US9237271B2 - Edge-based electronic image stabilization - Google Patents
Edge-based electronic image stabilization Download PDFInfo
- Publication number
- US9237271B2 US9237271B2 US14/536,338 US201414536338A US9237271B2 US 9237271 B2 US9237271 B2 US 9237271B2 US 201414536338 A US201414536338 A US 201414536338A US 9237271 B2 US9237271 B2 US 9237271B2
- Authority
- US
- United States
- Prior art keywords
- frame
- stabilized
- edge
- points
- depicted
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 230000006641 stabilisation Effects 0.000 title abstract description 111
- 238000011105 stabilization Methods 0.000 title abstract description 111
- 238000000034 method Methods 0.000 claims abstract description 77
- 238000012886 linear function Methods 0.000 claims description 16
- 230000000087 stabilizing effect Effects 0.000 claims description 5
- 238000012545 processing Methods 0.000 description 23
- 230000006870 function Effects 0.000 description 14
- 230000008569 process Effects 0.000 description 13
- 230000015654 memory Effects 0.000 description 10
- 238000010586 diagram Methods 0.000 description 9
- 230000008901 benefit Effects 0.000 description 5
- 238000004891 communication Methods 0.000 description 3
- 230000009471 action Effects 0.000 description 2
- 230000007423 decrease Effects 0.000 description 2
- 239000003086 colorant Substances 0.000 description 1
- 238000010276 construction Methods 0.000 description 1
- 230000001687 destabilization Effects 0.000 description 1
- 235000019800 disodium phosphate Nutrition 0.000 description 1
- 238000002156 mixing Methods 0.000 description 1
- 239000000203 mixture Substances 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 230000003287 optical effect Effects 0.000 description 1
Images
Classifications
-
- H04N5/23267—
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04N—PICTORIAL COMMUNICATION, e.g. TELEVISION
- H04N23/00—Cameras or camera modules comprising electronic image sensors; Control thereof
- H04N23/60—Control of cameras or camera modules
- H04N23/68—Control of cameras or camera modules for stable pick-up of the scene, e.g. compensating for camera body vibrations
- H04N23/682—Vibration or motion blur correction
- H04N23/683—Vibration or motion blur correction performed by a processor, e.g. controlling the readout of an image memory
Definitions
- This disclosure relates to digital video processing, and more specifically to electronic image stabilization.
- EIS Electronic image stabilization
- DSP digital signal processor
- FIG. 1 is a block diagram of an embodiment of an image stabilization system.
- FIG. 2 is a diagram illustrating an embodiment of a standard image stabilization technique.
- FIG. 3 is a flowchart illustrating an embodiment of an edge-based image stabilization process.
- FIG. 4A is a diagram illustrating an embodiment of a pinned-edge image stabilization technique.
- FIG. 4B is a diagram illustrating an embodiment of an asymmetric pinned-edge image stabilization technique.
- FIG. 5A is a diagram illustrating an embodiment of a soft pinned-edge image stabilization technique.
- FIG. 5B is a diagram illustrating an embodiment of an asymmetric soft pinned-edge image stabilization technique.
- FIG. 6 is a diagram illustrating an embodiment of a two-dimensional edge-based image stabilization technique.
- FIG. 7 is a graph illustrating a comparison between various stabilization techniques.
- An image stabilization system captures and stabilizes digital video.
- the image stabilization system includes a camera system for capturing digital video and an image processing system for performing stabilization.
- Digital video is received comprising a sequence of frames depicting a scene.
- the sequence of frames includes a reference frame and a second frame which each depict a common plurality of depicted points in the scene.
- a reference point is determined from the common plurality of points.
- the reference point corresponds to different pixel locations in the reference image and the second image (e.g., due to camera motion between capturing the images).
- a warping function is applied to the second frame of the digital video to generate a warped second frame.
- Depicted points of the depicted scene in the warped second frame are shifted non-uniformly relative to corresponding depicted points in the second image. Applying the warping function decreases depicted movement of the reference point between the reference frame and the second frame, resulting in a stabilized image.
- the amount of shift applied to depicted points between an edge of the second frame and the reference point varies linearly with distance from the edge of the second frame. In another embodiment, an amount of shift applied to depicted points along a line between an edge of the second frame and the reference point varies non-linearly with distance from the edge of the second frame.
- a soft pinned-edge stabilization technique is applied. For example, in one embodiment a first shift having a component in a first direction is applied to a non-edge point. A second shift is applied to an edge point. The non-edge point is shifted by a greater amount in the first direction than the edge point. In one embodiment, the first direction comprises a direction perpendicular to the edge of the second frame.
