US9263507B2 - Organic light-emitting diode (OLED) display and method for manufacturing the same - Google Patents

Organic light-emitting diode (OLED) display and method for manufacturing the same Download PDF

Info

Publication number
US9263507B2
US9263507B2 US14/457,862 US201414457862A US9263507B2 US 9263507 B2 US9263507 B2 US 9263507B2 US 201414457862 A US201414457862 A US 201414457862A US 9263507 B2 US9263507 B2 US 9263507B2
Authority
US
United States
Prior art keywords
gate electrode
region
gate
layer
source
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
US14/457,862
Other versions
US20150090980A1 (en
Inventor
Wang Woo LEE
Moo Soon KO
Min Woo Woo
Il Jeong LEE
Jeong Ho Lee
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Samsung Display Co Ltd
Original Assignee
Samsung Display Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Samsung Display Co Ltd filed Critical Samsung Display Co Ltd
Assigned to SAMSUNG DISPLAY CO., LTD. reassignment SAMSUNG DISPLAY CO., LTD. ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: KO, MOO SOON, LEE, II JEONG, LEE, JEONG HO, LEE, WANG WOO, WOO, MIN WOO
Publication of US20150090980A1 publication Critical patent/US20150090980A1/en
Priority to US15/041,903 priority Critical patent/US9502486B2/en
Application granted granted Critical
Publication of US9263507B2 publication Critical patent/US9263507B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • H01L27/3262
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/02Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers
    • H01L27/12Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being other than a semiconductor body, e.g. an insulating body
    • H01L27/1214Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being other than a semiconductor body, e.g. an insulating body comprising a plurality of TFTs formed on a non-semiconducting substrate, e.g. driving circuits for AMLCDs
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/02Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers
    • H01L27/12Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being other than a semiconductor body, e.g. an insulating body
    • H01L27/1214Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being other than a semiconductor body, e.g. an insulating body comprising a plurality of TFTs formed on a non-semiconducting substrate, e.g. driving circuits for AMLCDs
    • H01L27/1237Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being other than a semiconductor body, e.g. an insulating body comprising a plurality of TFTs formed on a non-semiconducting substrate, e.g. driving circuits for AMLCDs with a different composition, shape, layout or thickness of the gate insulator in different devices
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/02Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers
    • H01L27/12Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being other than a semiconductor body, e.g. an insulating body
    • H01L27/1214Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being other than a semiconductor body, e.g. an insulating body comprising a plurality of TFTs formed on a non-semiconducting substrate, e.g. driving circuits for AMLCDs
    • H01L27/124Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being other than a semiconductor body, e.g. an insulating body comprising a plurality of TFTs formed on a non-semiconducting substrate, e.g. driving circuits for AMLCDs with a particular composition, shape or layout of the wiring layers specially adapted to the circuit arrangement, e.g. scanning lines in LCD pixel circuits
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/02Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers
    • H01L27/12Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being other than a semiconductor body, e.g. an insulating body
    • H01L27/1214Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being other than a semiconductor body, e.g. an insulating body comprising a plurality of TFTs formed on a non-semiconducting substrate, e.g. driving circuits for AMLCDs
    • H01L27/1259Multistep manufacturing methods
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/02Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers
    • H01L27/12Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being other than a semiconductor body, e.g. an insulating body
    • H01L27/1214Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being other than a semiconductor body, e.g. an insulating body comprising a plurality of TFTs formed on a non-semiconducting substrate, e.g. driving circuits for AMLCDs
    • H01L27/1259Multistep manufacturing methods
    • H01L27/127Multistep manufacturing methods with a particular formation, treatment or patterning of the active layer specially adapted to the circuit arrangement
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/41Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions
    • H01L29/423Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions not carrying the current to be rectified, amplified or switched
    • H01L29/42312Gate electrodes for field effect devices
    • H01L29/42316Gate electrodes for field effect devices for field-effect transistors
    • H01L29/4232Gate electrodes for field effect devices for field-effect transistors with insulated gate
    • H01L29/42384Gate electrodes for field effect devices for field-effect transistors with insulated gate for thin film field effect transistors, e.g. characterised by the thickness or the shape of the insulator or the dimensions, the shape or the lay-out of the conductor
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/786Thin film transistors, i.e. transistors with a channel being at least partly a thin film
    • H01L29/78606Thin film transistors, i.e. transistors with a channel being at least partly a thin film with supplementary region or layer in the thin film or in the insulated bulk substrate supporting it for controlling or increasing the safety of the device
    • H01L29/78618Thin film transistors, i.e. transistors with a channel being at least partly a thin film with supplementary region or layer in the thin film or in the insulated bulk substrate supporting it for controlling or increasing the safety of the device characterised by the drain or the source properties, e.g. the doping structure, the composition, the sectional shape or the contact structure
    • H01L29/78621Thin film transistors, i.e. transistors with a channel being at least partly a thin film with supplementary region or layer in the thin film or in the insulated bulk substrate supporting it for controlling or increasing the safety of the device characterised by the drain or the source properties, e.g. the doping structure, the composition, the sectional shape or the contact structure with LDD structure or an extension or an offset region or characterised by the doping profile
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/786Thin film transistors, i.e. transistors with a channel being at least partly a thin film
    • H01L29/78645Thin film transistors, i.e. transistors with a channel being at least partly a thin film with multiple gate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/786Thin film transistors, i.e. transistors with a channel being at least partly a thin film
    • H01L29/78651Silicon transistors
    • H01L29/7866Non-monocrystalline silicon transistors
    • H01L29/78672Polycrystalline or microcrystalline silicon transistor
    • H01L29/78675Polycrystalline or microcrystalline silicon transistor with normal-type structure, e.g. with top gate
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/10OLED displays
    • H10K59/12Active-matrix OLED [AMOLED] displays
    • H10K59/121Active-matrix OLED [AMOLED] displays characterised by the geometry or disposition of pixel elements
    • H10K59/1213Active-matrix OLED [AMOLED] displays characterised by the geometry or disposition of pixel elements the pixel elements being TFTs
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/10OLED displays
    • H10K59/12Active-matrix OLED [AMOLED] displays
    • H10K59/124Insulating layers formed between TFT elements and OLED elements
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/10OLED displays
    • H10K59/12Active-matrix OLED [AMOLED] displays
    • H10K59/131Interconnections, e.g. wiring lines or terminals

