format.
  • FIG. 5 is a diagram for explaining transmission data in a one-segment format and a three-segment format.
  • FIG. 6 is a diagram showing the data structure of a connected transmission descriptor that realizes the connected transmission method according to the present invention.
  • FIG. 7 is a diagram for explaining the connected transmission descriptor in detail.
  • FIG. 8 is a diagram for explaining the connected transmission descriptor in detail.
  • FIG. 9 is a diagram showing the data structure of an NIT in which the connected transmission descriptor shown in FIG. 6 is written.
  • FIG. 10 is a block diagram showing an embodiment of a transmission device to which the present invention is applied.
  • FIG. 11 is a block diagram showing an example structure of the OFDM transmission device.
  • FIG. 12 is a flowchart for explaining a transmitting operation of the transmission device.
  • FIG. 13 is a block diagram showing an embodiment of a reception device to which the present invention is applied.
  • FIG. 14 is a block diagram showing an example structure of an embodiment of a computer to which the present invention is applied.
  • This specification suggests a transmission method for improving frequency usage efficiency in the band from 207.5 to 222 MHz, in which multimedia broadcasting for mobile terminals is performed, a transmission device that performs transmission by the transmission method, and a reception device that receives signals transmitted by the transmission method.
  • one segment is an approximately 429 KHz band, which is a data unit obtained by dividing the bandwidth of one channel (6 MHz) of conventional analog terrestrial broadcasting by 14, and is a fundamental band in digital terrestrial broadcasting.
  • the transmission method according to the present invention enables transmission (connected transmission) of up to 33 connected segments of transmission data of respective channels without a guard band.
  • the transmission method according to the present invention enables connected transmission of up to 33 segments of arbitrary combinations of transmission data in a 13-segment format, a one-segment format, or a three-segment format in the 14.5 MHz bandwidth.
  • transmission data contains at least one piece of data in the 13-segment format.
  • the transmission device can perform connected transmission of a total of 33 segments of transmission data formed by connecting two pieces of transmission data in the 13-segment format and seven pieces of transmission data in the one-segment format.
  • the transmission device can perform connected transmission of a total of 33 segments of data formed by connecting two pieces of transmission data in the 13-segment format, four pieces of transmission data in the one-segment format, and one piece of transmission data in the three-segment format, for example.
  • transmission data in the one-segment format, the three-segment format, and the 13-segment format can be arbitrarily assigned to frequency bands. Accordingly, a combination of two pieces of transmission data in the 13-segment format and seven pieces of transmission data in the one-segment format, which is the same as the combination shown in FIG. 1 , can also be assigned as shown in FIG. 3 , for example.
  • one piece of transmission data in the 13-segment format and one piece of transmission data in the one-segment format may of course be connected, and only a total of 14 segments may be transmitted.
  • Transmission data in the 13-segment format is compliant with the transmission format for terrestrial digital television broadcasting, which is standardized as ISDB-T (Integrated Services Digital Broadcasting-Terrestrial).
  • Transmission data in the one-segment format and the three-segment format are compliant with the transmission format for terrestrial digital sound broadcasting, which is standardized as ISDB-Tsb (ISDB-T sound broadcasting).
  • ISDB-Tsb ISDB-T sound broadcasting
  • OFDM Orthogonal Frequency Division Multiplexing
  • PSK Phase Shift Keying
  • QAM Quadrature Amplitude Modulations
  • transmission data of one channel is formed with a total of 13 OFDM segments.
  • An OFDM segment has an OFDM frame formed by adding pilot signals (SP, CP) to a data segment that is a data unit of one segment. All the 13 OFDM segments are collectively transformed into OFDM transmission signals through an IFFT.
  • the 13 OFDM segments are formed in layers, and can be simultaneously transmitted, which is layered transmission.
  • Each layer is formed with one or more OFDM segments, and a different carrier modulation method, a different intra coding rate, and a different parameter such as a time interleave length can be set for each layer.
  • layered transmission of up to three layers which are a layer A, a layer B, and a layer C, can be performed. Accordingly, layered transmission of at least three layers can be performed by this transmission method.
