US8947503B2 - Method and system for processing 3-D video - Google Patents
Method and system for processing 3-D video Download PDFInfo
- Publication number
- US8947503B2 US8947503B2 US12/963,320 US96332010A US8947503B2 US 8947503 B2 US8947503 B2 US 8947503B2 US 96332010 A US96332010 A US 96332010A US 8947503 B2 US8947503 B2 US 8947503B2
- Authority
- US
- United States
- Prior art keywords
- view
- pixel data
- processing
- frame
- decision
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related, expires
Links
Images
Classifications
-
- H04N13/0029—
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04N—PICTORIAL COMMUNICATION, e.g. TELEVISION
- H04N13/00—Stereoscopic video systems; Multi-view video systems; Details thereof
- H04N13/10—Processing, recording or transmission of stereoscopic or multi-view image signals
- H04N13/106—Processing image signals
- H04N13/139—Format conversion, e.g. of frame-rate or size
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04N—PICTORIAL COMMUNICATION, e.g. TELEVISION
- H04N2213/00—Details of stereoscopic systems
- H04N2213/007—Aspects relating to detection of stereoscopic image format, e.g. for adaptation to the display format
Definitions
- Certain embodiments of the invention relate to video processing. More specifically, certain embodiments of the invention relate to a method and system for processing 3-D video.
- a system and/or method is provided for processing 3-D video, substantially as illustrated by and/or described in connection with at least one of the figures, as set forth more completely in the claims.
- FIG. 1 is diagram illustrating a video processing system, in accordance with an embodiment of the invention.
- FIG. 2 is a diagram illustrating various arrangements of one or more frames comprising 3-D pixel data, in accordance with an embodiment of the invention.
- FIG. 3 is flow chart illustrating exemplary operation for processing 3-D pixel data, in accordance with an embodiment of the invention.
- FIG. 4 is flow chart illustrating exemplary operation for processing 3-D pixel data, in accordance with an embodiment of the invention.
- a video processing system may receive a first frame comprising pixel data for a first 3-D view of an image, which may be referred to as first 3-D view pixel data, and receive a second frame comprising pixel data for a second 3-D view of the image, which may be referred to as second 3-D view pixel data.
- the system may generate a multi-view frame comprising the first 3-D view pixel data and the second 3-D view pixel data.
- the system may make a decision for performing processing of the image, wherein the decision is generated based on one or both of the first 3-D view pixel data and/or the second 3-D view pixel data.
- the system may process the 3-D multi-view frame based on the decision.
- the image processing operation may comprise, for example, deinterlacing, filtering, and/or cadence processing such as 3:2 pulldown.
- the decision may determine whether the pixel data originated as video or film.
- the multi-view frame may be arranged such that a left portion of the multi-view frame comprises the first 3-D view pixel data and a right portion of the multi-view frame comprises the second 3-D view pixel data.
- the multi-view frame may be arranged such that a top portion of the multi-view frame comprises the first 3-D view pixel data and a bottom portion of the multi-view frame comprises the second 3-D view pixel data.
- the multi-view frame may be arranged such that the first 3-D view pixel data is interleaved with the second 3-D view pixel data.
- the generated decision may be based on a first preliminary decision based on the first 3-D view pixel data, and a second preliminary decision based on the second 3-D view pixel data.
- the decision may be an average, whether weighted or unweighted, and/or a compromise or blend between the first preliminary decision and the second preliminary decision.
- the multi-view frame may be generated by writing the first 3-D view pixel data to one or more locations in memory identified by a first one or more pointers, and writing the second 3-D view pixel data to one or more locations in memory identified by a second one or more pointers.
- the first 3-D view pixel data and the second 3-D view pixel data may be read from memory in an order that is different than an order in which the first 3-D view pixel data and the second 3-D view pixel data was written to memory.
- 3-D view refers to one view (i.e., a left view or a right view) of a stereoscopic image
- 3-D pixel data refers to pixel data of one or both views of a stereoscopic image
- 3-D” video refers to stereoscopic video.
- FIG. 1 is diagram illustrating a video processing system, in accordance with an embodiment of the invention.
- the video processing system 100 comprises video input interface 106 , video feeder 108 , MPEG feeder 110 , multiplexers 112 a and 112 b , processing paths 114 1 - 114 J , bypass paths 116 1 - 116 K , loopback paths 118 1 - 118 L , capture module 120 , compositor 122 , memory 124 , and memory 126 .
- Each of J, K, and L is an integer greater than or equal to 1.
- the system 100 may, for example, reside in a set-top box, a television, or a desktop or laptop computer.
- the system 100 may be implemented in single semiconductor die or “chip.”
- a chip may comprise, for example, an ASIC or an FPGA.
- the portion of the system 100 enclosed in the dashed line comprise a single-chip video processor.
- Each of the memory 124 , and the memory 126 may comprise RAM, ROM, NVRAM, flash, a hard drive, or any other suitable memory device.
- the memory 124 , and memory 126 may be physically distinct memory elements of may be different portions and/or partitions of a single memory device.
- the video input interface 106 may comprise suitable logic, circuitry, interfaces, and/or code that may be operable to receive a video stream and convey the pixel data of the video stream to the multiplexer 112 a .
- the video input interface 106 may comprise, for example, a VGA interface, composite video interface, component video interface, HDMI interface, DisplayPort interface, and/or other suitable interface and the video stream into the interface 106 may be formatted accordingly.
- the received video stream may comprise monoscopic (2-D) video data and/or stereoscopic (3-D) video data. While this application focuses on processing of received 3-D video streams. Exemplary details of processing 2-D video streams are described in U.S. patent application Ser. No. 12/962,995 and in U.S. patent application Ser. No. 12/963,035 each of which is incorporated by reference above.
- the video feeder 108 may comprise suitable logic, circuitry, interfaces, and/or code that may be operable to input pixel data corresponding to locally generated graphics to the multiplexer 112 a .
- the video feeder 108 may, for example, read pixel data out of the memory 126 and convey the pixel data to the multiplexer 112 a.
- the MPEG feeder 110 may comprise suitable logic, circuitry, interfaces, and/or code.
- the MPEG feeder 110 may be operable to receive an MPEG stream and process the MPEG stream to output pixel data to the multiplexer 112 a .
- the MPEG stream may be received via a networking device (not shown).
- Each of the multiplexers 112 a and 112 b may comprise suitable logic, circuitry, interfaces, and/or code that may be operable to route pixel data between any one or more inputs of the multiplexer to any one or more outputs of the multiplexer. Pixel data input to the multiplexer 112 a from any one of more of the interface 106 , feeder 108 , and the feeder 110 may be conveyed to any one or more of the processing paths 114 1 - 114 J and/or any one or more of the bypass paths 116 1 - 116 K .
