This application is a continuation of U.S. application Ser. No. 11/364,495 filed Feb. 28, 2006 and its specification and drawings are incorporated herein in their entirety.
BACKGROUND OF THE INVENTION
This invention relates to a mount rack frame for storing computer related devices such as servers, hubs, switches and routers. More particularly this invention relates to a mount rack frame with congruently aligned apertures for connecting plates, horizontal length adjustment, and vertically attaching two individual modular rigid support structures. Connecting brackets simultaneously attach to the devices and the mount rack frame, thereby effectively stacking them within the frame without shelves.
The prior art discloses cabinets for storage of computer related device which are expensive and cumbersome. They also require humidity and temperature controls because of their non-ventilated interior environment. Prior art storage structures also lack flexibility for adjusting the horizontal dimension of the mount rack frame whenever devices deviate from standard horizontal dimensions. Furthermore, because these prior art storage structures are not modular, they cannot stack vertically upon each other in an interchangeable manner. Prior art storage structures also do not exhibit reversibly attached rack bases by which the mount rack frame moves across a flat horizontal surface such as a floor.
The current mount rack frame solves these problems in an economical manner. With partially elliptical apertures and appropriate mechanical fasteners, the horizontal dimension within a standard mount rack frame is easily manually adjustable. The current mount rack frame is also lighter in weight, less expensive and easily assembled from interchangeable rigid components. If mobility is desired, each mount rack frame reversibly attaches to a rack base which includes wheels or coasters.
The current mount rack frame comprises numerous prototypes with dimensions which conform to standardized measurements (as well as multiples thereof) of the computer device industry. Because the mount rack frame is modular, one modular unit can vertically stack upon another modular unit which rests upon either the rack base or directly upon the flat horizontal surface.
SUMMARY OF THE INVENTION
The mount rack frame disclosed and claimed herein comprises at least one modular rigid support structure. Each modular rigid support structure contains two vertical components and two horizontal components, all of which are rigid and assembled within a very short time period. Each rigid horizontal component and rigid vertical component also contains partially elliptical apertures and screws. These apertures containing screws congruently align for horizontal adjustment of rigid vertical components, as well as for mechanical attachment to other rigid horizontal components.
Partially elliptical apertures containing screws are spaced along vertical and horizontal components in aperture pairs. Some partially elliptical apertures can contain a centrally positioned screw with a lateral clearance on either side of that screw of preferably and approximately 1/16 inch. As a result certain screws within specific partially elliptical apertures can move laterally, and this lateral movement results in an adjustable horizontal length between two rigid vertical components. These screws and partially elliptical apertures simultaneously attach vertical rigid components to horizontal rigid components.
Other congruently aligning apertures have different functions. For example, rigid horizontal components contain partially elliptical apertures for vertically aligning and attaching two modular rigid support structures to each other. There are also round apertures within rack base legs which attach a rack base to a single rigid support structure or two module mount rack frame.
There are also partially elliptical apertures within rigid vertical components for attaching (i) support plates with mechanical fasteners to stacked rigid support structures; and/or (ii) rack base legs to vertical rigid components.
Each rigid support structure has a horizontal length and vertical height of one ‘U,’ or a multiple thereof. A U is the unit of measurement in the computer industry, and each U designates a horizontal width of nineteen and a perpendicular height of one and three-quarters inches (for either an attached device or the actual mount rack frame). A second U standard designates a horizontal length of twenty-four inches, but the nineteen inch standard is more ubiquitous. Width (depth) of an attached device can vary and still remain within one U (or multiples thereof).
For example, a standard industry measurement of 3 U is equivalent to: (i) 57 inches in horizontal length of an attached device (or the modular rigid support structure), and (ii) 1.75×3 inches in height of the attached device (or vertical height interval along each rigid vertical component). Devices attach within each rigid support structure by sets of vertically and linearly aligned apertures and screws along the rigid vertical components. There are two sets of vertically and linearly aligned apertures along each rigid vertical component. As a result, the user can either attach the device more anterior or posterior along a modular rigid support structure.
In addition, each rigid vertical component end comprises apertures into which screws reversibly insert to attach a rack base. Each rack base comprises legs with locks, and coasters or wheels. These coasters or wheels provide mobility to the mount rack frame or single modular rigid support structure.
