US896429A - Electrode for electric furnaces. - Google Patents

Electrode for electric furnaces. Download PDF

Info

Publication number
US896429A
US896429A US34916206A US1906349162A US896429A US 896429 A US896429 A US 896429A US 34916206 A US34916206 A US 34916206A US 1906349162 A US1906349162 A US 1906349162A US 896429 A US896429 A US 896429A
Authority
US
United States
Prior art keywords
electrode
carbon
electric furnaces
electrodes
cooling agent
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
US34916206A
Inventor
Frederick M Becket
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
WINTHROP CHANLER
Original Assignee
WINTHROP CHANLER
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by WINTHROP CHANLER filed Critical WINTHROP CHANLER
Priority to US34916206A priority Critical patent/US896429A/en
Application granted granted Critical
Publication of US896429A publication Critical patent/US896429A/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B7/00Heating by electric discharge
    • H05B7/02Details
    • H05B7/06Electrodes
    • H05B7/08Electrodes non-consumable

Definitions

  • My invention relates to electric furnaces used in the art of, electric smelting and in electrolytic reduction processes where fused electrolytes are employed.
  • the object of my invention is to'provide an improved electrode for furnaces of the above-named character possessing advantageous features of construction at less cost and of greater efficiency than those at present employed.
  • 1 represents the body of the electrode constructed, as shown, with a hollow or chambered interior 2, in which a cooling agent may be circulated by means of inlet and outlet pipes 3 and 4..
  • This carbon shell or coating may be the ordinary or amorphous carbon used for electrodes, the
  • the carbon shell may also be molded on the ortion or body of the electrode, the latter eing provided with threads or.corru gations to make the joint or adhesion be tween the shell and metallic portion secure, the carbon being baked to harden the same.
  • any suitable form of electrode may be employed according tothe kind of furnace with Which it is designed to be used.
  • the form shown in the illustration is especially suited for use in connection with a furnace of horizontal type in which the electrodes are of equal size.
  • the electrode is formed of any suitable.
  • conductive material preferably of metal or alloys of metals. It may even be constructed of carbon or graphite. It is preferable, however, to employ a suitable metal as the material for the electrode, as thereby great saving in cost is effected.
  • an electrode constructed accordin to my invention of cast iron forms a satisfactory and efficient material. Where, however, iron would contaminate the bath or electrolyte, I employ other metals; nickel, for in.- stance, is well suited for the material of which to form my electrodes. Wrought iron forms a satisfactory electrode.
  • alloys the melting point of the electrode may be considerably mcreased, and I have discovered that a ferro-titanium alloy forms a most efficient material out of which to construct electrodes.
  • the rate of flow of the cooling agent and the current density on the electrode surface should be so adjusted that at all times a thin film of the electrolyte is chilled on the surface of the electrode, thus rotecting the latter from the action of the li erated gases or other products of electrolysisat the anode or the cathode when working in direct current electrolysis.
  • the electrode By properly regulating the supply of cooling agent in proportion to the current density and temperature on the electrode surface the electrode has an economical range of application from low temperature fused work to the necessarily high temperature used in the manufacture of carbids, silicids, etc.
  • the cooling agent usually employed is Water, but any suitable cooling agent, such as oil, mercury, etc, according to the nature of the Work and the character of the electrode, may be used.
  • the electrode may be made of excessive thickness of metal and then fused down in the'bath Where it automatically assumes the right thickness.
  • Electrodes constructed according to my invention are specially adapted for use in electric furnaces for the reduction of carbonates and sulfates, as, for instance, barium carbonates and sulfates.
  • An electrode having a, metallic body portion the interior of chambered for the purpose described, and having an exterior coat or shell of carbon thereon.
  • An electrode having a body portion of a ferro-titanium alloy, which is hollowed or chambered for the purpose described, and having an exterior coat or shell of carbon thereon.

