US8821917B2 - Biopolymeric membranes - Google Patents
Biopolymeric membranes Download PDFInfo
- Publication number
- US8821917B2 US8821917B2 US12/897,155 US89715510A US8821917B2 US 8821917 B2 US8821917 B2 US 8821917B2 US 89715510 A US89715510 A US 89715510A US 8821917 B2 US8821917 B2 US 8821917B2
- Authority
- US
- United States
- Prior art keywords
- fibers
- membrane
- collagen
- biopolymeric
- cross
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
- 239000012528 membrane Substances 0.000 title abstract description 98
- 239000000835 fiber Substances 0.000 claims abstract description 112
- 102000008186 Collagen Human genes 0.000 claims abstract description 47
- 108010035532 Collagen Proteins 0.000 claims abstract description 47
- 229920001436 collagen Polymers 0.000 claims abstract description 47
- 238000000034 method Methods 0.000 claims abstract description 20
- 238000004132 cross linking Methods 0.000 claims abstract description 9
- 239000007864 aqueous solution Substances 0.000 claims abstract description 6
- 238000004519 manufacturing process Methods 0.000 claims abstract description 5
- 238000004108 freeze drying Methods 0.000 claims description 7
- 239000007787 solid Substances 0.000 claims description 6
- 238000007605 air drying Methods 0.000 claims description 5
- 238000001035 drying Methods 0.000 abstract description 4
- 210000004379 membrane Anatomy 0.000 description 96
- 239000006185 dispersion Substances 0.000 description 20
- WSFSSNUMVMOOMR-UHFFFAOYSA-N Formaldehyde Chemical compound O=C WSFSSNUMVMOOMR-UHFFFAOYSA-N 0.000 description 17
- 239000000243 solution Substances 0.000 description 17
- 230000035699 permeability Effects 0.000 description 14
- 210000002435 tendon Anatomy 0.000 description 13
- 239000010410 layer Substances 0.000 description 12
- 230000014759 maintenance of location Effects 0.000 description 12
- 230000007704 transition Effects 0.000 description 9
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Chemical compound O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 8
- LOKCTEFSRHRXRJ-UHFFFAOYSA-I dipotassium trisodium dihydrogen phosphate hydrogen phosphate dichloride Chemical compound P(=O)(O)(O)[O-].[K+].P(=O)(O)([O-])[O-].[Na+].[Na+].[Cl-].[K+].[Cl-].[Na+] LOKCTEFSRHRXRJ-UHFFFAOYSA-I 0.000 description 7
- 239000002953 phosphate buffered saline Substances 0.000 description 7
- KFZMGEQAYNKOFK-UHFFFAOYSA-N Isopropanol Chemical compound CC(C)O KFZMGEQAYNKOFK-UHFFFAOYSA-N 0.000 description 6
- HEMHJVSKTPXQMS-UHFFFAOYSA-M Sodium hydroxide Chemical compound [OH-].[Na+] HEMHJVSKTPXQMS-UHFFFAOYSA-M 0.000 description 6
- 238000001727 in vivo Methods 0.000 description 6
- 102000012422 Collagen Type I Human genes 0.000 description 5
- 108010022452 Collagen Type I Proteins 0.000 description 5
- 230000000975 bioactive effect Effects 0.000 description 5
- 229920001222 biopolymer Polymers 0.000 description 5
- 239000000515 collagen sponge Substances 0.000 description 5
- 239000003431 cross linking reagent Substances 0.000 description 5
- 239000012153 distilled water Substances 0.000 description 5
- 229920002521 macromolecule Polymers 0.000 description 5
- 239000011148 porous material Substances 0.000 description 5
- 229910001220 stainless steel Inorganic materials 0.000 description 5
- 239000010935 stainless steel Substances 0.000 description 5
- VEXZGXHMUGYJMC-UHFFFAOYSA-N Hydrochloric acid Chemical compound Cl VEXZGXHMUGYJMC-UHFFFAOYSA-N 0.000 description 4
- 239000002253 acid Substances 0.000 description 4
- 230000002378 acidificating effect Effects 0.000 description 4
- 239000012620 biological material Substances 0.000 description 4
- JVTAAEKCZFNVCJ-UHFFFAOYSA-N lactic acid Chemical compound CC(O)C(O)=O JVTAAEKCZFNVCJ-UHFFFAOYSA-N 0.000 description 4