  • frequency interleaving is performed in the segment, so that some of television signals can be received (partial reception) by using a one-segment receiver (a digital sound broadcasting receiver).
  • Transmission data in the one-segment format is formed with one OFDM segment. Transmission data in the one-segment format is formed only with one layer (the layer A).
  • Transmission data in the three-segment format is formed with three OFDM segments.
  • two-layered transmission can be performed, with different layers being formed by the one OFDM segment at the center in the frequency direction and the two of the upper and lower OFDM segments adjacent to the center OFDM segment in the frequency direction.
  • the one OFDM segment at the center is set as the layer A
  • the two of the upper and lower OFDM segments adjacent to the center OFDM segment are set as the layer B.
  • the parameters can be made to differ between the layer A and the layer B to be transmitted.
  • frequency interleaving is performed only in the segment, as in the case of the above described 13-segment format. Accordingly, partial reception can be performed even by a receiver that has a limited function to receive only transmission signals in the one-segment format.
  • transmission data in the 13-segment format is compliant with ISDB-T
  • transmission data in the one-segment format and the three-segment format is compliant to ISDB-Tsb, so as to be suitable for terrestrial digital television broadcasting and terrestrial digital sound broadcasting.
  • PSI/SI Program Specific Information/Service Information
  • the PSI/SI used in ISDB-Tsb is defined in MPEG-2 Systems and ARIB STD-B10.
  • NIT Network Information Table
  • This NIT defines information that associates transmission channel information such as modulating frequencies with broadcast shows.
  • the NIT contains a terrestrial delivery system descriptor [terrestrial_delivery_system_descriptor( )] that describes physical conditions of a terrestrial transmission channel, and a service list descriptor [service_list_descriptor( )] that describes a list of programmed channels and the types of the programmed channels.
  • a connected transmission descriptor [connected_transmission_descriptor( )] that describes the physical conditions of terrestrial transmission channels at the time of connected transmission is defined as shown in FIG. 6 .
  • FIG. 6 shows the data structure of a connected transmission descriptor [connected_transmission_descriptor( )] as connected transmission information that describes the physical conditions for connected transmission through terrestrial transmission channels, to realize the connected transmission method of connecting and transmitting up to 33 segments according to the present invention.
  • the connected transmission descriptor [connected_transmission_descriptor( )] is a descriptor that can identify the group of transport streams to be subjected to connected transmission, and list the transport streams in this group.
  • This connected transmission descriptor [connected_transmission_descriptor( )] is written in a TS loop in the NIT.
  • a segment format type is written for indicating which format among the one-segment format, the three-segment format, and the 13-segment format, the transport streams indicated by the connected transmission descriptor are in.
  • the field of [segment_type] is 2-bit information. As shown in FIG. 7 , “00” represents the one-segment format, “01” represents the three-segment format, “10” represents the 13-segment format, and “11” represents a determination to be made by referring to a TMCC signal.
  • modulation_type_A In the field of [modulation_type_A], a modulation method type is written.
  • the field of [modulation_type_A] indicates the modulation method type of the data in the entire segment in the case of the one-segment format, and indicates the modulation method type of the layer A in the cases of the three-segment format and the 13-segment format.
  • the modulation method type is a differential modulation method or a synchronous modulation method.
  • the differential modulation method is DQPSK
  • the synchronous modulation method is QPSK, 16-QAM, or 64-QAM.
  • the modulation method type indicating a differential modulation method or a synchronous modulation method is a broad category of modulation method, and DQPSK, QPSK, 16-QAM, and 64-QAM are under narrow categories of modulation method.
  • [modulation_type_A] is 2-bit information. As shown in FIG. 8 , “00” represents a differential modulation method (DQPSK), and “01” represents a synchronous modulation method (QPSK, 16-QAM, or 64-QAM). Further, “11” represents a determination to be made by referring to a TMCC signal, and “10” is reserved for future use.
  • DQPSK differential modulation method
  • QPSK synchronous modulation method
  • 16-QAM 16-QAM
  • 64-QAM 64-QAM
  • modulation_type_B In the field of [modulation_type_B], the modulation method type of the layer B in the three-segment format and the 13-segment format is written.
