US9108385B2 - Honeycomb core structure for use in a structural panel for a jet engine nacelle - Google Patents

Honeycomb core structure for use in a structural panel for a jet engine nacelle Download PDF

Info

Publication number
US9108385B2
US9108385B2 US13/147,937 US201013147937A US9108385B2 US 9108385 B2 US9108385 B2 US 9108385B2 US 201013147937 A US201013147937 A US 201013147937A US 9108385 B2 US9108385 B2 US 9108385B2
Authority
US
United States
Prior art keywords
honeycomb
cells
honeycomb core
core
joining
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related, expires
Application number
US13/147,937
Other versions
US20110293411A1 (en
Inventor
Thierry Deschamps
Bertrand Desjoyeaux
John Moutier
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Safran Nacelles SAS
Original Assignee
Aircelle SA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Aircelle SA filed Critical Aircelle SA
Assigned to AIRCELLE reassignment AIRCELLE ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: DESCHAMPS, THIERRY, DESJOYEAUX, BERTRAND, MOUTIER, JOHN
Publication of US20110293411A1 publication Critical patent/US20110293411A1/en
Application granted granted Critical
Publication of US9108385B2 publication Critical patent/US9108385B2/en
Assigned to SAFRAN NACELLES reassignment SAFRAN NACELLES CHANGE OF NAME (SEE DOCUMENT FOR DETAILS). Assignors: AIRCELLE
Expired - Fee Related legal-status Critical Current
Adjusted expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B3/00Layered products comprising a layer with external or internal discontinuities or unevennesses, or a layer of non-planar shape; Layered products comprising a layer having particular features of form
    • B32B3/10Layered products comprising a layer with external or internal discontinuities or unevennesses, or a layer of non-planar shape; Layered products comprising a layer having particular features of form characterised by a discontinuous layer, i.e. formed of separate pieces of material
    • B32B3/12Layered products comprising a layer with external or internal discontinuities or unevennesses, or a layer of non-planar shape; Layered products comprising a layer having particular features of form characterised by a discontinuous layer, i.e. formed of separate pieces of material characterised by a layer of regularly- arranged cells, e.g. a honeycomb structure
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21DWORKING OR PROCESSING OF SHEET METAL OR METAL TUBES, RODS OR PROFILES WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21D28/00Shaping by press-cutting; Perforating
    • B21D28/24Perforating, i.e. punching holes
    • B21D28/32Perforating, i.e. punching holes in other articles of special shape
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B15/00Layered products comprising a layer of metal
    • B32B15/04Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B15/00Layered products comprising a layer of metal
    • B32B15/20Layered products comprising a layer of metal comprising aluminium or copper
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B3/00Layered products comprising a layer with external or internal discontinuities or unevennesses, or a layer of non-planar shape; Layered products comprising a layer having particular features of form
    • B32B3/10Layered products comprising a layer with external or internal discontinuities or unevennesses, or a layer of non-planar shape; Layered products comprising a layer having particular features of form characterised by a discontinuous layer, i.e. formed of separate pieces of material
    • B32B3/18Layered products comprising a layer with external or internal discontinuities or unevennesses, or a layer of non-planar shape; Layered products comprising a layer having particular features of form characterised by a discontinuous layer, i.e. formed of separate pieces of material characterised by an internal layer formed of separate pieces of material which are juxtaposed side-by-side
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B3/00Layered products comprising a layer with external or internal discontinuities or unevennesses, or a layer of non-planar shape; Layered products comprising a layer having particular features of form
    • B32B3/26Layered products comprising a layer with external or internal discontinuities or unevennesses, or a layer of non-planar shape; Layered products comprising a layer having particular features of form characterised by a particular shape of the outline of the cross-section of a continuous layer; characterised by a layer with cavities or internal voids ; characterised by an apertured layer
    • B32B3/266Layered products comprising a layer with external or internal discontinuities or unevennesses, or a layer of non-planar shape; Layered products comprising a layer having particular features of form characterised by a particular shape of the outline of the cross-section of a continuous layer; characterised by a layer with cavities or internal voids ; characterised by an apertured layer characterised by an apertured layer, the apertures going through the whole thickness of the layer, e.g. expanded metal, perforated layer, slit layer regular cells B32B3/12
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B37/00Methods or apparatus for laminating, e.g. by curing or by ultrasonic bonding
    • B32B37/0076Methods or apparatus for laminating, e.g. by curing or by ultrasonic bonding characterised in that the layers are not bonded on the totality of their surfaces
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B38/00Ancillary operations in connection with laminating processes
    • B32B38/04Punching, slitting or perforating
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B5/00Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts
    • B32B5/22Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts characterised by the presence of two or more layers which are next to each other and are fibrous, filamentary, formed of particles or foamed
    • B32B5/24Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts characterised by the presence of two or more layers which are next to each other and are fibrous, filamentary, formed of particles or foamed one layer being a fibrous or filamentary layer
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B7/00Layered products characterised by the relation between layers; Layered products characterised by the relative orientation of features between layers, or by the relative values of a measurable parameter between layers, i.e. products comprising layers having different physical, chemical or physicochemical properties; Layered products characterised by the interconnection of layers
    • B32B7/04Interconnection of layers
    • B32B7/12Interconnection of layers using interposed adhesives or interposed materials with bonding properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B42BOOKBINDING; ALBUMS; FILES; SPECIAL PRINTED MATTER
    • B42BPERMANENTLY ATTACHING TOGETHER SHEETS, QUIRES OR SIGNATURES OR PERMANENTLY ATTACHING OBJECTS THERETO
    • B42B5/00Permanently attaching together sheets, quires or signatures otherwise than by stitching
    • B42B5/02Permanently attaching together sheets, quires or signatures otherwise than by stitching by eyelets
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02KJET-PROPULSION PLANTS
    • F02K1/00Plants characterised by the form or arrangement of the jet pipe or nozzle; Jet pipes or nozzles peculiar thereto
    • F02K1/78Other construction of jet pipes
    • F02K1/82Jet pipe walls, e.g. liners
    • F02K1/827Sound absorbing structures or liners
    • GPHYSICS
    • G10MUSICAL INSTRUMENTS; ACOUSTICS
    • G10KSOUND-PRODUCING DEVICES; METHODS OR DEVICES FOR PROTECTING AGAINST, OR FOR DAMPING, NOISE OR OTHER ACOUSTIC WAVES IN GENERAL; ACOUSTICS NOT OTHERWISE PROVIDED FOR
    • G10K11/00Methods or devices for transmitting, conducting or directing sound in general; Methods or devices for protecting against, or for damping, noise or other acoustic waves in general
    • G10K11/16Methods or devices for protecting against, or for damping, noise or other acoustic waves in general
    • G10K11/172Methods or devices for protecting against, or for damping, noise or other acoustic waves in general using resonance effects
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B37/00Methods or apparatus for laminating, e.g. by curing or by ultrasonic bonding
    • B32B2037/0092Methods or apparatus for laminating, e.g. by curing or by ultrasonic bonding in which absence of adhesives is explicitly presented as an advantage
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B38/00Ancillary operations in connection with laminating processes
    • B32B38/04Punching, slitting or perforating
    • B32B2038/042Punching
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/10Properties of the layers or laminate having particular acoustical properties
    • B32B2307/102Insulating
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/50Properties of the layers or laminate having particular mechanical properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2605/00Vehicles
    • B32B2605/18Aircraft
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T50/00Aeronautics or air transport
    • Y02T50/60Efficient propulsion technologies, e.g. for aircraft
    • Y02T50/672
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T29/00Metal working
    • Y10T29/49Method of mechanical manufacture
    • Y10T29/49346Rocket or jet device making
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/24Structurally defined web or sheet [e.g., overall dimension, etc.]
    • Y10T428/24149Honeycomb-like