Description

No. 896,429. PATENTED AUG. 18, 1908.
F. M. BEGKET. ELECTRODE FOR ELECTRIC FURNACES.
APPLICATION FILED NOV. 24, 1902. RENEWED DEC. 22, 1906.
QXR-bneooao: 51140214 for,
diam dam/t in. w
95 4 afiozmzg FREDERIOKM. BEOKE'T, or
cost and rapid deterioration in use.
metal UNITED STATES PATENT OFFICE.
NIAGARA FALLS, NEW YORK, ASSIGNOR, BY MESNE ASSIGN- MENTS, -TO WINTHROP CHANLER.
ELECTRODE FOR ELECTRIC FURNACES.
Specification of Letters Patent.
Patented Aug. 18, 1908.
' Application filed November 24, 1902, Serial No. 132,682. Renewed December 22, 1906. Serial No. 349,162.
To all whom it may concern:
7 Be it known that I, FREDERICK M. BECKET, subject of the King of Great Britain and Ireland, residing at Niagara Falls, in the county of Niagara and State of New York, have invented certain new and useful Improvements in Electrodes for Electric Fur naces, of which the following is a specification.
My invention relates to electric furnaces used in the art of, electric smelting and in electrolytic reduction processes where fused electrolytes are employed.
The object of my invention is to'provide an improved electrode for furnaces of the above-named character possessing advantageous features of construction at less cost and of greater efficiency than those at present employed.
In electric furnaces of the class above mentioned, it has been customary heretofore to use carbon electrodes. These possess many inherent defects and disadvantages, suchnas e carbon isnot only consumed by gases liberated in the chemical and electrical action which takes place in the. furnace, but is also oxygen of the atmosphere.
I have discovered that by constructing electrodes with a hollow or chambered interior through which a cooling fluid may be circulated, I am able to secure greater efiiciency and at a much less expense.
In the accompanying drawing I have illustrated my invention. Said drawing is a vertical section of one embodiment of my invention.
1 represents the body of the electrode constructed, as shown, with a hollow or chambered interior 2, in which a cooling agent may be circulated by means of inlet and outlet pipes 3 and 4..
5 indicates a carbon shell. This carbon shell or coating may be the ordinary or amorphous carbon used for electrodes, the
threads being cut in a machine, but it is preferable to form the shell of graphite on account of its great ease in machining. The carbon shell may also be molded on the ortion or body of the electrode, the latter eing provided with threads or.corru gations to make the joint or adhesion be tween the shell and metallic portion secure, the carbon being baked to harden the same.
Any suitable form of electrode may be employed according tothe kind of furnace with Which it is designed to be used. The form shown in the illustration is especially suited for use in connection with a furnace of horizontal type in which the electrodes are of equal size.
The electrode is formed of any suitable.
conductive material, preferably of metal or alloys of metals. It may even be constructed of carbon or graphite. It is preferable, however, to employ a suitable metal as the material for the electrode, as thereby great saving in cost is effected. I have found that an electrode constructed accordin to my invention of cast iron forms a satisfactory and efficient material. Where, however, iron would contaminate the bath or electrolyte, I employ other metals; nickel, for in.- stance, is well suited for the material of which to form my electrodes. Wrought iron forms a satisfactory electrode. By the use of alloys the melting point of the electrode may be considerably mcreased, and I have discovered that a ferro-titanium alloy forms a most efficient material out of which to construct electrodes. Ex eriments conducted with a ferro-titanium a loy containing 7.5% titanium showed a raising of the melting point over wrou ht iron by about 300 C. and over; cast iron y about 500 C. The brittleness of cast iron is a disadvantage; but the ferro-titanium alloy referred to provides an-electrode much tougher and less brittle than ordinary cast iron, and which can be machined with comparative ease. Electrodes of this construction are less expensive than if constructed wholly of carbon, and also provide a ready means .of circulating therein a cooling agent. All the advanta es of a carbon electrode are preserved in his form of construction and at the same time the" princi a1 disadvantages and defects are eliminate The carbon is kept'cool and may be preservedfro'm exposure to the air.
The advantage derived from the use of electrodes constructed according to my invention lies in the fact that for the same amount of energy consumed the cost of reduction is considerably lowered. A series of experiments and tests have demonstrated that in the reduction of barium carbonate a saving of over $2. per ton in cost of theprodby means of suction,
the formation thereon of a solidified coatin or film of the electrolyte material. It is Wfi known that most chemical substances are conductors of electricity at a high temperature, but being poor conductors of heat the passage of the heat of the fused material is only slowly conducted to the metal of the electrode, and therefore to the cooling agent circulating therein.
The rate of flow of the cooling agent and the current density on the electrode surface should be so adjusted that at all times a thin film of the electrolyte is chilled on the surface of the electrode, thus rotecting the latter from the action of the li erated gases or other products of electrolysisat the anode or the cathode when working in direct current electrolysis. By properly regulating the supply of cooling agent in proportion to the current density and temperature on the electrode surface the electrode has an economical range of application from low temperature fused work to the necessarily high temperature used in the manufacture of carbids, silicids, etc.
The cooling agent usually employed is Water, but any suitable cooling agent, such as oil, mercury, etc, according to the nature of the Work and the character of the electrode, may be used.
it is advantageous fluid under reduced pressure; in other words, to circulate the same through the electrode as by being drawn through by a pump, so that in case of a leak in the electrode, instead of the Water or other cooling agent exuding into the bath, the fused material will be drawn into the leak and chilled, thereby completely forming a lug which acts automatically to repair t e leak. if pressure were employed to supply the cooling there would be a probability of the cooling agent escaping into the molten bath an causing a very serious explosion.
It is found, in the practical working of the electrode, thatthe em loyment of anelectrode of the character described, but having its walls of too great thickness, is useless; since where the metal is too thick, (as at the corners for instance,) the action of the cooling a ent is insufficient to prevent the melting of the metal. A very important feature of my invention therefore is that the electrode may be made of excessive thickness of metal and then fused down in the'bath Where it automatically assumes the right thickness.
It will be seen that, by my invention, .1 have provided an efficient and easily con structed electrode, which effects aconsiderable saving in the cost of reduction of various materials. Electrodes constructed according to my invention are specially adapted for use in electric furnaces for the reduction of carbonates and sulfates, as, for instance, barium carbonates and sulfates.
Having thus described my invention, the following is What I claim as new therein and desire to secure by Letters Patent:
1. An electrode having a, metallic body portion the interior of chambered for the purpose described, and having an exterior coat or shell of carbon thereon.
2 An electrode having a body portion of a ferro-titanium alloy, which is hollowed or chambered for the purpose described, and having an exterior coat or shell of carbon thereon.
FREDK. M. seeker. l/Vitnesses:
R. A. WrTHERsrooN. FRED. J. (10E.
which is hollow or
US34916206A 1906-12-22 1906-12-22 Electrode for electric furnaces. Expired - Lifetime US896429A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US34916206A US896429A (en) 1906-12-22 1906-12-22 Electrode for electric furnaces.