  • the field of [modulation_type_B] is void in the case of the one-segment format.
  • the field of [modulation_type_B] is 2-bit information, and functions in the same manner as the field of [modulation_type_A] shown in FIG. 8 .
  • modulation_type_C the modulation method type of the layer C in the 13-segment format is written.
  • the field of [modulation_type_C] is void in the cases of the one-segment format and the three-segment format.
  • the field of [modulation_type_C] is 2-bit information, and functions in the same manner as [modulation_type_A] shown in FIG. 8 .
  • the above is the data structure of the connected transmission descriptor that is compliant with ISDB-T and describes the physical conditions for connected transmission according to this transmission method compatible with layered transmission using up to three layers.
  • the field of [modulation_type_D] describing the modulation method type of the fourth layer (a layer D) is provided after the field of [modulation_type_C].
  • the layer B and the layer C do not exist.
  • the layer C does not exist.
  • the information indicating that transmission with the field(s) is not to be performed may be written. Specifically, the information indicating that transmission with the layer(s) may be represented by “10”.
  • “10” may be written into the fields of [modulation_type_B] and [modulation_type_C].
  • “10” may be written into the field of [modulation_type_C].
  • FIG. 9 shows the data structure of the NIT in which the above described connected transmission descriptor [connected_transmission_descriptor( )] is written.
  • the field of [table_id] is an identifier indicating what this network information section indicates.
  • a value of “0x40” is written.
  • the NIT is an NIT of another network, a value of “0x41” is written.
  • the NIT may be an NIT showing information about its own network, or may be an NIT showing information about another network.
  • section_syntax_indicator is an identifier for identifying a section syntax indicator, and always has a value of “1”.
  • the field of [reserved_future_use] is an extended area reserved for specifying some information in the future.
  • the field of [reserved] is a reserved area.
  • section_length specifies the number of bytes in the section from the point immediately after the section length field to the end of the section including a CRC (Cyclic Redundancy Check).
  • the field of [network_id] is an ID for identifying the network indicated by the NIT.
  • the field of [version_number] shows the version number of a sub table.
  • the field of [current_next_indicator] indicates that the sub table is a current sub table when the value in this field is “1”. When the value is “0”, this field is an identifier indicating that the transmitted sub table is not to be used, and the next sub table is to be used.
  • section_number shows a section number.
  • the section number of the first section in the sub table is “0x00”. This section number is incremented by “1” every time a section including the same [table_id] and [network_id] is added.
  • the field of [last_section_number] shows the section number of the last section in the sub table to which the section belongs, or the section having the largest section number.
  • the field of [network_descriptors_length] indicates the total number of bytes in the loop of the network descriptor (descriptor( )) that follows. In the loop, a network descriptor, descriptor( ), is written.
  • the field of [transport_stream_loop_length] indicates the total number of bytes in the transport stream loop that ends immediately before the first byte of CRC — 32.
  • the field of [transport_stream_id] in the TS loop is an ID for distinguishing this transport stream from the other multiplexed ones in the delivery system.
  • the field of [original_network_id] is an ID indicating the [network_id] of the original network.
  • the field of [transport_descriptors_length] is an identifier indicating the total number of bytes in the loop of the transport descriptor (descriptor( )) that follows.
  • this transport descriptor the above described connected transmission descriptor [connected_transmission_descriptor( )], a terrestrial delivery system descriptor [terrestrial_delivery_system_descriptor( )], a service list descriptor [service_list_descriptor( )], and the like are written.
  • the field of [CRC — 32] is an error code that indicates a CRC and contains such a CRC value that the register output after the processing of the entire section becomes “0”.
  • the connected transmission descriptor [connected_transmission_descriptor( )] has a field that can define the 13-segment format as one of segment formats for transmission channels to be subjected to connected transmission. With a transmission channel in the 13-segment format, layered transmission using three or more layers can be performed, and the connected transmission descriptor [connected_transmission_descriptor( )] includes a field that identifies the modulation method type of each of the three or more layers (the layer A, the layer B, and the layer C).