Definitions

  • the described technology generally relates to an organic light-emitting diode (OLED) display having thin film transistors and a manufacturing method thereof.
  • OLED organic light-emitting diode
  • Active matrix OLED displays include a display panel including a plurality of pixels each including a thin film transistor (TFT) and an OLED. Images can be displayed on the OLED display by controlling the current flowing to each OLED using the corresponding thin film transistor.
  • TFT thin film transistor
  • One inventive aspect is an OLED display having a greater aperture ratio and a favorable characteristics in both on and off states by forming a lightly doped region near a channel region of a gate electrode by using a plurality of gate electrodes having different widths and a manufacturing method thereof.
  • an OLED display including a substrate, a first semiconductor layer including a first channel region, a first source region, a first drain region, and a lightly doped region between the first channel region and the first source and drain regions, and a second semiconductor layer including a second channel region and a second source region and second drain region, on the substrate, a gate insulating layer disposed on the first semiconductor layer, the second semiconductor layer, and the substrate, a first gate electrode disposed at a position corresponding to the first semiconductor layer on the gate insulating layer, a first interlayer insulating layer disposed on the first gate electrode and the gate insulating layer, and a second gate electrode disposed at a position corresponding to the first gate electrode on the first interlayer insulating layer and a third gate electrode disposed at a position corresponding to the second semiconductor layer, wherein the second gate electrode is formed with a narrower width than the first gate electrode, and the lightly doped region of the first semiconductor layer overlaps the first gate electrode does not overlap the second gate electrode.
  • the first channel region of the first semiconductor layer is formed at a position overlapping all of the first gate electrode and the second gate electrode and the first source region and the first drain region are formed at a position where the first gate electrode and the second gate electrode do not overlap.
  • a blocking film may be formed between the substrate and the first semiconductor layer and second semiconductor layer.
  • the first semiconductor layer may be doped with an impurity such as boron, gallium, phosphorus, arsenic, or combinations thereof.
  • the lightly doped region may be an offset region which includes a small amount of impurities.
  • the second channel region of the second semiconductor layer may be positioned overlapping the third gate electrode and the second source and second drain region may be positioned at a position where the third gate electrode is not overlapped.
  • the first gate electrode may be formed with a thickness of less than about 1000 ⁇ .
  • the OLED display may further include a second interlayer insulating layer disposed on the second gate electrode and the third gate electrode, a data conductor disposed on the second interlayer insulating layer, a passivation layer disposed on the data conductor, a plurality of pixel electrodes and partitions disposed on the passivation layer, an organic light-emitting member disposed on the partition, and a common electrode disposed on the organic light-emitting member, wherein the second interlayer insulating layer and the gate insulating layer may have a plurality of contact holes exposing the source and drain regions to contact the data conductor and the passivation layer may have a plurality of contact holes exposing the data conductor to be connected to the pixel electrodes.
  • the first semiconductor layer, the first gate electrode, and the second gate electrode may form a switching thin film transistor connected to the data conductor and the second semiconductor layer and the third gate electrode may form a driving thin film transistor connected to the organic light-emitting member.
  • Another aspect is a method of manufacturing an organic light-emitting diode (OLED) display including forming a first semiconductor layer and a second semiconductor layer on a substrate, forming a gate insulating layer on the first semiconductor layer, the second semiconductor layer, and the substrate, forming a first gate electrode on the gate insulating layer corresponding to the first semiconductor layer, forming a first interlayer insulating layer on the first gate electrode and the gate insulating layer, forming a second gate electrode and a third gate electrode on the first interlayer insulating layer corresponding to the first gate electrode and the second semiconductor layer, and adding an impurity element to the first semiconductor layer and the second semiconductor layer to dope the semiconductor layer, wherein the second gate electrode is formed with a narrower width than the first gate electrode, the first semiconductor layer includes a first channel region, a first source region, a first drain region, and a lightly doped region positioned between the first channel region and the first source and drain regions, and the lightly doped region as a portion overlapping the first gate electrode does not
  • OLED organic light-emitting diode
  • a substrate comprising: a substrate; a first semiconductor layer formed over the substrate and including a first channel region, a first source region, a first drain region, and a lightly doped region formed between i) the first channel region and ii) the first source and drain regions; a second semiconductor layer formed over the substrate and including a second channel region, a second source region, and second drain region; a gate insulating layer formed over the first and second semiconductor layers and the substrate; a first gate electrode formed over the gate insulating layer wherein the first gate electrode is formed directly above at least a portion of the first semiconductor layer; a first interlayer insulating layer formed over the first gate electrode and the gate insulating layer; a second gate electrode formed over the first interlayer insulating layer wherein the second gate electrode is formed directly above at least a portion of the first gate electrode; and a third gate electrode formed directly above at least a portion of the second semiconductor layer, wherein the width of the second gate electrode is less than
  • the first channel region overlaps i) at least a portion of the first gate electrode and ii) the second gate electrode and wherein the first source and drain regions overlap neither the first gate electrode nor the second gate electrode.
  • the above display further comprises a blocking film formed between i) the substrate and ii) the first and second semiconductor layers.
  • the first semiconductor layer is doped with at least one of boron, gallium, phosphorus, or arsenic.
  • the lightly doped region comprises an offset region including fewer impurities than each of the first source and drain regions.
  • the second channel region is formed directly below the third gate electrode and wherein the second source and drain regions do not overlap the third gate electrode.
  • the first gate electrode has a thickness of less than about 1000 ⁇ .
  • the above display further comprises: a second interlayer insulating layer formed over the second and third gate electrodes; a plurality of data conductors formed over the second interlayer insulating layer; a passivation layer formed over the data conductors; a plurality of pixel electrodes formed over the passivation layer; a pixel defining layer formed over the passivation layer and at least a portion of the pixel electrodes; an organic light-emitting layer formed over the pixel electrodes; and a common electrode formed over the organic light-emitting layer, wherein the second interlayer insulating layer and the gate insulating layer define a plurality of contact holes, wherein the passivation layer defines a plurality of contact holes, wherein the data conductors pass through the respective contact holes to be electrically connected to the first source and drain regions, the second source and drain regions, and the pixel electrodes.
  • the first semiconductor layer and the first and second gate electrodes form a switching thin film transistor electrically connected to the data conductors and wherein the second semiconductor layer and the third gate electrode form a driving thin film transistor electrically connected to the organic light-emitting layer.
  • Another aspect is a method of manufacturing an organic light-emitting diode (OLED) display, comprising: forming a first semiconductor layer and a second semiconductor layer over a substrate; forming a gate insulating layer over the first and second semiconductor layers and the substrate; forming a first gate electrode over the gate insulating layer such that the first gate electrode is formed directly above at least a portion the first semiconductor layer; forming a first interlayer insulating layer over the first gate electrode and the gate insulating layer; forming a second gate electrode over the first interlayer insulating layer such that the second gate electrode is formed directly above at least a portion of the first gate electrode; forming a third gate electrode over the first interlayer insulating layer such that the third gate electrode is formed directly above at least a portion of the second semiconductor layer; and doping the first and second semiconductor layers, wherein the width of the second gate electrode is less than that of the first gate electrode, wherein the first semiconductor layer includes a first channel region, a first source region, a first drain region, and a
  • the first channel region overlaps i) at least a portion of the first gate electrode and ii) the second gate electrode and wherein the first source and drain regions overlaps neither the first gate electrode nor the second gate electrode.
  • the above method further comprises forming a blocking film over the substrate before forming the first and second semiconductor layers.
  • the doping comprises doping with at least one of boron, gallium, phosphorus, or arsenic.
  • the lightly doped region comprises an offset region including fewer impurities than each of the first source and drain regions.
  • the second channel region is formed substantially directly below the third gate electrode and wherein the second source and drain regions do not overlap the third gate electrode.
  • the first gate electrode has a thickness of less than about 1000 ⁇ .
  • the above method further comprising: forming a second interlayer insulating layer over the second and third gate electrodes; forming a plurality of first contact holes in the second interlayer insulating layer and the gate insulating layer to expose the first source and drain regions and the second source and drain regions; forming a plurality of data conductors over the second interlayer insulating layer and in the first contact holes; forming a passivation layer over the data conductors; forming a plurality of second contact holes in the passivation layer to expose the data conductors; forming a plurality of pixel electrodes over the passivation layer and in the second contact holes; forming a pixel defining layer over the passivation layer and at least a portion of the pixel electrodes; forming an organic light-emitting layer over the pixel electrodes; and forming a common electrode over the organic light-emitting layer.
  • the first semiconductor layer and the first and second gate electrodes form a switching thin film transistor electrically connected to the data conductors and wherein the second semiconductor layer and the third gate electrode form a driving thin film transistor electrically connected to the organic light-emitting layer.
  • OLED organic light-emitting diode
  • TFTs thin film transistors
  • each TFT comprising: a substrate; a semiconductor layer formed over the substrate and including a first channel region, a source region, a drain region, and a lightly doped region formed between i) the first channel region and ii) the source and drain regions; a first gate electrode formed directly over at least a portion of the semiconductor layer; and a second gate electrode formed directly over at least a portion of the first gate electrode, wherein the width of the second gate electrode is less than that of the first gate electrode, wherein at least a portion of the lightly doped region overlaps the first gate electrode and does not overlap the second gate electrode.
  • TFTs thin film transistors
  • the semiconductor layer further comprises: a second channel region; and an intermediate region, wherein the lightly doped region is further located between i) the intermediate region and ii) the first and second channel regions, wherein the first gate electrode comprises a pair of first gate electrodes respectively formed directly above the first and second channel regions, and wherein the second gate electrode comprises a pair of second gate electrodes respectively formed directly above the pair of first gate electrodes.
  • the extrinsic region and the lightly doped region of the semiconductor layer of the OLED display may be easily formed and may achieve favorable characteristics in both on and off states, thereby improving the quality of the OLED display.
  • FIG. 1 is a cross-sectional view of the structure of a semiconductor layer of an OLED display according to an exemplary embodiment.
  • FIG. 2 is an equivalent circuit diagram of an OLED display according to an exemplary embodiment.
  • FIG. 3 is a layout view of an OLED display according to an exemplary embodiment.
  • FIG. 4 is a cross-sectional view of the OLED display of FIG. 3 taken along line II-II.
  • FIG. 5 is a cross-sectional view of the OLED display of FIG. 3 taken along line III-III.
  • FIG. 6 to FIG. 8 are views showing a method of manufacturing an OLED display according to an exemplary embodiment.
  • High mobility can be achieved in a thin film transistor by using a semiconductor layer having a crystalline structure as the active layer of the TFT (a crystalline thin film transistor).
  • Functional circuits are commonly integrated on the same substrate in order to display high quality images.
  • OLED display To form an active matrix OLED display, one to two million crystalline thin film transistors are generally required in the display panel. A number of additional thin film transistors are required to form a functional circuit attached to the display. The stability of the OLED display depends on the uniformity and reliability of each crystalline thin film transistor.
  • OLED organic light-emitting diode
  • FIG. 1 is a cross-sectional view of the structure of a semiconductor layer of an OLED display according to an exemplary embodiment.
  • the OLED display includes a blocking film 111 formed of a silicon nitride (SiNx) or a silicon oxide (SiOx).
  • the blocking film 111 is formed on an insulation substrate 110 formed of transparent glass or plastic.
  • the blocking film 111 may have a dual-layered structure.
  • a plurality of pairs of first and second semiconductor islands or semiconductor layers 151 a and 151 b that are formed of polysilicon are formed on the blocking film 111 .
  • the semiconductor islands 151 a and 151 b respectively include a plurality of extrinsic regions including conductive impurities of an n-type or a p-type and at least one intrinsic region that does not include conductive impurities.
  • the extrinsic region in the first semiconductor island 151 a , includes first source and drain regions 153 a and 155 a that are doped with an n-type impurity and separated from each other.
  • the intrinsic region includes a channel region 154 a positioned between the extrinsic regions 153 a and 155 a.
  • the extrinsic region further includes a lightly doped region 152 a positioned between the first channel region 154 a and the first source and drain regions 153 a and 155 a .
  • the lightly doped region may be replaced with an offset region including a relatively low amount of impurities, i.e. the offset region may include fewer impurities than each of the first source and drain regions 153 a and 155 a.
  • the first source and drain regions 153 a and 155 a may be formed at a region outside the width of a first gate electrode 124 a , the lightly doped region 152 a is formed at a position corresponding to the difference in width between the first gate electrode 124 a and a second gate electrode 125 a , and the first channel region 154 a is formed at a position corresponding to the width of the second gate electrode 125 a.
  • the lightly doped drain (LDD) structure smoothes a high electric field near the drain to decrease the off current in the thin film transistor.
  • the extrinsic region in the second semiconductor island 151 b , includes second source and drain regions 153 b and 155 b that are doped with a p-type impurity and are separated from each other.
  • the intrinsic region includes a second channel region 154 b formed between the second source and drain regions 153 b and 155 b.
  • the extrinsic regions 153 a and 155 a of the first semiconductor island 151 a may be doped with p-type impurities and the extrinsic regions 153 b and 155 b of the second semiconductor island 151 b may be doped with n-type impurities.
  • the conductive p-type impurity may be boron (B) or gallium (Ga) and the conductive n-type impurity may be phosphorus (P) or arsenic (As).
  • a gate insulating layer 140 formed of a silicon nitride or a silicon oxide is formed on the semiconductor islands 151 a and 151 b and the blocking film 111 .
  • a plurality of gate lines are formed on the gate insulating layer 140 .
  • the gate lines include the first gate electrode 124 a positioned corresponding to the channel region 154 a and the lightly doped region 152 a of the first semiconductor 151 a.
  • the gate lines transmit gate signals and are substantially extended in the transverse direction.
  • the first gate electrode 124 a extends upward from the gate line, thereby intersecting the first semiconductor 151 a and overlapping the first channel region 154 a .
  • Each gate line may include an end portion having a large area for contact with another layer or an external driving circuit.
  • a gate driving circuit or gate driver (not shown) for generating gate signals is formed directly on the substrate 110 , the gate lines may extend and be directly connected to the gate driving circuit.
  • a gate conductor including the first gate electrode 124 a may be formed of an aluminum-based metal including aluminum (Al) or aluminum alloys, a silver-based metal including silver (Ag) or silver alloys, a copper-based metal including copper (Cu) or copper alloys, a molybdenum-based metal including molybdenum (Mo) or molybdenum alloys, chromium (Cr), tantalum (Ta), titanium (Ti), etc.
  • they may have a multi-layer structure including two conductive layers (not shown) that have different physical properties from each other.
  • One of the conductive layers may be formed using a metal having low resistivity, such as an aluminum-based metal, a silver-based metal, or a copper-based metal, in order to reduce signal delay or voltage drop.
  • Other conductive layers may be formed using a material having good physical, chemical, and electrical contact characteristics particularly with indium tin oxide (ITO) and indium zinc oxide (IZO), such as a molybdenum-based metal, chromium, tantalum, titanium, or the like. Examples of the combination may include a lower chromium film and an upper aluminum (alloy) film, and a lower aluminum (alloy) film and an upper molybdenum (alloy) film.
  • the gate conductors may be made of various metals or conductors.
  • the thickness of the first gate electrode may be less than about 1000 ⁇ . Such a thickness assists in the formation of the lightly doped region 152 a by partially transmitting the impurity through the first gate electrode 124 a when doping the impurity to the first semiconductor 151 a; however, the impurity is not transmitted through the second gate electrode 125 a.
  • a first interlayer insulating layer 160 is formed on the gate conductor including the first gate electrode 124 a .
  • the first interlayer insulating layer 160 is made of an inorganic insulator such as a silicon nitride, a silicon oxide, etc., an organic insulator, or an insulator having a low dielectric constant.
  • the dielectric constant of the organic insulator and the low dielectric insulator is less than about 4.0, for example a-Si:C:O or a-Si:O:F, which is formed through plasma enhanced chemical vapor deposition (PECVD).
  • PECVD plasma enhanced chemical vapor deposition
  • the first interlayer insulating layer 160 may be made of an organic insulator having photosensitivity and may provide a flat surface.
  • the second gate electrode 125 a is formed on the first interlayer insulating layer 160 to overlap the first gate electrode 124 a and the first channel region 154 a .
  • a third gate electrode 124 b is also formed on the first interlayer insulating layer 160 to overlap the channel region 154 b of the second semiconductor 151 b.
  • the second gate electrode 125 a is formed to assist in the formation the lightly doped region 152 a in the first channel region 154 a of the first semiconductor 151 a.
  • the second gate electrode 125 a has a narrower width than that of the first gate electrode 124 a .
  • the width of the lightly doped region 152 a corresponds to the difference in width between the first gate electrode 124 a and the second gate electrode 125 a . Accordingly, by controlling the size of a mask of the second gate electrode 125 a , the size of the lightly doped region 152 a may be easily predetermined.
  • the third gate electrode 124 b is separated from the gate line and overlaps the second channel region 154 b of the second semiconductor 151 b.
  • the second and third gate electrodes 125 a and 124 b may be formed of an aluminum-based metal including aluminum (Al) or aluminum alloys, a silver-based metal including silver (Ag) or silver alloys, a copper-based metal including copper (Cu) or copper alloys, a molybdenum-based metal including molybdenum (Mo) or molybdenum alloys, chromium (Cr), tantalum (Ta), titanium (Ti), etc.
  • Al aluminum
  • silver-based metal including silver (Ag) or silver alloys
  • a molybdenum-based metal including molybdenum (Mo) or molybdenum alloys chromium (Cr), tantalum (Ta), titanium (Ti), etc.
  • they may have a multi-layer structure including two conductive layers (not shown) that have different physical properties from each other.
  • One of the conductive layers may be formed using a metal having low resistivity, such as an aluminum-based metal, a silver-based metal, or a copper-based metal, in order to reduce signal delay or voltage drop.
  • Other conductive layers may be formed using a material having good physical, chemical, and electrical contact characteristics particularly with indium tin oxide (ITO) and indium zinc oxide (IZO), such as a molybdenum-based metal, chromium, tantalum, titanium, or the like.
  • ITO indium tin oxide
  • IZO indium zinc oxide
  • Examples of the combination may include a lower chromium film and an upper aluminum (alloy) film, and a lower aluminum (alloy) film and an upper molybdenum (alloy) film.
  • they may be made of various metals or conductors.
  • a second interlayer insulating layer 161 is formed on the gate conductor including the second gate electrode 125 a and the third gate electrode 124 b .
  • the second interlayer insulating layer 161 is made of an inorganic insulator such as a silicon nitride, a silicon oxide, etc., an organic insulator, or an insulator having a low dielectric constant.
  • the dielectric constant of the organic insulator and the low dielectric insulator is less than about 4.0, for example a-Si:C:O or a-Si:O:F, which is formed through plasma enhanced chemical vapor deposition (PECVD).
  • PECVD plasma enhanced chemical vapor deposition
  • the second interlayer insulating layer 161 may be made of an organic insulator having photosensitivity and may provide a flat surface.