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US34916206A US896429A (en) 1906-12-22 1906-12-22 Electrode for electric furnaces.

Publications (1)

Publication Number Publication Date
US896429A true US896429A (en) 1908-08-18

Family

ID=2964856

Family Applications (1)

Application Number Title Priority Date Filing Date
US34916206A Expired - Lifetime US896429A (en) 1906-12-22 1906-12-22 Electrode for electric furnaces.

Country Status (1)

Country Link
US (1) US896429A (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2471531A (en) * 1946-10-30 1949-05-31 Ferro Enamel Corp Electrode
US2499782A (en) * 1946-10-10 1950-03-07 Elfulux Sa Holding Furnace electrode with cooling means
US2508004A (en) * 1948-03-13 1950-05-16 Ajax Electric Company Inc Electric salt bath furnace
US2591709A (en) * 1948-04-17 1952-04-08 Lubatti Eugenio Furnace electrode
US2594972A (en) * 1949-06-15 1952-04-29 Fostoria Glass Company Electric furnace
US2599179A (en) * 1949-07-14 1952-06-03 Kellogg M W Co Furnace electrode
US2882143A (en) * 1953-04-16 1959-04-14 Nat Lead Co Continuous process for the production of titanium metal
US3878425A (en) * 1972-09-08 1975-04-15 Siemens Ag Vacuum - tight carbon bodies

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2499782A (en) * 1946-10-10 1950-03-07 Elfulux Sa Holding Furnace electrode with cooling means
US2471531A (en) * 1946-10-30 1949-05-31 Ferro Enamel Corp Electrode
US2508004A (en) * 1948-03-13 1950-05-16 Ajax Electric Company Inc Electric salt bath furnace
US2591709A (en) * 1948-04-17 1952-04-08 Lubatti Eugenio Furnace electrode
US2594972A (en) * 1949-06-15 1952-04-29 Fostoria Glass Company Electric furnace
US2599179A (en) * 1949-07-14 1952-06-03 Kellogg M W Co Furnace electrode
US2882143A (en) * 1953-04-16 1959-04-14 Nat Lead Co Continuous process for the production of titanium metal
US3878425A (en) * 1972-09-08 1975-04-15 Siemens Ag Vacuum - tight carbon bodies

Similar Documents

Publication Publication Date Title
US896429A (en) Electrode for electric furnaces.
US6387237B1 (en) Cathode collector bar with spacer for improved heat balance and method
US2760930A (en) Electrolytic cell of the diaphragm type
JP7017361B2 (en) Molten salt electrolytic cell
US2825641A (en) Method for melting refractory metals for casting purposes
US2773825A (en) Electrolysis apparatus
US4089771A (en) Electrode for electrolytic process involving hydrogen generation
JP7264759B2 (en) Anode connection structure, molten salt electrolysis device, molten salt electrolysis method, and method for producing metallic magnesium
US1027495A (en) Electrolytic process.
US3265606A (en) Electrolytic cell for preparation of alloys of lead with alkaline metals
US686551A (en) Electric furnace.
JPWO2016002377A1 (en) Method for producing metal and method for producing refractory metal
US3838384A (en) Protected electrode lead for use in a corrosive environment
JP2019116671A (en) Fused salt electrolysis method, manufacturing method of fused metal, and fused salt electrolytic cell
US762227A (en) Anode and process of making same.
US778270A (en) Production of metallic magnesium.
US3251754A (en) Process and apparatus for improving the resistance of porous refractory materials to corrosive action
US3713808A (en) Method of preparing equipment for holding molten metal
SU600214A1 (en) Aluminium electrolyzer
US2958640A (en) Arc-heated electrolytic cell
US1296046A (en) Electrolytic cell.
US4783790A (en) Direct-current arc furnace for steelmaking
US1049979A (en) Electric furnace member and process of making it.
US541465A (en) yatttin
RU220188U1 (en) Gas-electric electrolysis bath for producing aluminum from alumina