  • the connected transmission descriptor [connected_transmission_descriptor( )] links transmission channels (transport streams) to be subjected to the connected transmission.
  • the connected transmission descriptor is contained in MPEG-2 Systems control information, transport streams subjected to connected transmission can be linked, and be sent to a reception device.
  • the reception device can determine whether an upper adjacent segment (an adjacent segment on the high frequency side) subjected to connected transmission exists in the segment containing the currently received transport stream, and determine whether a lower adjacent segment (an adjacent segment on the low frequency side) subjected to connected transmission exists in the segment. Further, it is possible to determine whether the modulation method type of the upper or lower adjacent segment is a synchronous modulation method or a differential modulation method.
  • the reception device can estimate transmission characteristics by using a SP signal contained in the upper and lower adjacent segments. As transmission characteristics can be estimated by using an SP signal in an adjacent segment, the transmission characteristics of a sub carrier at the end portion in the frequency direction of the segment can be accurately estimated, ad more precise waveform equalization can be performed.
  • the layer B in the adjacent transmission channel is an adjacent segment, and if the modulation method type of the layer B is a synchronous modulation method, the transmission characteristics can be estimated by using the SP signal.
  • a segment adjacent to the segment of the layer A is a segment of the layer B in its own transmission channel (a transport stream).
  • the segments adjacent to a segment of the layer B are the segment of the layer A in its own transmission channel (a transport stream) and a segment of another transmission channel (another transport stream).
  • the reception device can obtain information indicating whether the transmission channel received prior to the switching and the transmission channel to be received after the switching have been subjected to connected transmission, by analyzing the connected transmission descriptor contained in the NIT. Where the transmission channel received prior to the switching and the transmission channel to be received after the switching have been subjected to connected transmission, the reception device can continue to use the synchronizing timing set in the transmission channel received prior to the switching, in the transmission channel to be received after the switching. Accordingly, the reception device can simplify the synchronization regenerating operation for demodulation, and can shorten the channel switching time.
  • FIG. 10 shows an example structure of a transmission device that connects and transmits transmission channels in the 13-segment format, the one-segment format, or the three-segment format by the connected transmission method according to the present invention. That is, FIG. 10 is a block diagram showing an embodiment of a transmission device to which the present invention is applied.
  • the transmission device 100 includes source encoders 101 a ( 101 a - 101 through 101 a - n ), an OFDM transmission device 102 , an antenna 103 , and a system control device 104 .
  • Baseband video data, audio data, and the like are input to each source encoder 101 a , and each source encoder 101 a compresses and encodes the data by a technique such as MPEG-2 or the like, to generate program streams.
  • Each source encoder 101 a multiplexes the generated program streams, to generate a transport stream specified in MPEG-2 Systems.
  • the respective transport streams output from the respective source encoders 101 a correspond to respective transmission channels.
  • Control information such as an NIT generated by the system control device 104 is input to each source encoder 101 a , and the respective source encoders 101 a also incorporate the control information into the transportation streams, and perform multiplexing.
  • the control information contains the above described connected transmission descriptor [connected_transmission_descriptor( )].
  • the OFDM transmission device 102 performs a transmission channel encoding operation on each of the transport streams input from the respective source encoders 101 a , or on each transmission channel, and generates OFDM frames that are transmission frames formed with 204 OFDM symbols.
  • the OFDM transmission device 102 synchronizes the OFDM symbols (the 204 OFDM symbols) generated for each transmission channel in the direction of the time axis, and multiplexes those OFDM symbols in the frequency direction.
  • the OFDM transmission device 102 then performs a collective IFFT on the OFDM symbols multiplexed in the frequency direction, and performs OFDM.