  • the first semiconductor 151 a , the first gate electrode 124 a , and the second gate electrode 125 a formed on the first gate electrode 124 a form a switching thin film transistor (TFT) Qs and are connected to a data conductor and the second semiconductor 151 b and the third gate electrode 124 b form a driving thin film transistor (TFT) Qd and are connected to an OLED.
  • TFT switching thin film transistor
  • FIG. 2 is an equivalent circuit diagram of an OLED display according to an exemplary embodiment.
  • the OLED display includes a plurality of signal lines 121 , 171 , and 172 and a plurality of pixels PX that are connected to the signal lines 121 , 171 , and 172 and arranged in a matrix.
  • the signal lines includes a plurality of gate lines 121 for transferring gate signals or scanning signals, a plurality of data lines 171 for transferring data signals, and a plurality of driving voltage lines 172 for transferring driving voltages.
  • the gate lines 121 extend in a row direction substantially parallel to each other, while the data lines 171 and the driving voltage lines 172 extend in a column direction substantially parallel to each other.
  • Each of the pixels PX includes a switching transistor Qs, a driving transistor Qd, a storage capacitor Cst, and an OLED LD.
  • the switching transistor Qs includes a control terminal, an input terminal, and an output terminal.
  • the control terminal is connected to the gate line 121
  • the input terminal is connected to the data line 171
  • the output terminal is connected to the driving transistor Qd.
  • the switching transistor Qs transfers a data signal supplied to the data line 171 to the driving transistor Qd in response to a scanning signal supplied to the gate line 121 .
  • the driving transistor Qd also includes a control terminal, an input terminal, and an output terminal.
  • the control terminal is connected to the switching transistor Qs, the input terminal is connected to the driving voltage line 172 , and the output terminal is connected to the OLED LD.
  • the driving transistor Qd outputs an output current ILD having a magnitude that varies depending on the voltage between the control terminal and the output terminal.
  • the capacitor Cst is connected between the control terminal and the input terminal of the driving transistor Qd.
  • the capacitor Cst stores a data signal supplied to the control terminal of the driving transistor Qd and maintains the charged data signal even after the switching transistor Qs is turned off.
  • the OLED LD includes an anode connected to the output terminal of the driving transistor Qd and a cathode connected to a common voltage Vss.
  • the OLED LD emits lights with an intensity dependent on the output current ILD of the driving transistor Qd so as to display images.
  • the switching transistor Qs is an n-channel electric field effect transistor (FET) and the driving transistor Qd is a p-channel electric field effect transistor.
  • FET electric field effect transistor
  • the channel types of the switching transistor Qs and the driving transistor Qd may be exchanged and the two transistors Qs and Qd may respectively be n-channel and the p-channel electric field effect transistors.
  • the connection relationship of the transistors Qs and Qd, the capacitor Cst, and the OLED LD may be changed.
  • FIG. 3 is a layout view of an OLED display according to an exemplary embodiment
  • FIG. 4 is a cross-sectional view of the OLED display of FIG. 3 taken along line II-II
  • FIG. 5 is a cross-sectional view of the OLED display of FIG. 3 taken along line III-III.
  • the OLED display according to an exemplary embodiment includes the blocking film 111 formed of a silicon nitride (SiNx) or a silicon oxide (SiOx).
  • the blocking film 111 is formed on the insulation substrate 110 formed of transparent glass or plastic.
  • the blocking film 111 may have a dual-layered structure.
  • a plurality of pairs of first and second semiconductor islands 151 a and 151 b that are formed of polysilicon are formed on the blocking film 111 .
  • the semiconductor islands 151 a and 151 b respectively include a plurality of extrinsic regions including n-type or p-type conductive impurities and at least one intrinsic region that does not include conductive impurities.
  • the extrinsic region in the first semiconductor island 151 a , includes the first source and drain regions 153 a and 155 a and an intermediate region 1535 that are doped with an n-type impurity and separated from each other.
  • the intrinsic region includes a pair of first channel regions 154 a 1 and 154 a 2 positioned between the extrinsic regions 153 a , 1535 , and 155 a.
  • the extrinsic region further includes lightly doped regions 152 a 1 and 152 a 2 positioned between the first channel regions 154 a 1 and 154 a 2 and the first source and drain regions 153 a and 155 a .
  • the lightly doped region may be replaced with an offset region which includes including a relatively low amount of impurities.
  • the lightly doped drain (LDD) structure smoothes a high electric field near the drain to decrease the off current in the thin film transistor and the lightly doped extrinsic region is formed outside of the channel region and is referred to as an LDD region.
  • the second semiconductor island 151 b , the extrinsic region includes the second source and drain regions 153 b and 155 b that are doped with a p-type impurity and are separated from each other.
  • the intrinsic region includes the second channel region 154 b disposed between the second source and drain regions 153 b and 155 b and a storage region 157 extending from the second source and drain regions 153 b and 155 b.
  • the extrinsic regions 153 a and 155 a of the first semiconductor island 151 a may be doped with p-type impurities and the extrinsic regions 153 b and 155 b of the second semiconductor island 151 b may be doped with n-type impurities.
  • the conductive p-type impurity may be boron (B) or gallium (Ga) and the conductive impurity of the n-type may be phosphorus (P) or arsenic (As).
  • the gate insulating layer 140 is formed of a silicon nitride or a silicon oxide and is formed on the semiconductor islands 151 a and 151 b and the blocking film 111 .
  • the gate lines 121 including the first gate electrodes 124 a are formed on the gate insulating layer 140 .
  • the gate lines 121 transmit gate signals and are substantially extended in the transverse direction.
  • the first gate electrode 124 a is extended upward from the gate line, thereby intersecting the first semiconductor 151 a and overlapping the first channel regions 154 a 1 and 154 a 2 .
  • Each gate line 121 may include an end portion having a large area for contact with another layer or an external driving circuit.
  • a gate driving circuit (not shown) for generating gate signals is formed directly on the substrate 110 , the gate lines 121 may extend and be directly connected to the gate driving circuit.
  • a gate conductor including the first gate electrode 124 a may be made of an aluminum-based metal including aluminum (Al) or aluminum alloys, a silver-based metal including silver (Ag) or silver alloys, a copper-based metal including copper (Cu) or copper alloys, a molybdenum-based metal including molybdenum (Mo) or molybdenum alloys, chromium (Cr), tantalum (Ta), titanium (Ti), etc.
  • they may have a multi-layer structure including two conductive layers (not shown) that have different physical properties from each other.
  • One of the conductive layers may be formed using a metal having low resistivity, such as an aluminum-based metal, a silver-based metal, or a copper-based metal, in order to reduce signal delay or voltage drop.
  • Other conductive layers may be formed using a material having good physical, chemical, and electrical contact characteristics particularly with indium tin oxide (ITO) and indium zinc oxide (IZO), such as a molybdenum-based metal, chromium, tantalum, titanium, or the like. Examples of the combination may include a lower chromium film and an upper aluminum (alloy) film, and a lower aluminum (alloy) film and an upper molybdenum (alloy) film.
  • the gate conductors may be made of various metals or conductors.
  • the first interlayer insulating layer 160 is formed on the gate conductor including the first gate electrode 124 a .
  • the first interlayer insulating layer 160 is made of an inorganic insulator such as a silicon nitride, a silicon oxide, etc., an organic insulator, or an insulator having a low dielectric constant.
  • the dielectric constant of the organic insulator and the low dielectric insulator is less than about 4.0, for example a-Si:C:O or a-Si:O:F, which is formed through plasma enhanced chemical vapor deposition (PECVD).
  • PECVD plasma enhanced chemical vapor deposition
  • the first interlayer insulating layer 160 may be formed of an organic insulator having photosensitivity and may provide a flat surface.
  • the second gate electrode 125 a is formed on the first interlayer insulating layer 160 to overlap the first gate electrode 124 a and the first channel region 154 a .
  • the third gate electrode 124 b is also formed on the first interlayer insulating layer 160 to overlap the channel region 154 b of the second semiconductor 151 b.
  • the second gate electrode 125 a assists in forming the lightly doped region 152 a in the first channel region 154 a of the first semiconductor 151 a.
  • the second gate electrode 125 a has a narrower width than that of the first gate electrode 124 a .
  • the width of the lightly doped region 152 a corresponds to the difference in width between the first and second gate electrodes 124 a and 135 a . Accordingly, by controlling the size of the mask of the second gate electrode 125 a , the size of the lightly doped region 152 a may be easily predetermined.
  • the third gate electrode 124 b is separated from the gate line and overlaps the second channel region 154 b of the second semiconductor 151 b .
  • the third gate electrode 124 b is extended forming a storage electrode 127 and the storage electrode 127 overlaps the storage region 157 of the second semiconductor 151 b.
  • the second and third gate electrodes 125 a and 124 b may be formed of an aluminum-based metal including aluminum (Al) or aluminum alloys, a silver-based metal including silver (Ag) or silver alloys, a copper-based metal including copper (Cu) or copper alloys, a molybdenum-based metal including molybdenum (Mo) or molybdenum alloys, chromium (Cr), tantalum (Ta), titanium (Ti), etc.
  • Al aluminum
  • silver-based metal including silver (Ag) or silver alloys
  • a molybdenum-based metal including molybdenum (Mo) or molybdenum alloys chromium (Cr), tantalum (Ta), titanium (Ti), etc.
  • they may have a multi-layer structure including two conductive layers (not shown) that have different physical properties from each other.
  • One of the conductive layers may be formed using a metal having low resistivity, such as an aluminum-based metal, a silver-based metal, or a copper-based metal, in order to reduce signal delay or voltage drop.
  • Other conductive layers may be formed using a material having good physical, chemical, and electrical contact characteristics particularly with indium tin oxide (ITO) and indium zinc oxide (IZO), such as a molybdenum-based metal, chromium, tantalum, titanium, or the like.
  • ITO indium tin oxide
  • IZO indium zinc oxide
  • Examples of the combination may include a lower chromium film and an upper aluminum (alloy) film, and a lower aluminum (alloy) film and an upper molybdenum (alloy) film.
  • they may be made of various metals or conductors.
  • the second interlayer insulating layer 161 is formed on the gate conductor including the second and third gate electrodes 125 a and 124 b .
  • the second interlayer insulating layer 161 is made of an inorganic insulator such as a silicon nitride, a silicon oxide, etc., an organic insulator, or an insulator having a low dielectric ratio.
  • the dielectric constant of the organic insulator and the low dielectric insulator is less than about 4.0, for example a-Si:C:O or a-Si:O:F, which is formed through plasma enhanced chemical vapor deposition (PECVD).
  • PECVD plasma enhanced chemical vapor deposition
  • the second interlayer insulating layer 161 may be made of an organic insulator having photosensitivity and may provide a flat surface.
  • the second interlayer insulating layer 161 has a plurality of contact holes 164 exposing the third gate electrode 124 b .
  • the first and second interlayer insulating layers 160 and 161 and the gate insulating layer 140 have a plurality of contact holes 163 a , 163 b , 165 a , and 165 b exposing the source and drain regions 153 a , 153 b , 155 a , and 155 b.
  • a plurality of data conductors including a plurality of data lines 171 , a plurality of driving voltage lines 172 , and a plurality of first and second output electrodes 175 a and 175 b are formed on the second interlayer insulating layer 161 .
  • the data lines 171 transmit a data signal and extend in the longitudinal direction thereby intersecting the gate lines 121 .
  • Each data line 171 includes a first input electrode 173 a connected to the first source region 153 a through the contact hole 163 a and may include an end portion having a large area for contact with another layer or an external driving circuit.
  • a data driving circuit or data driver (not shown) for generating data signals is formed directly on the substrate 110 , the data line 171 may extend and be directly connected to the data driving circuit.
  • the driving voltage lines 172 transmit a driving voltage and extend in a longitudinal direction, thereby intersecting the gate lines 121 .
  • Each driving voltage line 172 includes a plurality of second input electrodes 173 b connected to the second source region 153 b through the contact hole 163 b .
  • the driving voltage line 172 overlaps the storage electrode 127 and they may be connected to each other.
  • the first output electrode 175 a is separated from the data line 171 and the driving voltage line 172 .
  • the first output electrode 175 a is connected to the first drain region 155 a through the contact hole 165 a and to the third gate electrode 124 b through the contact hole 164 .
  • the second output electrode 175 b is separated from the data line 171 , the driving voltage line 172 , and the first output electrode 175 a , and is connected to the second drain region 155 b through the contact hole 165 b.
  • the data conductors 171 , 172 , 175 a , and 175 b may be made of a refractory metal such as molybdenum, chromium, tantalum, or titanium, or alloys thereof, and have a multi-layered structure including a refractory metal layer (not shown) and a low resistance conductive layer (not shown).
  • the multi-layered structure includes, for example, a dual layer of a chromium or molybdenum (alloy) lower layer and an aluminum (alloy) upper layer, and a triple-layer of a molybdenum (alloy) lower layer, an aluminum (alloy) middle layer, and a molybdenum (alloy) upper layer.
  • the data conductors 171 , 172 , 175 a , and 175 b may be made of various other metals or conductors.
  • a passivation layer 180 is formed on the data conductors 171 , 172 , 175 a , and 175 b .
  • the passivation layer 180 is made of an inorganic material, an organic material, or a low dielectric constant insulating material.
  • the passivation layer 180 has a plurality of contact holes 185 exposing the second output electrode 175 b .
  • the passivation layer 180 may also have a plurality of contact holes (not shown) exposing the end of the data line 171 and the passivation layer 180 and the second interlayer insulating layer 161 may have a plurality of contact holes (not shown) exposing the end of the gate line 121 .
  • a plurality of pixel electrodes 191 are formed on the passivation layer 180 .
  • the pixel electrodes 191 are physically and electrically connected to the second output electrodes 175 b through the contact holes 185 and may be formed of a transparent conductive material such as ITO or IZO, or a reflective conductor such as silver, aluminum, or alloys thereof.
  • a plurality of contact assistants (not shown) or connecting members (not shown) may be formed on the passivation layer 180 and may be connected to the exposed ends of the gate lines 121 and the data lines 171 .
  • Partitions or a pixel defining layer 361 are formed on the passivation layer 180 .
  • the partitions 361 define a plurality of openings enclosing edges of the pixel electrodes 191 like a bank and are made of an organic insulator or an inorganic insulator.
  • the partitions 361 may be made of a photoresist including black pigments and the partitions 361 function as a light blocking member in this case thereby simplifying the manufacturing process.
  • An organic light-emitting member or organic light-emitting layer 370 is formed in openings 365 defined by the partitions 361 on the pixel electrode 191 .
  • the organic light-emitting member 370 functions as an emission layer and is formed of an organic material uniquely emitting light of one primary color such as one of three primary colors of red, green, and blue.
  • the OLED display may also display desired images by a spatial combination of the colored light of the primary colors emitted by the organic light-emitting members 370 .
  • the organic light-emitting member 370 may have a multilayered structure including auxiliary layers (not illustrated) for improving light emission efficiency of an emitting layer in addition to the emitting layer (not illustrated) emitting light.
  • auxiliary layers an electron transport layer (not illustrated), a hole transport layer (not illustrated) for adjusting the balance of electrons and holes, an electron injecting layer (not illustrated), and a hole injecting layer (not illustrated) for reinforcing injection of the electrons and the holes, are included.
  • a common electrode 270 is formed on the organic light-emitting member 370 .
  • the common electrode 270 receives a common voltage Vss and may be formed of reflective metal including calcium (Ca), barium (Ba), magnesium (Mg), aluminum, silver, or the like, or a transparent conductive material such as ITO or IZO.
  • the first semiconductor 151 a , the first gate electrode 124 a connected to the gate line 121 , the second gate electrode 125 a formed on the first gate electrode 124 a , the first input electrode 173 a connected to the data line 171 , and the first output electrode 175 a together form the switching thin film transistor (TFT) Qs.
  • the channel of the switching thin film transistor Qs is formed in the first channel regions 154 a 1 and 154 a 2 of the first semiconductor 151 a .
  • the second semiconductor 151 b , the third gate electrode 124 b connected to the first output electrode 175 a , the second input electrode 173 b connected to the driving voltage line 172 , and the second output electrode 175 b connected to the pixel electrode 191 together form the driving thin film transistor (TFT) Qd connected to the organic light-emitting member.
  • the channel of the driving thin film transistor Qd is formed in the channel region 154 b of the second semiconductor 151 b .
  • the pixel electrode 191 , the organic light-emitting member 370 , and the common electrode 270 form the OLED.
  • the pixel electrode 191 is an anode and the common electrode 270 is a cathode, or alternatively, the pixel electrode 191 is a cathode and the common electrode 270 is an anode.
  • the storage electrode 127 , the driving voltage line 172 , and the storage region 157 which overlap each other, may form a storage capacitor Cst.
  • Such an OLED display emits light upward or downward from the substrate 110 to display an image.
  • An opaque pixel electrode 191 and a transparent common electrode 270 are applied to a top emission OLED display which displays an image in an upper direction of the substrate 110 .
  • a transparent pixel electrode 191 and an opaque common electrode 270 are applied to a bottom emission OLED display which displays an image in a lower direction of the substrate 110 .
  • FIG. 6 to FIG. 8 are views showing a method of manufacturing an OLED display according to an exemplary embodiment.
  • a blocking film 111 formed of a silicon nitride (SiNx) or a silicon oxide (SiOx) is formed on an insulation substrate 110 formed of transparent glass or plastic.
  • the blocking film 111 may be formed to have a dual-layer structure.
  • a plurality of pairs of the first and second semiconductor islands 151 a and 151 b formed of polysilicon are formed on the blocking film 111 and a gate insulating layer 140 formed of a silicon nitride or a silicon oxide is formed covering the first and second semiconductors 151 a and 151 b and the blocking film 111 .
  • a conductive layer 124 is formed to form the first gate electrode 124 a and a photoresist mask PR is formed on the first semiconductor layer 151 a at a position to form the first gate electrode 124 a on the conductive layer 124 .
  • the conductive layer 124 is etched by using the photoresist mask PR to form the first gate electrode 124 a.
  • the thickness of the first gate electrode 124 a is formed to be less than about 1000 ⁇ in order to facilitate the formation of the lightly doped region 152 a by partially transmitting the impurity through the first gate electrode 124 a when doping the impurity to the first semiconductor 151 a .
  • the impurity is not transmitted through the second gate electrode 125 a.
  • the first interlayer insulating layer 160 formed of an inorganic insulator such as a silicon nitride or a silicon oxide, an organic insulator, or a low dialectic insulator is formed on the first gate electrode 124 a.
  • the second gate electrode 125 a is formed on the first interlayer insulating layer 160 and positioned over each of the first semiconductor 151 a and the first gate electrode 124 a .
  • a third gate electrode 124 b is formed on the first interlayer insulating layer and positioned over the second semiconductor 151 b.
  • the second gate electrode 125 a is formed to have a narrower width than that of the first gate electrode 124 a so as to be appropriate for forming the lightly doped region 152 a of the first semiconductor 151 a with the desired width.
  • the third gate electrode 124 b is formed with a width corresponding to the width of the channel region of the second semiconductor 151 b.
  • first doping is then performed on the first semiconductor layer 151 a to add the impurity element providing the n-type conductivity.
  • the doping is performed by using the first gate electrode 124 a and the second gate electrode 125 a as a mask for the impurity element and is performed to add the impurity element to the region under the first gate electrode 124 a.
  • the lightly doped region (LDD region) 152 a overlapping the first gate electrode 124 a and the source and drain regions 153 a and 155 a having a higher impurity concentration than the lightly doped region 152 a may be formed.
  • the first source and drain regions 153 a and 155 a may be formed outside the width of the first gate electrode 124 a
  • the lightly doped region 152 a may be formed at the position corresponding to the difference in width between the first and second gate electrodes 124 a and 125 a
  • the channel region 154 a may be positioned at the position corresponding to the width of the second gate electrode 125 a.
  • control of the width of the lightly doped region 152 a is possible by controlling the width of the second gate electrode 125 a.
  • the first semiconductor 151 a , the first gate electrode 124 a , and the second gate electrode 125 a formed on the first gate electrode 124 a together form the switching thin film transistor (TFT) Qs.
  • the switching TFT Qs is connected to the data conductor.
  • the second semiconductor 151 b and the third gate electrode 124 b form the driving thin film transistor (TFT) Qd and is connected to the organic light-emitting member.
  • the extrinsic region and the lightly doped region of the semiconductor layer of the OLED display may be easily formed and high quality characteristics may be obtained in the on and off states.