Definitions

  • the present invention relates to a honeycomb core structure for use in a structural panel for a jet engine nacelle.
  • the invention also relates to a panel and a nacelle including such a honeycomb core structure and a method for manufacturing such a structure.
  • Airplane turbojet engines are surrounded by a nacelle to protect them and ensure the operation thereof.
  • the nacelle is made up of walls composed of non-structural panels and structural panels. The latter parts ensure a sufficient stiffness of the nacelle.
  • structural panels usually have one or more layers of cellular core structures (commonly called “honeycomb” structures). These layers are generally covered with a skin on their so-called outer face, i.e. the face radially furthest from the axis of the engine, and on their inner face, i.e. the face radially closest to the axis of the engine.
  • the structural panel is then assembled by arranging the different skins and layers, which are then pasted on a mold with the required shape.
  • the assembly is cured in a furnace so as to grip the layers and polymerize the adhesives.
  • turbojet engines In parallel, turbojet engines generate substantial noise pollution. There is therefore a strong demand aiming to reduce this pollution, and even more so given that the turbojet engines used are becoming increasingly powerful.
  • acoustic structural panels whereof the layers are generally covered on the outer face with an air-impermeable skin, called “solid,” and on the inner face with an air-permeable perforated skin, called “acoustic.”
  • the structural acoustic panel can also comprise several layers of cellular core structures between which a multi-perforated skin, called a “septum,” is located. This skin is adhered between the honeycomb core structures by heating during the assembly/gluing phase of the panel.
  • Such panels constitute acoustic resonators able to “trap” the noise and therefore attenuate the sound emissions towards the outside of the nacelle.
  • a honeycomb core structure comprises at least one honeycomb core block comprising a central part having core honeycomb cells and two lateral parts each having a plurality of honeycomb joining cells.
  • the acoustic properties of the acoustic structural panel i.e. its noise absorption rate as a function of the frequency and sound level of the noise, depend in particular on the joining of the honeycomb core block(s).
  • the join of the cellular joining cells is commonly done using a foaming adhesive, such as the FM410® adhesive, which has a significant expansion capacity.
  • a foaming adhesive such as the FM410® adhesive
  • the adjacent edges of the honeycomb core block(s) are coated with the adhesive, which, when it expands, blocks the honeycomb cells by creating overthicknesses.
  • these overthicknesses have the drawback of decreasing the effective acoustic surface of the honeycomb core structure as well as causing abrupt impedance interruptions, which contributes to decreasing the acoustic performance of the acoustic panel during the operation of the turbojet engine.
  • honeycomb core structure whereof the honeycomb joining cells have an additional joining wall.
  • a “honeycomb joining wall” is not engaged in the formation of the honeycomb cell. The joining is done by superimposing the additional joining walls of the honeycomb joining cells belonging to two distinct joint zones and twisting said two additional joining walls thus superimposed in a spiral.
  • honeycomb core structure is complex to make.
  • One aim of the present invention is therefore to provide a honeycomb core structure having a joint zone that is simple to make and effective.
  • the invention relates to a honeycomb core structure for use in a structural panel for a jet engine nacelle, comprising at least one block with a honeycomb core having a central part with core honeycomb cells and at least two lateral parts each comprising a number of honeycomb joining cells of which at least one part of the honeycomb joining cells has at least one additional wall to form a join, characterized in that the honeycomb core block(s) are connected by at least one joint zone formed by punching two additional walls superimposed one on the other and provided by honeycomb joining cells belonging to the distinct lateral parts.
  • the inventive structure includes at least one joint zone formed by punching two additional walls superimposed one on the other and provided by honeycomb joining cells belonging to the distinct lateral parts.
  • the joint zone is easy to implement because it comprises punching two walls of two honeycomb joining cells.
  • the production time for such a structure is also reduced relative to the prior art, the inventive structure not requiring finishing, such as cutting out.
  • joining by punching as done in the invention ensures an effective connection of said structure while allowing mass savings on a panel including the inventive structure.
  • the join to form a structure according to the invention does not require the use of adhesive or any other material obstructing the honeycomb cells.
  • impedance ruptures at the joint zone are reduced or even eliminated when these panels have an acoustic function to perform.
  • the joining by punching according to the invention also makes it possible not to have an impact on the integrity of the honeycomb cells and therefore on the structural capacity of the resulting honeycomb core structure.
  • join can be implemented for honeycomb core structures made up of honeycomb core blocks composed of honeycomb cells of different sizes and shapes.
  • the inventive structure includes one or more of the following optional features considered alone or according to all possible combinations:
  • the invention relates to a structural panel characterized in that it includes a structure according to the invention.
  • the inventive panel is an acoustic panel.
  • the invention relates to a nacelle characterized in that it includes a panel according to the invention.
  • the invention relates to a method for making a honeycomb core structure according to the invention, characterized in that it includes the following steps:
  • honeycomb core block(s) are joined by punching the additional walls thus superimposed via a punching means to form the honeycomb core structure.
  • the additional wall(s) are formed by cutting, substantially crosswise, a block with a honeycomb core whereof the honeycomb cells are expanded.
  • step B the additional walls are superimposed when the honeycomb joining and/or core cells are not expanded.
  • step C the punching means is eyeletting pliers.
  • FIG. 1 is a cross-sectional view of a single-layer structural panel according to the present invention
  • FIG. 2 is a cross-sectional view of a dual-layer structural panel according to the present invention.
  • FIG. 3 is a top view of a structure according to the invention.
  • FIG. 4 is an enlargement of zone IV of FIG. 3 ;
  • FIGS. 5 to 7 are alternatives of the embodiment of FIG. 4 .
  • a structural panel 1 according to the invention of the single-layer acoustic panel type comprises a honeycomb core structure 2 according to the invention made up of one or more, and in this case two, blocks with a honeycomb core A and B joined together.
  • the inventive structure 2 has a plurality of blocks with a honeycomb core A, B defining a plurality of joint zones, it is then possible to adapt the structural panel 1 according to the invention to the desired mechanical strength and also, if applicable, the desired acoustic absorption.
  • the inventive structure includes a single block with a honeycomb core joined thereon. In this way, a single connecting zone is obtained, which makes it possible to save time during the production of the inventive structure.
  • the honeycomb core structure 2 is sandwiched between an inner skin 3 and an outer skin 4 .
  • These two blocks with a honeycomb core A, B include a central part 5 comprising core honeycomb cells 7 a , 7 b and typically several, in this case two lateral parts 9 a , 9 b each comprising a plurality of honeycomb joining cells 11 a , 11 b .
  • the honeycomb joining cells 11 a , 11 b of each block A and B are connected to each other so as to form a joint zone 13 , the features of which will be detailed below.
  • a block can have any geometric shape, including a substantially square or oval shape.
  • the lateral part(s) are arranged between the edge of said block or central part.
  • said block can have up to four side walls.
  • the joint zone between a plurality of blocks can be made on some or all of the edges of said block.
  • the core honeycomb cells 7 a , 7 b and the honeycomb joining cells 11 a , 11 b in this case have hexagonal sections, thereby forming so-called honeycomb structures. It is possible for the honeycomb cells 7 a , 7 b and 11 a , 11 b to have sections of any geometric shape other than hexagonal.
  • honeycomb cells 7 a , 7 b and 11 a , 11 b thus form so-called honeycomb structures irrespective of the shape of the section, said honeycomb cells 7 a , 7 b and 11 a , 11 b are said to be “expanded.”
