US9142950B2 - Circuit arrangement having an overload protection for galvanic isolation units - Google Patents
Circuit arrangement having an overload protection for galvanic isolation units Download PDFInfo
- Publication number
- US9142950B2 US9142950B2 US14/084,779 US201314084779A US9142950B2 US 9142950 B2 US9142950 B2 US 9142950B2 US 201314084779 A US201314084779 A US 201314084779A US 9142950 B2 US9142950 B2 US 9142950B2
- Authority
- US
- United States
- Prior art keywords
- galvanic isolation
- control signal
- circuit arrangement
- terminal
- signal terminal
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
Images
Classifications
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02H—EMERGENCY PROTECTIVE CIRCUIT ARRANGEMENTS
- H02H3/00—Emergency protective circuit arrangements for automatic disconnection directly responsive to an undesired change from normal electric working condition with or without subsequent reconnection ; integrated protection
- H02H3/08—Emergency protective circuit arrangements for automatic disconnection directly responsive to an undesired change from normal electric working condition with or without subsequent reconnection ; integrated protection responsive to excess current
- H02H3/10—Emergency protective circuit arrangements for automatic disconnection directly responsive to an undesired change from normal electric working condition with or without subsequent reconnection ; integrated protection responsive to excess current additionally responsive to some other abnormal electrical conditions
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02H—EMERGENCY PROTECTIVE CIRCUIT ARRANGEMENTS
- H02H9/00—Emergency protective circuit arrangements for limiting excess current or voltage without disconnection
- H02H9/008—Intrinsically safe circuits
-
- H—ELECTRICITY
- H03—ELECTRONIC CIRCUITRY
- H03K—PULSE TECHNIQUE
- H03K17/00—Electronic switching or gating, i.e. not by contact-making and –breaking
- H03K17/08—Modifications for protecting switching circuit against overcurrent or overvoltage
- H03K17/081—Modifications for protecting switching circuit against overcurrent or overvoltage without feedback from the output circuit to the control circuit
- H03K17/0814—Modifications for protecting switching circuit against overcurrent or overvoltage without feedback from the output circuit to the control circuit by measures taken in the output circuit
- H03K17/08146—Modifications for protecting switching circuit against overcurrent or overvoltage without feedback from the output circuit to the control circuit by measures taken in the output circuit in bipolar transistor switches
-
- H—ELECTRICITY
- H03—ELECTRONIC CIRCUITRY
- H03K—PULSE TECHNIQUE
- H03K17/00—Electronic switching or gating, i.e. not by contact-making and –breaking
- H03K17/51—Electronic switching or gating, i.e. not by contact-making and –breaking characterised by the components used
- H03K17/78—Electronic switching or gating, i.e. not by contact-making and –breaking characterised by the components used using opto-electronic devices, i.e. light-emitting and photoelectric devices electrically- or optically-coupled
- H03K17/795—Electronic switching or gating, i.e. not by contact-making and –breaking characterised by the components used using opto-electronic devices, i.e. light-emitting and photoelectric devices electrically- or optically-coupled controlling bipolar transistors
- H03K17/7955—Electronic switching or gating, i.e. not by contact-making and –breaking characterised by the components used using opto-electronic devices, i.e. light-emitting and photoelectric devices electrically- or optically-coupled controlling bipolar transistors using phototransistors
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04B—TRANSMISSION
- H04B10/00—Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
- H04B10/80—Optical aspects relating to the use of optical transmission for specific applications, not provided for in groups H04B10/03 - H04B10/70, e.g. optical power feeding or optical transmission through water
- H04B10/801—Optical aspects relating to the use of optical transmission for specific applications, not provided for in groups H04B10/03 - H04B10/70, e.g. optical power feeding or optical transmission through water using optical interconnects, e.g. light coupled isolators, circuit board interconnections
- H04B10/802—Optical aspects relating to the use of optical transmission for specific applications, not provided for in groups H04B10/03 - H04B10/70, e.g. optical power feeding or optical transmission through water using optical interconnects, e.g. light coupled isolators, circuit board interconnections for isolation, e.g. using optocouplers
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L25/00—Baseband systems
- H04L25/02—Details ; arrangements for supplying electrical power along data transmission lines
- H04L25/0264—Arrangements for coupling to transmission lines
- H04L25/0266—Arrangements for providing Galvanic isolation, e.g. by means of magnetic or capacitive coupling
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L25/00—Baseband systems