Each rigid horizontal component is interchangeable structurally and functionally with all other rigid horizontal components of the same length and width. Consequently any rigid horizontal component can function as an upper horizontal component or a lower horizontal component with respect to a supporting flat surface such as a floor. Each rigid horizontal component end contains partially elliptical apertures for (i) attaching a connecting plate to a two-module mount rack frame, or (ii) reversibly attaching a rack base to a rigid support structure.
To increase the storage capacity of the new mount rack frame, one modular rigid support structure is stacked and aligned vertically upon the other. Since each modular rigid support structure is identical in structure and function to the other, all rigid support structures function either as the bottom or upper (stacked) modular unit. Connecting plates, as well as additional screws, along the corresponding rigid horizontal components reversibly attach an upper aligned rigid support structure upon the lower modular rigid support structure.
Accordingly, it is a purpose of the present invention to provide an economical manner in which to store computer-related devices without the use of shelves.
It is also a goal of the present invention to provide an economical manner in which to store any device which can be mounted to a mount frame rack with brackets.
It is also a goal of the present invention to provide modular rigid support structures in which to store operable mounted devices.
It is also a goal for the present invention to provide a rack base attached to a modular rigid support structure for mobility.
It is another goal of the present invention to provide a device for adjusting the horizontal length of a modular rigid support structure.
It is another goal of the present invention to provide mechanical attachments by which a modular rigid support structure is vertically aligned upon another modular rigid support structure.
It is another goal of the present invention to provide modular rigid support structures which are structurally and functionally interchangeable with respect to vertical stacked alignment and attachment to a rack base.
These features, as well as other improvements of the present invention, are apparent after review of the attached figures and DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENT, BEST MODE AND OTHER EMBODIMENTS.
BRIEF DESCRIPTION OF THE DRAWINGS
FIG. 1 is a partial anterior view of the mount support rack in the preferred one modular rigid support structure embodiment with two mounted devices.
FIG. 2 is an exploded view of one modular rigid support structure to which a rack base attaches.
FIG. 3 is a closeup view of a connecting bracket attaching to linearly aligned rack apertures and a mounted device in the prior art.
FIG. 4 is an exploded view of assembly for two modular rigid support structures vertically stacked upon each other.
FIG. 5 is an isolated closeup schematic anterior view of the lateral movement of screws within partially elliptical apertures.
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENT, BEST MODE, AND OTHER EMBODIMENTS
Referring to FIG. 1, the preferred embodiment of the mount rack frame 1 comprises a first modular rigid support structure 2 a. In the FIG. 4 embodiment, there is an additional attached second modular rigid support structure 2 b. Each first and second rigid support structure 2 a, 2 b, as well as other modular rigid support structures (generically designated modular rigid support structures 2), may differ in horizontal length, height and depth. However, each modular rigid support structure 2 a, 2 b is identical in function and structure to the other.
Each first or second modular rigid support structure 2 a, 2 b can support itself and one additional vertically stacked additional rigid support structure 2 a, 2 b whenever entire mount rack frame 1 rests upon a flat horizontal surface such as a floor. The discussion below addresses a first modular rigid support structure 2 a. However the description of structure, technical details and function also apply to modular second rigid support structure 2 b, as well as other modular rigid support structures 2, unless otherwise noted.
Modular Rigid Support Structures 2 a, 2 b
Referring to FIG. 1 mounted devices 78 can be, although not exclusively: servers, hubs, switches or routers. Mounted device 78 comprises internationally designated U units. For example a device 78 which comprises one U unit is nineteen inches in length and one and three-quarter inches in height, although width (depth) can vary.
Still referring to FIG. 1, in the pending invention there is preferably a one U unit of vertical height (i. e., 1 and ¾inches) for each subset 7 of three rack apertures 8. Because the international standard height U is 1 and ¾inches, most manufacture design their devices 78 and brackets 75 accordingly. Each one U device 78 is generally approximately 1 and 11/16 inches in height, so when mounted there is approximately 1/32 inch of vertical space between vertically aligned adjacent devices 78. In the pending invention, each first and second rigid horizontal component 4 a, 4 b is preferably approximately twenty-three inches in horizontal length 10 a to accommodate a single U mounted device 78. However, multiples of U are also within the scope of the pending invention.