  • said honeycomb cells 7 a , 7 b and 11 a , 11 b are in sheet form, i.e. not in honeycomb form, said honeycomb cells 7 a , 7 b and 11 a , 11 b are said to be “not expanded.”
  • the section of the core honeycomb cells 7 a and joining cells 11 a of the block A can for example be smaller than that of the core honeycomb cells 7 b and joining cells 11 b of block B, so as to meet the acoustic and/or mechanical constraints imposed by the manufacturer's specifications.
  • the honeycomb joining cells 11 a , 11 b and core cells 7 a , 7 b are made of metal, an alloy, or a composite material so as to facilitate the manufacture of the core honeycomb cells 7 a , 7 b and joining cells 11 a , 11 b and to impart good strength to the latter.
  • the material making up the inner skin 3 can be made from a metal material such as aluminum or titanium, or fabric, and the material making up the outer skin 4 can be a multi-layer composite material or a metal material such as aluminum or titanium.
  • the structural panel 1 as shown in FIG. 1 is an acoustic panel.
  • the inner skin 3 includes perforations 15 situated opposite the core honeycomb cells 7 a , 7 b and joining cells 11 a , 11 b .
  • the structural panel 1 is intended to absorb the sound annoyance created by the operation of the turbojet engine.
  • the structural panel 101 is a dual-layer panel according to the invention comprising two layers of blocks with a cellular core, respectively made up of blocks A, B and A′, B′. Said layers are assembled together using known means and sandwiched between an inner skin 103 and an outer skin 104 similar to those of FIG. 1 .
  • the other elements making up the structural skin 101 are identical to those of the structural panel 1 shown in FIG. 1 , the corresponding references being the same.
  • a structural panel including a number of layers of honeycomb core blocks greater than 2, in particular greater than or equal to 3.
  • the honeycomb core blocks A, B on the one hand, and A′, B′ on the other are joined together in one or more joint zones 113 .
  • FIGS. 1 and 2 The operating principle of an acoustic panel like those 1 and 101 shown in FIGS. 1 and 2 is known in itself; the panel 1 , 101 is intended to be mounted in the inner wall of an aircraft nacelle so that the inner skin 3 , 103 is located opposite the engine located in said nacelle.
  • the noise emitted by this engine penetrates the honeycomb cells A, B via orifices 15 situated in the inner skin 3 , 103 , and vibrates inside these core honeycomb cells 7 a , 7 b and joining cells 11 a , 11 b that make up the acoustic resonators, thereby making it possible to dissipate the acoustic energy and enabling a subsequent reduction of the noise level.
  • a perforated skin also called septum
  • septum a perforated skin
  • the honeycomb joining cells 11 a and 11 b have at least one additional wall 201 a and 201 b able to form a join 213 .
  • the honeycomb core block(s) A and A are connected by at least one joint zone 213 formed by punching two additional walls 201 a and 201 b superimposed one on the other and coming from honeycomb joining cells 11 a and 11 b belonging to distinct lateral parts 9 a and 9 b (see FIGS. 3 and 4 ).
  • the punching used in the context of the present invention makes it possible to leave a cavity at this joint zone.
  • the punching can be done at any angle used relative to the additional walls 201 a and 201 b substantially superimposed on each other provided that said angle is adapted to allow effective punching of the additional walls 201 a and 201 b .
  • the punching angle relative to the substantially superimposed additional walls 201 a and 201 b is substantially equal to 90°.
  • the additional wall(s) 201 a and 201 b are unfolded so as to obtain good overlapping thereof. In this way, one improves and facilitates the punching.
  • the additional wall(s) 201 a and 201 b are not unfolded, in particular when said walls are formed in the “ribbon” direction 203 , corresponding to the orientation of the honeycomb core block A, B before expansion (see FIG. 3 ).
  • the direction of “expansion” 204 corresponds to a direction perpendicular to the direction of the ribbon 203 (see FIG. 3 ).
  • the “expansion” direction 204 makes it possible to typically form honeycomb cells 7 a , 7 b and 11 a , 11 b said to be “expanded,” i.e. the honeycomb structure.
  • the additional wall(s) 201 a and 201 b are substantially planar or slightly curved.
  • the length of the additional wall(s) 201 a and 201 b is larger than the punching diameter and smaller than or equal to the length of the side of a honeycomb cell of the honeycomb core.
  • the length of the additional walls can be substantially identical or different.
  • FIGS. 3 and 4 show an embodiment in which the punching is done on two honeycomb core blocks A and B having a particular configuration.
  • the additional walls 201 a and 201 b are mounted on an edge of the hexagon formed by the honeycomb joining cell 11 a , 11 b .
  • the additional wall 201 a and 201 b can be arranged on one side of the honeycomb joining cell 11 a , 11 b or on an edge thereof.
  • a honeycomb cell has two additional walls 201 a , 201 b , or more.
  • the punched additional walls 201 a and 201 b have an orifice 220 pierced by the punch surrounded by a perimeter 221 .
  • the perimeter 221 is substantially in the shape of a funnel.
  • Such a perimeter 221 can be obtained by a punch known by those skilled in the art.
  • the perimeter can be more or less folded on itself so as to form a hook 321 , as shown in FIG. 5 .
  • Such a curved perimeter 321 is for example obtained with a punch associated with an additional tip making it possible to curve the perimeter 221 .
  • the presence of a curved perimeter as shown in FIG. 5 improves the better mechanical strength of the joint zone.
  • the covering direction of the additional walls 201 a and 201 b can be regular.
  • the additional wall 201 b belonging to the honeycomb joining cell 11 b belonging to one of the blocks B can systematically at least partially cover the additional wall 201 a belonging to the honeycomb joining cell 11 a belonging to the other block A (see FIG. 3 ).
  • the additional wall 201 b substantially covers the additional wall 201 a then, alternatively, the additional wall 201 a substantially covers the additional wall 201 b .
  • the covering direction by an additional wall is not regular (see FIG. 6 ).
  • the punching can be done in a single direction, alternating in one direction then the other, or in one direction and then other irregularly (see FIG. 7 ).
  • the method for manufacturing the honeycomb core structure 2 , 102 and 202 is obtained by a production method including the following steps:
  • At least one additional wall 201 a , 201 b is formed on lateral honeycomb cells 11 a , 11 b of at least one block with a honeycomb core A, B defining two lateral parts 9 a , 9 b surrounding a central part 5 a , 5 b;
  • the additional walls 201 a , 201 b are at least partially superimposed on the honeycomb joining cells 11 a and 11 b belonging to two separate lateral parts 9 a and 9 b;
  • the honeycomb core block(s) A, B are joined by punching the additional walls 201 a , 201 b thus superimposed via a punching means to form the honeycomb core structure according to the invention 2 , 102 and 202 .
  • the additional wall(s) 201 a , 201 b are formed substantially cutting, crosswise, a block with a honeycomb core A, B, the honeycomb joining 11 a , 11 b and/or core 7 a , 7 b cells of which are expanded, i.e. the walls have been substantially stretched so as to form a honeycomb structure.
  • the additional walls 201 a and 201 b are fastened on the joining cells 11 a , 11 b , whether they are expanded or not.
  • the additional walls 201 a and 201 b are formed during the formation of the honeycomb joining cells 11 a and 11 b and irrespective of whether the latter are expanded.
  • step B the additional walls 201 a , 201 b are superimposed when the honeycomb joining cells 11 a , 11 b and/or core cells 7 a , 7 b are not expanded.
  • the superposition can be done manually or automatically.
  • the punching means is eyeletting pliers.
  • the method according to the invention can also comprise an additional step D in which the structural panel according to the invention is formed by applying and fastening an inner skin 3 , 103 , perforated or not, and an outer skin 4 , 104 , to the inventive structure 2 , 102 and 202 .
  • the fastening can be done using any means known by those skilled in the art, in particular by adhesion. It may be possible to superimpose two identical or different structures 2 , 102 , 202 before proceeding to step D. In this case, it is possible to apply and fasten a septum between the two structures according to the invention thus superimposed.
  • the fastening can be done using any means known by those skilled in the art, in particular by adhesion.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Acoustics & Sound (AREA)
  • Multimedia (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • General Engineering & Computer Science (AREA)
  • Textile Engineering (AREA)
  • Laminated Bodies (AREA)
  • Soundproofing, Sound Blocking, And Sound Damping (AREA)
  • Structures Of Non-Positive Displacement Pumps (AREA)