- a pinned-edge stabilization technique is applied. For example, in one embodiment, a first shift having a component in a first direction is applied to a non-edge point. No shift is applied to an edge point in the first direction. In one embodiment, the first direction comprises a direction perpendicular to the edge of the second frame.
- FIG. 1 illustrates an embodiment of an image stabilization system 100 for performing image stabilization.
- the image stabilization system 100 comprises a camera system 102 and a processing system 110 coupled by a communication link 120 .
- the camera system 102 and processing system 110 may be embodied within the same apparatus.
- the camera system 102 and processing system 110 may be in separate devices such as, for example, a camera device and a computing device respectively.
- the image stabilization system 100 may include different or additional elements.
- the camera system 102 comprises an image sensor 104 and a video storage 106 .
- Other optional components of the camera system 102 such as control interfaces, display screen, etc. are omitted from the figure for clarity of description.
- the image sensor 104 captures digital video.
- the digital video comprises a sequence of frames (or images), with each frame comprising a two-dimensional array of pixels.
- the captured frames depict a “scene,” which may include, for example, landscape, people, objects, etc represented by the captured pixels.
- Each pixel represents a depicted point in a scene captured in the digital video.
- each pixel is located at a pixel location, referring to, for example, (x,y) coordinates of the pixel within the frame.
- a pixel may comprise ⁇ Red, Green, Blue ⁇ (RGB) values describing the relative intensities of the colors sensed by the image sensor 104 at a particular set of (x,y) coordinates in the frame.
- the image sensor 104 may capture video suitable for providing output videos having high definition resolutions (for example, 1080p, 960p, or 720p), standard definition resolutions, or other resolutions.
- the image sensor 104 may capture video at various frame rates such as, for example, 120 frames per seconds (FPS), 60 fps, 48, fps, or 30 fps, although other frame rates may also be used.
- the image sensor 104 may include a lens that allows for wide-angle or ultra wide-angle video capture having fields of view of, for example, 90 degrees, 127 degrees, or 170 degrees, although other field of view angles may also be used.
- the image sensor 104 captures images having larger dimensions (additional pixels) than the dimensions of the field of interest (i.e., the scene the user attempts to capture).
- the additional pixels are utilized in soft pinned-edge image stabilization or standard stabilization described in further detail below.
- the image sensor 104 captures an image having the same dimensions as the desired field of interest as may be used in pinned-edge image stabilization.
- Image frames captured by the image sensor 102 may be temporarily or permanently stored in the video storage 106 which may comprise, for example, a hard drive or a solid-state memory device (e.g., a memory card or universal serial bus (USB) memory device).
- the video storage 106 may be omitted and the image sensor 102 may instead communicate the captured data directly to the processing system 110 via the communication link 120 .
- the resulting video will appear as being unstable. This may appear, for example, as a “shaky” or “jittery” video in which depicted points that are stationary in the real-life scene appear to move in the captured video.
- a stationary object that is centered in a first frame of the video may be off-centered in a second frame of the video due to motion of the image sensor between capturing the first and second frames.
- a stable point captured as a pixel at a pixel location (x 1 , y 1 ) in a first frame may appear in a second frame as a pixel captured at a different pixel location (x 2 , y 2 ).
- objects that are in motion during video capture may appear to have a motion that is distorted in the captured video relative its true motion.
- Such unstable video is a common result whenever the camera is held by hand or mounted to a moving object, and can be particularly problematic when attempting to capture action shots such as, for example, video captured while walking, running, driving, biking, surfing, etc.
- Captured video is transferred to the image processing system 110 via the communication link 120 which may be a wired or wireless link.
- the image processing system 110 applies image stabilization to the captured video to compensate for unwanted camera motion.
- the image processing system 110 may process the video such that stationary objects in the captured scene appear as stationary in the stabilized output video or at least have reduced movement relative to the un-stabilized captured video.
- the image processing system 110 may apply image stabilization to account for horizontal camera movement, vertical camera movement, forwards/backwards motion or a combination.
- the image processor 106 may apply pinned-edge image stabilization, soft pinned-edge image stabilization, standard image stabilization, or a combination of techniques.
- the processing system 110 comprises a processor 112 and a memory 114 .
- the memory 114 stores computer-executable program instructions for image stabilization.
- the processor 112 loads program instructions from the memory 114 and executes the instructions.