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Ceramic Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Geometry (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Electroluminescent Light Sources (AREA)
  • Thin Film Transistor (AREA)

Abstract

An organic light-emitting diode (OLED) display having thin film transistors (TFTs) is disclosed. In one aspect, TFTs of the OLED display include a substrate and a first semiconductor layer formed over the substrate and including first channel, source, and drain regions and a lightly doped region between the first channel region and the first source and drain regions. The OLED display also includes a second semiconductor layer formed over the substrate and including second channel, source, and drain regions. The OLED display further includes first and second gate electrodes formed over the first semiconductor layer and a third gate electrode formed over the second semiconductor layer. The width of the second gate electrode is less than that of the first gate electrode and the lightly doped region overlaps a portion of the first gate electrode and does not overlap the second gate electrode.

Description

CROSS-REFERENCE TO RELATED APPLICATIONS
This application claims priority to and the benefit of Korean Patent Application No. 10-2013-0115350 filed in the Korean Intellectual Property Office on Sep. 27, 2013, the entire contents of which are incorporated herein by reference.
BACKGROUND
1. Field
The described technology generally relates to an organic light-emitting diode (OLED) display having thin film transistors and a manufacturing method thereof.
2. Description of the Related Technology
Active matrix OLED displays include a display panel including a plurality of pixels each including a thin film transistor (TFT) and an OLED. Images can be displayed on the OLED display by controlling the current flowing to each OLED using the corresponding thin film transistor.
SUMMARY OF CERTAIN INVENTIVE ASPECTS
One inventive aspect is an OLED display having a greater aperture ratio and a favorable characteristics in both on and off states by forming a lightly doped region near a channel region of a gate electrode by using a plurality of gate electrodes having different widths and a manufacturing method thereof.
Another aspect is an OLED display including a substrate, a first semiconductor layer including a first channel region, a first source region, a first drain region, and a lightly doped region between the first channel region and the first source and drain regions, and a second semiconductor layer including a second channel region and a second source region and second drain region, on the substrate, a gate insulating layer disposed on the first semiconductor layer, the second semiconductor layer, and the substrate, a first gate electrode disposed at a position corresponding to the first semiconductor layer on the gate insulating layer, a first interlayer insulating layer disposed on the first gate electrode and the gate insulating layer, and a second gate electrode disposed at a position corresponding to the first gate electrode on the first interlayer insulating layer and a third gate electrode disposed at a position corresponding to the second semiconductor layer, wherein the second gate electrode is formed with a narrower width than the first gate electrode, and the lightly doped region of the first semiconductor layer overlaps the first gate electrode does not overlap the second gate electrode.
The first channel region of the first semiconductor layer is formed at a position overlapping all of the first gate electrode and the second gate electrode and the first source region and the first drain region are formed at a position where the first gate electrode and the second gate electrode do not overlap.
A blocking film may be formed between the substrate and the first semiconductor layer and second semiconductor layer.
The first semiconductor layer may be doped with an impurity such as boron, gallium, phosphorus, arsenic, or combinations thereof.
The lightly doped region may be an offset region which includes a small amount of impurities.
The second channel region of the second semiconductor layer may be positioned overlapping the third gate electrode and the second source and second drain region may be positioned at a position where the third gate electrode is not overlapped.
The first gate electrode may be formed with a thickness of less than about 1000 Å.
The OLED display may further include a second interlayer insulating layer disposed on the second gate electrode and the third gate electrode, a data conductor disposed on the second interlayer insulating layer, a passivation layer disposed on the data conductor, a plurality of pixel electrodes and partitions disposed on the passivation layer, an organic light-emitting member disposed on the partition, and a common electrode disposed on the organic light-emitting member, wherein the second interlayer insulating layer and the gate insulating layer may have a plurality of contact holes exposing the source and drain regions to contact the data conductor and the passivation layer may have a plurality of contact holes exposing the data conductor to be connected to the pixel electrodes.
The first semiconductor layer, the first gate electrode, and the second gate electrode may form a switching thin film transistor connected to the data conductor and the second semiconductor layer and the third gate electrode may form a driving thin film transistor connected to the organic light-emitting member.
Another aspect is a method of manufacturing an organic light-emitting diode (OLED) display including forming a first semiconductor layer and a second semiconductor layer on a substrate, forming a gate insulating layer on the first semiconductor layer, the second semiconductor layer, and the substrate, forming a first gate electrode on the gate insulating layer corresponding to the first semiconductor layer, forming a first interlayer insulating layer on the first gate electrode and the gate insulating layer, forming a second gate electrode and a third gate electrode on the first interlayer insulating layer corresponding to the first gate electrode and the second semiconductor layer, and adding an impurity element to the first semiconductor layer and the second semiconductor layer to dope the semiconductor layer, wherein the second gate electrode is formed with a narrower width than the first gate electrode, the first semiconductor layer includes a first channel region, a first source region, a first drain region, and a lightly doped region positioned between the first channel region and the first source and drain regions, and the lightly doped region as a portion overlapping the first gate electrode does not overlap the second gate electrode.
Another aspect is an organic light-emitting diode (OLED) display, comprising: a substrate; a first semiconductor layer formed over the substrate and including a first channel region, a first source region, a first drain region, and a lightly doped region formed between i) the first channel region and ii) the first source and drain regions; a second semiconductor layer formed over the substrate and including a second channel region, a second source region, and second drain region; a gate insulating layer formed over the first and second semiconductor layers and the substrate; a first gate electrode formed over the gate insulating layer wherein the first gate electrode is formed directly above at least a portion of the first semiconductor layer; a first interlayer insulating layer formed over the first gate electrode and the gate insulating layer; a second gate electrode formed over the first interlayer insulating layer wherein the second gate electrode is formed directly above at least a portion of the first gate electrode; and a third gate electrode formed directly above at least a portion of the second semiconductor layer, wherein the width of the second gate electrode is less than that of the first gate electrode, wherein at least a portion of the lightly doped region overlaps the first gate electrode, and wherein the lightly doped region does not overlap the second gate electrode.
In the above display, the first channel region overlaps i) at least a portion of the first gate electrode and ii) the second gate electrode and wherein the first source and drain regions overlap neither the first gate electrode nor the second gate electrode. The above display further comprises a blocking film formed between i) the substrate and ii) the first and second semiconductor layers. In the above display, the first semiconductor layer is doped with at least one of boron, gallium, phosphorus, or arsenic. In the above display, the lightly doped region comprises an offset region including fewer impurities than each of the first source and drain regions. In the above display, the second channel region is formed directly below the third gate electrode and wherein the second source and drain regions do not overlap the third gate electrode.
In the above display, the first gate electrode has a thickness of less than about 1000 Å. The above display further comprises: a second interlayer insulating layer formed over the second and third gate electrodes; a plurality of data conductors formed over the second interlayer insulating layer; a passivation layer formed over the data conductors; a plurality of pixel electrodes formed over the passivation layer; a pixel defining layer formed over the passivation layer and at least a portion of the pixel electrodes; an organic light-emitting layer formed over the pixel electrodes; and a common electrode formed over the organic light-emitting layer, wherein the second interlayer insulating layer and the gate insulating layer define a plurality of contact holes, wherein the passivation layer defines a plurality of contact holes, wherein the data conductors pass through the respective contact holes to be electrically connected to the first source and drain regions, the second source and drain regions, and the pixel electrodes. In the above display, the first semiconductor layer and the first and second gate electrodes form a switching thin film transistor electrically connected to the data conductors and wherein the second semiconductor layer and the third gate electrode form a driving thin film transistor electrically connected to the organic light-emitting layer.
Another aspect is a method of manufacturing an organic light-emitting diode (OLED) display, comprising: forming a first semiconductor layer and a second semiconductor layer over a substrate; forming a gate insulating layer over the first and second semiconductor layers and the substrate; forming a first gate electrode over the gate insulating layer such that the first gate electrode is formed directly above at least a portion the first semiconductor layer; forming a first interlayer insulating layer over the first gate electrode and the gate insulating layer; forming a second gate electrode over the first interlayer insulating layer such that the second gate electrode is formed directly above at least a portion of the first gate electrode; forming a third gate electrode over the first interlayer insulating layer such that the third gate electrode is formed directly above at least a portion of the second semiconductor layer; and doping the first and second semiconductor layers, wherein the width of the second gate electrode is less than that of the first gate electrode, wherein the first semiconductor layer includes a first channel region, a first source region, a first drain region, and a lightly doped region between i) the first channel region and ii) the first source and drain regions, wherein the lightly doped region overlaps the first gate electrode and does not overlap the second gate electrode.
In the above method, the first channel region overlaps i) at least a portion of the first gate electrode and ii) the second gate electrode and wherein the first source and drain regions overlaps neither the first gate electrode nor the second gate electrode. The above method further comprises forming a blocking film over the substrate before forming the first and second semiconductor layers. In the above method the doping comprises doping with at least one of boron, gallium, phosphorus, or arsenic. In the above method, the lightly doped region comprises an offset region including fewer impurities than each of the first source and drain regions. In the above method, the second channel region is formed substantially directly below the third gate electrode and wherein the second source and drain regions do not overlap the third gate electrode.
In the above method, the first gate electrode has a thickness of less than about 1000 Å. The above method further comprising: forming a second interlayer insulating layer over the second and third gate electrodes; forming a plurality of first contact holes in the second interlayer insulating layer and the gate insulating layer to expose the first source and drain regions and the second source and drain regions; forming a plurality of data conductors over the second interlayer insulating layer and in the first contact holes; forming a passivation layer over the data conductors; forming a plurality of second contact holes in the passivation layer to expose the data conductors; forming a plurality of pixel electrodes over the passivation layer and in the second contact holes; forming a pixel defining layer over the passivation layer and at least a portion of the pixel electrodes; forming an organic light-emitting layer over the pixel electrodes; and forming a common electrode over the organic light-emitting layer. In the above method, the first semiconductor layer and the first and second gate electrodes form a switching thin film transistor electrically connected to the data conductors and wherein the second semiconductor layer and the third gate electrode form a driving thin film transistor electrically connected to the organic light-emitting layer.
Another aspect is an organic light-emitting diode (OLED) display including a plurality of thin film transistors (TFTs), each TFT comprising: a substrate; a semiconductor layer formed over the substrate and including a first channel region, a source region, a drain region, and a lightly doped region formed between i) the first channel region and ii) the source and drain regions; a first gate electrode formed directly over at least a portion of the semiconductor layer; and a second gate electrode formed directly over at least a portion of the first gate electrode, wherein the width of the second gate electrode is less than that of the first gate electrode, wherein at least a portion of the lightly doped region overlaps the first gate electrode and does not overlap the second gate electrode.
In the above display, the semiconductor layer further comprises: a second channel region; and an intermediate region, wherein the lightly doped region is further located between i) the intermediate region and ii) the first and second channel regions, wherein the first gate electrode comprises a pair of first gate electrodes respectively formed directly above the first and second channel regions, and wherein the second gate electrode comprises a pair of second gate electrodes respectively formed directly above the pair of first gate electrodes.
According to at least one embodiment, the extrinsic region and the lightly doped region of the semiconductor layer of the OLED display may be easily formed and may achieve favorable characteristics in both on and off states, thereby improving the quality of the OLED display.
BRIEF DESCRIPTION OF THE DRAWINGS
FIG. 1 is a cross-sectional view of the structure of a semiconductor layer of an OLED display according to an exemplary embodiment.
FIG. 2 is an equivalent circuit diagram of an OLED display according to an exemplary embodiment.
FIG. 3 is a layout view of an OLED display according to an exemplary embodiment.
FIG. 4 is a cross-sectional view of the OLED display of FIG. 3 taken along line II-II.
FIG. 5 is a cross-sectional view of the OLED display of FIG. 3 taken along line III-III.
FIG. 6 to FIG. 8 are views showing a method of manufacturing an OLED display according to an exemplary embodiment.
DETAILED DESCRIPTION OF CERTAIN INVENTIVE EMBODIMENTS
High mobility can be achieved in a thin film transistor by using a semiconductor layer having a crystalline structure as the active layer of the TFT (a crystalline thin film transistor). Functional circuits are commonly integrated on the same substrate in order to display high quality images.
To form an active matrix OLED display, one to two million crystalline thin film transistors are generally required in the display panel. A number of additional thin film transistors are required to form a functional circuit attached to the display. The stability of the OLED display depends on the uniformity and reliability of each crystalline thin film transistor.
The described technology will be described more fully hereinafter with reference to the accompanying drawings, in which exemplary embodiments are shown. As those skilled in the art would realize, the described embodiments may be modified in various different ways, all without departing from the spirit or scope of the described technology.