Abstract

The invention relates to a honeycomb core structure (202) for use in a structural panel for a jet engine nacelle, comprising at least one block with a honeycomb core (A, B) having a central part (5 a, 5 b) with core honeycomb cells (7 a, 7 b) and at least two lateral parts (9 a, 9 b) each comprising a number of honeycomb joining cells (11 a, 11 b) of which at least one part of the honeycomb joining cells (11 a , 11 b) has at least one additional wall (201 a, 201 b) to form a join, the honeycomb core block(s) (A, B) being connected by at least one joint zone (213) formed by punching two additional walls (201 a, 201 b) superimposed one or the other and provided by honeycomb joining cells (11 a, 11 b) belonging to the distinct lateral parts (9 a, 9 b). The invention further relates to a structural panel and a nacelle comprising such a structure (202) and a method for producing such a structure (202).

Description

TECHNICAL FIELD
The present invention relates to a honeycomb core structure for use in a structural panel for a jet engine nacelle.
The invention also relates to a panel and a nacelle including such a honeycomb core structure and a method for manufacturing such a structure.
BACKGROUND
Airplane turbojet engines are surrounded by a nacelle to protect them and ensure the operation thereof. The nacelle is made up of walls composed of non-structural panels and structural panels. The latter parts ensure a sufficient stiffness of the nacelle. To that end, structural panels usually have one or more layers of cellular core structures (commonly called “honeycomb” structures). These layers are generally covered with a skin on their so-called outer face, i.e. the face radially furthest from the axis of the engine, and on their inner face, i.e. the face radially closest to the axis of the engine.
The structural panel is then assembled by arranging the different skins and layers, which are then pasted on a mold with the required shape. The assembly is cured in a furnace so as to grip the layers and polymerize the adhesives.
In parallel, turbojet engines generate substantial noise pollution. There is therefore a strong demand aiming to reduce this pollution, and even more so given that the turbojet engines used are becoming increasingly powerful.
To that end, some of the panels used are acoustic structural panels whereof the layers are generally covered on the outer face with an air-impermeable skin, called “solid,” and on the inner face with an air-permeable perforated skin, called “acoustic.”
The structural acoustic panel can also comprise several layers of cellular core structures between which a multi-perforated skin, called a “septum,” is located. This skin is adhered between the honeycomb core structures by heating during the assembly/gluing phase of the panel.
Such panels constitute acoustic resonators able to “trap” the noise and therefore attenuate the sound emissions towards the outside of the nacelle.
In a known manner, a honeycomb core structure comprises at least one honeycomb core block comprising a central part having core honeycomb cells and two lateral parts each having a plurality of honeycomb joining cells.
The acoustic properties of the acoustic structural panel, i.e. its noise absorption rate as a function of the frequency and sound level of the noise, depend in particular on the joining of the honeycomb core block(s).
The join of the cellular joining cells is commonly done using a foaming adhesive, such as the FM410® adhesive, which has a significant expansion capacity. The adjacent edges of the honeycomb core block(s) are coated with the adhesive, which, when it expands, blocks the honeycomb cells by creating overthicknesses.
The use of adhesive requires too long a placement and cutout time of the overthicknesses from an industrial perspective.
Furthermore, these overthicknesses have the drawback of decreasing the effective acoustic surface of the honeycomb core structure as well as causing abrupt impedance interruptions, which contributes to decreasing the acoustic performance of the acoustic panel during the operation of the turbojet engine.
Also known, from application EP 1 889 713, is a honeycomb core structure whereof the honeycomb joining cells have an additional joining wall. By definition, a “honeycomb joining wall” is not engaged in the formation of the honeycomb cell. The joining is done by superimposing the additional joining walls of the honeycomb joining cells belonging to two distinct joint zones and twisting said two additional joining walls thus superimposed in a spiral.
However, such a honeycomb core structure is complex to make.
BRIEF SUMMARY
One aim of the present invention is therefore to provide a honeycomb core structure having a joint zone that is simple to make and effective.
To that end, according to a first aspect, the invention relates to a honeycomb core structure for use in a structural panel for a jet engine nacelle, comprising at least one block with a honeycomb core having a central part with core honeycomb cells and at least two lateral parts each comprising a number of honeycomb joining cells of which at least one part of the honeycomb joining cells has at least one additional wall to form a join, characterized in that the honeycomb core block(s) are connected by at least one joint zone formed by punching two additional walls superimposed one on the other and provided by honeycomb joining cells belonging to the distinct lateral parts.
The inventive structure includes at least one joint zone formed by punching two additional walls superimposed one on the other and provided by honeycomb joining cells belonging to the distinct lateral parts. As a result, the joint zone is easy to implement because it comprises punching two walls of two honeycomb joining cells. The production time for such a structure is also reduced relative to the prior art, the inventive structure not requiring finishing, such as cutting out.
Furthermore, joining by punching as done in the invention ensures an effective connection of said structure while allowing mass savings on a panel including the inventive structure.
From an acoustic perspective, the join to form a structure according to the invention does not require the use of adhesive or any other material obstructing the honeycomb cells. As a result, impedance ruptures at the joint zone are reduced or even eliminated when these panels have an acoustic function to perform.
The joining by punching according to the invention also makes it possible not to have an impact on the integrity of the honeycomb cells and therefore on the structural capacity of the resulting honeycomb core structure.
Furthermore, such a join can be implemented for honeycomb core structures made up of honeycomb core blocks composed of honeycomb cells of different sizes and shapes.
According to other features of the invention, the inventive structure includes one or more of the following optional features considered alone or according to all possible combinations:
    • the additional wall(s) are unfolded, which makes punching easier,
    • the length of the additional wall(s) is larger than the diameter of the punching and smaller than or equal to the length of the side of a honeycomb cell of the honeycomb core,