- Each of the processing paths 114 1 - 114 J may comprise suitable logic, circuitry, interfaces, and/or code that may be operable to perform one or more processing functions.
- Exemplary processing functions comprise scaling, subsampling, deinterlacing, 3:2 pulldown, blur/sharpen, color adjustment, and/or filtering operations such as motion compensated temporal filtering and digital noise reduction.
- Each of the bypass paths 116 1 - 116 K may enable pixel data to be conveyed unchanged from the multiplexer 112 a to the multiplexer 112 b .
- Each of the loopback paths 118 1 - 118 L may enable pixel data to be conveyed from the multiplexer 112 b to the multiplexer 112 a .
- the loopback paths may, for example, enable processing the same pixel data via multiple ones of the processing paths 114 1 - 114 J .
- the capture module 120 may comprise suitable logic, circuitry, interfaces, and/or code.
- the capture module 120 may be operable to write 3-D pixel data to and from memory 126 .
- the capture module 120 may be operable to read and write first 3-D view pixel data to and from the memory 126 utilizing a first one or more memory pointers.
- the capture module 120 may be operable to read and write second 3-D view pixel data to memory 126 utilizing a second one or more memory pointers.
- First 3-D view pixel data may be left-view data
- second 3-D view pixel data may be right-view pixel data, or visa-versa.
- left-view pixel data may be captured via a left lens of a video camera and right-view pixel data may be captured via a right lens of the video camera.
- the compositor 122 may comprise suitable logic, circuitry, interfaces, and/or code.
- the compositor 122 may be operable to generate a video stream which may be output via, for example, a VGA output, composite video output, component video output, HDMI output, and/or DisplayPort output.
- the video stream may comprise pixel data received from the multiplexer 112 b and/or pixel data read from memory 124 .
- the compositor 122 may be operable to combine (e.g. overlay) pixel data from the memory 124 onto pixel data from the multiplexer 112 b , or visa-versa.
- the output video stream may comprise monoscopic (2-D) video data and/or stereoscopic (3-D) video data.
- one or more 3-D video frames may be input to the system 100 via one or more of the interface 106 , the feeder 108 , and the feeder 110 .
- Each of the one or more input frames may comprise live-action images and/or computer-generated images.
- the input frame(s) may comprise left-view pixel data and right-view pixel data.
- the arrangement of the input frame(s) may correspond to any one of the arrangements described below with respect to FIG. 2 .
- the arrangement of the input frame(s) may be determined in any of a variety of ways.
- the system 100 may determine the arrangement of the input frame(s) based on the source from which the one or more frames was received, based on a state of one or more control signals in the system 100 , and/or based on an inspection the input frame(s).
- the multiplexer 1128 may convey the input frame(s) to the multiplexer 112 b via one or more of the processing paths 114 1 - 114 J and/or one or more of the bypass paths 116 1 - 116 K .
- the frame(s) may make multiple passes from the multiplexer 112 a to the multiplexer 112 b and thus may traverse one or more of the loopback paths 118 1 - 118 L .
- a common decision may be utilized for processing both the first 3-D view pixel-data and second 3-D view pixel data. Utilizing only a common decision for processing both the first 3-D view pixel data and the second 3-D view pixel data may prevent making different decisions for the first 3-D view pixel data and the second 3-D view pixel data. Utilizing different decisions for the first 3-D view pixel data and the second 3-D view pixel data may result in a distorted or otherwise visually unappealing image upon combining the two views.
- the system 100 may make the decision based on only one of the views and then utilize the same decision for the other view. For example, the system 100 may decide that the first 3-D view pixel data originated as video and then also utilize that decision when processing the second 3-D view pixel data, that is, without making a separate decision based on the second 3-D view pixel data.
- the single decision may be based on a combination, or compromise, between a first preliminary decision based on the first 3-D view pixel data and a second preliminary decision based on the second 3-D view pixel data.
- the system 100 may make a preliminary decision to sharpen the first 3-D view pixel data by a factor of X, make a preliminary decision to sharpen the second 3-D view pixel data by Y, and then a final decision to sharpen both views by (X+Y)/2 or by some other weighing or blending factor.
- processing performed on each of the single-view frames may be limited to operations that do not require a decision to be made based on the content of the frames. Avoiding performance of such processing operations until after the two frames have been converted to a single multi-view frame may prevent making different decisions for the two views and may also avoid the need for memory and/or other circuitry to remember previous decisions and apply previous decisions to subsequent pixel data.
- the frame(s) may be conveyed to the capture module 120 .
- the capture module 120 may write the left-view pixel data and right-view pixel data to memory 126 .
- the left-view pixel data may be written to one or more memory locations identified by a first one or more pointers.
- the right-view pixel data may be written to one or more memory locations identified by a second one or more pointers.
- the feeder module 108 may read the left-view and right-view pixel data from the memory 126 to generate a multi-view output frame.
- the first one or more pointers and the second one or more pointers may be utilized for reading the pixel data out from the memory 126 .
- the order in which the pixel data is read from memory may depend on the arrangement of the input frame(s) and the desired arrangement of the multi-view output frame. In this regard, the arrangement of the multi-view output frame read from the memory 126 may correspond to any of the arrangements 204 - 212 below with respect to FIG. 2 .
- the pixel data may be read out of the memory 126 in the same order in which it was written to the memory 126 .
- the pixel data may be read out of the memory 126 in a different order than which it was written to the memory 126 .
- the multi-view output frame may be conveyed to the compositor 122 .
- the multi-view output frame may be conveyed to the multiplexer 1128 for one or more traversals of one or more of the processing paths 114 1 - 114 J , bypass paths 116 1 - 116 K , and/or loopback paths 118 1 - 118 L .
- the system 100 may ensure that the first 3-D view pixel data and the second 3-D view pixel data are processed consistently with one another such that the 3-D video frame resulting from the combination of the two views is not distorted or otherwise visually unappealing.
- the compositor 122 may process the output frame(s) to make the output frame(s) suitable for insertion into a video stream.
- the video stream may be formatted so as to be compatible with one or more video standards such as VGA, composite video, component video, HDMI, and/or DisplayPort.
- Processing of the output frame(s) may comprise combining the output frame(s) from the multiplexer 112 b with pixel data from memory 124 . For example, graphics may be read from the memory 124 and overlaid on the output frame(s) from the multiplexer 112 b.
- FIG. 2 is a diagram illustrating various arrangements of one or more frames comprising 2D pixel data, in accordance with an embodiment of the invention.
- a two-frame-sequential arrangement 202 there is shown a two-frame-sequential arrangement 202 , a left-right-single-frame arrangement 204 , an over-under-single-frame arrangement 206 , a vertically-interleaved-single-frame arrangement 208 , a horizontally-interleaved-single-frame arrangement 210 , and a vertically-and-horizontally-interleaved-single-frame arrangement 212 .