- the processing system 110 could implement the image stabilization in hardware, firmware, or a combination of hardware, firmware, and/or software.
- FIG. 2 is a diagram illustrating an embodiment of a standard image stabilization technique.
- Image buffer windows 202 - 1 , 202 - 2 , 202 - 3 represent the pixels captured by the image sensor 104 at various capture times and correspond to different frames of the captured video.
- the image buffer windows 202 have larger dimensions than the stabilized output video representing the desired field of interest.
- a reference field of interest 204 - 1 represents a subset of pixels of the image buffer window 202 - 1 and corresponds to the scene that will be depicted in the stabilized output video.
- the reference field of interest 204 - 1 includes a reference location 206 - 1 that will provide a stabilization reference for the stabilization process.
- the reference field of interest 204 - 1 centered within the image buffer window 202 - 1 .
- the reference location 206 - 1 represents a center of the image buffer window 202 - 1 .
- the stabilization process acts to reduce depicted motion (e.g., improve or maintain stability) of the point in the scene that is depicted at the reference location 206 - 1 .
- a point on a stationary object depicted at the reference location 206 - 1 will ideally be stationary (e.g., remain centered or substantially centered) in each frame of the stabilized output video. If complete image stabilization cannot be achieved, image stabilization will still ensure that the reference location 206 - 1 remains closer to stationary (e.g., closer to centered) in the stabilized output video than in the un-stabilized video.
- the field of interest 204 - 2 is no longer centered in the image buffer window 202 - 2 but is offset to the bottom-right. This could be due to, for example, movement of the camera up and to the left in between capturing the reference image frame buffer 202 - 1 and the second image frame buffer 202 - 2 .
- the point in the scene that was depicted at the reference pixel location 206 - 1 in the reference image frame buffer 202 - 1 is now depicted by pixels at a different pixel location 206 - 2 .
- a third captured image buffer window 202 - 3 the field of interest 204 - 3 is now offset to the top-left due to, for example, camera movement down and to the right in between capturing the reference image frame buffer 202 - 1 and the third image frame buffer 202 - 3 .
- the point in the scene that was depicted by pixels at the reference location 206 - 1 is now depicted by pixels at another different location 206 - 3 .
- the image processing system 110 detects the locations 206 - 2 , 206 - 3 , that correspond to the point depicted at the reference location 206 - 1 and then determines the pixels corresponding to the fields of interest 204 - 2 , 204 - 3 around the locations 206 - 2 , 206 - 3 respectively.
- the pixels corresponding to the fields of interest 204 - 1 , 204 - 2 , 204 - 3 are then outputted to produce the stabilized output video frames 208 - 1 , 208 - 2 , 208 - 3 respectively, and the remaining pixels are discarded.
- the fields of interest 208 - 1 , 208 - 2 , 208 - 3 appear stable and stationary objects will appear stationary.
- a disadvantage of the above-described stabilization technique is that the image frame buffer 202 is significantly larger than the output video frames 208 - 1 , 208 - 2 , 208 - 3 . This is often undesirable because capturing these extra pixels utilizes additional bandwidth and power.
- a “pinned-edge” or “soft pinned edge” image stabilization technique is applied to compensate for unwanted camera motion in a captured video.
- the final stabilized output video has the same dimensions as the pre-stabilized input buffer window captured by the image sensor.
- the pre-stabilized input buffer window has slightly larger dimensions than the stabilized output video but these larger dimensions are still reduced compared to traditional electronic image stabilization.
- soft pinned-edge image stabilization only a reduced number of captured pixels end up being discarded relative to traditional image stabilization.
- FIG. 3 it is a flowchart illustrating an example embodiment of a process for edge-based image stabilization (e.g., pinned edge or soft pinned-edge stabilization).
- Digital video is received 302 comprising a sequence of frames depicting a scene.
- the sequence of frames includes a reference frame and a second frame, which each depict a common plurality of depicted points in the scene.
- a reference point is determined 304 from the common plurality of points.
- the reference point corresponds to a point in the image that will be stabilized by the stabilization process, for example, by reducing depicted motion of this point between image frames).
- the reference point comprises a point depicted at a predetermined pixel location (e.g., a center pixel) of a predetermined reference frame (e.g., a first frame).
- a predetermined pixel location e.g., a center pixel
- the reference point may be dynamically selected based on various characteristics of the video. For example, content recognition may be applied to the video and the reference point may be chosen as a point on a particular object (e.g., a center of a face, a point along a horizon or edge, etc.). The reference point corresponds to different pixel locations in the reference image and the second image (e.g., due to camera motion between capturing the images).