    • the honeycomb joining and core cells are made from metal, an alloy, or a composite material that makes it possible to manufacture the honeycomb core and joining cells,
    • the inventive structure includes a plurality of blocks with a honeycomb core defining a plurality of joint zones, which makes it possible to adapt the structural panel to the desired mechanical strength and, if applicable, the desired acoustics,
    • the inventive structure has a single honeycomb core block joined thereon, which makes it possible to save production time.
According to a second aspect, the invention relates to a structural panel characterized in that it includes a structure according to the invention.
Preferably, the inventive panel is an acoustic panel.
According to a third aspect, the invention relates to a nacelle characterized in that it includes a panel according to the invention.
According to another aspect, the invention relates to a method for making a honeycomb core structure according to the invention, characterized in that it includes the following steps:
A—at least one additional wall is formed on lateral honeycomb cells of at least one block with a honeycomb core defining two lateral parts surrounding a central part;
B—the additional walls are at least partially superimposed on the honeycomb joining cells belonging to two separate lateral parts;
C—the honeycomb core block(s) are joined by punching the additional walls thus superimposed via a punching means to form the honeycomb core structure.
According to one preferred embodiment, in step A, the additional wall(s) are formed by cutting, substantially crosswise, a block with a honeycomb core whereof the honeycomb cells are expanded.
According to one preferred alternative, in step B, the additional walls are superimposed when the honeycomb joining and/or core cells are not expanded.
According to another preferred alternative, in step C, the punching means is eyeletting pliers.
BRIEF DESCRIPTION OF THE DRAWINGS
The invention will be better understood upon reading the following non-limiting description, done in reference to the appended figures.
FIG. 1 is a cross-sectional view of a single-layer structural panel according to the present invention;
FIG. 2 is a cross-sectional view of a dual-layer structural panel according to the present invention;
FIG. 3 is a top view of a structure according to the invention;
FIG. 4 is an enlargement of zone IV of FIG. 3;
FIGS. 5 to 7 are alternatives of the embodiment of FIG. 4.
DETAILED DESCRIPTION
As shown in FIG. 1, a structural panel 1 according to the invention of the single-layer acoustic panel type comprises a honeycomb core structure 2 according to the invention made up of one or more, and in this case two, blocks with a honeycomb core A and B joined together. In the event the inventive structure 2 has a plurality of blocks with a honeycomb core A, B defining a plurality of joint zones, it is then possible to adapt the structural panel 1 according to the invention to the desired mechanical strength and also, if applicable, the desired acoustic absorption. According to one preferred embodiment, the inventive structure includes a single block with a honeycomb core joined thereon. In this way, a single connecting zone is obtained, which makes it possible to save time during the production of the inventive structure.
The honeycomb core structure 2 is sandwiched between an inner skin 3 and an outer skin 4.
These two blocks with a honeycomb core A, B include a central part 5 comprising core honeycomb cells 7 a, 7 b and typically several, in this case two lateral parts 9 a, 9 b each comprising a plurality of honeycomb joining cells 11 a, 11 b. The honeycomb joining cells 11 a, 11 b of each block A and B are connected to each other so as to form a joint zone 13, the features of which will be detailed below.
A block can have any geometric shape, including a substantially square or oval shape. The lateral part(s) are arranged between the edge of said block or central part. Thus, in the case of a substantially square or rectangular shape, said block can have up to four side walls. In general, the joint zone between a plurality of blocks can be made on some or all of the edges of said block.
As shown in FIGS. 3 and 4, the core honeycomb cells 7 a, 7 b and the honeycomb joining cells 11 a, 11 b in this case have hexagonal sections, thereby forming so-called honeycomb structures. It is possible for the honeycomb cells 7 a, 7 b and 11 a, 11 b to have sections of any geometric shape other than hexagonal. When the honeycomb cells 7 a, 7 b and 11 a, 11 b thus form so-called honeycomb structures irrespective of the shape of the section, said honeycomb cells 7 a, 7 b and 11 a, 11 b are said to be “expanded.” When said cells 7 a, 7 b and 11 a, 11 b are in sheet form, i.e. not in honeycomb form, said honeycomb cells 7 a, 7 b and 11 a, 11 b are said to be “not expanded.”
As shown in FIG. 1, the section of the core honeycomb cells 7 a and joining cells 11 a of the block A can for example be smaller than that of the core honeycomb cells 7 b and joining cells 11 b of block B, so as to meet the acoustic and/or mechanical constraints imposed by the manufacturer's specifications.
Preferably, the honeycomb joining cells 11 a, 11 b and core cells 7 a, 7 b are made of metal, an alloy, or a composite material so as to facilitate the manufacture of the core honeycomb cells 7 a, 7 b and joining cells 11 a, 11 b and to impart good strength to the latter. The material making up the inner skin 3 can be made from a metal material such as aluminum or titanium, or fabric, and the material making up the outer skin 4 can be a multi-layer composite material or a metal material such as aluminum or titanium.
The structural panel 1 as shown in FIG. 1 is an acoustic panel. In this case, the inner skin 3 includes perforations 15 situated opposite the core honeycomb cells 7 a, 7 b and joining cells 11 a, 11 b. In this way, the structural panel 1 is intended to absorb the sound annoyance created by the operation of the turbojet engine.
In an alternative shown in FIG. 2, the structural panel 101 is a dual-layer panel according to the invention comprising two layers of blocks with a cellular core, respectively made up of blocks A, B and A′, B′. Said layers are assembled together using known means and sandwiched between an inner skin 103 and an outer skin 104 similar to those of FIG. 1. The other elements making up the structural skin 101 are identical to those of the structural panel 1 shown in FIG. 1, the corresponding references being the same.
According to one alternative, it is possible to obtain a structural panel including a number of layers of honeycomb core blocks greater than 2, in particular greater than or equal to 3.
In this dual-layer panel, the honeycomb core blocks A, B on the one hand, and A′, B′ on the other are joined together in one or more joint zones 113.
The operating principle of an acoustic panel like those 1 and 101 shown in FIGS. 1 and 2 is known in itself; the panel 1, 101 is intended to be mounted in the inner wall of an aircraft nacelle so that the inner skin 3, 103 is located opposite the engine located in said nacelle.