- each of N and M may be any positive integer.
- the two-frame-sequential arrangement 202 comprises two single-view frames.
- a first frame comprising first 3-D view pixel data and a second frame comprising second 3-D view pixel data.
- the two frames may be received by the system 100 sequentially. That is, the first frame may be received earlier in time before the second frame.
- a decision as to how to perform one or more processing operations on the first frame may be utilized for performing the one or more processing operations on both the first frame and the second frame.
- the left portion of the left-right-single-frame arrangement 204 may comprise first 3-D view pixel data and the right portion of the left-right single-frame arrangement 204 may comprise second 3-D view pixel data.
- An exemplary 4M ⁇ 4N left-right-single-frame arrangement is described in table 1 below.
- a decision as to how to perform one or more processing operations on the multi-view frame may be made based on an inspection and/or analysis of either the first 3-D view pixel data of the right portion of or the second 3-D view pixel data of the right portion. This decision may then be utilized for processing the multi-view frame as a whole.
- the first 3-D view pixel data of the left portion may be inspected and/or analyzed to make a first preliminary decision
- the second 3-D view pixel data of the right portion may be inspected and/or analyzed to make a second preliminary decision
- a final decision for processing the multi-view frame as a whole may be based on the two preliminary decisions.
- the final decision may, for example, be an average or compromise between the two preliminary decisions.
- the top portion of the over-under-single-frame arrangement 206 may comprise first 3-D view pixel data and the bottom portion of the over-under-single-frame arrangement 206 may comprise second 3-D view pixel data.
- An exemplary 4M ⁇ 4N over-under-single-frame arrangement is described in table 2 below.
- a decision as to how to perform one or more processing operations on the multi-view frame may be made based on an inspection and/or analysis of either the first 3-D view pixel data of the top portion of or the second 3-D view pixel data of the bottom portion. This decision may then be utilized for processing the multi-view frame as a whole.
- the first 3-D view pixel data of the top portion may be inspected/analyzed to make a first preliminary decision
- the second 3-D view pixel data of the bottom portion may be inspected and/or analyzed to make a second preliminary decision
- a final decision may be made based on the two preliminary decisions.
- the final decision may be utilized to process the multi-view frame as a whole and may, for example, be an average or compromise between the two preliminary decisions.
- the vertically-interleaved-single-frame arrangement 208 may alternate between one or more lines of left-view pixel data and one or more lines of right-view pixel data.
- An exemplary 4M ⁇ 4N vertically-interleaved-single-frame arrangement is described in table 2 below.
- a decision as to how to perform one or more processing operations on the multi-view frame may be made based on an inspection and/or analysis of either the first 3-D view pixel data or the second 3-D view pixel data. This decision may then be utilized for processing the multi-view frame as a whole.
- the first 3-D view pixel data may be inspected and/or analyzed to make a first preliminary decision
- the second 3-D view pixel data may be inspected/analyzed to make a second preliminary decision
- a final decision may be made based on the two preliminary decisions.
- the final decision may be utilized to process the multi-view frame as a whole and may, for example, be an average or compromise between the two preliminary decisions.
- the horizontally-interleaved-single-frame arrangement 210 may alternate between one or more columns of left-view pixel data and one or more columns of right-view pixel data.
- An exemplary 4M ⁇ 4N horizontally-interleaved-single-frame arrangement is described in table 4 below.
- a decision as to how to perform one or more processing operations on the multi-view frame may be made based on an inspection and/or analysis of either the first 3-D view pixel data or the second 3-D view pixel data. This decision may then be utilized for processing the multi-view frame as a whole.
- the first 3-D view pixel data may be inspected and/or analyzed to make a first preliminary decision
- the second 3-D view pixel data may be inspected and/or analyzed to make a second preliminary decision
- a final decision may be made based on the two preliminary decisions.
- the final decision may be utilized to process the multi-view frame as a whole and may, for example, be an average or compromise between the two preliminary decisions.
- the first 3-D view and second 3-D view pixel data may be interleaved in both a vertical and horizontal direction.
- An exemplary 4M ⁇ 4N horizontally-interleaved-single-frame arrangement is described in table 4 below.
- a decision as to how to perform one or more processing operations on the multi-view frame may be made based on an inspection and/or analysis of either the first 3-D view pixel data or the second 3-D view pixel data. This decision may then be utilized for processing the multi-view frame as a whole.
- the first 3-D view pixel data may be inspected and/or analyzed to make a first preliminary decision
- the second 3-D view pixel data may be inspected and/or analyzed to make a second preliminary decision
- a final decision may be made based on the two preliminary decisions.
- the final decision may be utilized to process the multi-view frame as a whole and may, for example, be an average or compromise between the two preliminary decisions.
- FIG. 3 is flow chart illustrating exemplary operation for processing 3-D video, in accordance with an embodiment of the invention. Referring to FIG. 3 , the exemplary steps begin with step 302 in which an input frame is conveyed to the multiplexer 112 a.
- step 304 it is determined whether the input frame(s) are to traverse one or more of the processing paths 114 1 - 114 J or traverse one or more of the bypass paths 116 1 - 116 K .
- processing such as scaling and/or deinterlacing, may occur.
- a decision as to how to perform one or more processing operations during step 324 may be made based on an inspection and/or analysis of the input frame(s). In instances that the input frame(s) comprise a single multi-view frame, the decision may then be utilized for processing the multi-view frame as a whole.
- the decision may then be utilized for processing both of the single-view frames. Accordingly, for processing the two single-view frames, the system 100 may need to remember decisions made for the first frame in order to apply the decisions to the second frame. Accordingly, in an embodiment of the invention, in order to avoid the need for such memory of the decisions, processing may be held off until after the two single-view frames have been converted to a single multi-view frame. This may reduce the cost and complexity of the processing paths 114 1 - 114 J .
- step 306 the input frame(s) are conveyed to the multiplexer 112 b .
- step 308 it is determined whether the input frame(s) are to be looped-back to multiplexer 112 a for another traversal of one or more of the processing paths 114 1 - 114 J and/or one or more of the bypass paths 116 1 - 116 K .
- the exemplary steps may return to step 302 .
- the exemplary steps may advance to step 310 .
- step 310 the input frame(s) are captured to memory 126 .
- First 3-D view pixel data of the input frame(s) may be stored to memory location(s) indicated by a first one or more memory pointers.
- Second 3-D view pixel data of the input frame(s) may be stored to memory location(s) indicated by a second one or more memory pointers.
- step 312 the left-view pixel data and right-view pixel data is read from memory 126 to generate a multi-view output frame.