In the drawings, the thicknesses of layers, films, panels, regions, etc., may be exaggerated for clarity. Like reference numerals designate like elements throughout the specification. It will be understood that when an element such as a layer, film, region, or substrate is referred to as being “on” another element, it can be directly on the other element or intervening elements may also be present. In contrast, when an element is referred to as being “directly on” another element, there are no intervening elements present.
An organic light-emitting diode (OLED) display according to an exemplary embodiment will now be described in detail with reference to accompanying drawings.
FIG. 1 is a cross-sectional view of the structure of a semiconductor layer of an OLED display according to an exemplary embodiment.
Referring to FIG. 1, the OLED display includes a blocking film 111 formed of a silicon nitride (SiNx) or a silicon oxide (SiOx). The blocking film 111 is formed on an insulation substrate 110 formed of transparent glass or plastic. The blocking film 111 may have a dual-layered structure.
According to some embodiments, a plurality of pairs of first and second semiconductor islands or semiconductor layers 151 a and 151 b that are formed of polysilicon are formed on the blocking film 111. The semiconductor islands 151 a and 151 b respectively include a plurality of extrinsic regions including conductive impurities of an n-type or a p-type and at least one intrinsic region that does not include conductive impurities.
According to some embodiments, in the first semiconductor island 151 a, the extrinsic region includes first source and drain regions 153 a and 155 a that are doped with an n-type impurity and separated from each other. The intrinsic region includes a channel region 154 a positioned between the extrinsic regions 153 a and 155 a.
The extrinsic region further includes a lightly doped region 152 a positioned between the first channel region 154 a and the first source and drain regions 153 a and 155 a. The lightly doped region may be replaced with an offset region including a relatively low amount of impurities, i.e. the offset region may include fewer impurities than each of the first source and drain regions 153 a and 155 a.
The first source and drain regions 153 a and 155 a may be formed at a region outside the width of a first gate electrode 124 a, the lightly doped region 152 a is formed at a position corresponding to the difference in width between the first gate electrode 124 a and a second gate electrode 125 a, and the first channel region 154 a is formed at a position corresponding to the width of the second gate electrode 125 a.
The lightly doped drain (LDD) structure smoothes a high electric field near the drain to decrease the off current in the thin film transistor. The lightly doped extrinsic region formed outside of the channel region and is referred to as an LDD region.
According to some embodiments, in the second semiconductor island 151 b, the extrinsic region includes second source and drain regions 153 b and 155 b that are doped with a p-type impurity and are separated from each other. The intrinsic region includes a second channel region 154 b formed between the second source and drain regions 153 b and 155 b.
Alternatively, the extrinsic regions 153 a and 155 a of the first semiconductor island 151 a may be doped with p-type impurities and the extrinsic regions 153 b and 155 b of the second semiconductor island 151 b may be doped with n-type impurities. The conductive p-type impurity may be boron (B) or gallium (Ga) and the conductive n-type impurity may be phosphorus (P) or arsenic (As).
According to some embodiments, a gate insulating layer 140 formed of a silicon nitride or a silicon oxide is formed on the semiconductor islands 151 a and 151 b and the blocking film 111.
A plurality of gate lines are formed on the gate insulating layer 140. The gate lines include the first gate electrode 124 a positioned corresponding to the channel region 154 a and the lightly doped region 152 a of the first semiconductor 151 a.
The gate lines transmit gate signals and are substantially extended in the transverse direction. The first gate electrode 124 a extends upward from the gate line, thereby intersecting the first semiconductor 151 a and overlapping the first channel region 154 a. Each gate line may include an end portion having a large area for contact with another layer or an external driving circuit. When a gate driving circuit or gate driver (not shown) for generating gate signals is formed directly on the substrate 110, the gate lines may extend and be directly connected to the gate driving circuit.
A gate conductor including the first gate electrode 124 a may be formed of an aluminum-based metal including aluminum (Al) or aluminum alloys, a silver-based metal including silver (Ag) or silver alloys, a copper-based metal including copper (Cu) or copper alloys, a molybdenum-based metal including molybdenum (Mo) or molybdenum alloys, chromium (Cr), tantalum (Ta), titanium (Ti), etc. However, they may have a multi-layer structure including two conductive layers (not shown) that have different physical properties from each other. One of the conductive layers may be formed using a metal having low resistivity, such as an aluminum-based metal, a silver-based metal, or a copper-based metal, in order to reduce signal delay or voltage drop. Other conductive layers may be formed using a material having good physical, chemical, and electrical contact characteristics particularly with indium tin oxide (ITO) and indium zinc oxide (IZO), such as a molybdenum-based metal, chromium, tantalum, titanium, or the like. Examples of the combination may include a lower chromium film and an upper aluminum (alloy) film, and a lower aluminum (alloy) film and an upper molybdenum (alloy) film. However, the gate conductors may be made of various metals or conductors.
The thickness of the first gate electrode may be less than about 1000 Å. Such a thickness assists in the formation of the lightly doped region 152 a by partially transmitting the impurity through the first gate electrode 124 a when doping the impurity to the first semiconductor 151 a; however, the impurity is not transmitted through the second gate electrode 125 a.
A first interlayer insulating layer 160 is formed on the gate conductor including the first gate electrode 124 a. The first interlayer insulating layer 160 is made of an inorganic insulator such as a silicon nitride, a silicon oxide, etc., an organic insulator, or an insulator having a low dielectric constant. In some embodiments, the dielectric constant of the organic insulator and the low dielectric insulator is less than about 4.0, for example a-Si:C:O or a-Si:O:F, which is formed through plasma enhanced chemical vapor deposition (PECVD). The first interlayer insulating layer 160 may be made of an organic insulator having photosensitivity and may provide a flat surface.
The second gate electrode 125 a is formed on the first interlayer insulating layer 160 to overlap the first gate electrode 124 a and the first channel region 154 a. A third gate electrode 124 b is also formed on the first interlayer insulating layer 160 to overlap the channel region 154 b of the second semiconductor 151 b.
The second gate electrode 125 a is formed to assist in the formation the lightly doped region 152 a in the first channel region 154 a of the first semiconductor 151 a.
The second gate electrode 125 a has a narrower width than that of the first gate electrode 124 a. The width of the lightly doped region 152 a corresponds to the difference in width between the first gate electrode 124 a and the second gate electrode 125 a. Accordingly, by controlling the size of a mask of the second gate electrode 125 a, the size of the lightly doped region 152 a may be easily predetermined.
The third gate electrode 124 b is separated from the gate line and overlaps the second channel region 154 b of the second semiconductor 151 b.
The second and third gate electrodes 125 a and 124 b may be formed of an aluminum-based metal including aluminum (Al) or aluminum alloys, a silver-based metal including silver (Ag) or silver alloys, a copper-based metal including copper (Cu) or copper alloys, a molybdenum-based metal including molybdenum (Mo) or molybdenum alloys, chromium (Cr), tantalum (Ta), titanium (Ti), etc. However, they may have a multi-layer structure including two conductive layers (not shown) that have different physical properties from each other. One of the conductive layers may be formed using a metal having low resistivity, such as an aluminum-based metal, a silver-based metal, or a copper-based metal, in order to reduce signal delay or voltage drop. Other conductive layers may be formed using a material having good physical, chemical, and electrical contact characteristics particularly with indium tin oxide (ITO) and indium zinc oxide (IZO), such as a molybdenum-based metal, chromium, tantalum, titanium, or the like. Examples of the combination may include a lower chromium film and an upper aluminum (alloy) film, and a lower aluminum (alloy) film and an upper molybdenum (alloy) film. However, they may be made of various metals or conductors.
A second interlayer insulating layer 161 is formed on the gate conductor including the second gate electrode 125 a and the third gate electrode 124 b. The second interlayer insulating layer 161 is made of an inorganic insulator such as a silicon nitride, a silicon oxide, etc., an organic insulator, or an insulator having a low dielectric constant. In some embodiments, the dielectric constant of the organic insulator and the low dielectric insulator is less than about 4.0, for example a-Si:C:O or a-Si:O:F, which is formed through plasma enhanced chemical vapor deposition (PECVD). The second interlayer insulating layer 161 may be made of an organic insulator having photosensitivity and may provide a flat surface.
In the OLED display shown in FIG. 1, the first semiconductor 151 a, the first gate electrode 124 a, and the second gate electrode 125 a formed on the first gate electrode 124 a form a switching thin film transistor (TFT) Qs and are connected to a data conductor and the second semiconductor 151 b and the third gate electrode 124 b form a driving thin film transistor (TFT) Qd and are connected to an OLED.
Next, an OLED display according to an exemplary embodiment will be described with reference to FIG. 2.
FIG. 2 is an equivalent circuit diagram of an OLED display according to an exemplary embodiment.
Referring to FIG. 2, the OLED display includes a plurality of signal lines 121, 171, and 172 and a plurality of pixels PX that are connected to the signal lines 121, 171, and 172 and arranged in a matrix.
The signal lines includes a plurality of gate lines 121 for transferring gate signals or scanning signals, a plurality of data lines 171 for transferring data signals, and a plurality of driving voltage lines 172 for transferring driving voltages. The gate lines 121 extend in a row direction substantially parallel to each other, while the data lines 171 and the driving voltage lines 172 extend in a column direction substantially parallel to each other.
Each of the pixels PX includes a switching transistor Qs, a driving transistor Qd, a storage capacitor Cst, and an OLED LD.
The switching transistor Qs includes a control terminal, an input terminal, and an output terminal. The control terminal is connected to the gate line 121, the input terminal is connected to the data line 171, and the output terminal is connected to the driving transistor Qd. The switching transistor Qs transfers a data signal supplied to the data line 171 to the driving transistor Qd in response to a scanning signal supplied to the gate line 121.
The driving transistor Qd also includes a control terminal, an input terminal, and an output terminal. The control terminal is connected to the switching transistor Qs, the input terminal is connected to the driving voltage line 172, and the output terminal is connected to the OLED LD. The driving transistor Qd outputs an output current ILD having a magnitude that varies depending on the voltage between the control terminal and the output terminal.
The capacitor Cst is connected between the control terminal and the input terminal of the driving transistor Qd. The capacitor Cst stores a data signal supplied to the control terminal of the driving transistor Qd and maintains the charged data signal even after the switching transistor Qs is turned off.
The OLED LD includes an anode connected to the output terminal of the driving transistor Qd and a cathode connected to a common voltage Vss. The OLED LD emits lights with an intensity dependent on the output current ILD of the driving transistor Qd so as to display images.
According to some embodiments, the switching transistor Qs is an n-channel electric field effect transistor (FET) and the driving transistor Qd is a p-channel electric field effect transistor. However, the channel types of the switching transistor Qs and the driving transistor Qd may be exchanged and the two transistors Qs and Qd may respectively be n-channel and the p-channel electric field effect transistors. Also, the connection relationship of the transistors Qs and Qd, the capacitor Cst, and the OLED LD may be changed.
Next, the OLED display according to an exemplary embodiment will be described with reference to FIG. 3 to FIG. 5.
FIG. 3 is a layout view of an OLED display according to an exemplary embodiment, FIG. 4 is a cross-sectional view of the OLED display of FIG. 3 taken along line II-II, and FIG. 5 is a cross-sectional view of the OLED display of FIG. 3 taken along line III-III.
The OLED display according to an exemplary embodiment includes the blocking film 111 formed of a silicon nitride (SiNx) or a silicon oxide (SiOx). The blocking film 111 is formed on the insulation substrate 110 formed of transparent glass or plastic. The blocking film 111 may have a dual-layered structure.
According to some embodiments, a plurality of pairs of first and second semiconductor islands 151 a and 151 b that are formed of polysilicon are formed on the blocking film 111. The semiconductor islands 151 a and 151 b respectively include a plurality of extrinsic regions including n-type or p-type conductive impurities and at least one intrinsic region that does not include conductive impurities.
According to some embodiments, in the first semiconductor island 151 a, the extrinsic region includes the first source and drain regions 153 a and 155 a and an intermediate region 1535 that are doped with an n-type impurity and separated from each other. The intrinsic region includes a pair of first channel regions 154 a 1 and 154 a 2 positioned between the extrinsic regions 153 a, 1535, and 155 a.
In the first semiconductor 151 a, the extrinsic region further includes lightly doped regions 152 a 1 and 152 a 2 positioned between the first channel regions 154 a 1 and 154 a 2 and the first source and drain regions 153 a and 155 a. The lightly doped region may be replaced with an offset region which includes including a relatively low amount of impurities.
The lightly doped drain (LDD) structure smoothes a high electric field near the drain to decrease the off current in the thin film transistor and the lightly doped extrinsic region is formed outside of the channel region and is referred to as an LDD region.
According to some embodiments, the second semiconductor island 151 b, the extrinsic region includes the second source and drain regions 153 b and 155 b that are doped with a p-type impurity and are separated from each other. The intrinsic region includes the second channel region 154 b disposed between the second source and drain regions 153 b and 155 b and a storage region 157 extending from the second source and drain regions 153 b and 155 b.
Alternatively, the extrinsic regions 153 a and 155 a of the first semiconductor island 151 a may be doped with p-type impurities and the extrinsic regions 153 b and 155 b of the second semiconductor island 151 b may be doped with n-type impurities. The conductive p-type impurity may be boron (B) or gallium (Ga) and the conductive impurity of the n-type may be phosphorus (P) or arsenic (As).
According to some embodiments, the gate insulating layer 140 is formed of a silicon nitride or a silicon oxide and is formed on the semiconductor islands 151 a and 151 b and the blocking film 111.
The gate lines 121 including the first gate electrodes 124 a are formed on the gate insulating layer 140.
The gate lines 121 transmit gate signals and are substantially extended in the transverse direction. The first gate electrode 124 a is extended upward from the gate line, thereby intersecting the first semiconductor 151 a and overlapping the first channel regions 154 a 1 and 154 a 2. Each gate line 121 may include an end portion having a large area for contact with another layer or an external driving circuit. When a gate driving circuit (not shown) for generating gate signals is formed directly on the substrate 110, the gate lines 121 may extend and be directly connected to the gate driving circuit.