- a warping function 306 is applied to the second frame of the digital video to generate a warped second frame.
- the warping function warps the second frame such that depicted points of the depicted scene in the warped second frame are shifted non-uniformly relative to corresponding depicted points in the second image. Furthermore, applying the warping function decreases depicted movement of the reference point between the reference frame and the second frame, resulting in a stabilized image.
- Step 306 may be repeated for stabilizing additional frames with respect to the reference frame. Furthermore, in some instances a new reference point may be determined (step 304 ), either periodically or when certain conditions are met.
- a stabilized video is generated 308 by combining the stabilized frames and reference frames into the appropriate sequence. It is noted that the processes described through FIGS. 2-3 may be embodied as instructions stored in the memory 114 or other computer-readable storage medium and executed by the processor 112 of the processing system 110 . More detailed examples of pinned-edge and soft pinned-edge stabilization are described below.
- FIG. 4A it is a diagram illustrating an example of a pinned-edge image stabilization technique to compensate for horizontal camera movement.
- a reference frame 402 comprises an array of pixel columns corresponding to various depicted points within a captured scene (e.g., points on the lines A-J).
- Column 406 is a reference column and includes a reference location 408 .
- the pinned-edge image stabilization technique will operate so that a point in the scene depicted at the reference location 408 and the reference column 406 will have reduced motion (or remain stationary) in the stabilized output video relative to the un-stabilized video.
- the capture buffer window 410 - 1 (the set of pixels that are captured by the camera) is of the same width as the field of interest 420 (the range of pixels that will be included in the final stabilized video).
- the field of interest 420 the range of pixels that will be included in the final stabilized video.
- the depicted points are all horizontally shifted relative to the reference frame 402 due to horizontal camera motion. For example, if the camera moves horizontally to the right between capturing the reference frame 402 and capturing the second frame 412 , then the depicted points will appear shifted to the left relative to where they appear in the reference frame 402 . Furthermore, some depicted points from the reference frame 402 (e.g., those depicted along column A) are absent from the second frame 402 because they are now outside the capture window 410 - 2 of the image sensor 104 in the second frame 412 . Furthermore, some additional points in the scene that were outside the capture window 410 - 1 of the reference frame 402 are now included in the second frame within the capture window 410 - 2 (e.g., the area to the right of line J such as column K).
- the image processing system 110 applies a non-uniform shift to the points of the second frame 412 so that the point at the reference location 408 will appear at the same location (e.g., centered) in a stabilized second frame 424 as it appeared in the reference frame 402 .
- the image processing system 110 shifts points of reference column F to the right by an amount appropriate to compensate for the shift appearing in second frame 412 .
- No shift is applied to points on the edges of the capture window 410 - 2 in the pinned-edge stabilization technique.
- pixels corresponding to column B remain at the left edge of the stabilized frame 424 and pixels corresponding to column K remain at the right edge of the stabilized frame 424 with no shift applied relative to frame 412 .
- Points in between the left edge and the reference column F are shifted non-uniformly based on the horizontal distance between the edge and the reference point.
- the shift applied to a particular column is a linear function of the distance of the column from the left edge.
- the shift applied to a particular column is a non-linear function of the distance of the column from the left edge.
- points in between the right edge and the reference column F are shifted non-uniformly based on the horizontal distance between the edge and the reference point. This shift may similarly be a linear or non-linear function of the distance of the points from the right edge.
- the stabilization technique can be implemented by applying a warping function to the image that non-uniformly shifts depicted points.
- the image processing system 110 may implement the warping function by applying, for example, shift operations, blend operations, and/or interpolation operations on the underlying pixels depicting the points in the image. These operations are performed on the underlying pixels in a manner such that it appears that the points in the scene are shifted by an appropriate amount.
- the result of the above-described stabilization technique can be understood by comparing the reference frame 402 to the stabilized second frame 424 .
- the reference point 408 (and reference column F) is perfectly stabilized, i.e., the depicted points appear in the stabilized image precisely where they were in the reference frame 402 despite the movement of the camera before capturing second frame 412 .
- the remaining columns (A-E and G-K) are not perfectly stabilized.
- column E there is a slight offset between where the points were depicted in the reference frame 402 and where they appear in the stabilized second frame 424 .
- this non-uniform destabilization may appear as a slight warping in the stabilized image frame 424 that increases near the edge.
- this warping will generally not be noticeable if the camera movement is small, particularly in the case of wide angle cameras where some distortion is already naturally present from the lens.