- the order in which the data is read from memory 126 may depend on the desired arrangement of the multi-view output frame.
- step 314 it is determined whether the multi-view output frame is be processed by one or more of the processing paths 114 1 - 114 J . In instances that the multi-view output frame is to be processed, then the exemplary steps may advance to step 326 .
- step 326 the multi-view output frame is communicated to the multiplexer 1128 .
- step 328 the multi-view output frame is conveyed onto one or more of the processing paths 114 1 - 114 J for processing, such as scaling and/or noise reduction.
- a decision as to how to perform one or more processing operations on the multi-view output frame may be made based on an inspection/analysis of either the first 3-D view pixel data or the second 3-D view pixel data. This decision may then be utilized for processing the multi-view output frame as a whole.
- the first 3-D view pixel data may be inspected/analyzed to make a first preliminary decision
- the second 3-D view pixel data may be inspected/analyzed to make a second preliminary decision
- a final decision may be made based on the two preliminary decisions.
- the final decision may be utilized to process the multi-view output frame as a whole and may, for example, be an average or compromise between the two preliminary decisions.
- the multi-view output frame may arrive at the multiplexer 112 b .
- the exemplary steps may return to step 226 .
- the exemplary steps may advance to step 316 .
- the multi-view output frame arrives at the multiplexer 112 b .
- the multi-view output frame is conveyed to the compositor 122 .
- the compositor may process the multi-view output frame to make them suitable for insertion into a video stream. Processing the multi-view output frame may comprise combining the multi-view output frame from the multiplexer 112 b with pixel data from memory 124 . For example, graphics may be read from the memory 124 and overlaid on the multi-view output frame from the multiplexer 112 b.
- the video stream may be communicated to another video device, such as a television or monitor.
- the video stream may, for example, be formatted in accordance with one or more video standards such as VGA, composite video, component video, HDMI, and/or DisplayPort.
- FIG. 4 is a flow chart illustrating exemplary steps for processing 3-D pixel data, in accordance with an embodiment of the invention.
- the system 100 may detect the arrangement of a multi-view frame to be processed.
- the system 100 may detect the arrangement based on, for example, an inspection of the multi-view frame, the source from which the multi-view frame were received, and/or based on a pre-configuration of the system 100 .
- the detected arrangement comprises multiple single-view frames, then the single-view frames may be converted to a single, multi-view frame.
- the system 100 may make a decision as to how to process the multi-view frame.
- the decision may be based on either first 3-D view, for example left-view, pixel data of the multi-view frame or second 3-D view, for example, right-view, pixel data of the multi-view frame.
- a preliminary decision may be based on the first 3-D view pixel data
- a second preliminary decision may be based on the second 3-D view pixel data
- the ultimate decision as to how the multi-view frame is processed may be based on a combination of the two preliminary decisions.
- the multi-frame may be processed as a whole utilizing the decision made in step 406 .
- the first 3-D view pixel data may be processed in the same manner as the second 3-D view pixel data.
- a video processing system 100 may receive a first frame comprising pixel data for a first 3-D view of an image and receive a second frame comprising pixel data for a second 3-D view of an image.
- the system 100 may generate a 3-D multi-view frame comprising the pixel data for the first 3-D view and the pixel view for the second 3-D view.
- the system 100 may make a decision for performing processing of the image.
- the decision may be generated based on one or both of the pixel data for the first view and the pixel data for the second view.
- the 3-D multi-view frame may be processed based on the decision.
- the image processing operation may comprise, for example, deinterlacing, filtering, and cadence processing such as 3:2 pulldown. For 3:2 pulldown, the decision may determine whether the pixel data originated as video or film.
- the multi-view frame may be arranged such that a left portion of the multi-view frame comprises the first 3-D view pixel data and a right portion of the multi-view frame comprises the second 3-D view pixel data.
- the multi-view frame may be arranged such that a top portion of the multi-view frame comprises the first 3-D view pixel data and a bottom portion of the multi-view frame comprises the second 3-D view pixel data.
- the multi-view frame may be arranged such that the first 3-D view pixel data is interleaved with the second 3-D view pixel data.
- the generated decision may be based on a first preliminary decision based on the first 3-D view pixel data, and a second preliminary decision based on the second 3-D view pixel data.
- the decision may be an average and/or compromise between the first preliminary decision and the second preliminary decision.
- the average and/or compromise may comprise weighting and/or some form of blending.
- the multi-view frame may be generated by writing the first 3-D view pixel data to one or more locations in the memory 126 identified by a first one or more pointers, and writing the second 3-D view pixel data to one or more locations in the memory 126 identified by a second one or more pointers.
- the pixel data for the first 3-D view and the pixel data for the second 3-D view may be read from the memory 126 in an order that may be different than an order in which the first 3-D view pixel data and the second 3-D view pixel data was written to the memory 126 .
- inventions may provide a non-transitory computer readable medium and/or storage medium, and/or a non-transitory machine readable medium and/or storage medium, having stored thereon, a machine code and/or a computer program having at least one code section executable by a machine and/or a computer, thereby causing the machine and/or computer to perform the steps as described herein for processing 3-D video.
- the present invention may be realized in hardware, software, or a combination of hardware and software.
- the present invention may be realized in a centralized fashion in at least one computer system, or in a distributed fashion where different elements are spread across several interconnected computer systems. Any kind of computer system or other apparatus adapted for carrying out the methods described herein is suited.
- a typical combination of hardware and software may be a general-purpose computer system with a computer program that, when being loaded and executed, controls the computer system such that it carries out the methods described herein.
- the present invention may also be embedded in a computer program product, which comprises all the features enabling the implementation of the methods described herein, and which when loaded in a computer system is able to carry out these methods.
- Computer program in the present context means any expression, in any language, code or notation, of a set of instructions intended to cause a system having an information processing capability to perform a particular function either directly or after either or both of the following: a) conversion to another language, code or notation; b) reproduction in a different material form.