Still referring to FIG. 1, in the preferred embodiment each modular first rigid support structure 2 a comprises first rigid vertical component 3 a and a second rigid vertical component 3 b. Modular first rigid support structure 2 a also comprises a first rigid horizontal component 4 a and a second rigid horizontal component 4 b. In the preferred embodiment the length 10 a of one modular rigid support structure 2 a is approximately 23 inches, height 10 b is approximately 1.5 inches, and depth 10 c (i.e., width of horizontal component 4 a or 4 b) is approximately 4.5 inches.
Each rigid component 3 a, 3 b, 4 a, 4 b is reversibly removable from remaining rigid components. Each horizontal rigid component 4 a, 4 b is structurally and functionally interchangeable with the other, while vertical rigid components 3 a, 3 b are also interchangeable, assuming their U values are identical.
Still referring to FIG. 1, rigid first and second horizontal components 4 a, 4 b respectively are parallel to each other when assembled into modular rigid support structure 2 a. Each rigid horizontal component 4 a, 4 b comprises a corresponding upper horizontal surface 13 a. Upper horizontal surface 13 a integrally and continuously attaches perpendicular to downward adjoining protruding first horizontal side 13 b and downward adjoining protruding second horizontal side 13 c. Each downward protruding adjoining first and second horizontal sides 13 b, 13 c respectively forms a right angle with upper horizontal surface 13 a. Each protruding adjoining first and second horizontal side 13 b, 13 c respectively is approximately 1.50 inches in width.
Still referring to FIG. 1, upper horizontal surface 13 a and sides 13 b, 13 c are preferably approximately 1/16 inch in thickness and preferably comprise a metal sheet. Each first and second rigid horizontal component 4 a, 4 b respectively also comprises a corresponding lower horizontal surface 13 e. Lower horizontal surface 13 e comprises horizontal tract 12 into which first and second rigid vertical component ends 15 a or 15 b respectively insert and slide in a limited manner.
Referring now to FIG. 2, each first and second rigid horizontal component 4 a, 4 b respectively comprises first, second, third and fourth vertically aligned horizontal pairs 14 a, 14 b, 14 c, 14 d respectively (generically vertically aligned horizontal pairs 14) of partially elliptical apertures 17. One horizontal pair 14 is located at each first and second horizontal component end 19 a, 19 b respectively along first and second downward protruding horizontal sides 13 b and 13 c. Consequently, each aperture pair 14 a, 14 b, 14 c, 14 d respectively lies within a rigid horizontal component ends 19 a, 19 b of downward protruding horizontal sides 13 b, 13 c respectively of first rigid horizontal component ends 19 a, 19 b.
Similarly, each rigid vertical component end 15 a, 15 b comprises congruently aligning aperture vertical pairs 14 aa, 14 bb, 14 cc; 14 dd (generically aligned vertical pairs 14 h). As best seen in FIG. 5, each partially elliptical aperture 17 is partially elliptical in shape and each aperture long axis 14 e is parallel to length 10 a of corresponding horizontal component 4 a, 4 b. Each partially elliptical aperture 17 within each rigid vertical component end 15 a, 15 b aligns its maximum longitudinal dimension 14 e perpendicular to longitudinal length 10 b of its corresponding rigid vertical component 3 a or 3 b. However, other aperture shapes and dimensions are also within the scope of the invention. Aperture pairs 14 aa, 14 bb, 14 cc, 14 dd lie within rigid vertical component ends 15 a, 15 b and first and second vertical component surfaces 15 d and 15 dd respectively.
Still referring to FIG. 5, preferably threaded small round screws 50 a insert within each partially elliptical aperture 17. There is a maximum lateral clearance of approximately 1/16-inch on each side of a centrally positioned small round screw 50 a within a partially elliptical aperture 17. Each small round screw head and large round screw head has a diameter of approximately ⅛-inch. Smaller round screw heads are preferred for wheel or coaster attachment while larger round screw heads are preferred for other attachments. In different embodiments, other kinds of mechanical fasteners are satisfactory.