- the benefit of this technique is that no extra pixels need be captured to perform stabilization, e.g., the captured windows 410 - 1 , 410 - 2 are the same size as the field of interest 420 and all captured pixels in the second frame 412 are used in the stabilized frame 424 .
- FIG. 4B illustrates a variation of the pinned-edge stabilization technique in which asymmetric stabilization is applied.
- a reference frame 452 is captured having a reference column 456 with a reference point 458 using a capture window 460 - 1 that is the same width as the field of interest 470 .
- a second frame 462 is captured with the capture window 460 - 2 in which the captured points appear as being shifted to the left (e.g., due to left-to-right camera motion).
- the reference column F and columns to the left are shifted in the same manner described above. Points to the right of the reference column F are shifted by the same amount as the shift applied to the reference column F. If the shift would push points outside the window dimensions, these points are discarded, e.g., the pixels depicting points along column K are discarded in stabilized second frame 474 .
- columns F-J are all perfectly stabilized in that they appear at the same position as in the reference frame 452 . Columns to the left of the reference column F are non-uniformly shifted resulting in a slight warping of the image.
- FIGS. 4A-B illustrate a pinned-edge stabilization technique applied to compensate for left-to-right movement of the camera between first and second frames
- the technique described above can be similarly applied to compensate for right-to-left movement of the camera between the frames by reversing the non-uniform shifting function.
- the techniques described above can be similarly applied to vertical movement of the camera or combinations of horizontal and vertical movement. It is noted that the processes described in FIGS. 4A-B may be embodied as instructions stored in the memory 114 or other computer-readable storage medium and executed by the processor 112 of the processing system 110 .
- FIG. 5A illustrates an example embodiment of a soft pinned-edge technique for image stabilization.
- a reference frame 502 is captured having a plurality of columns including a reference column 506 having a reference point 508 .
- the capture buffer window 510 - 1 for the reference frame 502 is slightly wider in than the desired field of interest 520 , e.g., some extra pixels are captured.
- a second frame 512 is captured in which the reference column 506 appears shifted to the left due to horizontal motion of the camera between capturing the first and second frames.
- the capture window 510 - 2 is slightly wider than the field of interest 520 .
- a non-uniform shift is applied to generate the stabilized second frame 524 .
- This technique is similar to the pinned edge technique described above, except that the shift applied to the points along the edges of the capture window 510 - 2 is non-zero, and the shifts applied to the columns between the edges and the reference point are based on a non-uniform function (e.g., a linear or non-linear function).
- a non-uniform function e.g., a linear or non-linear function.
- the soft pinned-edge stabilization technique described above offers a compromise between the pinned-edge technique described in FIG. 4A and the standard stabilization technique described in FIG. 2 .
- the warping will be reduced relative to the pinned-edge technique, with the trade-off being that some extra pixels are captured, i.e., the captured frame 502 , 512 are slightly larger than the stabilized second frame 522 .
- FIG. 5B illustrates an asymmetric soft pinned-edge stabilization technique.
- a reference frame 552 is captured having a reference column 556 with a reference point 558 using a capture window 560 - 1 that is the same width as the field of interest 570 .
- a second frame 562 is captured with the capture window 560 - 2 in which the captured points appear as being shifted to the left (e.g., due to left-to-right camera motion).
- the reference column F and columns to the left are shifted in the same manner described above.
- Points to the right of the reference column F are shifted by the same amount as the shift applied to the reference column F.
- only points to the left of the reference point 558 are warped, while the points to the right of the reference point 558 are uniformly shifted.
- FIGS. 5A-B can be similarly applied to camera motion in different directions including either horizontal directions, either vertical directions, or both. It is noted that the processes described in FIG. 5A-B may be embodied as instructions stored in the memory 114 or other computer-readable storage medium and executed by the processor 112 of the processing system 110 .
- FIG. 6 illustrates an example two-dimensional pinned edge stabilization technique applied to compensate for two-dimensional movement of the camera between first and second frames.
- the black circles represent the captured points in the second frame (based on capture window 620 ), while the white circles represent the shifted points in the stabilized image.
- the stabilization compensates for movement of the camera up and to the left, although stabilization can be similarly applied for movement in other directions.
- a reference point 602 is shifted to a reference location 604 (e.g., a center of the capture window 620 ).
- no vertical shift is applied to the edge rows (e.g., rows A and E) and points in between the edges and the depicted reference point 602 are shifted non-uniformly in the vertical direction based on vertical distance from the respective edge (e.g., as a linear or non-linear functions of the vertical distance from the edge to the reference point).