A gate conductor including the first gate electrode 124 a may be made of an aluminum-based metal including aluminum (Al) or aluminum alloys, a silver-based metal including silver (Ag) or silver alloys, a copper-based metal including copper (Cu) or copper alloys, a molybdenum-based metal including molybdenum (Mo) or molybdenum alloys, chromium (Cr), tantalum (Ta), titanium (Ti), etc. However, they may have a multi-layer structure including two conductive layers (not shown) that have different physical properties from each other. One of the conductive layers may be formed using a metal having low resistivity, such as an aluminum-based metal, a silver-based metal, or a copper-based metal, in order to reduce signal delay or voltage drop. Other conductive layers may be formed using a material having good physical, chemical, and electrical contact characteristics particularly with indium tin oxide (ITO) and indium zinc oxide (IZO), such as a molybdenum-based metal, chromium, tantalum, titanium, or the like. Examples of the combination may include a lower chromium film and an upper aluminum (alloy) film, and a lower aluminum (alloy) film and an upper molybdenum (alloy) film. However, the gate conductors may be made of various metals or conductors.
The first interlayer insulating layer 160 is formed on the gate conductor including the first gate electrode 124 a. The first interlayer insulating layer 160 is made of an inorganic insulator such as a silicon nitride, a silicon oxide, etc., an organic insulator, or an insulator having a low dielectric constant. In some embodiments, the dielectric constant of the organic insulator and the low dielectric insulator is less than about 4.0, for example a-Si:C:O or a-Si:O:F, which is formed through plasma enhanced chemical vapor deposition (PECVD). The first interlayer insulating layer 160 may be formed of an organic insulator having photosensitivity and may provide a flat surface.
The second gate electrode 125 a is formed on the first interlayer insulating layer 160 to overlap the first gate electrode 124 a and the first channel region 154 a. The third gate electrode 124 b is also formed on the first interlayer insulating layer 160 to overlap the channel region 154 b of the second semiconductor 151 b.
The second gate electrode 125 a assists in forming the lightly doped region 152 a in the first channel region 154 a of the first semiconductor 151 a.
The second gate electrode 125 a has a narrower width than that of the first gate electrode 124 a. The width of the lightly doped region 152 a corresponds to the difference in width between the first and second gate electrodes 124 a and 135 a. Accordingly, by controlling the size of the mask of the second gate electrode 125 a, the size of the lightly doped region 152 a may be easily predetermined.
The third gate electrode 124 b is separated from the gate line and overlaps the second channel region 154 b of the second semiconductor 151 b. The third gate electrode 124 b is extended forming a storage electrode 127 and the storage electrode 127 overlaps the storage region 157 of the second semiconductor 151 b.
The second and third gate electrodes 125 a and 124 b may be formed of an aluminum-based metal including aluminum (Al) or aluminum alloys, a silver-based metal including silver (Ag) or silver alloys, a copper-based metal including copper (Cu) or copper alloys, a molybdenum-based metal including molybdenum (Mo) or molybdenum alloys, chromium (Cr), tantalum (Ta), titanium (Ti), etc. However, they may have a multi-layer structure including two conductive layers (not shown) that have different physical properties from each other. One of the conductive layers may be formed using a metal having low resistivity, such as an aluminum-based metal, a silver-based metal, or a copper-based metal, in order to reduce signal delay or voltage drop. Other conductive layers may be formed using a material having good physical, chemical, and electrical contact characteristics particularly with indium tin oxide (ITO) and indium zinc oxide (IZO), such as a molybdenum-based metal, chromium, tantalum, titanium, or the like. Examples of the combination may include a lower chromium film and an upper aluminum (alloy) film, and a lower aluminum (alloy) film and an upper molybdenum (alloy) film. However, they may be made of various metals or conductors.
The second interlayer insulating layer 161 is formed on the gate conductor including the second and third gate electrodes 125 a and 124 b. The second interlayer insulating layer 161 is made of an inorganic insulator such as a silicon nitride, a silicon oxide, etc., an organic insulator, or an insulator having a low dielectric ratio. In some embodiments, the dielectric constant of the organic insulator and the low dielectric insulator is less than about 4.0, for example a-Si:C:O or a-Si:O:F, which is formed through plasma enhanced chemical vapor deposition (PECVD). The second interlayer insulating layer 161 may be made of an organic insulator having photosensitivity and may provide a flat surface.
The second interlayer insulating layer 161 has a plurality of contact holes 164 exposing the third gate electrode 124 b. Also, the first and second interlayer insulating layers 160 and 161 and the gate insulating layer 140 have a plurality of contact holes 163 a, 163 b, 165 a, and 165 b exposing the source and drain regions 153 a, 153 b, 155 a, and 155 b.
A plurality of data conductors including a plurality of data lines 171, a plurality of driving voltage lines 172, and a plurality of first and second output electrodes 175 a and 175 b are formed on the second interlayer insulating layer 161.
The data lines 171 transmit a data signal and extend in the longitudinal direction thereby intersecting the gate lines 121. Each data line 171 includes a first input electrode 173 a connected to the first source region 153 a through the contact hole 163 a and may include an end portion having a large area for contact with another layer or an external driving circuit. When a data driving circuit or data driver (not shown) for generating data signals is formed directly on the substrate 110, the data line 171 may extend and be directly connected to the data driving circuit.
The driving voltage lines 172 transmit a driving voltage and extend in a longitudinal direction, thereby intersecting the gate lines 121. Each driving voltage line 172 includes a plurality of second input electrodes 173 b connected to the second source region 153 b through the contact hole 163 b. The driving voltage line 172 overlaps the storage electrode 127 and they may be connected to each other.
The first output electrode 175 a is separated from the data line 171 and the driving voltage line 172. The first output electrode 175 a is connected to the first drain region 155 a through the contact hole 165 a and to the third gate electrode 124 b through the contact hole 164.
The second output electrode 175 b is separated from the data line 171, the driving voltage line 172, and the first output electrode 175 a, and is connected to the second drain region 155 b through the contact hole 165 b.
The data conductors 171, 172, 175 a, and 175 b may be made of a refractory metal such as molybdenum, chromium, tantalum, or titanium, or alloys thereof, and have a multi-layered structure including a refractory metal layer (not shown) and a low resistance conductive layer (not shown). The multi-layered structure includes, for example, a dual layer of a chromium or molybdenum (alloy) lower layer and an aluminum (alloy) upper layer, and a triple-layer of a molybdenum (alloy) lower layer, an aluminum (alloy) middle layer, and a molybdenum (alloy) upper layer. However, the data conductors 171, 172, 175 a, and 175 b may be made of various other metals or conductors.
A passivation layer 180 is formed on the data conductors 171, 172, 175 a, and 175 b. The passivation layer 180 is made of an inorganic material, an organic material, or a low dielectric constant insulating material.
The passivation layer 180 has a plurality of contact holes 185 exposing the second output electrode 175 b. The passivation layer 180 may also have a plurality of contact holes (not shown) exposing the end of the data line 171 and the passivation layer 180 and the second interlayer insulating layer 161 may have a plurality of contact holes (not shown) exposing the end of the gate line 121.
A plurality of pixel electrodes 191 are formed on the passivation layer 180. The pixel electrodes 191 are physically and electrically connected to the second output electrodes 175 b through the contact holes 185 and may be formed of a transparent conductive material such as ITO or IZO, or a reflective conductor such as silver, aluminum, or alloys thereof.
A plurality of contact assistants (not shown) or connecting members (not shown) may be formed on the passivation layer 180 and may be connected to the exposed ends of the gate lines 121 and the data lines 171.
Partitions or a pixel defining layer 361 are formed on the passivation layer 180. The partitions 361 define a plurality of openings enclosing edges of the pixel electrodes 191 like a bank and are made of an organic insulator or an inorganic insulator. The partitions 361 may be made of a photoresist including black pigments and the partitions 361 function as a light blocking member in this case thereby simplifying the manufacturing process.
An organic light-emitting member or organic light-emitting layer 370 is formed in openings 365 defined by the partitions 361 on the pixel electrode 191. According to some embodiments, the organic light-emitting member 370 functions as an emission layer and is formed of an organic material uniquely emitting light of one primary color such as one of three primary colors of red, green, and blue. The OLED display may also display desired images by a spatial combination of the colored light of the primary colors emitted by the organic light-emitting members 370.
The organic light-emitting member 370 may have a multilayered structure including auxiliary layers (not illustrated) for improving light emission efficiency of an emitting layer in addition to the emitting layer (not illustrated) emitting light. In the auxiliary layers, an electron transport layer (not illustrated), a hole transport layer (not illustrated) for adjusting the balance of electrons and holes, an electron injecting layer (not illustrated), and a hole injecting layer (not illustrated) for reinforcing injection of the electrons and the holes, are included.
A common electrode 270 is formed on the organic light-emitting member 370. The common electrode 270 receives a common voltage Vss and may be formed of reflective metal including calcium (Ca), barium (Ba), magnesium (Mg), aluminum, silver, or the like, or a transparent conductive material such as ITO or IZO.
In the OLED display, the first semiconductor 151 a, the first gate electrode 124 a connected to the gate line 121, the second gate electrode 125 a formed on the first gate electrode 124 a, the first input electrode 173 a connected to the data line 171, and the first output electrode 175 a together form the switching thin film transistor (TFT) Qs. The channel of the switching thin film transistor Qs is formed in the first channel regions 154 a 1 and 154 a 2 of the first semiconductor 151 a. The second semiconductor 151 b, the third gate electrode 124 b connected to the first output electrode 175 a, the second input electrode 173 b connected to the driving voltage line 172, and the second output electrode 175 b connected to the pixel electrode 191 together form the driving thin film transistor (TFT) Qd connected to the organic light-emitting member. The channel of the driving thin film transistor Qd is formed in the channel region 154 b of the second semiconductor 151 b. The pixel electrode 191, the organic light-emitting member 370, and the common electrode 270 form the OLED. The pixel electrode 191 is an anode and the common electrode 270 is a cathode, or alternatively, the pixel electrode 191 is a cathode and the common electrode 270 is an anode. The storage electrode 127, the driving voltage line 172, and the storage region 157, which overlap each other, may form a storage capacitor Cst.
Such an OLED display emits light upward or downward from the substrate 110 to display an image. An opaque pixel electrode 191 and a transparent common electrode 270 are applied to a top emission OLED display which displays an image in an upper direction of the substrate 110. A transparent pixel electrode 191 and an opaque common electrode 270 are applied to a bottom emission OLED display which displays an image in a lower direction of the substrate 110.
Next, a manufacturing method of a thin film transistor in the OLED display according to an exemplary embodiment will be described with reference to FIG. 6 to FIG. 8.
FIG. 6 to FIG. 8 are views showing a method of manufacturing an OLED display according to an exemplary embodiment.
Referring to FIG. 6 and FIG. 7, a blocking film 111 formed of a silicon nitride (SiNx) or a silicon oxide (SiOx) is formed on an insulation substrate 110 formed of transparent glass or plastic. The blocking film 111 may be formed to have a dual-layer structure.
A plurality of pairs of the first and second semiconductor islands 151 a and 151 b formed of polysilicon are formed on the blocking film 111 and a gate insulating layer 140 formed of a silicon nitride or a silicon oxide is formed covering the first and second semiconductors 151 a and 151 b and the blocking film 111.
Next, a conductive layer 124 is formed to form the first gate electrode 124 a and a photoresist mask PR is formed on the first semiconductor layer 151 a at a position to form the first gate electrode 124 a on the conductive layer 124.
The conductive layer 124 is etched by using the photoresist mask PR to form the first gate electrode 124 a.
The thickness of the first gate electrode 124 a is formed to be less than about 1000 Å in order to facilitate the formation of the lightly doped region 152 a by partially transmitting the impurity through the first gate electrode 124 a when doping the impurity to the first semiconductor 151 a. The impurity is not transmitted through the second gate electrode 125 a.
Next, referring to FIG. 8, the first interlayer insulating layer 160 formed of an inorganic insulator such as a silicon nitride or a silicon oxide, an organic insulator, or a low dialectic insulator is formed on the first gate electrode 124 a.
The second gate electrode 125 a is formed on the first interlayer insulating layer 160 and positioned over each of the first semiconductor 151 a and the first gate electrode 124 a. A third gate electrode 124 b is formed on the first interlayer insulating layer and positioned over the second semiconductor 151 b.
At this time, the second gate electrode 125 a is formed to have a narrower width than that of the first gate electrode 124 a so as to be appropriate for forming the lightly doped region 152 a of the first semiconductor 151 a with the desired width. The third gate electrode 124 b is formed with a width corresponding to the width of the channel region of the second semiconductor 151 b.
According to some embodiments, first doping is then performed on the first semiconductor layer 151 a to add the impurity element providing the n-type conductivity. The doping is performed by using the first gate electrode 124 a and the second gate electrode 125 a as a mask for the impurity element and is performed to add the impurity element to the region under the first gate electrode 124 a.
Accordingly, the lightly doped region (LDD region) 152 a overlapping the first gate electrode 124 a and the source and drain regions 153 a and 155 a having a higher impurity concentration than the lightly doped region 152 a may be formed.
Through the process, the first source and drain regions 153 a and 155 a may be formed outside the width of the first gate electrode 124 a, the lightly doped region 152 a may be formed at the position corresponding to the difference in width between the first and second gate electrodes 124 a and 125 a, and the channel region 154 a may be positioned at the position corresponding to the width of the second gate electrode 125 a.
Accordingly, control of the width of the lightly doped region 152 a is possible by controlling the width of the second gate electrode 125 a.
In the OLED display according to the exemplary embodiment shown in FIG. 6 to FIG. 8, the first semiconductor 151 a, the first gate electrode 124 a, and the second gate electrode 125 a formed on the first gate electrode 124 a together form the switching thin film transistor (TFT) Qs. The switching TFT Qs is connected to the data conductor. The second semiconductor 151 b and the third gate electrode 124 b form the driving thin film transistor (TFT) Qd and is connected to the organic light-emitting member.
As described above, according to an exemplary embodiment, the extrinsic region and the lightly doped region of the semiconductor layer of the OLED display may be easily formed and high quality characteristics may be obtained in the on and off states.
While the described technology has been described in connection with what is presently considered to be practical exemplary embodiments, it is to be understood that the invention is not limited to the disclosed embodiments, but, on the contrary, is intended to cover various modifications and equivalent arrangements included within the spirit and scope of the appended claims.