Landscapes
- Engineering & Computer Science (AREA)
- Multimedia (AREA)
- Signal Processing (AREA)
- Controls And Circuits For Display Device (AREA)
- Television Systems (AREA)
- Image Processing (AREA)
- Testing, Inspecting, Measuring Of Stereoscopic Televisions And Televisions (AREA)
- Studio Circuits (AREA)
Abstract
Description
TABLE 1 |
Left-Right-Single-Frame arrangement |
Col. 1-2M | Col. 2M + 1-4M | ||
Lines 1-4N | first 3-D view | second 3-D view | ||
TABLE 2 |
Over-Under-Single-Frame Arrangement |
Col. 1-4M | ||
Lines 1-2N | first 3-D view | ||
Lines 2N + 1-4N | second 3-D view | ||
TABLE 3 |
Vertically-Interleaved-Single-Frame Arrangement |
Col. 1-4M | |||
Lines 1-N | first 3-D view | ||
Lines N + 1-2N | second 3-D view | ||
Lines 2N + 1-3N | first 3-D view | ||
Lines 3N + 1-4N | second 3-D view | ||
TABLE 4 |
Horizontally-Interleaved-Single-Frame Arrangement |
Col. 1-M | Col. M + 1-2M | Col. 2M + 1-3M | Col. 3M + 1-4M | ||
Lines | first 3-D | second 3-D | first 3-D view | second 3-D view |
1-4N | view | view | ||
TABLE 5 |
Vertically-and-Horizontally-Interleaved-Single-Frame Arrangement |
Col. M + | Col. 2M + | Col. 3M + | |||
Col. 1-M | 1-2M | 1-3M | 1-4M | ||
Lines | first 3-D | second 3-D | first 3-D | second 3-D |
1-N | view | view | view | view |
Lines | second 3-D | first 3-D | second 3-D | first 3-D view |
N + 1-2N | view | view | view | |
Lines | first 3-D | second 3-D | first 3-D | second 3-D |
2N + 1-3N | view | view | view | view |
Lines | second 3-D | first 3-D | second 3-D | first 3-D view |
3N + 1-4N | view | view | view | |
Claims (20)
Priority Applications (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US12/963,320 US8947503B2 (en) | 2009-12-08 | 2010-12-08 | Method and system for processing 3-D video |
US12/962,995 US9137513B2 (en) | 2009-12-08 | 2010-12-08 | Method and system for mixing video and graphics |
US14/819,728 US9307223B2 (en) | 2009-12-08 | 2015-08-06 | Method and system for mixing video and graphics |
Applications Claiming Priority (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US26772909P | 2009-12-08 | 2009-12-08 | |
US29685110P | 2010-01-20 | 2010-01-20 | |
US33045610P | 2010-05-03 | 2010-05-03 | |
US12/963,320 US8947503B2 (en) | 2009-12-08 | 2010-12-08 | Method and system for processing 3-D video |
Publications (2)
Publication Number | Publication Date |
---|---|
US20110134212A1 US20110134212A1 (en) | 2011-06-09 |
US8947503B2 true US8947503B2 (en) | 2015-02-03 |
Family
ID=44081627
Family Applications (6)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US12/963,014 Abandoned US20110134217A1 (en) | 2009-12-08 | 2010-12-08 | Method and system for scaling 3d video |
US12/962,995 Active 2033-01-01 US9137513B2 (en) | 2009-12-08 | 2010-12-08 | Method and system for mixing video and graphics |
US12/963,212 Abandoned US20110134211A1 (en) | 2009-12-08 | 2010-12-08 | Method and system for handling multiple 3-d video formats |
US12/963,320 Expired - Fee Related US8947503B2 (en) | 2009-12-08 | 2010-12-08 | Method and system for processing 3-D video |
US12/963,035 Abandoned US20110134218A1 (en) | 2009-12-08 | 2010-12-08 | Method and system for utilizing mosaic mode to create 3d video |
US14/819,728 Active US9307223B2 (en) | 2009-12-08 | 2015-08-06 | Method and system for mixing video and graphics |
Family Applications Before (3)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US12/963,014 Abandoned US20110134217A1 (en) | 2009-12-08 | 2010-12-08 | Method and system for scaling 3d video |
US12/962,995 Active 2033-01-01 US9137513B2 (en) | 2009-12-08 | 2010-12-08 | Method and system for mixing video and graphics |
US12/963,212 Abandoned US20110134211A1 (en) | 2009-12-08 | 2010-12-08 | Method and system for handling multiple 3-d video formats |
Family Applications After (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US12/963,035 Abandoned US20110134218A1 (en) | 2009-12-08 | 2010-12-08 | Method and system for utilizing mosaic mode to create 3d video |
US14/819,728 Active US9307223B2 (en) | 2009-12-08 | 2015-08-06 | Method and system for mixing video and graphics |
Country Status (4)
Country | Link |
---|---|
US (6) | US20110134217A1 (en) |
EP (1) | EP2462748A4 (en) |
CN (1) | CN102474632A (en) |
WO (1) | WO2011072016A1 (en) |
Families Citing this family (15)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2008106185A (en) * | 2006-10-27 | 2008-05-08 | Shin Etsu Chem Co Ltd | Method for adhering thermally conductive silicone composition, primer for adhesion of thermally conductive silicone composition and method for production of adhesion composite of thermally conductive silicone composition |
CN102474632A (en) * | 2009-12-08 | 2012-05-23 | 美国博通公司 | Method and system for handling multiple 3-d video formats |
US8565516B2 (en) * | 2010-02-05 | 2013-10-22 | Sony Corporation | Image processing apparatus, image processing method, and program |
US9414042B2 (en) * | 2010-05-05 | 2016-08-09 | Google Technology Holdings LLC | Program guide graphics and video in window for 3DTV |
US8768044B2 (en) | 2010-09-14 | 2014-07-01 | Texas Instruments Incorporated | Automatic convergence of stereoscopic images based on disparity maps |
US9485494B1 (en) * | 2011-04-10 | 2016-11-01 | Nextvr Inc. | 3D video encoding and decoding methods and apparatus |
US9407902B1 (en) | 2011-04-10 | 2016-08-02 | Nextvr Inc. | 3D video encoding and decoding methods and apparatus |
US20120281064A1 (en) * | 2011-05-03 | 2012-11-08 | Citynet LLC | Universal 3D Enabler and Recorder |
US20130044192A1 (en) * | 2011-08-17 | 2013-02-21 | Google Inc. | Converting 3d video into 2d video based on identification of format type of 3d video and providing either 2d or 3d video based on identification of display device type |
US20130147912A1 (en) * | 2011-12-09 | 2013-06-13 | General Instrument Corporation | Three dimensional video and graphics processing |
US9069374B2 (en) | 2012-01-04 | 2015-06-30 | International Business Machines Corporation | Web video occlusion: a method for rendering the videos watched over multiple windows |