- H04L25/02—Details ; arrangements for supplying electrical power along data transmission lines
- H04L25/20—Repeater circuits; Relay circuits
- H04L25/26—Circuits with optical sensing means, i.e. using opto-couplers for isolation
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02H—EMERGENCY PROTECTIVE CIRCUIT ARRANGEMENTS
- H02H3/00—Emergency protective circuit arrangements for automatic disconnection directly responsive to an undesired change from normal electric working condition with or without subsequent reconnection ; integrated protection
- H02H3/02—Details
- H02H3/021—Details concerning the disconnection itself, e.g. at a particular instant, particularly at zero value of current, disconnection in a predetermined order
- H02H3/023—Details concerning the disconnection itself, e.g. at a particular instant, particularly at zero value of current, disconnection in a predetermined order by short-circuiting
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02H—EMERGENCY PROTECTIVE CIRCUIT ARRANGEMENTS
- H02H9/00—Emergency protective circuit arrangements for limiting excess current or voltage without disconnection
- H02H9/02—Emergency protective circuit arrangements for limiting excess current or voltage without disconnection responsive to excess current
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02H—EMERGENCY PROTECTIVE CIRCUIT ARRANGEMENTS
- H02H9/00—Emergency protective circuit arrangements for limiting excess current or voltage without disconnection
- H02H9/04—Emergency protective circuit arrangements for limiting excess current or voltage without disconnection responsive to excess voltage
- H02H9/041—Emergency protective circuit arrangements for limiting excess current or voltage without disconnection responsive to excess voltage using a short-circuiting device
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02M—APPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
- H02M3/00—Conversion of dc power input into dc power output
- H02M3/22—Conversion of dc power input into dc power output with intermediate conversion into ac
- H02M3/24—Conversion of dc power input into dc power output with intermediate conversion into ac by static converters
- H02M3/28—Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac
- H02M3/325—Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal
- H02M3/335—Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only
- H02M3/33507—Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of the output voltage or current, e.g. flyback converters
- H02M3/33523—Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of the output voltage or current, e.g. flyback converters with galvanic isolation between input and output of both the power stage and the feedback loop
Definitions
- the invention relates to a circuit arrangement having an overload protection for galvanic isolation units for galvanic isolation of circuit regions from one another, wherein the galvanic isolation units each have two regions galvanically isolated from one another and at least one of the regions has a control signal terminal and a base signal terminal, wherein the circuit arrangement has at least two such galvanic isolation units.
- Circuit arrangements of this type are required in particular in input and/or output modules in intrinsically safe, explosion-protected regions. They are used in conjunction with industrial controllers and building automation. Particular regulations have to be fulfilled when transmitting electrical signals in the transition region between intrinsically safe and non-intrinsically safe regions. These circuit regions have to be galvanically isolated from one another, such that the transmission of energy between these circuit regions to be galvanically isolated from one another is restricted to a minimal amount. Galvanic isolation units such as, in particular, optocouplers are used for this purpose.
- DE 299 08 588 U1 describes an apparatus for intrinsically safe optical data transmission between an intrinsically safe part and a non-intrinsically safe part of an electrical device, in which the transmitting diode is formed on one side and the radiation receiver on the other side, as electro-optical components isolated from one another.
- the transmitting diode emits radiation to the radiation receiver via a free path.
- DE 39 07 033 A1 discloses arranging an optical waveguide between the transmitting diode and the radiation receiver separate therefrom, wherein the transmitting diode is fed by a dedicated voltage supply in the intrinsically safe region.
- an overvoltage protection device In compliance with the existing safety standards, such as e.g. EN 50 020, galvanic isolation is permissible using standard optocouplers if an overvoltage protection device is present.
- an overvoltage protection device is described in DE 44 36 858 C2. It has at least two limiting members. Each limiting member can be formed either by a single limiting element or a series circuit comprising at least two limiting elements, wherein zener diodes, diodes, varistors or the like are primarily suitable as limiting elements.