The noise emitted by this engine penetrates the honeycomb cells A, B via orifices 15 situated in the inner skin 3, 103, and vibrates inside these core honeycomb cells 7 a, 7 b and joining cells 11 a, 11 b that make up the acoustic resonators, thereby making it possible to dissipate the acoustic energy and enabling a subsequent reduction of the noise level. In order to improve the acoustic absorption, it is possible to apply a perforated skin, also called septum, between the two layers of blocks with a honeycomb core A, B and A′, B′ of the structural panel 101 so that the core honeycomb cells 7 a′, 7 b′ and joining cells 11 a′, 11 b′ of the blocks A′ and B′ also make up acoustic resonators.
As shown in FIGS. 3 and 4, in the inventive structure 202, the honeycomb joining cells 11 a and 11 b have at least one additional wall 201 a and 201 b able to form a join 213.
The honeycomb core block(s) A and A are connected by at least one joint zone 213 formed by punching two additional walls 201 a and 201 b superimposed one on the other and coming from honeycomb joining cells 11 a and 11 b belonging to distinct lateral parts 9 a and 9 b (see FIGS. 3 and 4). The punching used in the context of the present invention makes it possible to leave a cavity at this joint zone.
The punching can be done at any angle used relative to the additional walls 201 a and 201 b substantially superimposed on each other provided that said angle is adapted to allow effective punching of the additional walls 201 a and 201 b. In the embodiment shown in FIGS. 3 and 4, the punching angle relative to the substantially superimposed additional walls 201 a and 201 b is substantially equal to 90°.
According to one preferred embodiment, the additional wall(s) 201 a and 201 b are unfolded so as to obtain good overlapping thereof. In this way, one improves and facilitates the punching.
According to one alternative, the additional wall(s) 201 a and 201 b are not unfolded, in particular when said walls are formed in the “ribbon” direction 203, corresponding to the orientation of the honeycomb core block A, B before expansion (see FIG. 3). The direction of “expansion” 204 corresponds to a direction perpendicular to the direction of the ribbon 203 (see FIG. 3). The “expansion” direction 204 makes it possible to typically form honeycomb cells 7 a, 7 b and 11 a, 11 b said to be “expanded,” i.e. the honeycomb structure.
The additional wall(s) 201 a and 201 b are substantially planar or slightly curved.
Preferably, the length of the additional wall(s) 201 a and 201 b is larger than the punching diameter and smaller than or equal to the length of the side of a honeycomb cell of the honeycomb core. The length of the additional walls can be substantially identical or different.
FIGS. 3 and 4 show an embodiment in which the punching is done on two honeycomb core blocks A and B having a particular configuration. In particular, the additional walls 201 a and 201 b are mounted on an edge of the hexagon formed by the honeycomb joining cell 11 a, 11 b. According to one alternative, the additional wall 201 a and 201 b can be arranged on one side of the honeycomb joining cell 11 a, 11 b or on an edge thereof. According to another embodiment, a honeycomb cell has two additional walls 201 a, 201 b, or more.
In the embodiment shown in FIG. 4, the punched additional walls 201 a and 201 b have an orifice 220 pierced by the punch surrounded by a perimeter 221. In the case of FIG. 4, the perimeter 221 is substantially in the shape of a funnel. Such a perimeter 221 can be obtained by a punch known by those skilled in the art. The perimeter can be more or less folded on itself so as to form a hook 321, as shown in FIG. 5. Such a curved perimeter 321 is for example obtained with a punch associated with an additional tip making it possible to curve the perimeter 221. The presence of a curved perimeter as shown in FIG. 5 improves the better mechanical strength of the joint zone.
The covering direction of the additional walls 201 a and 201 b can be regular. Thus, regularly, the additional wall 201 b belonging to the honeycomb joining cell 11 b belonging to one of the blocks B can systematically at least partially cover the additional wall 201 a belonging to the honeycomb joining cell 11 a belonging to the other block A (see FIG. 3). According to one alternative, the additional wall 201 b substantially covers the additional wall 201 a then, alternatively, the additional wall 201 a substantially covers the additional wall 201 b. According to still another alternative, the covering direction by an additional wall is not regular (see FIG. 6).
Moreover, the punching can be done in a single direction, alternating in one direction then the other, or in one direction and then other irregularly (see FIG. 7).
According to another aspect of the invention, the method for manufacturing the honeycomb core structure 2, 102 and 202 is obtained by a production method including the following steps:
A—at least one additional wall 201 a, 201 b is formed on lateral honeycomb cells 11 a, 11 b of at least one block with a honeycomb core A, B defining two lateral parts 9 a, 9 b surrounding a central part 5 a, 5 b;
B—the additional walls 201 a, 201 b are at least partially superimposed on the honeycomb joining cells 11 a and 11 b belonging to two separate lateral parts 9 a and 9 b;
C—the honeycomb core block(s) A, B are joined by punching the additional walls 201 a, 201 b thus superimposed via a punching means to form the honeycomb core structure according to the invention 2, 102 and 202.
According to one preferred embodiment, in step A, the additional wall(s) 201 a, 201 b are formed substantially cutting, crosswise, a block with a honeycomb core A, B, the honeycomb joining 11 a, 11 b and/or core 7 a, 7 b cells of which are expanded, i.e. the walls have been substantially stretched so as to form a honeycomb structure. In one alternative, the additional walls 201 a and 201 b are fastened on the joining cells 11 a, 11 b, whether they are expanded or not. According to still another alternative, the additional walls 201 a and 201 b are formed during the formation of the honeycomb joining cells 11 a and 11 b and irrespective of whether the latter are expanded.
According to another embodiment, in step B, the additional walls 201 a, 201 b are superimposed when the honeycomb joining cells 11 a, 11 b and/or core cells 7 a, 7 b are not expanded. The superposition can be done manually or automatically.
According to one embodiment, in step C, the punching means is eyeletting pliers.
The method according to the invention can also comprise an additional step D in which the structural panel according to the invention is formed by applying and fastening an inner skin 3, 103, perforated or not, and an outer skin 4, 104, to the inventive structure 2, 102 and 202. The fastening can be done using any means known by those skilled in the art, in particular by adhesion. It may be possible to superimpose two identical or different structures 2, 102, 202 before proceeding to step D. In this case, it is possible to apply and fasten a septum between the two structures according to the invention thus superimposed. The fastening can be done using any means known by those skilled in the art, in particular by adhesion.