- 108090000765 processed proteins & peptides Proteins 0.000 description 4
- 210000001519 tissue Anatomy 0.000 description 4
- QTBSBXVTEAMEQO-UHFFFAOYSA-N Acetic acid Chemical compound CC(O)=O QTBSBXVTEAMEQO-UHFFFAOYSA-N 0.000 description 3
- 239000007832 Na2SO4 Substances 0.000 description 3
- KWYUFKZDYYNOTN-UHFFFAOYSA-M Potassium hydroxide Chemical compound [OH-].[K+] KWYUFKZDYYNOTN-UHFFFAOYSA-M 0.000 description 3
- PMZURENOXWZQFD-UHFFFAOYSA-L Sodium Sulfate Chemical compound [Na+].[Na+].[O-]S([O-])(=O)=O PMZURENOXWZQFD-UHFFFAOYSA-L 0.000 description 3
- 239000002585 base Substances 0.000 description 3
- 239000012867 bioactive agent Substances 0.000 description 3
- 230000006835 compression Effects 0.000 description 3
- 238000007906 compression Methods 0.000 description 3
- 125000000524 functional group Chemical group 0.000 description 3
- 239000000463 material Substances 0.000 description 3
- 235000018102 proteins Nutrition 0.000 description 3
- 102000004169 proteins and genes Human genes 0.000 description 3
- 108090000623 proteins and genes Proteins 0.000 description 3
- 230000008439 repair process Effects 0.000 description 3
- 239000000523 sample Substances 0.000 description 3
- 229910052938 sodium sulfate Inorganic materials 0.000 description 3
- VHUUQVKOLVNVRT-UHFFFAOYSA-N Ammonium hydroxide Chemical compound [NH4+].[OH-] VHUUQVKOLVNVRT-UHFFFAOYSA-N 0.000 description 2
- 108091003079 Bovine Serum Albumin Proteins 0.000 description 2
- SXRSQZLOMIGNAQ-UHFFFAOYSA-N Glutaraldehyde Chemical group O=CCCCC=O SXRSQZLOMIGNAQ-UHFFFAOYSA-N 0.000 description 2
- QAOWNCQODCNURD-UHFFFAOYSA-N Sulfuric acid Chemical compound OS(O)(=O)=O QAOWNCQODCNURD-UHFFFAOYSA-N 0.000 description 2
- 239000004809 Teflon Substances 0.000 description 2
- 229920006362 Teflon® Polymers 0.000 description 2
- -1 aldehyde compound Chemical class 0.000 description 2
- 150000001299 aldehydes Chemical class 0.000 description 2
- 102000005936 beta-Galactosidase Human genes 0.000 description 2
- 108010005774 beta-Galactosidase Proteins 0.000 description 2
- 229940098773 bovine serum albumin Drugs 0.000 description 2
- 239000003795 chemical substances by application Substances 0.000 description 2
- 239000012568 clinical material Substances 0.000 description 2
- 238000005354 coacervation Methods 0.000 description 2
- 239000007822 coupling agent Substances 0.000 description 2
- 238000010908 decantation Methods 0.000 description 2
- 239000008098 formaldehyde solution Substances 0.000 description 2
- 239000003102 growth factor Substances 0.000 description 2
- 239000004310 lactic acid Substances 0.000 description 2
- 235000014655 lactic acid Nutrition 0.000 description 2
- 210000003516 pericardium Anatomy 0.000 description 2
- 238000002360 preparation method Methods 0.000 description 2
- 230000008569 process Effects 0.000 description 2
- 102000004196 processed proteins & peptides Human genes 0.000 description 2
- 230000035484 reaction time Effects 0.000 description 2
- 150000003839 salts Chemical class 0.000 description 2
- 238000004626 scanning electron microscopy Methods 0.000 description 2
- 210000004872 soft tissue Anatomy 0.000 description 2
- 238000001356 surgical procedure Methods 0.000 description 2
- 241000283690 Bos taurus Species 0.000 description 1
- 102100033029 Carbonic anhydrase-related protein 11 Human genes 0.000 description 1
- 229920001661 Chitosan Polymers 0.000 description 1
- 108010014258 Elastin Proteins 0.000 description 1
- 102000016942 Elastin Human genes 0.000 description 1
- 102000009123 Fibrin Human genes 0.000 description 1
- 108010073385 Fibrin Proteins 0.000 description 1
- BWGVNKXGVNDBDI-UHFFFAOYSA-N Fibrin monomer Chemical compound CNC(=O)CNC(=O)CN BWGVNKXGVNDBDI-UHFFFAOYSA-N 0.000 description 1
- 229920002683 Glycosaminoglycan Polymers 0.000 description 1