  • the OFDM transmission device 102 includes at least an IFFT input assigning unit 111 , an IFFT operating unit 112 , and a guard interval adding unit 113 .
  • Error correction, interleaving, carrier modulation, and the like are performed, and data (TS) of the respective transmission channels formed in the OFDM frames is input to the IFFT input assigning unit 111 .
  • the IFFT input assigning unit 111 multiplexes the data of the respective channels in the frequency direction.
  • the IFFT operating unit 112 collectively performs an inverse Fourier transform on multiplexed signals of n channels, to generate a time-domain baseband OFDM signal.
  • the guard interval adding unit 113 adds a guard interval to the baseband OFDM signal supplied from the IFFT operating unit 112 .
  • the OFDM transmission device 102 can connect transmission channels.
  • the transmitted waves of the transmission channels connected by the OFDM transmission device 102 are then emitted to the outside via the antenna 103 .
  • step S 1 the system control device 104 generates the control information (PSI/SI) containing the connected transmission descriptor [connected_transmission_descriptor( )], and supplies the control information to each source encoder 101 a.
  • PSI/SI control information containing the connected transmission descriptor [connected_transmission_descriptor( )]
  • each source encoder 101 a generates a transport stream specified in MPEG-2 Systems. More specifically, each source encoder 101 a multiplexes program streams of video data, audio data, and the like, to generate a transport stream corresponding to each transmission channel. At this point, the control information (PSI/SI) containing the connected transmission descriptor [connected_transmission_descriptor( )] is also multiplexed.
  • PSI/SI control information
  • step S 3 the OFDM transmission device 102 generates an OFDM frame for each transport stream input from the respective source encoders 101 a.
  • step S 4 the OFDM transmission device 102 synchronizes the OFDM symbols of each transmission channel in the direction of the time axis, and multiplexes those OFDM symbols in the frequency direction.
  • step S 5 the OFDM transmission device 102 performs a collective IFFT on the OFDM symbols multiplexed in the frequency direction, and generates a time-domain baseband OFDM signal.
  • step S 6 the OFDM transmission device 102 adds a guard interval to the time-domain baseband OFDM signal, and transmits the signal to the outside via the antenna 103 . The operation then comes to an end.
  • FIG. 13 is a block diagram showing an embodiment of a reception device to which the present invention is applied.
  • a receiving antenna 220 receives a terrestrial broadcast signal transmitted from the transmission device 100 .
  • a demodulating unit 201 performs a digital demodulating operation on the broadcast signal received by the receiving antenna 220 .
  • a decoding unit 202 performs decoding by performing deinterleaving and error correction on the signal subjected to the digital demodulating operation by the demodulating unit 201 , and extracts transport streams.
  • a demultiplexing unit 203 Based on the PID (packet identification number) written in the TS packets in the transport streams input from the decoding unit 202 , a demultiplexing unit 203 extracts each TS packet, and determines whether the digital data contained in each TS packet belongs to an audio signal or to a video signal. The demultiplexing unit 203 then outputs the digital data belonging to an audio signal to an audio decoder 204 , outputs the digital data belonging to a video signal to a video decoder 205 , and outputs the digital data belonging to a data signal to a data decoder 206 .
  • the demultiplexing unit 203 also extracts the control information (PSI/SI) such as an NIT, an SDT (Service Description Table), or a BAT (Bouquet Association Table) contained in the transport streams, and outputs each piece of information contained in the PSI/SI to a system controller 209 .
  • PSI/SI control information
  • NIT Network Information
  • SDT Service Description Table
  • BAT Bouquet Association Table
  • the audio decoder 204 , the video decoder 205 , and the data decoder 206 perform decoding on the digital data input from the demultiplexing unit 203 , to generate an audio signal, a video signal, and a data signal.
  • the video decoder 205 and the data decoder 206 may not be provided in the reception device 200 .
  • a memory 208 stores the control information (PSI/SI) contained in the transport streams.
  • the memory 208 can be formed with any type of rewritable semiconductor memory, and may be detachably attached to the reception device 200 , for example.
  • the system controller 209 exchanges various kinds of signals with the respective components of the reception device 200 , to control operations of the respective components of the reception device 200 .