- a limiting element is respectively connected into the supply path of the assigned optocoupler. This prevents, in the overvoltage case, destruction of the optocoupler protected by the assigned limiting element, such as a fuse, for example, and the production of a conductive connection possibly with sparking between the non-intrinsically safe region and the intrinsically safe region of the optocoupler.
- the base terminals of a region are electrically conductively connected to one another and are connected to a base potential via a common fuse connected in series.
- the present invention proposes jointly utilizing a common fuse as overload protection element for at least two galvanic isolation units. This is achieved by the fuse being connected between the base potential and base terminals electrically conductively connected to one another. In the event of a current which flows through at least one of the galvanic isolation units and overloads the galvanic isolation unit, said current then flows away via the common fuse and triggers the fuse, i.e. the overload protection of the overload protection unit.
- the fusable filament of a fusable link can melt at such an elevated current and interrupt the current flow through the galvanic isolation units.
- a further overvoltage protection element is in each case connected in parallel with an assigned galvanic isolation unit between the signal path leading to the signal unit assigned galvanic isolation unit and the signal path which is outgoing from the base output of the assigned galvanic isolation unit.
- an overvoltage protection element in each case connected in parallel with the galvanic isolation unit, the galvanic isolation unit is protected against excessively high voltages.
- a zener diode in particular, is suitable as such as overvoltage protection element.
- a resistor is connected in series at the control signal terminal of the galvanic isolation unit and the overvoltage protection element acting as a limiting element lies with the interposed resistor in parallel with the control signal terminal and base terminal of a respective galvanic isolation element.
- the overvoltage protection element serves for voltage limiting and is particularly advantageously embodied as a zener diode.
- a fuse such as a fusable link, for example, is used as the overload protection element.
- the control signal terminals of the galvanic isolation units are preferably connected directly or indirectly (e.g. with interposed resistors) to an assigned control signal output of a control unit.
- the control unit serves for driving the galvanic isolation units by means of control signals or for receiving control signals of a following galvanic isolation unit, which, with the aid of the galvanic isolation unit, are transmitted to the galvanically isolated other circuit region or received from said circuit region.
- the control unit used is, in particular, a microcontroller, microprocessor, FPGA (Field Programmable Gate Array) or ASIC (Application Specific Integrated Circuit), which is preferably part of an automation device (industrial controller, building automation, control of means of transport, etc.).
- the galvanic isolation units are preferably connected to ground potential via a common overload protection element (fuse).
- a common overload protection element fuse
- the base outputs of the galvanic isolation units it is also conceivable for the base outputs of the galvanic isolation units to be connected to supply voltage potential via the common overload protection element.
- optocouplers can be used as galvanic isolation units.
- FIG. 1 shows a diagram of a circuit arrangement with overload protection for optocouplers, for conducting signals from an EX region to a controller;
- FIG. 2 shows a diagram of a circuit arrangement with overload protection for optocouplers for conducting signals from a controller into an EX region
- FIG. 3 shows a diagram of a circuit arrangement as a combination of the circuit arrangement from FIGS. 1 and 2 .
- FIG. 1 reveals a diagram of a circuit arrangement with which a number of at least two optocouplers OK 1 , OK 2 , . . . , OK n as galvanic isolation units can be protected against overloading.
- the optocouplers OK 1 , OK 2 , . . . , OK n are provided for the galvanic isolation of an intrinsically safe region (EX region) and a non-intrinsically safe region (left-hand region).
- the intrinsically safe region is, in particular, an explosion-protected region for which particular requirements are applicable, such as are defined e.g. in the standard DIN EN 60079-11 (VDE 0170-7).
- the galvanic isolation units OK 1 , OK 2 , . . . , OK n each have a control signal terminal S and a base terminal B.
- a control signal terminal S_EX and a base terminal B_EX are provided in a corresponding manner.
- the signal terminal S_EX of the intrinsically safe region EX region is connected via a resistor R 2 to a load to be driven (not illustrated).
- the base terminal B_EX is connected to ground potential GND_EX of the intrinsically safe region (EX region).