Claims (11)

What is claimed is:
1. An organic light-emitting diode (OLED) display, comprising:
a substrate;
a first semiconductor layer formed over the substrate and including a first channel region, a first source region, a first drain region, and a lightly doped region formed between i) the first channel region and ii) the first source and drain regions;
a second semiconductor layer formed over the substrate and including a second channel region, a second source region, and second drain region;
a gate insulating layer formed over the first and second semiconductor layers and the substrate;
a first gate electrode formed over the gate insulating layer wherein the first gate electrode is formed directly above at least a portion of the first semiconductor layer;
a first interlayer insulating layer formed over the first gate electrode and the gate insulating layer;
a second gate electrode formed over the first interlayer insulating layer wherein the second gate electrode is formed directly above at least a portion of the first gate electrode; and
a third gate electrode formed directly above at least a portion of the second semiconductor layer,
wherein the width of the second gate electrode is less than that of the first gate electrode,
wherein at least a portion of the lightly doped region overlaps the first gate electrode, and
wherein the lightly doped region does not overlap the second gate electrode.
2. The OLED display of claim 1, wherein the first channel region overlaps i) at least a portion of the first gate electrode and ii) the second gate electrode and wherein the first source and drain regions overlap neither the first gate electrode nor the second gate electrode.
3. The OLED display of claim 2, further comprising a blocking film formed between i) the substrate and ii) the first and second semiconductor layers.
4. The OLED display of claim 3, wherein the first semiconductor layer is doped with at least one of boron, gallium, phosphorus, or arsenic.
5. The OLED display of claim 2, wherein the lightly doped region comprises an offset region including fewer impurities than each of the first source and drain regions.
6. The OLED display of claim 1, wherein the second channel region is formed directly below the third gate electrode and wherein the second source and drain regions do not overlap the third gate electrode.
7. The OLED display of claim 1, wherein the first gate electrode has a thickness of less than about 1000 Å.
8. The OLED display of claim 2, further comprising:
a second interlayer insulating layer formed over the second and third gate electrodes;
a plurality of data conductors formed over the second interlayer insulating layer;
a passivation layer formed over the data conductors;
a plurality of pixel electrodes formed over the passivation layer;
a pixel defining layer formed over the passivation layer and at least a portion of the pixel electrodes;
an organic light-emitting layer formed over the pixel electrodes; and
a common electrode formed over the organic light-emitting layer,
wherein the second interlayer insulating layer and the gate insulating layer define a plurality of contact holes,
wherein the passivation layer defines a plurality of contact holes,
wherein the data conductors pass through the respective contact holes to be electrically connected to the first source and drain regions, the second source and drain regions, and the pixel electrodes.
9. The OLED display of claim 8, wherein the first semiconductor layer and the first and second gate electrodes form a switching thin film transistor electrically connected to the data conductors and wherein the second semiconductor layer and the third gate electrode form a driving thin film transistor electrically connected to the organic light-emitting layer.
10. An organic light-emitting diode (OLED) display including a plurality of thin film transistors (TFTs), each TFT comprising:
a substrate;
a semiconductor layer formed over the substrate and including a first channel region, a source region, a drain region, and a lightly doped region formed between i) the first channel region and ii) the source and drain regions;
a first gate electrode formed directly over at least a portion of the semiconductor layer; and
a second gate electrode formed directly over at least a portion of the first gate electrode,
wherein the width of the second gate electrode is less than that of the first gate electrode,
wherein at least a portion of the lightly doped region overlaps the first gate electrode and does not overlap the second gate electrode.
11. The OLED display of claim 10, wherein the semiconductor layer further comprises:
a second channel region; and
an intermediate region,
wherein the lightly doped region is further located between i) the intermediate region and ii) the first and second channel regions,
wherein the first gate electrode comprises a pair of first gate electrodes respectively formed directly above the first and second channel regions, and
wherein the second gate electrode comprises a pair of second gate electrodes respectively formed directly above the pair of first gate electrodes.
US14/457,862 2013-09-27 2014-08-12 Organic light-emitting diode (OLED) display and method for manufacturing the same Active US9263507B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US15/041,903 US9502486B2 (en) 2013-09-27 2016-02-11 Organic light-emitting diode (OLED) display and method for manufacturing the same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2013-0115350 2013-09-27
KR1020130115350A KR102091664B1 (en) 2013-09-27 2013-09-27 Organic light emitting display and method for producing the same