- 206010019909 Hernia Diseases 0.000 description 1
- 101000867841 Homo sapiens Carbonic anhydrase-related protein 11 Proteins 0.000 description 1
- PMMYEEVYMWASQN-DMTCNVIQSA-N Hydroxyproline Chemical compound O[C@H]1CN[C@H](C(O)=O)C1 PMMYEEVYMWASQN-DMTCNVIQSA-N 0.000 description 1
- 241000124008 Mammalia Species 0.000 description 1
- 210000003815 abdominal wall Anatomy 0.000 description 1
- 239000003929 acidic solution Substances 0.000 description 1
- 239000000853 adhesive Substances 0.000 description 1
- 239000000783 alginic acid Substances 0.000 description 1
- 229920000615 alginic acid Polymers 0.000 description 1
- 229960001126 alginic acid Drugs 0.000 description 1
- 235000010443 alginic acid Nutrition 0.000 description 1
- 150000004781 alginic acids Chemical class 0.000 description 1
- 239000012670 alkaline solution Substances 0.000 description 1
- AZDRQVAHHNSJOQ-UHFFFAOYSA-N alumane Chemical compound [AlH3] AZDRQVAHHNSJOQ-UHFFFAOYSA-N 0.000 description 1
- 229910052782 aluminium Inorganic materials 0.000 description 1
- 125000003277 amino group Chemical group 0.000 description 1
- 230000000181 anti-adherent effect Effects 0.000 description 1
- 239000003146 anticoagulant agent Substances 0.000 description 1
- 229940127090 anticoagulant agent Drugs 0.000 description 1
- 239000004599 antimicrobial Substances 0.000 description 1
- 239000003125 aqueous solvent Substances 0.000 description 1
- 235000003704 aspartic acid Nutrition 0.000 description 1
- 150000001510 aspartic acids Chemical class 0.000 description 1
- 238000003556 assay Methods 0.000 description 1
- 230000004888 barrier function Effects 0.000 description 1
- 239000003637 basic solution Substances 0.000 description 1
- 210000000988 bone and bone Anatomy 0.000 description 1
- 239000007853 buffer solution Substances 0.000 description 1
- AXCZMVOFGPJBDE-UHFFFAOYSA-L calcium dihydroxide Chemical compound [OH-].[OH-].[Ca+2] AXCZMVOFGPJBDE-UHFFFAOYSA-L 0.000 description 1
- 239000000920 calcium hydroxide Substances 0.000 description 1
- 229910001861 calcium hydroxide Inorganic materials 0.000 description 1
- 150000001718 carbodiimides Chemical class 0.000 description 1
- 125000003178 carboxy group Chemical group [H]OC(*)=O 0.000 description 1
- 230000001413 cellular effect Effects 0.000 description 1
- 239000001913 cellulose Substances 0.000 description 1
- 229920002678 cellulose Polymers 0.000 description 1
- 238000012512 characterization method Methods 0.000 description 1
- 238000006243 chemical reaction Methods 0.000 description 1
- 230000007547 defect Effects 0.000 description 1
- 230000018044 dehydration Effects 0.000 description 1
- 238000006297 dehydration reaction Methods 0.000 description 1
- PMMYEEVYMWASQN-UHFFFAOYSA-N dl-hydroxyproline Natural products OC1C[NH2+]C(C([O-])=O)C1 PMMYEEVYMWASQN-UHFFFAOYSA-N 0.000 description 1
- 210000001951 dura mater Anatomy 0.000 description 1
- 229920002549 elastin Polymers 0.000 description 1
- YSMODUONRAFBET-UHNVWZDZSA-N erythro-5-hydroxy-L-lysine Chemical class NC[C@H](O)CC[C@H](N)C(O)=O YSMODUONRAFBET-UHNVWZDZSA-N 0.000 description 1
- 210000003195 fascia Anatomy 0.000 description 1
- 229950003499 fibrin Drugs 0.000 description 1
- 238000007710 freezing Methods 0.000 description 1
- 230000008014 freezing Effects 0.000 description 1
- 230000002496 gastric effect Effects 0.000 description 1
- 238000010353 genetic engineering Methods 0.000 description 1
- 235000013922 glutamic acid Nutrition 0.000 description 1
- 239000004220 glutamic acid Substances 0.000 description 1
- 150000002307 glutamic acids Chemical class 0.000 description 1
- 210000003709 heart valve Anatomy 0.000 description 1
- 238000000265 homogenisation Methods 0.000 description 1
- 125000002887 hydroxy group Chemical group [H]O* 0.000 description 1