WO2015192557A1 (en) * | 2014-06-19 | 2015-12-23 | 杭州立体世界科技有限公司 | Control circuit for high-definition naked-eye portable stereo video player and stereo video conversion method |
US9716913B2 (en) * | 2014-12-19 | 2017-07-25 | Texas Instruments Incorporated | Generation of a video mosaic display |
CN108419068A (en) * | 2018-05-25 | 2018-08-17 | 张家港康得新光电材料有限公司 | A kind of 3D rendering treating method and apparatus |
CN111263231B (en) * | 2018-11-30 | 2022-07-15 | 西安诺瓦星云科技股份有限公司 | Window setting method, device, system and computer readable medium |
Citations (18)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20020047930A1 (en) * | 1998-08-03 | 2002-04-25 | Equator Technologies, Inc. | Circuit and method for generating filler pixels from the original pixels in a video stream |
US20040218269A1 (en) * | 2002-01-14 | 2004-11-04 | Divelbiss Adam W. | General purpose stereoscopic 3D format conversion system and method |
US20050134735A1 (en) * | 2003-12-23 | 2005-06-23 | Genesis Microchip Inc. | Adaptive display controller |
US20060062490A1 (en) * | 2004-07-15 | 2006-03-23 | Samsung Electronics Co., Ltd. | Apparatus and method of transforming multidimensional video format |
US20070024703A1 (en) * | 2003-01-10 | 2007-02-01 | Conklin Gregory J | Automatic deinterlacing and inverse telecine |
US20070030383A1 (en) * | 2002-11-06 | 2007-02-08 | Patrick Law | Method and system for converting interlaced formatted video to progressive scan video |
US20070071344A1 (en) * | 2005-09-29 | 2007-03-29 | Ouzilevski Alexei V | Video acquisition with integrated GPU processing |
US20070216808A1 (en) * | 2003-06-30 | 2007-09-20 | Macinnis Alexander G | System, method, and apparatus for scaling pictures |
US20070252894A1 (en) * | 2006-04-27 | 2007-11-01 | Fujitsu Limited | Converting device and converting method of video signals |
US20070285563A1 (en) * | 2002-01-22 | 2007-12-13 | Broadcom Corporation | System and method of transmission and reception of progressive content with isolated fields for conversion to interlaced display |
US20080198920A1 (en) * | 2007-02-21 | 2008-08-21 | Kai Chieh Yang | 3d video encoding |
US20080285652A1 (en) * | 2007-05-14 | 2008-11-20 | Horizon Semiconductors Ltd. | Apparatus and methods for optimization of image and motion picture memory access |
US20090153734A1 (en) * | 2007-12-17 | 2009-06-18 | Ati Technologies Ulc | Method, apparatus and machine-readable medium for video processing capability communication between a video source device and a video sink device |
US20100149321A1 (en) * | 2008-12-11 | 2010-06-17 | Ushiki Suguru | Image processing apparatus, image processing method, and program |
US20100254453A1 (en) * | 2009-04-02 | 2010-10-07 | Qualcomm Incorporated | Inverse telecine techniques |
US20110254929A1 (en) * | 2010-02-22 | 2011-10-20 | Jeong Hyu Yang | Electronic device and method for displaying stereo-view or multiview sequence image |
US8339442B2 (en) * | 2009-05-12 | 2012-12-25 | Panasonic Corporation | Image conversion method and image conversion apparatus |
US20130044192A1 (en) * | 2011-08-17 | 2013-02-21 | Google Inc. | Converting 3d video into 2d video based on identification of format type of 3d video and providing either 2d or 3d video based on identification of display device type |
Family Cites Families (42)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5481275A (en) * | 1992-11-02 | 1996-01-02 | The 3Do Company | Resolution enhancement for video display using multi-line interpolation |
US6927783B1 (en) * | 1998-11-09 | 2005-08-09 | Broadcom Corporation | Graphics display system with anti-aliased text and graphics feature |
US6704042B2 (en) * | 1998-12-10 | 2004-03-09 | Canon Kabushiki Kaisha | Video processing apparatus, control method therefor, and storage medium |
US7860375B2 (en) * | 2000-03-17 | 2010-12-28 | Thomson Licensing | Method and apparatus for simultaneous recording and displaying two different video programs |
WO2002076107A1 (en) * | 2001-01-12 | 2002-09-26 | Vrex, Inc. | Method and apparatus for stereoscopic display using column interleaved data with digital light processing |
US20030103136A1 (en) * | 2001-12-05 | 2003-06-05 | Koninklijke Philips Electronics N.V. | Method and system for 2D/3D illusion generation |
CA2380105A1 (en) * | 2002-04-09 | 2003-10-09 | Nicholas Routhier | Process and system for encoding and playback of stereoscopic video sequences |
US7804995B2 (en) * | 2002-07-02 | 2010-09-28 | Reald Inc. | Stereoscopic format converter |
KR100488804B1 (en) * | 2002-10-07 | 2005-05-12 | 한국전자통신연구원 | System for data processing of 2-view 3dimention moving picture being based on MPEG-4 and method thereof |
US9377987B2 (en) * | 2002-10-22 | 2016-06-28 | Broadcom Corporation | Hardware assisted format change mechanism in a display controller |
US7098868B2 (en) * | 2003-04-08 | 2006-08-29 | Microsoft Corporation | Display source divider |
JP4251907B2 (en) * | 2003-04-17 | 2009-04-08 | シャープ株式会社 | Image data creation device |
US7236525B2 (en) * | 2003-05-22 | 2007-06-26 | Lsi Corporation | Reconfigurable computing based multi-standard video codec |
US20040239757A1 (en) * | 2003-05-29 | 2004-12-02 | Alden Ray M. | Time sequenced user space segmentation for multiple program and 3D display |
US6957400B2 (en) * | 2003-05-30 | 2005-10-18 | Cadence Design Systems, Inc. | Method and apparatus for quantifying tradeoffs for multiple competing goals in circuit design |
US7262818B2 (en) * | 2004-01-02 | 2007-08-28 | Trumpion Microelectronic Inc. | Video system with de-motion-blur processing |
WO2005083637A1 (en) * | 2004-02-27 | 2005-09-09 | Td Vision Corporation, S.A. De C.V. | Method and system for digital decoding 3d stereoscopic video images |
EP1617370B1 (en) * | 2004-07-15 | 2013-01-23 | Samsung Electronics Co., Ltd. | Image format transformation |
CN1756317A (en) * | 2004-10-01 | 2006-04-05 | 三星电子株式会社 | The equipment of transforming multidimensional video format and method |
US20060139448A1 (en) * | 2004-12-29 | 2006-06-29 | Samsung Electronics Co., Ltd. | 3D displays with flexible switching capability of 2D/3D viewing modes |
KR100898287B1 (en) * | 2005-07-05 | 2009-05-18 | 삼성모바일디스플레이주식회사 | Stereoscopic image display device |