Referring to FIG. 2, preferably first, second, third, fourth and fifth partially elliptical upper pairs 16 a, 16 b, 16 c, 16 d, and 16 e respectively (generically upper aperture pairs 16) penetrate upper horizontal surface 13 a. However, other numbers and shapes of aperture pairs 16 and apertures are within the scope of the invention. Adjoining partially elliptical upper aperture pairs 16 lie approximately 4.0 inches from each other. Each partially elliptical upper aperture pair 16 is parallel to remaining partially elliptical upper aperture pairs 16 within the same flat horizontal surface 13 a.
Each partially elliptical aperture 17 within upper aperture pair 16 is preferably approximately 0.75 inch in maximum longitudinal length 14 e, and comprises a midpoint 14 i along length 14 e. The same dimensions are also preferred for partially elliptical apertures 17 within aperture pairs 14 and aperture pairs 14 h.
Still referring to FIG. 2 horizontally aligned first and second partially elliptical base apertures 18 a, 18 b respectively are located within rigid vertical component ends 15 a, 15 b along wide vertical component surface 40 d. Vertical component surfaces 15 d, 15 dd are perpendicular and integrally attached to wide vertical component surface 40 d which contains first and second partially elliptical base apertures 18 a, 18 b respectively.
Horizontally aligned first and second partially elliptical apertures 18 a, 18 b have two functions: (i) as insertion points for threaded small round screws 50 b which attach first and second connector plates 90, 91 respectively to vertically stacked modular rigid support structures 2 a, 2 b infra; and (ii) for attachment of modular rigid support structure 2 a, 2 b to rack base legs 71 a, 71 b, infra.
Still referring to FIG. 2, in the preferred embodiment and best mode first and second rigid vertical components 3 a, 3 b respectively are parallel to each other when assembled within modular rigid support structure 2 a. Rigid first and second horizontal components 4 a, 4 b respectively are parallel to each other and attach at a right angle to a vertical rigid vertical components 3 a, 3 b respectively when assembled as a modular rigid support structure 2 a, 2 b. When fully assembled each modular rigid support structure 2 a, 2 b forms a square or rectangle in one plane.
Referring to FIGS. 1 and 2, in the preferred embodiment each rigid vertical component 3 a, 3 b comprises crimped pair 37 c of first and second crimped metal strips 36 a, 36 b respectively (generically crimped metal strips 36). Each crimped metal strip 36 a, 36 b of each crimped pair 37 c respectively integrally attaches to the first or second interior vertical surface 35 a, 35 b respectively of a corresponding first or second rigid vertical component 3 a, 3 b respectively. Each first and second crimped metal strip 36 a, 36 b comprises a first and second exterior edge 36 c, 36 d respectively.
Still referring to FIGS. 1 and 2, first and second interior edges 37 a, 37 b respectively integrally attach to corresponding first and second interior vertical component surface 35 a, 35 b respectively. Each crimped metal strip 36 a, 36 b protrudes from, and is preferably perpendicular to, its corresponding interior vertical surface 35 a or 35 b. Each crimped pair 37 c is parallel to its opposing crimped pair 37 c along the opposing rigid vertical component 3 a or 3 b when modular rigid support structure 2 a or 2 b is completely assembled. Crimped metals strips 36 a, 36 b are also parallel to the long vertical component axis 38 of a corresponding rigid vertical component 3 a or 3 b. Each crimped metal strip 36 a, 36 b is preferably identical in structure and function to the other.
Referring to FIG. 1, each crimped metal rack strip 36 a, 36 b is preferably approximately 30 inches in longitudinal length and approximately 1.0 inch in horizontal width. However, other lengths which may depend upon rack U size are also satisfactory: Each vertical interior surface 35 a, 35 b respectively comprises an interior strip track 40 a, 40 b between first and second crimped metal rack strips 36 a, 36 b respectively of one crimped pair 37 c. Each first crimped metal strip 36 a is approximately two and three-quarters inches anterior to second crimped metal strip 36 b of its crimped pair 37 c. Each crimped metal strip 36 a, 36 b is approximately 1/16 to 3/32 inch in thickness.