  • the system controller 209 also extracts information contained in the PSI/SI, such as an NIT, an SDT, or a BAT, which has been input from the demultiplexing unit 203 , and stores the extracted information into the memory 208 .
  • An operation input unit 211 receives various kinds of operations (inputs) performed on this reception device 200 by a user, such as an reception start instruction, a service switch instruction, or setting of a service number.
  • a display unit 212 is formed with a liquid crystal display device, for example, and displays data, such as a service number, a service name, and additional information, to the user.
  • a receiving operation of the reception device 200 having the above described structure is now briefly described.
  • the receiving antenna 220 receives a broadcast signal transmitted from the transmission device 100 .
  • the demultiplexing unit 203 extracts the control information (PSI/SI) such as an NIT containing a connected transmission descriptor from the transport streams obtained through demodulation after the reception by the receiving antenna 220 , and outputs the control information to the system controller 209 .
  • PSI/SI control information
  • the system controller 209 Based on the connected transmission descriptor contained in the NIT, the system controller 209 performs control so as to receive a desired transmission channel. Specifically, when transmission channels to be received are switched, it is possible to obtain information indicating whether the transmission channel received prior to the switching and the transmission channel to be received after the switching have been subjected to connected transmission. Where the transmission channel received prior to the switching and the transmission channel to be received after the switching have been subjected to connected transmission, the system controller 209 can continue to use the synchronizing timing set in the transmission channel received prior to the switching, in the transmission channel to be received after the switching. Accordingly, the synchronization regenerating operation for demodulation can be simplified, and the channel switching time can be shortened.
  • the above described series of operations can be performed by hardware, and can also be performed by software.
  • the programs forming the software are installed in a computer.
  • the computer may be a computer incorporated into special-purpose hardware, or may be a general-purpose personal computer that can execute various kinds of functions as various kinds of programs are installed thereinto.
  • FIG. 14 is a block diagram showing an example structure of the hardware of a computer that performs the above described series of operations in accordance with programs.
  • a CPU Central Processing Unit
  • ROM Read Only Memory
  • RAM Random Access Memory
  • An input/output interface 305 is further connected to the bus 304 .
  • An input unit 306 , an output unit 307 , a storage unit 308 , a communication unit 309 , and a drive 310 are connected to the input/output interface 305 .
  • the input unit 306 is formed with a keyboard, a mouse, a microphone, and the like.
  • the output unit 307 is formed with a display, a speaker, and the like.
  • the storage unit 308 is formed with a hard disk, a nonvolatile memory, or the like.
  • the communication unit 309 is formed with a network interface or the like.
  • the drive 310 drives a removable recording medium 311 such as a magnetic disk, an optical disk, a magnetooptical disk, or a semiconductor memory.
  • the CPU 301 loads a program stored in the storage unit 308 into the RAM 303 via the input/output interface 305 and the bus 304 , and executes the program, so that the above described series of operations are performed.
  • the programs to be executed by the computer may be recorded on the removable recording medium 311 as a package medium to be provided, for example.
  • the programs can be provided via a wired or wireless transmission medium such as a local area network, the Internet, or digital satellite broadcasting.
  • the programs to be executed by the computer may be programs for performing operations in chronological order in accordance with the sequence described in this specification, or may be programs for performing operations in parallel or performing an operation when necessary, such as when there is a call.
  • broadcast signals compatible with the connected transmission method according to the present invention are not limited to those transmitted as terrestrial signals from broadcast stations, and may also be those transmitted via satellite waves, a CATV (Cable Television) network, or the like.
  • broadcast signals may be transmitted by multicasting like IPTV (Internet Protocol Television), for example.
  • a web server is equivalent to the transmission device of the present invention
  • a personal computer having a network interface such as an NIC (Network Interface Card) is equivalent to the reception device of the present invention.