- no horizontal shift is applied to the edge columns (e.g., columns 1 and 7 ), and points in between the edges and the depicted reference point 602 are shifted non-uniformly in the horizontal direction based on a horizontal distance from the respective edge to the reference point (e.g., as a linear or non-linear function of the horizontal distance from the edge to the reference point).
- the non-uniform shifting function may be implemented by applying shifts, interpolation, and/or blending of the underlying pixels in the captured second frame.
- a combination of stabilization techniques may be used.
- a pinned-edge technique may be applied in a vertical direction and a soft pinned-edge technique may be applied in a horizontal direction (or vice versa).
- a standard stabilization technique may be used in one of the directions.
- different warping functions may be applied to achieve the stabilization in different directions.
- a different function may be applied to account for forward or backward motion of the camera towards or away from the reference point. It is noted that the processes described in FIG. 6 may be embodied as instructions stored in the memory 114 or other computer-readable storage medium and executed by the processor 112 of the processing system 110 .
- FIG. 7 is a graph comparing various stabilization techniques including standard stabilization (curve 702 ), non-linear soft pinned-edge stabilization (curve 704 ), non-linear pinned-edge stabilization (curve 706 ), linear soft pinned-edge stabilization (curve 708 ), and linear pinned-edge stabilization (curve 710 ).
- the graph shows the amount of shift applied to a particular point in the image as a function of its distance in a particular direction to an edge from the reference point, assuming a shift of X is applied to the reference point in the particular direction to make it appear stable.
- the shift is constant, e.g., the shift X is applied uniformly to all points.
- a shift of X is applied to the reference point, while zero shift is applied at the edge.
- the amount of shift in a particular direction may be a linear function of the distance (curve 710 ) or a non-linear function of the distance (curve 706 ).
- the soft pinned-edge stabilization (curves 704 , 708 )
- a shift of X is applied to the reference point, while some non-zero shift is applied at the edge.
- the amount of shift in a particular direction may be a linear function of the distance (curve 708 ) or a non-linear function of the distance (curve 704 ).
- the image stabilization system 100 may apply different stabilization techniques based on different desired traits of the stabilized output video.
- any reference to “one embodiment” or “an embodiment” means that a particular element, feature, structure, or characteristic described in connection with the embodiment is included in at least one embodiment.
- the appearances of the phrase “in one embodiment” in various places in the specification are not necessarily all referring to the same embodiment.
- the terms “comprises,” “comprising,” “includes,” “including,” “has,” “having” or any other variation thereof, are intended to cover a non-exclusive inclusion.
- a process, method, article, or apparatus that comprises a list of elements is not necessarily limited to only those elements but may include other elements not expressly listed or inherent to such process, method, article, or apparatus.
Landscapes
- Engineering & Computer Science (AREA)
- Multimedia (AREA)
- Signal Processing (AREA)
- Studio Devices (AREA)
Abstract
Description
Claims (21)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US14/536,338 US9237271B2 (en) | 2012-06-28 | 2014-11-07 | Edge-based electronic image stabilization |
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US201261665681P | 2012-06-28 | 2012-06-28 | |
US13/610,483 US8913141B2 (en) | 2012-06-28 | 2012-09-11 | Edge-based electronic image stabilization |
US14/536,338 US9237271B2 (en) | 2012-06-28 | 2014-11-07 | Edge-based electronic image stabilization |
Related Parent Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US13/610,483 Continuation US8913141B2 (en) | 2012-06-28 | 2012-09-11 | Edge-based electronic image stabilization |
Publications (2)
Publication Number | Publication Date |
---|---|
US20150062360A1 US20150062360A1 (en) | 2015-03-05 |
US9237271B2 true US9237271B2 (en) | 2016-01-12 |
Family
ID=49777770