Referring now to FIG. 1, within each first and second crimped metal strip 36 a, 36 b respectively are rack sets 7 respectively. Preferably rack sets 7 comprise three linearly and vertically aligned rack apertures 8 within a corresponding first and second exterior edge 36 c or 36 d respectively. There are preferably sixteen aligned rack sets 7 within each crimped rack metal strip 36 a, 36 b, and each rack set 7 is approximately 1.75 inches in vertical length 38 (the international standard is: exactly 1.75 inches). However, other numbers of rack sets 7 are also within the scope of the invention. Each rack aperture 8 is preferably either approximately 0.25 inch or one-eighth inch from adjacent rack aperture 8 within its respective rack set 7. There is preferably approximately 0.25 inch between consecutive rack sets 7, and each individual square rack aperture 8 is preferably square in configuration, and approximately three-eighths inch in length and width.
Referring now to FIG. 3 of the preferred embodiment, prior art mounting brackets 75 reversibly and preferably attach to mounted device 78 by countersink or bevel head screws 50 g. Screws 50 g are preferred because they fit flush along a bracket surface. However, other satisfactory prior art mounting brackets 75, screws and devices 78 currently exist in diverse prototypes, depending upon the manufacturer. In additional embodiments other mechanical fasteners are also within the scope of the invention.
Still referring to FIG. 3, countersink or bevel head screws 50 g reversibly insert into small round threaded screw apertures 51 a within each opposing first and second device side 78 a, 78 b respectively (not seen in this view). Preferably first, second and third mounting aperture pairs 53 a, 53 b, 53 c (generically mounting aperture pairs 53) of small round screw apertures 51 a are preferably equidistantly spaced along each opposing first and second device sides 78 a, 78 b respectively in an anterior/posterior direction 78 g. Each mounting aperture pair 53 also aligns perpendicular to depth 78 f of opposing first and second sides 78 a, 78 b respectively.
Still referring to FIG. 3, each prior art mounting bracket 75 preferably comprises flat bracket end 75 a, bracket flat segment 75 d, and bent bracket end 75 b. Flat bracket end 75 b comprises flat end apertures 75 c, and each flat end aperture 75 c can congruently align with a small round threaded screw aperture 51 a. In this manner counter-sink or beveled head small round screw 50 g inserts through a congruently aligned aperture 51 a of a pre-selected mounting aperture pair 53 and flat end aperture 75 c. Bent bracket end 75 b is integrally part of, but perpendicular to, bracket flat segment 75 d. Bent bracket end 75 b comprises bent bracket apertures 75 e, through which preferably large round Phillips head or straight head screws 50 k insert. Straight head screws 50 k are identical in structure and function to large round screws 50 b.
Still referring to FIG. 3, prior art conventional cage nut 59 comprises first and second opposing crimped flanges 59 a, 59 b, a square configuration and centrally positioned threaded round cage aperture 59 c. Cage nut 59 is approximately ⅜ inch square. Cage nut 59 inserts within a single rack aperture 8 and is held therein by opposing first and second cage flanges 59 a, 59 b. Opposing cage flanges 59 a, 59 b protrude from single rack aperture 8, thereby maintaining cage nut 59's position within rack aperture 8. Round threaded screws 50 k insert within threaded round cage aperture 59 c.
Rack Base 60
Referring to FIGS. 1 and 2, removable rack base 60 preferably comprises first, second, third and fourth rack coasters 70 a, 70 b, 70 c, 70 d (generically rack coasters 70), although wheels are also satisfactory. There are also first and second rack base legs 71 a, and 71 b respectively. Two rack coasters 70 attach to a first and a second rack base 71 a, 71 b respectively in a manner well known in the art, and each rack coaster 70 comprises prior art lock 79.
Prior art locks 79 prevent mount rack frame 1 from inadvertent swiveling along a flat surface. These prior art-locking mechanisms are well known in the wheel and coaster attachment industry. Large round screws 50 b are preferred for attachment of rack base 60 to each rigid support structure 2 a, 2 b, infra.
Still referring to FIGS. 1 and 2, rack coasters 70 attach to each rack base leg 71 a, 71 b at anterior base end 71 c or posterior base end 71 d. Rack coasters 70 attach to base legs 71 a, 71 b by pivoting conventional prior art attachments 51 b and mechanical fasteners. However, small round screws 50 a are preferred. Corresponding first and second round leg apertures 81 a, 81 b respectively within each first and second rack base leg 71 a, 71 b can congruently align with first and second base partially elliptical apertures 18 a, 18 b respectively within vertical component ends 15 a, 15 b.