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Multimedia (AREA)
  • Business, Economics & Management (AREA)
  • General Business, Economics & Management (AREA)
  • Two-Way Televisions, Distribution Of Moving Picture Or The Like (AREA)
  • Cable Transmission Systems, Equalization Of Radio And Reduction Of Echo (AREA)
  • Selective Calling Equipment (AREA)
US13/823,123 2010-10-19 2011-10-11 Transmission device and transmission method thereof, and reception device of connected transmission channels in a 13-segment format Expired - Fee Related US9270394B2 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2010234404A JP5630645B2 (ja) 2010-10-19 2010-10-19 送信装置及びその送信方法、並びに、受信装置
JP2010-234404 2010-10-19
PCT/JP2011/073316 WO2012053390A1 (ja) 2010-10-19 2011-10-11 送信装置及びその送信方法、並びに、受信装置

Publications (2)

Publication Number Publication Date
US20130177101A1 US20130177101A1 (en) 2013-07-11
US9270394B2 true US9270394B2 (en) 2016-02-23

Family

ID=45975107

Family Applications (1)

Application Number Title Priority Date Filing Date
US13/823,123 Expired - Fee Related US9270394B2 (en) 2010-10-19 2011-10-11 Transmission device and transmission method thereof, and reception device of connected transmission channels in a 13-segment format

Country Status (6)

Country Link
US (1) US9270394B2 (enrdf_load_stackoverflow)
JP (1) JP5630645B2 (enrdf_load_stackoverflow)
AR (1) AR083415A1 (enrdf_load_stackoverflow)
BR (1) BR112013009051A2 (enrdf_load_stackoverflow)
CO (1) CO6660457A2 (enrdf_load_stackoverflow)
WO (1) WO2012053390A1 (enrdf_load_stackoverflow)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7400299B2 (ja) * 2018-12-12 2023-12-19 ソニーグループ株式会社 送信装置、送信方法、受信装置、及び受信方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002017524A1 (fr) 2000-08-25 2002-02-28 Sony Corporation Systeme de diffusion numerique
US20050169166A1 (en) * 2000-04-13 2005-08-04 Takahiro Okada OFDM receiving device and OFDM receiving method
JP4062317B2 (ja) 2005-04-18 2008-03-19 ソニー株式会社 Ofdm送信装置及び方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20050169166A1 (en) * 2000-04-13 2005-08-04 Takahiro Okada OFDM receiving device and OFDM receiving method
WO2002017524A1 (fr) 2000-08-25 2002-02-28 Sony Corporation Systeme de diffusion numerique
US20030103446A1 (en) * 2000-08-25 2003-06-05 Shinji Negishi Digital broadcast system
JP4352701B2 (ja) 2000-08-25 2009-10-28 ソニー株式会社 デジタル放送システム
JP4062317B2 (ja) 2005-04-18 2008-03-19 ソニー株式会社 Ofdm送信装置及び方法

Non-Patent Citations (5)

* Cited by examiner, † Cited by third party
Title
International Search Report issued Nov. 22, 2011 in PCT/JP2011/073316.
ISDB-Tmm, Integrated Services Digital Broadcasting Terrestrial Mobile Multi-Media Broadcasting, Ministry of Public Management, Home Affairs, Posts and Telecommunications, Nov. 28, 2008, 17 pages. http://www.soumu.go.jp/main-sosiki/joho-tsuin/policyreports/joho-tsusin/housou-system/pdf/081128-1-sil6-3-1.pdf.
Ministry of Public Management, Home Affairs, Posts and Telecommunications, Apr. 27, 2009, 11 pages, http://www.soumu.go.jp/main-content/000028353.pdf.
Service Information for Digital Broadcasting System, (Association of Radio Industries and Businesses), ARIB Standard, ARIB STD-B10 4.8th edition, Apr. 26, 2010, pp. 73-76, 105-107 and 167-168 http://www.arib.or.jp/english/html/overview/doc/2-STD-B10v4-8.pdf.
U.S. Appl. No. 13/822,497, filed Mar. 12, 2013, Ikeda, et al.