KR100932977B1 (en) * | 2005-07-05 | 2009-12-21 | 삼성모바일디스플레이주식회사 | Stereoscopic video display |
JP2007080357A (en) * | 2005-09-13 | 2007-03-29 | Toshiba Corp | Information storage medium, information reproducing method, information reproducing apparatus |
JP2007115293A (en) * | 2005-10-17 | 2007-05-10 | Toshiba Corp | Information storage medium, program, information reproducing method, information reproducing apparatus, data transfer method, and data processing method |
US20070140187A1 (en) * | 2005-12-15 | 2007-06-21 | Rokusek Daniel S | System and method for handling simultaneous interaction of multiple wireless devices in a vehicle |
WO2007117485A2 (en) * | 2006-04-03 | 2007-10-18 | Sony Computer Entertainment Inc. | Screen sharing method and apparatus |
US8106917B2 (en) * | 2006-06-29 | 2012-01-31 | Broadcom Corporation | Method and system for mosaic mode display of video |
US8330801B2 (en) * | 2006-12-22 | 2012-12-11 | Qualcomm Incorporated | Complexity-adaptive 2D-to-3D video sequence conversion |
KR20100002032A (en) * | 2008-06-24 | 2010-01-06 | 삼성전자주식회사 | Image generating method, image processing method, and apparatus thereof |
EP2343907A4 (en) * | 2008-10-10 | 2012-06-20 | Lg Electronics Inc | Reception system and data processing method |
US20110293240A1 (en) * | 2009-01-20 | 2011-12-01 | Koninklijke Philips Electronics N.V. | Method and system for transmitting over a video interface and for compositing 3d video and 3d overlays |
EP2439934A4 (en) * | 2009-06-05 | 2014-07-02 | Lg Electronics Inc | Image display device and an operating method therefor |
US8373802B1 (en) * | 2009-09-01 | 2013-02-12 | Disney Enterprises, Inc. | Art-directable retargeting for streaming video |
US8614737B2 (en) * | 2009-09-11 | 2013-12-24 | Disney Enterprises, Inc. | System and method for three-dimensional video capture workflow for dynamic rendering |
US20110126160A1 (en) * | 2009-11-23 | 2011-05-26 | Samsung Electronics Co., Ltd. | Method of providing 3d image and 3d display apparatus using the same |
CN102474632A (en) * | 2009-12-08 | 2012-05-23 | 美国博通公司 | Method and system for handling multiple 3-d video formats |
US8964013B2 (en) * | 2009-12-31 | 2015-02-24 | Broadcom Corporation | Display with elastic light manipulator |
KR101699738B1 (en) * | 2010-04-30 | 2017-02-13 | 엘지전자 주식회사 | Operating Method for Image Display Device and Shutter Glass for the Image Display Device |
US9414042B2 (en) * | 2010-05-05 | 2016-08-09 | Google Technology Holdings LLC | Program guide graphics and video in window for 3DTV |
US8553072B2 (en) * | 2010-11-23 | 2013-10-08 | Circa3D, Llc | Blanking inter-frame transitions of a 3D signal |
KR20120126458A (en) * | 2011-05-11 | 2012-11-21 | 엘지전자 주식회사 | Method for processing broadcasting signal and display device thereof |
JP5319796B2 (en) * | 2012-01-12 | 2013-10-16 | 株式会社東芝 | Information processing apparatus and display control method |
-
2010
- 2010-12-08 CN CN2010800296617A patent/CN102474632A/en active Pending
- 2010-12-08 US US12/963,014 patent/US20110134217A1/en not_active Abandoned
- 2010-12-08 WO PCT/US2010/059469 patent/WO2011072016A1/en active Application Filing
- 2010-12-08 US US12/962,995 patent/US9137513B2/en active Active
- 2010-12-08 EP EP10836612.1A patent/EP2462748A4/en not_active Withdrawn
- 2010-12-08 US US12/963,212 patent/US20110134211A1/en not_active Abandoned
- 2010-12-08 US US12/963,320 patent/US8947503B2/en not_active Expired - Fee Related
- 2010-12-08 US US12/963,035 patent/US20110134218A1/en not_active Abandoned
-
2015
- 2015-08-06 US US14/819,728 patent/US9307223B2/en active Active
Patent Citations (18)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20020047930A1 (en) * | 1998-08-03 | 2002-04-25 | Equator Technologies, Inc. | Circuit and method for generating filler pixels from the original pixels in a video stream |
US20040218269A1 (en) * | 2002-01-14 | 2004-11-04 | Divelbiss Adam W. | General purpose stereoscopic 3D format conversion system and method |
US20070285563A1 (en) * | 2002-01-22 | 2007-12-13 | Broadcom Corporation | System and method of transmission and reception of progressive content with isolated fields for conversion to interlaced display |
US20070030383A1 (en) * | 2002-11-06 | 2007-02-08 | Patrick Law | Method and system for converting interlaced formatted video to progressive scan video |
US20070024703A1 (en) * | 2003-01-10 | 2007-02-01 | Conklin Gregory J | Automatic deinterlacing and inverse telecine |
US20070216808A1 (en) * | 2003-06-30 | 2007-09-20 | Macinnis Alexander G | System, method, and apparatus for scaling pictures |
US20050134735A1 (en) * | 2003-12-23 | 2005-06-23 | Genesis Microchip Inc. | Adaptive display controller |
US20060062490A1 (en) * | 2004-07-15 | 2006-03-23 | Samsung Electronics Co., Ltd. | Apparatus and method of transforming multidimensional video format |
US20070071344A1 (en) * | 2005-09-29 | 2007-03-29 | Ouzilevski Alexei V | Video acquisition with integrated GPU processing |
US20070252894A1 (en) * | 2006-04-27 | 2007-11-01 | Fujitsu Limited | Converting device and converting method of video signals |
US20080198920A1 (en) * | 2007-02-21 | 2008-08-21 | Kai Chieh Yang | 3d video encoding |
US20080285652A1 (en) * | 2007-05-14 | 2008-11-20 | Horizon Semiconductors Ltd. | Apparatus and methods for optimization of image and motion picture memory access |
US20090153734A1 (en) * | 2007-12-17 | 2009-06-18 | Ati Technologies Ulc | Method, apparatus and machine-readable medium for video processing capability communication between a video source device and a video sink device |
US20100149321A1 (en) * | 2008-12-11 | 2010-06-17 | Ushiki Suguru | Image processing apparatus, image processing method, and program |
US20100254453A1 (en) * | 2009-04-02 | 2010-10-07 | Qualcomm Incorporated | Inverse telecine techniques |
US8339442B2 (en) * | 2009-05-12 | 2012-12-25 | Panasonic Corporation | Image conversion method and image conversion apparatus |
US20110254929A1 (en) * | 2010-02-22 | 2011-10-20 | Jeong Hyu Yang | Electronic device and method for displaying stereo-view or multiview sequence image |