In the preferred embodiment large round screws 50 b and circular washers 50 d attach rack base 60, infra, to each corresponding rigid vertical component end 15 a or 15 b. However other mechanical fasteners are also satisfactory in different prototypes of the invention.
Still referring to FIGS. 1 and 2, each first and second rack base leg 71 a, 71 b respectively comprise a flat lowest side 73 c and an upwardly slanting side 73 d. Lower rack base leg interior surface 70 e contains base leg track 70 g. Each rack base leg 71 a, 71 b is preferably approximately 20.0 inches in length in an anterior/posterior direction and aligns perpendicular to attached modular rigid support structure 2 a or 2 b. Preferably each rack base leg 71 a, 71 b is structurally and functionally identical to the other.
Still referring to FIGS. 1 and 2, each first and second rack base leg 71 a, 71 b respectively attaches to corresponding vertical component end 15 a or 15 b approximately 6.5 inches posterior to each corresponding first and second anterior rack base leg end 71 c. Each rack base leg 71 a, 71 b is approximately two and three-quarters inches in width. Each rack base leg 71 a, 71 b is approximately 2.5 inches in height where upwardly slanted side 73 d attaches to each corresponding vertical component end 15 a or 15 b as the case may be.
Each upwardly slanting side 73 d is preferably approximately 1.50 inches in height at anterior leg end 71 c and posterior leg end 71 d. Flat lower side 73 c is uniformly approximately 0.75 inch in height. Each side 73 c, 73 d preferably consists of a metal sheet which bends at a right angle to form base track 70 g.
Connecting Plates 90, 91
Referring now to FIG. 4, in another embodiment mount frame rack 1 comprises both first and second modular rigid support structures 2 a, 2 b respectively. In this embodiment mount rack frame 1 preferably comprises a first rigid flat connecting plate 90 and a second rigid flat connecting plate 91 for additional mechanical stability and rigidity. Each connecting plate 90, 91 is preferably structurally and functionally identical to the other with the same length, width and thickness. Preferably connecting plates 90, 91 are square or rectangular in length and width, but other shapes are also satisfactory. Preferably each connecting plate 90, 91 is approximately 3.5 inches in length, 3.5 inches in width and 1/16 inch in thickness.
Still referring to FIG. 4, each first and second connecting plate 90, 91 respectively preferably comprises four circular plate apertures 92 a, 92 b, 92 c, 92 d (generically plate apertures 92), although other numbers of plate apertures 92 are also satisfactory. Each plate aperture 92 lies approximately 0.25 inch from the first or second corresponding longitudinal opposing plate edge 93 a or 93 b respectively.
Plate apertures 92 are preferably equidistantly spaced from each other along plate edges 93 a, 93 b. Each plate aperture 92 is circular and of sufficient diameter to receive a large round threaded screw 50 b. Plate apertures 92 can congruently align with corresponding horizontally aligned partially elliptical apertures 18 a, 18 b along vertical component ends 15 a or 15 b. Preferably component plate apertures 92 have the same diameter as each other.
Assembly of a Modular Rigid Support Structure 2 a, 2 b in the Best Mode
Referring now to FIG. 2, to assemble a single modular rigid support structure 2 a or 2 b, the operator initially selects a first rigid vertical component 3 a and a first rigid horizontal component 4 a. He or she next inserts rigid vertical component end 15 a within a horizontal component end 19 a. He or she then inserts a small round screw 50 a respectively through congruently aligned partially elliptical apertures 17 within first and second partially elliptical apertures pairs 14 a/14 aa and 14 b/14 bb.
The operator now selects second rigid vertical component 3 b and inserts its rigid vertical component end 15 a within second horizontal component end 19 b. He or she also inserts second rigid vertical component ends 15 b (of rigid vertical components 3 a, 3 b) within rigid horizontal ends 19 a, 19 b of a second rigid horizontal component 4 b. He or she then congruently aligns partially elliptical apertures 17 within remaining vertical aperture pairs 14, 14 h of first and second rigid horizontal components 4 a, 4 b and first and second rigid vertical components 3 a, 3 b respectively.