Family Applications (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US13/610,483 Active 2033-03-10 US8913141B2 (en) | 2012-06-28 | 2012-09-11 | Edge-based electronic image stabilization |
US14/536,338 Active US9237271B2 (en) | 2012-06-28 | 2014-11-07 | Edge-based electronic image stabilization |
Family Applications Before (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US13/610,483 Active 2033-03-10 US8913141B2 (en) | 2012-06-28 | 2012-09-11 | Edge-based electronic image stabilization |
Country Status (1)
Country | Link |
---|---|
US (2) | US8913141B2 (en) |
Families Citing this family (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2014042143A1 (en) * | 2012-09-11 | 2014-03-20 | 株式会社メガチップス | Mobile terminal device, program, image stabilization method, and condition detection method |
US9336460B2 (en) * | 2013-05-31 | 2016-05-10 | Intel Corporation | Adaptive motion instability detection in video |
US8917329B1 (en) | 2013-08-22 | 2014-12-23 | Gopro, Inc. | Conversion between aspect ratios in camera |
US10084962B2 (en) | 2015-11-16 | 2018-09-25 | Google Llc | Spherical video stabilization based on accelerometer data |
US10200575B1 (en) | 2017-05-02 | 2019-02-05 | Gopro, Inc. | Systems and methods for determining capture settings for visual content capture |
CN110148158A (en) * | 2019-05-13 | 2019-08-20 | 北京百度网讯科技有限公司 | For handling the method, apparatus, equipment and storage medium of video |
US11659279B2 (en) | 2019-06-21 | 2023-05-23 | Gopro, Inc. | Systems and methods for stabilizing videos |
Citations (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6285804B1 (en) | 1998-12-21 | 2001-09-04 | Sharp Laboratories Of America, Inc. | Resolution improvement from multiple images of a scene containing motion at fractional pixel values |
US20050157949A1 (en) * | 2003-09-30 | 2005-07-21 | Seiji Aiso | Generation of still image |
US7564902B2 (en) * | 2002-11-22 | 2009-07-21 | Panasonic Corporation | Device, method and program for generating interpolation frame |
US8009872B2 (en) | 2006-02-01 | 2011-08-30 | Sony Corporation | Taken-image signal-distortion compensation method, taken-image signal-distortion compensation apparatus, image taking method and image-taking apparatus |
US20110254983A1 (en) | 2010-04-14 | 2011-10-20 | Sony Corporation | Digital camera and method for capturing and deblurring images |
US8169537B2 (en) | 2004-11-25 | 2012-05-01 | Sony Corporation | Control method, control apparatus and control program for photographing apparatus |
US8446477B2 (en) | 2010-08-20 | 2013-05-21 | Sony Corporation | Imaging apparatus, aberration correcting method, and program |
US8553037B2 (en) | 2002-08-14 | 2013-10-08 | Shawn Smith | Do-It-Yourself photo realistic talking head creation system and method |
US8649628B2 (en) | 2009-06-29 | 2014-02-11 | DigitalOptics Corporation Europe Limited | Adaptive PSF estimation technique using a sharp preview and a blurred image |
US8711230B2 (en) | 2008-05-16 | 2014-04-29 | Casio Computer Co., Ltd. | Image capture apparatus and program |
US8723969B2 (en) * | 2007-03-20 | 2014-05-13 | Nvidia Corporation | Compensating for undesirable camera shakes during video capture |
-
2012
- 2012-09-11 US US13/610,483 patent/US8913141B2/en active Active
-
2014
- 2014-11-07 US US14/536,338 patent/US9237271B2/en active Active
Patent Citations (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6285804B1 (en) | 1998-12-21 | 2001-09-04 | Sharp Laboratories Of America, Inc. | Resolution improvement from multiple images of a scene containing motion at fractional pixel values |
US8553037B2 (en) | 2002-08-14 | 2013-10-08 | Shawn Smith | Do-It-Yourself photo realistic talking head creation system and method |
US7564902B2 (en) * | 2002-11-22 | 2009-07-21 | Panasonic Corporation | Device, method and program for generating interpolation frame |
US20050157949A1 (en) * | 2003-09-30 | 2005-07-21 | Seiji Aiso | Generation of still image |
US8169537B2 (en) | 2004-11-25 | 2012-05-01 | Sony Corporation | Control method, control apparatus and control program for photographing apparatus |
US8009872B2 (en) | 2006-02-01 | 2011-08-30 | Sony Corporation | Taken-image signal-distortion compensation method, taken-image signal-distortion compensation apparatus, image taking method and image-taking apparatus |
US8723969B2 (en) * | 2007-03-20 | 2014-05-13 | Nvidia Corporation | Compensating for undesirable camera shakes during video capture |
US8711230B2 (en) | 2008-05-16 | 2014-04-29 | Casio Computer Co., Ltd. | Image capture apparatus and program |