US20130044192A1 (en) * | 2011-08-17 | 2013-02-21 | Google Inc. | Converting 3d video into 2d video based on identification of format type of 3d video and providing either 2d or 3d video based on identification of display device type |
Also Published As
Publication number | Publication date |
---|---|
US20150341613A1 (en) | 2015-11-26 |
US9307223B2 (en) | 2016-04-05 |
US20110134216A1 (en) | 2011-06-09 |
US9137513B2 (en) | 2015-09-15 |
EP2462748A1 (en) | 2012-06-13 |
EP2462748A4 (en) | 2013-11-13 |
US20110134212A1 (en) | 2011-06-09 |
CN102474632A (en) | 2012-05-23 |
US20110134218A1 (en) | 2011-06-09 |
US20110134217A1 (en) | 2011-06-09 |
WO2011072016A1 (en) | 2011-06-16 |
US20110134211A1 (en) | 2011-06-09 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US8947503B2 (en) | Method and system for processing 3-D video | |
KR101775253B1 (en) | Real-time automatic conversion of 2-dimensional images or video to 3-dimensional stereo images or video | |
US8441521B2 (en) | Method and apparatus for determining view of stereoscopic image for stereo synchronization | |
KR101527672B1 (en) | System and method for video caption re-overlaying for video adaptation and retargeting | |
US11722653B2 (en) | Multi-pass add-on tool for coherent and complete view synthesis | |
TWI520598B (en) | Image processing apparatus and image processing method | |
KR102226563B1 (en) | Content adaptive telecine and interlace reverser | |
KR20140022764A (en) | Combining video data streams of differing dimensionality for concurrent display | |
JP2012519431A (en) | 3D video processing | |
CN111757080A (en) | Virtual view interpolation between camera views for immersive visual experience | |
CN110944164A (en) | Immersive viewing using planar arrays of cameras | |
KR20140029689A (en) | Apparatus and method for estimating motion in an image processing system | |
US9426445B2 (en) | Image processing apparatus and image processing method and program using super-resolution and sharpening | |
US20140092310A1 (en) | Video signal processing device and display apparatus | |
US20120163700A1 (en) | Image processing device and image processing method | |
US7630018B2 (en) | On-screen display apparatus and on-screen display generation method | |
CN112333401B (en) | Method, device, system, medium and equipment for detecting motion subtitle area | |
US20150245060A1 (en) | Encoding apparatus, encoding method, and a computer-readable recording medium | |
TWI590663B (en) | Image processing apparatus and image processing method thereof | |
US20110285819A1 (en) | Video signal processing apparatus and video signal processing method | |
US20140063185A1 (en) | Methods and devices for coding interlaced depth data for three-dimensional video content | |
CN106888373A (en) | The processing unit and processing system of a kind of 3-D view | |
Li et al. | High-quality view interpolation based on depth maps and its hardware implementation | |
US20110199456A1 (en) | Apparatus for image reproduction and method therefor | |
US20110090214A1 (en) | Image signal processing device, image signal processing method, image display device, image display method, program, image display system and video signal |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
AS | Assignment |
Owner name: BROADCOM CORPORATION, CALIFORNIA Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:NEUMAN, DARREN;HERRICK, JASON;PAYSON, CHRISTOPHER;AND OTHERS;SIGNING DATES FROM 20101203 TO 20101208;REEL/FRAME:026137/0011 |
|
AS | Assignment |
Owner name: BANK OF AMERICA, N.A., AS COLLATERAL AGENT, NORTH CAROLINA Free format text: PATENT SECURITY AGREEMENT;ASSIGNOR:BROADCOM CORPORATION;REEL/FRAME:037806/0001 Effective date: 20160201 Owner name: BANK OF AMERICA, N.A., AS COLLATERAL AGENT, NORTH Free format text: PATENT SECURITY AGREEMENT;ASSIGNOR:BROADCOM CORPORATION;REEL/FRAME:037806/0001 Effective date: 20160201 |
|
AS | Assignment |
Owner name: AVAGO TECHNOLOGIES GENERAL IP (SINGAPORE) PTE. LTD., SINGAPORE Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:BROADCOM CORPORATION;REEL/FRAME:041706/0001 Effective date: 20170120 Owner name: AVAGO TECHNOLOGIES GENERAL IP (SINGAPORE) PTE. LTD Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:BROADCOM CORPORATION;REEL/FRAME:041706/0001 Effective date: 20170120 |
|
AS | Assignment |
Owner name: BROADCOM CORPORATION, CALIFORNIA Free format text: TERMINATION AND RELEASE OF SECURITY INTEREST IN PATENTS;ASSIGNOR:BANK OF AMERICA, N.A., AS COLLATERAL AGENT;REEL/FRAME:041712/0001 Effective date: 20170119 |
|
FEPP | Fee payment procedure |
Free format text: MAINTENANCE FEE REMINDER MAILED (ORIGINAL EVENT CODE: REM.); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY |
|
AS | Assignment |
Owner name: AVAGO TECHNOLOGIES INTERNATIONAL SALES PTE. LIMITE Free format text: MERGER;ASSIGNOR:AVAGO TECHNOLOGIES GENERAL IP (SINGAPORE) PTE. LTD.;REEL/FRAME:047229/0408 Effective date: 20180509 |
|
AS | Assignment |
Owner name: AVAGO TECHNOLOGIES INTERNATIONAL SALES PTE. LIMITE Free format text: CORRECTIVE ASSIGNMENT TO CORRECT THE EFFECTIVE DATE PREVIOUSLY RECORDED ON REEL 047229 FRAME 0408. ASSIGNOR(S) HEREBY CONFIRMS THE THE EFFECTIVE DATE IS 09/05/2018;ASSIGNOR:AVAGO TECHNOLOGIES GENERAL IP (SINGAPORE) PTE. LTD.;REEL/FRAME:047349/0001 Effective date: 20180905 |
|
LAPS | Lapse for failure to pay maintenance fees |
Free format text: PATENT EXPIRED FOR FAILURE TO PAY MAINTENANCE FEES (ORIGINAL EVENT CODE: EXP.); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY |
|
STCH | Information on status: patent discontinuation |
Free format text: PATENT EXPIRED DUE TO NONPAYMENT OF MAINTENANCE FEES UNDER 37 CFR 1.362 |
|
AS | Assignment |
Owner name: AVAGO TECHNOLOGIES INTERNATIONAL SALES PTE. LIMITE Free format text: CORRECTIVE ASSIGNMENT TO CORRECT THE PATENT NUMBER 9,385,856 TO 9,385,756 PREVIOUSLY RECORDED AT REEL: 47349 FRAME: 001. ASSIGNOR(S) HEREBY CONFIRMS THE MERGER;ASSIGNOR:AVAGO TECHNOLOGIES GENERAL IP (SINGAPORE) PTE. LTD.;REEL/FRAME:051144/0648 Effective date: 20180905 |
|
FP | Expired due to failure to pay maintenance fee |
Effective date: 20190203 |