- the galvanic isolation units OK 1 , OK 2 , . . . , OK n embodied as optocouplers have in each case for the intrinsically safe region (EX region) an optical receiving unit for example in the form of a photodiode or a phototransistor T.
- an optical transmitting unit for example in the form of a light-emitting diode in the visible or non-visible light wavelength range is present and connected to the control signal terminal S and base terminal B of the non-intrinsically safe region.
- the circuit arrangement depicted schematically by way of example is thus provided for conducting signals from a control unit CTR to receivers (not illustrated) in the intrinsically safe region (EX region).
- the galvanic isolation elements OK 1 , OK 2 are driven via control signal outputs CTRL 1 , CTRL 2 , . . . , CTRL n of a control unit CTR.
- a resistor R 1 , R 3 , . . . is connected in series between the control signal output CTRL 1 , CTRL 2 , . . . , CTRL n , and the respectively assigned control signal terminal S 1 , S 2 , . . . , S n of the galvanic isolation element OK 1 , OK 2 , . . . , OK n .
- an overvoltage protection element V 1 , V 2 , . . . , V n (limiting element) is connected in parallel, wherein the series resistor R 1 , R 3 is connected directly upstream of the control signal terminal S.
- the overvoltage protection element V 1 , V 2 which can be embodied as a zener diode, in particular is thus connected with the interposed resistor R 1 , R 3 in parallel with the control signal terminal S and the base terminal on the non-intrinsically safe side of the respective galvanic isolation element OK 1 , OK 2 , . . . , OK n .
- the base terminals B are connected to a first ground region of the circuit arrangement. Via a common overload protection element, i.e. via the fuse F, the base terminals B are connected to a base potential GND.
- the base terminals of these further galvanic isolation units OK n can likewise be connected to ground GND_F and the base terminals of the other galvanic isolation units OK 1 , OK 2 , . . . , OK n .
- galvanic isolation units OK 1 , OK 2 , . . . , OK n it is also conceivable for galvanic isolation units OK 1 , OK 2 , . . . , OK n to be interconnected with one another in groups such that the base terminals B of a group are in each case connected to a common ground GND via a common fuse F.
- Such a group of galvanic isolation elements OK 1 , OK 2 , . . . , OK n interconnected with one another can consist, for example, of two, three, four, five, six or more of such galvanic isolation units OK 1 , OK 2 , . . . , OK n .
- FIG. 2 reveals a diagram of a circuit arrangement with which signals can be transmitted from the control unit CTR (Controller, ASIC or the like) via the optocouplers OK 1 , OK 2 , . . . , OK n as galvanic isolation units into the intrinsically safe region (EX region) to loads/receivers arranged there.
- the base terminals B of the optocouplers OK 1 , OK 2 , . . . , OK n are connected to the base potential GND via a common fuse F.
- control signal terminals S of the optocouplers OK 1 , OK 2 , . . . , OK n are connected to supply voltage potential VCC via a respective resistor R 1 , R 3 .
- the overload protection elements V 1 , V 2 , . . . , V n are connected in parallel between the control signal terminal S 1 , S 2 and the base terminal B of the assigned optocoupler OK 1 , OK 2 , . . . , OK n .
- SIG n of the control unit CTR are in each case connected to an assigned control signal terminal S 1 , S 2 , . . . , S n via a series resistor R 5 , R 6 , . . . .
- the optocouplers OK 1 , OK 2 , . . . , OK n are now connected such that a phototransistor is connected between the control signal terminal S 1 , S 2 and the base terminal B a as optocoupler OK 1 , OK 2 , . . . , OK n .
- the optical transmitting unit in the form of a light-emitting diode, which is driven via a respective series resistor R 2 , R 4 and is connected by its cathode to ground potential GND_EX of the intrinsically safe region (EX region).
- the optocouplers OK 1 , OK 2 , . . . , OK n are interconnected exactly oppositely to the first variant in accordance with FIG. 1 between the region of the control unit CTR and the intrinsically safe region (EX region).
- FIG. 3 reveals a diagram of a circuit arrangement in which the circuit arrangements in accordance with FIGS. 1 and 2 are combined with one another.