US8649628B2 (en) | 2009-06-29 | 2014-02-11 | DigitalOptics Corporation Europe Limited | Adaptive PSF estimation technique using a sharp preview and a blurred image |
US20110254983A1 (en) | 2010-04-14 | 2011-10-20 | Sony Corporation | Digital camera and method for capturing and deblurring images |
US8446477B2 (en) | 2010-08-20 | 2013-05-21 | Sony Corporation | Imaging apparatus, aberration correcting method, and program |
Non-Patent Citations (1)
Title |
---|
United States Office Action for U.S. Appl. No. 13/610,483, May 22, 2014, 9 pages. |
Also Published As
Publication number | Publication date |
---|---|
US8913141B2 (en) | 2014-12-16 |
US20150062360A1 (en) | 2015-03-05 |
US20140002681A1 (en) | 2014-01-02 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US9237271B2 (en) | Edge-based electronic image stabilization | |
US11722631B2 (en) | Conversion between aspect ratios in camera | |
US10097765B2 (en) | Methodology and apparatus for generating high fidelity zoom for mobile video | |
US9294662B2 (en) | Depth map generation and post-capture focusing | |
WO2020114251A1 (en) | Video stitching method and apparatus, electronic device, and computer storage medium | |
CN108876753B (en) | Optional enhancement of synthetic long exposure images using guide images | |
US9894298B1 (en) | Low light image processing | |
US9215374B2 (en) | Image processing apparatus, image processing method, and imaging apparatus that corrects tilt of an image based on an operation input | |
US8279937B2 (en) | Correcting moving image wavering | |
US8861846B2 (en) | Image processing apparatus, image processing method, and program for performing superimposition on raw image or full color image | |
US11880983B2 (en) | Image enhancement system | |
CN104284059A (en) | Apparatus and method for stabilizing image | |
US20160191945A1 (en) | Method and system for processing video content | |
US9398217B2 (en) | Video stabilization using padded margin pixels | |
TWI554108B (en) | Electronic device and image processing method | |
CN109690611B (en) | Image correction method and device | |
JP6282133B2 (en) | Imaging device, control method thereof, and control program | |
US11044396B2 (en) | Image processing apparatus for calculating a composite ratio of each area based on a contrast value of images, control method of image processing apparatus, and computer-readable storage medium | |
US9621873B2 (en) | Apparatus including function to generate stereoscopic image, and method and storage medium for the same | |
US11146762B2 (en) | Methods and systems for reconstructing a high frame rate high resolution video | |
US20210195100A1 (en) | Image processing apparatus, image pickup apparatus, image processing method, and non-transitory computer-readable storage medium | |
JP2012015982A (en) | Method for deciding shift amount between videos | |
US20230421718A1 (en) | Processing apparatus, processing method and program | |
US20140333782A1 (en) | View-assisted image stabilization system and method | |
CN117135460A (en) | Image correction method and device |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
AS | Assignment |
Owner name: WOODMAN LABS, INC., CALIFORNIA Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:CAMPBELL, SCOTT PATRICK;REEL/FRAME:034609/0190 Effective date: 20120821 Owner name: GOPRO, INC., CALIFORNIA Free format text: CHANGE OF NAME;ASSIGNOR:WOODMAN LABS, INC.;REEL/FRAME:034716/0202 Effective date: 20140204 |
|
STCF | Information on status: patent grant |
Free format text: PATENTED CASE |
|
AS | Assignment |
Owner name: JPMORGAN CHASE BANK, N.A., AS ADMINISTRATIVE AGENT, ILLINOIS Free format text: SECURITY AGREEMENT;ASSIGNOR:GOPRO, INC.;REEL/FRAME:038184/0779 Effective date: 20160325 Owner name: JPMORGAN CHASE BANK, N.A., AS ADMINISTRATIVE AGENT Free format text: SECURITY AGREEMENT;ASSIGNOR:GOPRO, INC.;REEL/FRAME:038184/0779 Effective date: 20160325 |
|
MAFP | Maintenance fee payment |
Free format text: PAYMENT OF MAINTENANCE FEE, 4TH YEAR, LARGE ENTITY (ORIGINAL EVENT CODE: M1551); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY Year of fee payment: 4 |
|
AS | Assignment |
Owner name: GOPRO, INC., CALIFORNIA Free format text: RELEASE OF PATENT SECURITY INTEREST;ASSIGNOR:JPMORGAN CHASE BANK, N.A., AS ADMINISTRATIVE AGENT;REEL/FRAME:055106/0434 Effective date: 20210122 |
|
MAFP | Maintenance fee payment |
Free format text: PAYMENT OF MAINTENANCE FEE, 8TH YEAR, LARGE ENTITY (ORIGINAL EVENT CODE: M1552); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY Year of fee payment: 8 |