- 229960002591 hydroxyproline Drugs 0.000 description 1
- 239000007943 implant Substances 0.000 description 1
- 239000011229 interlayer Substances 0.000 description 1
- 150000002500 ions Chemical class 0.000 description 1
- 239000010985 leather Substances 0.000 description 1
- 210000003041 ligament Anatomy 0.000 description 1
- 210000004072 lung Anatomy 0.000 description 1
- 235000018977 lysine Nutrition 0.000 description 1
- 150000002669 lysines Chemical class 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- 235000013372 meat Nutrition 0.000 description 1
- 150000007522 mineralic acids Chemical class 0.000 description 1
- 238000002156 mixing Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 239000002808 molecular sieve Substances 0.000 description 1
- 238000012544 monitoring process Methods 0.000 description 1
- 230000007935 neutral effect Effects 0.000 description 1
- 231100000065 noncytotoxic Toxicity 0.000 description 1
- 230000002020 noncytotoxic effect Effects 0.000 description 1
- 235000015097 nutrients Nutrition 0.000 description 1
- 150000007524 organic acids Chemical class 0.000 description 1
- 239000008055 phosphate buffer solution Substances 0.000 description 1
- 230000000704 physical effect Effects 0.000 description 1
- 229920000642 polymer Polymers 0.000 description 1
- 229920001184 polypeptide Polymers 0.000 description 1
- 229920001282 polysaccharide Polymers 0.000 description 1
- 239000005017 polysaccharide Substances 0.000 description 1
- 150000004804 polysaccharides Chemical class 0.000 description 1
- 230000009145 protein modification Effects 0.000 description 1
- 238000009877 rendering Methods 0.000 description 1
- 235000004400 serine Nutrition 0.000 description 1
- 150000003355 serines Chemical class 0.000 description 1
- 210000003491 skin Anatomy 0.000 description 1
- URGAHOPLAPQHLN-UHFFFAOYSA-N sodium aluminosilicate Chemical compound [Na+].[Al+3].[O-][Si]([O-])=O.[O-][Si]([O-])=O URGAHOPLAPQHLN-UHFFFAOYSA-N 0.000 description 1
- 125000006850 spacer group Chemical group 0.000 description 1
- 238000012360 testing method Methods 0.000 description 1
- 235000008521 threonine Nutrition 0.000 description 1
- 150000003588 threonines Chemical class 0.000 description 1
- 230000017423 tissue regeneration Effects 0.000 description 1
- FGMPLJWBKKVCDB-UHFFFAOYSA-N trans-L-hydroxy-proline Natural products ON1CCCC1C(O)=O FGMPLJWBKKVCDB-UHFFFAOYSA-N 0.000 description 1
Classifications
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61L—METHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
- A61L31/00—Materials for other surgical articles, e.g. stents, stent-grafts, shunts, surgical drapes, guide wires, materials for adhesion prevention, occluding devices, surgical gloves, tissue fixation devices
- A61L31/04—Macromolecular materials
- A61L31/043—Proteins; Polypeptides; Degradation products thereof
- A61L31/044—Collagen
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61L—METHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
- A61L31/00—Materials for other surgical articles, e.g. stents, stent-grafts, shunts, surgical drapes, guide wires, materials for adhesion prevention, occluding devices, surgical gloves, tissue fixation devices
- A61L31/14—Materials characterised by their function or physical properties, e.g. injectable or lubricating compositions, shape-memory materials, surface modified materials
Definitions
- Biopolymeric membranes can be used in soft tissue repair. See, e.g., Shu-Tung Li, Biologic Biomaterials Tissue-Derived Biomaterials (Collagen). In: Biomedical Engineering Handbook , Ed. J. D. Bronzino, 42-1 to 42-23, CRC Press, Inc. Boca Raton, Fla., 2000. Mechanical strength is an important consideration in designing such membranes as there is a need for securely affixing them to target sites.