Landscapes
- Engineering & Computer Science (AREA)
- Computer Networks & Wireless Communication (AREA)
- Signal Processing (AREA)
- Power Engineering (AREA)
- Physics & Mathematics (AREA)
- Electromagnetism (AREA)
- Emergency Protection Circuit Devices (AREA)
Abstract
Description
Claims (15)
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
DE102012111278.9A DE102012111278B4 (en) | 2012-11-22 | 2012-11-22 | Circuit arrangement with overload protection for galvanic isolation units |
DE102012111278 | 2012-11-22 | ||
DE102012111278.9 | 2012-11-22 |
Publications (2)
Publication Number | Publication Date |
---|---|
US20140139962A1 US20140139962A1 (en) | 2014-05-22 |
US9142950B2 true US9142950B2 (en) | 2015-09-22 |
Family
ID=49709460
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US14/084,779 Active US9142950B2 (en) | 2012-11-22 | 2013-11-20 | Circuit arrangement having an overload protection for galvanic isolation units |
Country Status (4)
Country | Link |
---|---|
US (1) | US9142950B2 (en) |
EP (1) | EP2738990A1 (en) |
CN (1) | CN103840427B (en) |
DE (1) | DE102012111278B4 (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US11531048B2 (en) | 2018-01-08 | 2022-12-20 | Wago Verwaltungsgesellschaft Mbh | Voltage diagnostic circuit |
Families Citing this family (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
TWI538379B (en) * | 2014-04-04 | 2016-06-11 | 立錡科技股份有限公司 | Isolated Power Supply Circuit with Programmable Function and Control Method Thereof |
JP6619029B2 (en) * | 2015-06-25 | 2019-12-11 | マイクロ モーション インコーポレイテッド | Input protection circuit for analog optocouplers |
DE102016201141B4 (en) | 2016-01-27 | 2017-11-16 | Wago Verwaltungsgesellschaft Mbh | security arrangement |
CN109088404A (en) * | 2017-06-13 | 2018-12-25 | 神讯电脑(昆山)有限公司 | Electronic device with limitation output energy function |
DE102018118647A1 (en) * | 2018-08-01 | 2020-02-06 | Ifm Electronic Gmbh | Single fail-safe electronic safety circuit |
JP7366849B2 (en) * | 2020-07-09 | 2023-10-23 | 株式会社東芝 | Communication device |
Citations (16)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP0091562A2 (en) | 1982-04-10 | 1983-10-19 | Heidelberger Druckmaschinen Aktiengesellschaft | Data transmission system |
US4420840A (en) | 1981-08-17 | 1983-12-13 | Livermore Thomas R | Intrinsically safe photoelectric sensing |
EP0263246A2 (en) | 1986-10-03 | 1988-04-13 | R. Stahl Schaltgeräte GmbH | Explosion-protected multiplexer |
US4777375A (en) | 1987-07-29 | 1988-10-11 | Teleco Oilfield Services Inc. | Intrinsically safe matrix keypad having opto-couplers associated with each row and column of switches |
DE3907033A1 (en) | 1989-03-04 | 1990-09-06 | Flow Comp Ingenieur Gmbh | Device for measuring and transmitting pressure and temperature values in the area subject/not subject to explosion hazards |
DE3931537A1 (en) | 1989-09-21 | 1991-04-04 | Siemens Ag | Terminal connector to voltage supply bus=bar - has output coupler for each terminal, with voltage limiting zener diode parallel to output coupler output |
WO1992015139A1 (en) | 1991-02-13 | 1992-09-03 | Square D Company | Surge suppression and fault containment circuit and packaging therefor |
US5347418A (en) * | 1991-02-27 | 1994-09-13 | Mitsubishi Denki Kabushiki Kaisha | Fuse blowout detector circuit |
DE4436858A1 (en) | 1994-10-17 | 1996-04-25 | Pilz Gmbh & Co | Surge protection device |
US5570263A (en) | 1994-12-27 | 1996-10-29 | Dataserv Computer Maintenance, Inc. | Communications bus surge protector |
DE29908588U1 (en) | 1999-05-14 | 1999-08-05 | Flowcomp Systemtechnik GmbH, 44357 Dortmund | Intrinsically safe optical data transmission |