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US15/041,903 Division US9502486B2 (en) 2013-09-27 2016-02-11 Organic light-emitting diode (OLED) display and method for manufacturing the same

Publications (2)

Publication Number Publication Date
US20150090980A1 US20150090980A1 (en) 2015-04-02
US9263507B2 true US9263507B2 (en) 2016-02-16

Family

ID=52739196

Family Applications (2)

Application Number Title Priority Date Filing Date
US14/457,862 Active US9263507B2 (en) 2013-09-27 2014-08-12 Organic light-emitting diode (OLED) display and method for manufacturing the same
US15/041,903 Active US9502486B2 (en) 2013-09-27 2016-02-11 Organic light-emitting diode (OLED) display and method for manufacturing the same

Family Applications After (1)

Application Number Title Priority Date Filing Date
US15/041,903 Active US9502486B2 (en) 2013-09-27 2016-02-11 Organic light-emitting diode (OLED) display and method for manufacturing the same

Country Status (2)

Country Link
US (2) US9263507B2 (en)
KR (1) KR102091664B1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20160163776A1 (en) * 2013-09-27 2016-06-09 Samsung Display Co., Ltd. Organic light-emitting diode (oled) display and method for manufacturing the same
CN107819021A (en) * 2017-11-06 2018-03-20 武汉华星光电半导体显示技术有限公司 The preparation method and flexible OLED display panel of a kind of flexible OLED display panel
US10490756B2 (en) 2017-11-06 2019-11-26 Wuhan China Star Optoelectronics Semiconductor Display Technology Co., Ltd. Method for fabricating flexible OLED panel and flexible OLED panel

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI567950B (en) * 2015-01-08 2017-01-21 群創光電股份有限公司 Display panels
KR102326555B1 (en) * 2015-04-29 2021-11-17 삼성디스플레이 주식회사 Display device
KR102434370B1 (en) 2015-08-27 2022-08-19 삼성디스플레이 주식회사 Display device and manufacturing method thereof
KR102148491B1 (en) 2015-12-14 2020-08-26 엘지디스플레이 주식회사 Thin film transistor substrate
KR102485707B1 (en) * 2016-01-29 2023-01-09 삼성디스플레이 주식회사 Organic light emitting display device
CN107275408B (en) * 2016-04-06 2020-03-10 上海和辉光电有限公司 Thin film transistor, manufacturing method thereof, driving circuit and display device
KR102514412B1 (en) * 2016-05-02 2023-03-28 삼성디스플레이 주식회사 Semiconductor device and Display apparatus employing the same
KR102687941B1 (en) * 2016-10-24 2024-07-24 삼성디스플레이 주식회사 Display device and method for manufacturing the same
KR102333671B1 (en) * 2017-05-29 2021-12-01 삼성디스플레이 주식회사 Organic light emitting display device and a method of manufacturing organic light emitting display device
KR102417452B1 (en) * 2017-10-16 2022-07-06 엘지디스플레이 주식회사 Display Device
KR20190100554A (en) 2018-02-19 2019-08-29 삼성디스플레이 주식회사 Organic light emitting diode display device
KR102579829B1 (en) 2018-03-22 2023-09-18 삼성디스플레이 주식회사 Thin film transistor array panel
CN110429112B (en) * 2019-07-22 2021-11-02 武汉华星光电半导体显示技术有限公司 Array substrate

Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR19980023377A (en) 1996-09-30 1998-07-06 엄길용 Method of manufacturing thin film transistor of thin film transistor liquid crystal display
US20060157711A1 (en) * 2005-01-19 2006-07-20 Samsung Electronics Co., Ltd. Thin film transistor array panel
KR100767612B1 (en) 2000-03-06 2007-10-17 가부시키가이샤 한도오따이 에네루기 켄큐쇼 Semiconductor device and manufacturing method
US20080087889A1 (en) * 2006-10-16 2008-04-17 Tpo Displays Corp. Method of fabricating an organic electroluminescent device and system of displaying images
US7408192B2 (en) * 2004-12-13 2008-08-05 Samsung Sdi Co., Ltd. Organic light emitting display device and method of fabricating the same
US20090262270A1 (en) * 2008-04-16 2009-10-22 Samsung Electronics Co., Ltd. Liquid crystal display device
US8368297B2 (en) * 2008-09-03 2013-02-05 Samsung Display Co., Ltd. Organic light emitting device
KR101258474B1 (en) 2005-06-10 2013-04-26 가부시키가이샤 한도오따이 에네루기 켄큐쇼 Semiconductor device and manufacturing method thereof
US20140167040A1 (en) * 2012-04-02 2014-06-19 Samsung Display Co., Ltd. Thin film transistor, thin film transistor array panel including the same, and method of manufacturing the same
US20140225075A1 (en) * 2013-02-14 2014-08-14 Zhi-Feng ZHAN Thin film semiconductor device, organic light-emitting display device, and method of manufacturing the thin film semiconductor device
US20150102355A1 (en) * 2013-10-14 2015-04-16 Samsung Display Co., Ltd. Display substrates and methods of manufacturing display substrates
US20150129870A1 (en) * 2013-11-14 2015-05-14 Everdisplay Optronics (Shanghai) Limited Tft driving backplane and method of manufacturing the same

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3282582B2 (en) * 1998-04-21 2002-05-13 日本電気株式会社 Top gate type thin film transistor and method of manufacturing the same
KR101239889B1 (en) 2005-08-13 2013-03-06 삼성디스플레이 주식회사 Thin film transistor plate and method of fabricating the same
KR101786801B1 (en) * 2010-12-22 2017-10-19 엘지디스플레이 주식회사 Substrate for organic electro luminescent device and method of fabricating the same
KR20120140474A (en) * 2011-06-21 2012-12-31 삼성디스플레이 주식회사 Organic light emitting display device and method for manufacturing the same
KR101856221B1 (en) * 2011-09-20 2018-05-09 엘지디스플레이 주식회사 Method of fabricating a thin film transistor and method of fabricating an organic light-emitting display device
KR102091664B1 (en) * 2013-09-27 2020-03-23 삼성디스플레이 주식회사 Organic light emitting display and method for producing the same

Patent Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR19980023377A (en) 1996-09-30 1998-07-06 엄길용 Method of manufacturing thin film transistor of thin film transistor liquid crystal display
KR100767612B1 (en) 2000-03-06 2007-10-17 가부시키가이샤 한도오따이 에네루기 켄큐쇼 Semiconductor device and manufacturing method
US7408192B2 (en) * 2004-12-13 2008-08-05 Samsung Sdi Co., Ltd. Organic light emitting display device and method of fabricating the same
US20060157711A1 (en) * 2005-01-19 2006-07-20 Samsung Electronics Co., Ltd. Thin film transistor array panel
KR101258474B1 (en) 2005-06-10 2013-04-26 가부시키가이샤 한도오따이 에네루기 켄큐쇼 Semiconductor device and manufacturing method thereof
US20080087889A1 (en) * 2006-10-16 2008-04-17 Tpo Displays Corp. Method of fabricating an organic electroluminescent device and system of displaying images
US20090262270A1 (en) * 2008-04-16 2009-10-22 Samsung Electronics Co., Ltd. Liquid crystal display device
US8368297B2 (en) * 2008-09-03 2013-02-05 Samsung Display Co., Ltd. Organic light emitting device
US20140167040A1 (en) * 2012-04-02 2014-06-19 Samsung Display Co., Ltd. Thin film transistor, thin film transistor array panel including the same, and method of manufacturing the same
US20140225075A1 (en) * 2013-02-14 2014-08-14 Zhi-Feng ZHAN Thin film semiconductor device, organic light-emitting display device, and method of manufacturing the thin film semiconductor device
US20150102355A1 (en) * 2013-10-14 2015-04-16 Samsung Display Co., Ltd. Display substrates and methods of manufacturing display substrates
US20150129870A1 (en) * 2013-11-14 2015-05-14 Everdisplay Optronics (Shanghai) Limited Tft driving backplane and method of manufacturing the same

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20160163776A1 (en) * 2013-09-27 2016-06-09 Samsung Display Co., Ltd. Organic light-emitting diode (oled) display and method for manufacturing the same
US9502486B2 (en) * 2013-09-27 2016-11-22 Samsung Display Co., Ltd. Organic light-emitting diode (OLED) display and method for manufacturing the same
CN107819021A (en) * 2017-11-06 2018-03-20 武汉华星光电半导体显示技术有限公司 The preparation method and flexible OLED display panel of a kind of flexible OLED display panel
WO2019085096A1 (en) * 2017-11-06 2019-05-09 武汉华星光电半导体显示技术有限公司 Method for manufacturing flexible oled display panel, and flexible oled display panel
US10490756B2 (en) 2017-11-06 2019-11-26 Wuhan China Star Optoelectronics Semiconductor Display Technology Co., Ltd. Method for fabricating flexible OLED panel and flexible OLED panel

Also Published As

Publication number Publication date
US9502486B2 (en) 2016-11-22
KR20150035132A (en) 2015-04-06
KR102091664B1 (en) 2020-03-23
US20160163776A1 (en) 2016-06-09
US20150090980A1 (en) 2015-04-02

Similar Documents

Publication Publication Date Title
US9502486B2 (en) Organic light-emitting diode (OLED) display and method for manufacturing the same
US7683382B2 (en) Organic light emitting diode display
US9425426B2 (en) Organic light emitting diode display having auxiliary electrode
US8368297B2 (en) Organic light emitting device
US8507910B2 (en) Active matrix display apparatus
US20070075955A1 (en) Organic light emitting diode display
US7456431B2 (en) Organic light emitting display
CN107464819B (en) Light-emitting panel
US20070117257A1 (en) Organic light emitting diode display
US20080067930A1 (en) Organic light emitting display and manufactuirng method thereof
KR20140085979A (en) Transparent organic light emitting display device and method for manufacturing the same
US8013325B2 (en) Thin film transistor, organic light emitting device including thin film transistor, and manufacturing method thereof
US7772764B2 (en) Display device and method of manufacturing the same
US7646044B2 (en) Thin film transistor and thin film transistor array panel
US9728122B2 (en) Organic light emitting diode display
US20100012943A1 (en) Thin film transistor and manufacturing method thereof
KR20070052509A (en) Organic light emitting diode display
US8426863B2 (en) Thin film transistor; method of manufacturing same; and organic light emitting device including the thin film transistor
US8692458B2 (en) Light emitting device and electronic device
US9099360B2 (en) Display device and manufacturing method thereof
US20220069059A1 (en) Organic light-emitting display device and method for manufacturing the same
CN115732572A (en) Display device having oxide semiconductor
KR20230159746A (en) Display device
US20140141577A1 (en) Method of manufacturing thin film transistor array panel

Legal Events

Date Code Title Description
AS Assignment

Owner name: SAMSUNG DISPLAY CO., LTD., KOREA, REPUBLIC OF

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:LEE, WANG WOO;KO, MOO SOON;WOO, MIN WOO;AND OTHERS;REEL/FRAME:033547/0833

Effective date: 20140212

FEPP Fee payment procedure

Free format text: PAYOR NUMBER ASSIGNED (ORIGINAL EVENT CODE: ASPN); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY

Free format text: PAYER NUMBER DE-ASSIGNED (ORIGINAL EVENT CODE: RMPN); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY

FEPP Fee payment procedure

Free format text: PAYOR NUMBER ASSIGNED (ORIGINAL EVENT CODE: ASPN); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY

STCF Information on status: patent grant

Free format text: PATENTED CASE

MAFP Maintenance fee payment

Free format text: PAYMENT OF MAINTENANCE FEE, 4TH YEAR, LARGE ENTITY (ORIGINAL EVENT CODE: M1551); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY

Year of fee payment: 4

MAFP Maintenance fee payment

Free format text: PAYMENT OF MAINTENANCE FEE, 8TH YEAR, LARGE ENTITY (ORIGINAL EVENT CODE: M1552); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY

Year of fee payment: 8