Claims (13)

The invention claimed is:
1. A honeycomb core structure for use in a structural panel for a jet engine nacelle, comprising:
at least one honeycomb core block with a honeycomb core having a central part with core honeycomb cells; and
at least two lateral parts each comprising a number of honeycomb joining cells of which, maintaining a closed cell form, at least one part of the honeycomb joining cells has at least one additional wall to form a join,
wherein the honeycomb core block(s) are rigidly connected by at least one joint zone formed by two additional walls superimposed and punched on each other, and provided by the honeycomb joining cells belonging to distinct lateral parts.
2. The structure according to claim 1, wherein the two additional walls are unfolded.
3. The structure according to claim 1, wherein a length of the two additional walls is larger than a diameter of a punching and smaller than or equal to a length of a side of a honeycomb cell of the honeycomb core.
4. The structure according to claim 1, wherein the honeycomb joining and core cells are made from metal, an alloy, or a composite material.
5. The structure according to claim 1, further comprising a plurality of blocks with a honeycomb core defining a plurality of joint zones.
6. The structure according to claim 1, wherein the structure is single-layered and comprises another block joined on said at least one honeycomb core block.
7. A structural panel for a turbojet engine nacelle, comprising at least one honeycomb core structure according to claim 1.
8. The panel according to claim 7, wherein the panel comprises an acoustic panel.
9. A jet engine nacelle comprising a structural panel according to claim 7.
10. A method for making a honeycomb core structure according to claim 1, comprising:
A—forming at least one additional wall on lateral honeycomb cells of at least one block with a honeycomb core defining two lateral parts surrounding a central part;
B—at least partially superimposing the additional walls on the honeycomb joining cells belonging to two separate lateral parts;
C—joining the honeycomb core block(s) by punching the additional walls thus superimposing via a punching means to form the honeycomb core structure.
11. The method according to claim 10, wherein, in step A, the additional wall(s) are formed by cutting, substantially crosswise, a block with a honeycomb core whereof the honeycomb cells are expanded.
12. The method according to claim 10, wherein, in step B, the additional walls are superimposed when the honeycomb joining and/or core (7 a, 7 b) cells are not expanded.
13. The method according to claim 10, wherein, in step C, the punching means is eyeletting pliers.
US13/147,937 2009-02-05 2010-01-27 Honeycomb core structure for use in a structural panel for a jet engine nacelle Expired - Fee Related US9108385B2 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
FR0900499 2009-02-05
FR0900499A FR2941647B1 (en) 2009-02-05 2009-02-05 ALVEOLAR HOOD STRUCTURE SUITABLE FOR USE IN A STRUCTURING PANEL FOR AN AIRCRAFT NACELLE
PCT/FR2010/000068 WO2010089473A1 (en) 2009-02-05 2010-01-27 Honeycomb core structure for use in a structural panel for a jet engine nacelle

Publications (2)

Publication Number Publication Date
US20110293411A1 US20110293411A1 (en) 2011-12-01
US9108385B2 true US9108385B2 (en) 2015-08-18

Family

ID=40902001

Family Applications (1)

Application Number Title Priority Date Filing Date
US13/147,937 Expired - Fee Related US9108385B2 (en) 2009-02-05 2010-01-27 Honeycomb core structure for use in a structural panel for a jet engine nacelle

Country Status (8)

Country Link
US (1) US9108385B2 (en)
EP (1) EP2393652B1 (en)
CN (1) CN102300703B (en)
CA (1) CA2751070A1 (en)
ES (1) ES2396943T3 (en)
FR (1) FR2941647B1 (en)
RU (1) RU2517938C2 (en)
WO (1) WO2010089473A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20140186165A1 (en) * 2012-12-27 2014-07-03 United Technologies Corporation Adhesive pattern for fan case conformable liner

Families Citing this family (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8047329B1 (en) * 2010-08-13 2011-11-01 Rohr, Inc. System and method for noise suppression
DE102011004844A1 (en) * 2011-02-28 2012-08-30 Airbus Operations Gmbh Door frame composite, fuselage section and aircraft or spacecraft
FR2972837B1 (en) * 2011-03-18 2013-04-26 Inst Superieur De L Aeronautique Et De L Espace Isae METHOD FOR MAKING ACOUSTIC RESONATORS
US9555871B2 (en) * 2012-03-05 2017-01-31 The Boeing Company Two-surface sandwich structure for accommodating in-plane expansion of one of the surfaces relative to the opposing surface
FR3002549B1 (en) * 2013-02-22 2015-03-27 Aircelle Sa MULTI-FEED WOVEN FABRIC, WEAVING METHOD USING SUCH A WEAVING MACHINE, AND A CRYSTAL FABRIC THUS OBTAINED.
US9068345B2 (en) * 2013-08-12 2015-06-30 Hexcel Corporation Multi-sectional acoustic septum
DE202014101267U1 (en) * 2014-03-19 2015-07-01 Rehau Ag + Co Device for influencing sound or sound energy
US9931825B2 (en) 2014-07-09 2018-04-03 The Boeing Company Septumization of cellular cores
FR3044960A1 (en) * 2015-12-15 2017-06-16 Aircelle Sa PANEL FOR AIRCRAFT TURBO BURNER BOAT COMPRISING THERMAL PROTECTION AND ANTI-FIRE PROTECTION
FR3044961B1 (en) * 2015-12-15 2018-01-19 Safran Nacelles PANEL FOR TURBOREACTOR NACELLE COMPRISING THERMAL PROTECTION AND METHOD OF MANUFACTURING SUCH A PANEL
US10604277B2 (en) * 2017-05-01 2020-03-31 Hexcel Corporation Plugged acoustic honeycomb
CN108870058A (en) * 2018-08-29 2018-11-23 徐卫国 A kind of honeycomb core and its processing method for eliminating compression peaks using fluting method
FR3107856B1 (en) * 2020-03-04 2022-02-04 Safran Nacelles Process for manufacturing a honeycomb core structure for a turbojet engine nacelle
RU2739827C1 (en) * 2020-03-12 2020-12-28 Акционерное общество "Камов" Door of engine compartment of helicopter engine nacelle and manufacturing method thereof
CN111396487B (en) * 2020-03-27 2022-03-15 郑州机械研究所有限公司 High-strength vibration-damping honeycomb core and manufacturing method thereof
CN111706433B (en) * 2020-05-11 2022-02-22 中国航发沈阳发动机研究所 Sound lining combined structure

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US430000A (en) * 1890-06-10 Method of uniting the edges of sheet metal
US3256649A (en) * 1962-07-30 1966-06-21 Hexcel Products Inc Telescoping articulated composite honeycomb structure with inflatable expansion means
US5022253A (en) * 1986-09-09 1991-06-11 Mass-Tex Company, Ltd. Hand-held punch pliers
EP0798107A2 (en) 1996-03-28 1997-10-01 The Boeing Company Structural bonding with encapsulated foaming adhesive
US5720144A (en) * 1996-03-07 1998-02-24 Knudson; Gary A. Metal beams with thermal break and methods
US20030070276A1 (en) * 2001-10-16 2003-04-17 Rick Raines Method and apparatus for securing material to sheetmetal
WO2007137607A1 (en) 2006-05-30 2007-12-06 Airbus Deutschland Gmbh Sandwich element for sound-absorbing inner cladding of transport means, especially for sound-absorbing inner cladding of aircraft fuselage cells
EP1889713A2 (en) 2006-08-18 2008-02-20 Rohr, Inc. Method of joining composite honeycomb panel sections, and composite panels resulting therefrom
WO2008113904A2 (en) 2007-02-28 2008-09-25 Aircelle Method for making an acoustic absorption panel in particular for the nacelle of an aircraft engine