WO2001076107A1 (en) | 2000-03-31 | 2001-10-11 | Micro Motion, Inc. | Optocoupler for a non-intrinsically safe circuit |
WO2002095895A1 (en) | 2001-05-18 | 2002-11-28 | R. Stahl Schaltgeräte GmbH | Power limiting circuit |
US6760437B1 (en) | 1998-05-06 | 2004-07-06 | Hewlett-Packard Development Company, L.P. | Analog modem overcurrent protection |
US20100085667A1 (en) * | 2007-05-10 | 2010-04-08 | Jalal Hallak | Circuit arrangement comprising at least two capacitors connected in series |
US20120194200A1 (en) * | 2011-01-28 | 2012-08-02 | Xantrex Technology Inc. | Fuse continuity detection |
Family Cites Families (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE2019937B2 (en) | 1970-04-24 | 1972-12-14 | Hartmann & Braun Ag, 6000 Frankfurt | DEVICE TO PROTECT CONSUMERS AND / OR TRANSDUCERS IN EXPLOSION HAZARD AREAS |
-
2012
- 2012-11-22 DE DE102012111278.9A patent/DE102012111278B4/en active Active
-
2013
- 2013-11-20 US US14/084,779 patent/US9142950B2/en active Active
- 2013-11-22 EP EP13193989.4A patent/EP2738990A1/en not_active Withdrawn
- 2013-11-22 CN CN201310757466.1A patent/CN103840427B/en active Active
Patent Citations (18)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4420840A (en) | 1981-08-17 | 1983-12-13 | Livermore Thomas R | Intrinsically safe photoelectric sensing |
EP0091562A2 (en) | 1982-04-10 | 1983-10-19 | Heidelberger Druckmaschinen Aktiengesellschaft | Data transmission system |
US4639727A (en) | 1982-04-10 | 1987-01-27 | Heidelberger Druckmaschinen Ag | Data transmission system of optto-couplers |
EP0263246A2 (en) | 1986-10-03 | 1988-04-13 | R. Stahl Schaltgeräte GmbH | Explosion-protected multiplexer |
US4777375A (en) | 1987-07-29 | 1988-10-11 | Teleco Oilfield Services Inc. | Intrinsically safe matrix keypad having opto-couplers associated with each row and column of switches |
DE3907033A1 (en) | 1989-03-04 | 1990-09-06 | Flow Comp Ingenieur Gmbh | Device for measuring and transmitting pressure and temperature values in the area subject/not subject to explosion hazards |
DE3931537A1 (en) | 1989-09-21 | 1991-04-04 | Siemens Ag | Terminal connector to voltage supply bus=bar - has output coupler for each terminal, with voltage limiting zener diode parallel to output coupler output |
WO1992015139A1 (en) | 1991-02-13 | 1992-09-03 | Square D Company | Surge suppression and fault containment circuit and packaging therefor |
US5347418A (en) * | 1991-02-27 | 1994-09-13 | Mitsubishi Denki Kabushiki Kaisha | Fuse blowout detector circuit |
DE4436858A1 (en) | 1994-10-17 | 1996-04-25 | Pilz Gmbh & Co | Surge protection device |
US5570263A (en) | 1994-12-27 | 1996-10-29 | Dataserv Computer Maintenance, Inc. | Communications bus surge protector |
US6760437B1 (en) | 1998-05-06 | 2004-07-06 | Hewlett-Packard Development Company, L.P. | Analog modem overcurrent protection |
DE29908588U1 (en) | 1999-05-14 | 1999-08-05 | Flowcomp Systemtechnik GmbH, 44357 Dortmund | Intrinsically safe optical data transmission |
WO2001076107A1 (en) | 2000-03-31 | 2001-10-11 | Micro Motion, Inc. | Optocoupler for a non-intrinsically safe circuit |
WO2002095895A1 (en) | 2001-05-18 | 2002-11-28 | R. Stahl Schaltgeräte GmbH | Power limiting circuit |
US20040174648A1 (en) | 2001-05-18 | 2004-09-09 | Fritz Frey | Power limiting circuit |
US20100085667A1 (en) * | 2007-05-10 | 2010-04-08 | Jalal Hallak | Circuit arrangement comprising at least two capacitors connected in series |
US20120194200A1 (en) * | 2011-01-28 | 2012-08-02 | Xantrex Technology Inc. | Fuse continuity detection |
Non-Patent Citations (2)
Title |
---|