Also Published As

Publication number Publication date
BR112013009051A2 (pt) 2016-07-19
CO6660457A2 (es) 2013-04-30
JP2012090035A (ja) 2012-05-10
US20130177101A1 (en) 2013-07-11
WO2012053390A1 (ja) 2012-04-26
AR083415A1 (es) 2013-02-21
JP5630645B2 (ja) 2014-11-26

Similar Documents

Publication Publication Date Title
JP7639860B2 (ja) 送信装置、及び、送信方法
US11374996B2 (en) Apparatus and method for transmitting or receiving broadcast signal
JP4352701B2 (ja) デジタル放送システム
EP2200211B1 (en) Method of transmitting and receiving a signal and apparatus for transmitting and receiving a signal
US11336934B2 (en) Broadcast signal transmitting/receiving apparatus and method
US11758205B2 (en) Broadcasting signal transmitting device, broadcasting signal receiving device, broadcasting signal transmitting method, and broadcasting signal receiving method
US10728590B2 (en) Apparatus and method for transmitting and receiving broadcast signal
US9112641B2 (en) Transmission device and transmission method thereof, and reception device
US10499095B2 (en) Apparatus and method for receiving/transmitting broadcast signal
US9270394B2 (en) Transmission device and transmission method thereof, and reception device of connected transmission channels in a 13-segment format
JP6031484B2 (ja) 送信装置及びその送信方法、並びに、受信装置
JP6031485B2 (ja) 送信装置及びその送信方法、並びに、受信装置
TW201330595A (zh) 頻道搜索方法及其接收端裝置與發送端裝置

Legal Events

Date Code Title Description
AS Assignment

Owner name: SONY CORPORATION, JAPAN

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:IKEDA, TAMOTSU;OKAMOTO, TAKUYA;SIGNING DATES FROM 20130225 TO 20130228;REEL/FRAME:029992/0748

ZAAA Notice of allowance and fees due

Free format text: ORIGINAL CODE: NOA

ZAAB Notice of allowance mailed

Free format text: ORIGINAL CODE: MN/=.

ZAAA Notice of allowance and fees due

Free format text: ORIGINAL CODE: NOA

ZAAB Notice of allowance mailed

Free format text: ORIGINAL CODE: MN/=.

STCF Information on status: patent grant

Free format text: PATENTED CASE

AS Assignment

Owner name: SATURN LICENSING LLC, NEW YORK

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:SONY CORPORATION;REEL/FRAME:043177/0794

Effective date: 20170613

MAFP Maintenance fee payment

Free format text: PAYMENT OF MAINTENANCE FEE, 4TH YEAR, LARGE ENTITY (ORIGINAL EVENT CODE: M1551); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY

Year of fee payment: 4

FEPP Fee payment procedure

Free format text: MAINTENANCE FEE REMINDER MAILED (ORIGINAL EVENT CODE: REM.); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY

LAPS Lapse for failure to pay maintenance fees

Free format text: PATENT EXPIRED FOR FAILURE TO PAY MAINTENANCE FEES (ORIGINAL EVENT CODE: EXP.); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY

STCH Information on status: patent discontinuation

Free format text: PATENT EXPIRED DUE TO NONPAYMENT OF MAINTENANCE FEES UNDER 37 CFR 1.362

FP Lapsed due to failure to pay maintenance fee

Effective date: 20240223