The operator then inserts and tightens small round screw 50 a into each corresponding partially elliptical aperture 17 of each congruently aligned pair 14/14 h as follows: 14 a/14 aa; 14 b/14 bb; 14 c/14 cc; and 14 d/14 dd. In the last step the operator checks to insure that all vertical component ends 15 a, 15 b and horizontal component ends 19 a, 19 b attach by congruently aligned partially elliptical apertures 17 with inserted small round screws 50 a as described supra.
Referring to FIG. 2, to attach rack base 60 to modular rigid support structure 2 a or 2 b, the operator selects one rack base leg 71 a or 71 b. He or she then inserts a single large round screw 50 b within a corresponding congruently aligned base screw and leg aperture 18 a/81 a or 18 b/81 b. He or she then adds a washer 50 d to each large round screw 50 b and tightens corresponding single large round screw 50 b and washer 50 d.
Still referring to FIG. 2, the operator repeats this procedure for remaining rack base leg 71 b with congruently aligned apertures 18 a/81 a and 18 b/81 b respectively. In this procedure, as with initial assembly of a modular rigid support structure 2 a, 2 b supra, in the best mode first and second rigid vertical components ends 15 a, 15 b, as well as first and second rigid horizontal component ends 19 a, 19 b are interchangeable with each other.
Assembly of Mount Rack Frame 1 in the Best Mode
Referring now to FIG. 4 the operator places modular first rigid support structure 2 a with attached rack base 60 upon a rigid horizontal surface. He or she then places modular second rigid support structure 2 b upon first rigid horizontal component 4 a of first support structure 2 a in a vertically aligned manner. Either rigid horizontal component 4 a or 4 b of modular second rigid support structure 2 b can contact rigid horizontal component 4 a of first rigid support structure 2 a, because rigid horizontal components 4 a, 4 b are interchangeable, assuming identical structure and dimensions.
Still referring to FIG. 4, the operator (i) congruently aligns partially elliptical aperture pairs 16 of partially elliptical apertures 17 within first horizontal upper surface 13 a of first rigid support structure 2 a with (ii) corresponding partially elliptical aperture pairs 16 within upper horizontal surface 13 a of second rigid support structure 2 b. The operator inserts and tightens a round small screw 50 a through aligned partially elliptical apertures 17 within each congruently aligned partially elliptical aperture pair 16.
Still referring to FIG. 4, the operator next selects first connector plate 90. He or she congruently aligns first and second plate apertures 92 a, 92 b respectively with corresponding first and second base screw apertures 18 a, 18 b respectively (within rigid vertical component end 15 a of rigid vertical component 3 b of second modular rigid support structure 2 b). He or she also congruently aligns third and fourth vertical plate apertures 92 c, 92 d respectively (within the same connector plate 90) with partially elliptical base apertures 18 a, 18 b within second rigid component end 15 b of first modular rigid support structure 2 a.
The operator then inserts a small round screw 50 a through each of the four pairs of congruently aligned apertures 18 a/92 a, 18 b/92 b and 18 a/92 c, 18 b/92 d. The operator repeats this same procedure with second connector plate 91 along rigid vertical component ends 15 a, 15 b of the remaining rigid vertical component 3 a. Attachment of modular rigid support structures 2 a, 2 b to each other is thereby mechanically strengthened by connecting plates 90, 91.
Attachment of Mounted Device 78 to Mount Rack Frame 1 in the Best Mode
Referring now to FIG. 3, the operator aligns mounting bracket 75 to first opposing device side 78 a. He or she inserts a single screw 50 g within each corresponding congruently aligned device aperture 51 a and bracket apertures 75 c. During this step, preferably the operator inserts at least two screws 50 g within two corresponding device apertures 51 a. The operator then inserts a cage nut 59 within each of at least two corresponding rack apertures 8 along one crimped metal strip 36 a or 36 b. He or she inserts each cage nut 59 so first and second cage nut flanges 59 a, 59 b respectively protrude from its corresponding rack aperture 8.
Still referring to FIG. 3, the operator now orients mounting bracket 75 so preferably two bent bracket apertures 75 e congruently align with two corresponding cage nuts 59 within their respective rack apertures 8. However, other numbers of bent bracket apertures 75 e, with corresponding rack apertures 8 and cage nuts 59, are also within the scope of the invention. The operator next inserts and tightens a Philips screw 50 k through each corresponding congruently aligned rack apertures 8, bent segment aperture 75 e, and cage nut aperture 59 c.