European Search Report for corresponding European Application No. 13193989.4 dated Apr. 28, 2014. |
Schimanski, "Ueberspannungsschutz in Anlagen mit eigensicheren Stromkreisen", Elektrtechnik fuer die Automatisierung, Vogel Business Media GmbH & Co. KG, Bd. 74, Nr. 5, May 13, 1992, 4 pages. |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US11531048B2 (en) | 2018-01-08 | 2022-12-20 | Wago Verwaltungsgesellschaft Mbh | Voltage diagnostic circuit |
Also Published As
Publication number | Publication date |
---|---|
CN103840427B (en) | 2018-06-01 |
EP2738990A1 (en) | 2014-06-04 |
DE102012111278A1 (en) | 2014-05-22 |
DE102012111278B4 (en) | 2021-11-25 |
US20140139962A1 (en) | 2014-05-22 |
CN103840427A (en) | 2014-06-04 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US9142950B2 (en) | Circuit arrangement having an overload protection for galvanic isolation units | |
KR20100019501A (en) | Circuit arrangement comprising at least two capacitors that are connected in series | |
CA2602747C (en) | Circuit breaker system | |
US20120140363A1 (en) | Overvoltage Protection for Inverters that Comprise an EMC Filter at Their Input End | |
US9324532B2 (en) | Fuse failure display | |
US10884036B2 (en) | Alternating current load detection circuit | |
US9897662B2 (en) | Battery system | |
JP2019195075A (en) | LED device | |
KR102422865B1 (en) | Modules to provide intrinsically safe electrical output power and explosion-proof luminaires | |
US20240283193A1 (en) | Hazardous environment electrical feedback barrier device, assembly, system and method | |
US11050243B2 (en) | Safety module and field-bus system comprising a safety module | |
US20200182965A1 (en) | Fault tolerant digital input receiver circuit | |
EP3648277A1 (en) | Electronic circuit for redundant supply of an electric load | |
US20110095810A1 (en) | Linkage apparatus of AC two-wire solid-state switches | |
CN104584498A (en) | Circuit for transmitting signals and for galvanic isolation | |
RU2014153792A (en) | ELECTRICAL CIRCUIT TO DISCONNECT THE POWER SUPPLY SUPPLIED WITH TRANSISTORS AND ELECTRICAL FUSES AND HAVING A PROVIDED REDUNDANCE FOR LOGIC | |
US10594134B2 (en) | Distribution system with an electronic fuse terminal and at least one first series terminal | |
US20190115745A1 (en) | Space-limited protection module with at least two overvoltage protection elements in parallel current branches | |
KR101543768B1 (en) | 3-input photovoltaic inverter apparatus | |
US10090086B2 (en) | Space-saving isolating arrester | |
US9819181B2 (en) | Device for intrinsically safe redundant current supply of field devices | |
CN104124661A (en) | Current assignment method and corresponding switch arrangement | |
CN105372985B (en) | System for reliably and redundantly supplying power to a field device itself | |
GB2210521A (en) | Electrical safety barrier | |
KR101381427B1 (en) | Busbar relay mc module |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
AS | Assignment |
Owner name: WAGO VERWALTUNGSGESELLSCHAFT MBH, GERMANY Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:VOSS, CHRISTIAN;REEL/FRAME:035645/0422 Effective date: 20150414 |
|
STCF | Information on status: patent grant |
Free format text: PATENTED CASE |
|
MAFP | Maintenance fee payment |
Free format text: PAYMENT OF MAINTENANCE FEE, 4TH YEAR, LARGE ENTITY (ORIGINAL EVENT CODE: M1551); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY Year of fee payment: 4 |
|
MAFP | Maintenance fee payment |
Free format text: PAYMENT OF MAINTENANCE FEE, 8TH YEAR, LARGE ENTITY (ORIGINAL EVENT CODE: M1552); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY Year of fee payment: 8 |