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU94019375A (en) * 1994-05-26 1996-08-27 Научно-исследовательский институт автоматизированных средств производства и контроля Sectional sound-absorbing structure
UA64980C2 (en) * 2003-04-07 2005-09-15 Academician O H Ivchenko State Method for repair of acoustic cellular panel

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US430000A (en) * 1890-06-10 Method of uniting the edges of sheet metal
US3256649A (en) * 1962-07-30 1966-06-21 Hexcel Products Inc Telescoping articulated composite honeycomb structure with inflatable expansion means
US5022253A (en) * 1986-09-09 1991-06-11 Mass-Tex Company, Ltd. Hand-held punch pliers
US5720144A (en) * 1996-03-07 1998-02-24 Knudson; Gary A. Metal beams with thermal break and methods
EP0798107A2 (en) 1996-03-28 1997-10-01 The Boeing Company Structural bonding with encapsulated foaming adhesive
US5938875A (en) * 1996-03-28 1999-08-17 The Boeing Company Structural bonding process with encapsulated foaming adhesive
US20030070276A1 (en) * 2001-10-16 2003-04-17 Rick Raines Method and apparatus for securing material to sheetmetal
WO2007137607A1 (en) 2006-05-30 2007-12-06 Airbus Deutschland Gmbh Sandwich element for sound-absorbing inner cladding of transport means, especially for sound-absorbing inner cladding of aircraft fuselage cells
EP1889713A2 (en) 2006-08-18 2008-02-20 Rohr, Inc. Method of joining composite honeycomb panel sections, and composite panels resulting therefrom
WO2008113904A2 (en) 2007-02-28 2008-09-25 Aircelle Method for making an acoustic absorption panel in particular for the nacelle of an aircraft engine
US20100108435A1 (en) * 2007-02-28 2010-05-06 Aircelle Method for making an acoustic absorption panel in particular for the nacelle of an aircraft engine

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
International Search Report PCT/FR2010/000068; Jun. 9, 2010.

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20140186165A1 (en) * 2012-12-27 2014-07-03 United Technologies Corporation Adhesive pattern for fan case conformable liner
US9651059B2 (en) * 2012-12-27 2017-05-16 United Technologies Corporation Adhesive pattern for fan case conformable liner

Also Published As

Publication number Publication date
FR2941647B1 (en) 2011-01-14
FR2941647A1 (en) 2010-08-06
EP2393652A1 (en) 2011-12-14
RU2011136206A (en) 2013-03-10
RU2517938C2 (en) 2014-06-10
CA2751070A1 (en) 2010-08-12
CN102300703A (en) 2011-12-28
WO2010089473A1 (en) 2010-08-12
CN102300703B (en) 2014-08-13
ES2396943T3 (en) 2013-03-01
EP2393652B1 (en) 2012-10-03
US20110293411A1 (en) 2011-12-01

Similar Documents

Publication Publication Date Title
US9108385B2 (en) Honeycomb core structure for use in a structural panel for a jet engine nacelle
US9518509B2 (en) Method for manufacturing a structure with cellular cores for a turbojet nacelle
US8047326B2 (en) Method for making an acoustic absorption panel in particular for the nacelle of an aircraft engine
US9162747B2 (en) Method for manufacturing a sound attenuation panel
US8245815B2 (en) Cellular-core structure for an acoustic panel
CA2852436C (en) Acoustic panel
EP1889713B1 (en) Method of joining composite honeycomb panel sections, and composite panels resulting therefrom
US11686247B2 (en) Acoustic panel for a nacelle of an aircraft propulsion unit, and related manufacturing methods
US8302733B2 (en) Acoustic absorber for aircraft engines
US10940955B2 (en) Acoustic panel with structural septum
EP3244038A1 (en) Acoustic panels comprising large secondary cavities to attenuate low frequencies
US8273204B2 (en) Method for joining cellular acoustic panels
US20180016987A1 (en) Acoustic liners for use in a turbine engine
EP3042755B1 (en) Perforation of a septum in a prefabicated acoustic panel
JPH06280614A (en) Integral engine intake-port acoustic barrel
US20060289232A1 (en) Method for the manufacture of a light-weight sheet
CA2609510A1 (en) Sandwich structure having a frequency-selective double-wall behavior
EP3591647B1 (en) Method for inserting septum into acoustic liner and acoustic liner with septum
JP2011516786A (en) Sound absorption panel with joint reinforcement
US11952136B2 (en) Method for manufacturing an acoustic panel having a capsular skin, and acoustic panel incorporating such a skin
JP2010519445A (en) Method of manufacturing a sound absorbing treatment covering material having a cellular structure with a complex shape, and a sound absorbing treatment covering material thus obtained
JP2019535556A (en) Method for forming reinforced composite parts
CN115210064A (en) Method for manufacturing a bubble core structure of a turbojet nacelle
US20120031038A1 (en) Cellular panel

Legal Events

Date Code Title Description
AS Assignment

Owner name: AIRCELLE, FRANCE

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:DESCHAMPS, THIERRY;DESJOYEAUX, BERTRAND;MOUTIER, JOHN;REEL/FRAME:026702/0976

Effective date: 20110523

ZAAA Notice of allowance and fees due

Free format text: ORIGINAL CODE: NOA

ZAAB Notice of allowance mailed

Free format text: ORIGINAL CODE: MN/=.

STCF Information on status: patent grant

Free format text: PATENTED CASE

AS Assignment

Owner name: SAFRAN NACELLES, FRANCE

Free format text: CHANGE OF NAME;ASSIGNOR:AIRCELLE;REEL/FRAME:040703/0191

Effective date: 20160613

MAFP Maintenance fee payment

Free format text: PAYMENT OF MAINTENANCE FEE, 4TH YEAR, LARGE ENTITY (ORIGINAL EVENT CODE: M1551); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY

Year of fee payment: 4

FEPP Fee payment procedure

Free format text: MAINTENANCE FEE REMINDER MAILED (ORIGINAL EVENT CODE: REM.); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY

LAPS Lapse for failure to pay maintenance fees

Free format text: PATENT EXPIRED FOR FAILURE TO PAY MAINTENANCE FEES (ORIGINAL EVENT CODE: EXP.); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY

STCH Information on status: patent discontinuation

Free format text: PATENT EXPIRED DUE TO NONPAYMENT OF MAINTENANCE FEES UNDER 37 CFR 1.362

FP Lapsed due to failure to pay maintenance fee

Effective date: 20230818