During this step the operator inserts screw 50 k into cage nut aperture 59 c in a direction through the maximum opening of protruding cage nut flanges 59 a, 59 b. The operator repeats this identical process on the second opposing device side 78 b (not seen in FIG. 4), and thereby attaches second opposing side 78 b to corresponding crimped metal strip 36 a or 36 b.
The operator can orient mounting bracket bent end 75 b so it attaches to rack apertures 8 of posterior crimped metal strip 36 b or anterior crimped metal strip 36 a of one rigid vertical components 3 a or 3 b. However, in other embodiments mounting options depend upon a particular manufacturer's features. To remove mounted device 78, the operator removes each Phillips screw 50 k from congruently aligned cage nut 59, rack aperture 8 and bent racket aperture 75 e with opposing device sides 78 a and 78 b.
Referring now to FIGS. 1, 2 and 5, many mounting device 78 deviate from the U industry standard of 19 inches of horizontal length 10 a. In addition, prior art brackets 75 often contain variations in thickness of bent segment 75 b and flat segment 75 d. These variations may interfere with precise fittings between rack apertures 8 and mounted device opposing sides 78 a, 78 b. To solve this problem, for each modular rigid support structure 2 a, 2 b or two modular unit mount rack fame 1, the operator can laterally adjust the effective horizontal length 10 a of rigid horizontal components 4 a and/or 4 b.
To do so, the operator loosens each small round screw 50 a within partially elliptical congruently aligned aperture pairs 14 and 14 h. In particular, the operator loosens small round screws 50 a within both first and second rigid vertical ends 15 a, 15 b of rigid vertical component 3 a and/or 3 b. The operator must also loosen and remove screws 50 b and washers 50 d from aligned apertures 18 a/81 a, 18 b/81 b. In this manner either rigid vertical end 15 a, 15 b of a single rigid vertical component 3 a or 3 b can now move within its respective horizontal track 12.
As seen in schematic FIG. 5, to increase horizontal length 10 a of modular rigid support structure 2 a or 2 b, the operator manually moves each rigid vertical component 3 a or 3 b (or both) laterally outward within each corresponding horizontal track 12 (by rigid vertical ends 15 a, 15 b) until each small round screw 50 a abuts outermost edge 14 f of its corresponding partially elliptical aperture 17.
To decrease horizontal length 10 a the operator manually moves each rigid vertical component 3 a or 3 b (or both) laterally inward within each corresponding track 12 until each small round screw 50 a abuts innermost edge 14 g of corresponding partially elliptical aperture 17. Screws 50 b and washers 50 d within congruently aligned apertures 18 a/81 a and 18 b/81 must be loosed and removed, as with increasing horizontal length 10 a, supra.
Materials and how to Produce Mount Rack Frame Components in the Best Mode
Preferably rigid vertical components 3 a, 3 b and rigid horizontal components 4 a, 4 b are made of SPCC quality cold rolled steel. However, materials such as copper or other rigid materials are also satisfactory. Screws 50 a, 50 b, 50 g, 50 k, are preferably made of SPCC quality cold rolled steel, but materials such as copper or other rigid materials are also satisfactory. Rack base legs 71 a, 71 b are preferably made of SPCC quality cold rolled steel, but copper or other rigid materials are also satisfactory.
Mechanical prior art attachments to coasters on rack base 60 are preferably made of SPCC cold rolled steel, but copper or other rigid materials are also satisfactory. Cage nuts 59 and washers 50 d are preferably made of SPCC quality cold rolled steel, but copper or other rigid materials are also satisfactory. Prior art connecting brackets 75 are preferably made of SPCC quality cold rolled steel, but copper or other rigid materials are also satisfactory.
Factory production of mount rack frame 1 components proceeds as follows:
- (a) Mold production;
- (b) Shear of steel sheets by numerically controlled computers;
- (c) Punching of sheared plate sheets;
- (d) Bending and folding of sheared metal plate sheets by numerically controlled computers; and
- (e) Application of a surface finish which includes:
- (1) degreasing;
- (2) acid pickling;
- (3) rust prevention and parkerizing applications;
- (4) pure water cleaning; and
- (5) static electricity prevention plastic which is painted upon the metal surface