- This invention is based on an unexpected discovery that biopolymeric membranes containing long unoriented fibers have high tensile strength and high suture retention strength in all directions.
- this invention features a sheet membrane for repairing a damaged tissue.
- the sheet membrane includes an isotropic layer of cross-linked biopolymeric fibers in which the fibers are 10 to 1,000 cm (e.g., 30 to 800 cm or 50 to 500 cm) in length.
- the length refers to the average of the fiber lengths measured before the fibers are cross-linked and has a standard deviation of ⁇ 20%.
- the biopolymeric fibers can be based on a variety of biopolymers, such as polypeptides (e.g., type Ito type XXV collagen, elastin, and fibrin), polysaccharide (e.g., chitosan, alginic acid, cellulose, and glycosaminoglycan), and a combination of two or more different biopolymers.
- the biopolymers are either obtainable from natural sources or prepared by genetic engineering techniques.
- the term “isotropic layer” refers to a layer that exhibits properties with similar mechanical properties when measured along axes of all directions.
- the isotropic layer can have a thickness of 0.05 to 1.5 mm (e.g., 0.2 to 0.8 mm), a density of 0.1 to 1.2 g/cm 3 (e.g., 0.2 to 1.0 g/cm 3 ), a hydrothermal transition temperature of 45 to 80° C. (e.g., 50 to 70° C.), a suture retention strength of 0.1 to 5 kg (e.g., 0.2 to 2 kg), and a tensile strength of 20 to 250 kg/cm 2 (e.g., 40 to 100 kg/cm 2 ).
- it is permeable to molecules having molecular weights of 50 to 100,000 daltons (e.g., 100 to 70,000 daltons).
- a bioactive agent such as growth factors, anti-microbial agents, anti-clotting agents, and anti-adhesive agents.
- this invention features a method of making an isotropic layer of cross-linked biopolymeric fibers.
- the method includes 4 steps: (1) coacervating biopolymeric fibers (e.g., collagen-based fibers) having lengths of less than 1 cm dispersed in an aqueous solution to obtain coacervated biopolymeric fibers having lengths of 10 to 1,000 cm, (2) flattening the coacervated biopolymeric fibers into a layer, (3) drying the layer, and (4) cross-linking the biopolymeric fibers.
- Coacervation can be achieved by adjusting the pH of the dispersion to the isoelectric point of the biopolymer.
- the biopolymer is precipitated from the dispersion and forms long fibers (e.g., having lengths of 10 to 1,000 cm).
- the coacervated fibers are partially dehydrated to reach a solid content of 5-25 wt % before step (2).
- an isotropic layer of cross-linked biopolymeric fibers prepared by the method mentioned above.
- This invention relates to a sheet membrane containing an isotropic layer of long cross-linked biopolymeric fibers.
- a sheet membrane containing an isotropic layer of long cross-linked biopolymeric fibers.
- type I collagen fibers are purified from a natural source (e.g., skin, bone, tendon, or ligament of a mammal) by methods well known in the art (e.g., those disclosed in U.S. Pat. No. 5,206,028 and in Oneson, et al., J. Am. Leather Chemists Assoc. 65:440-450, 1970).
- a natural source e.g., skin, bone, tendon, or ligament of a mammal
- a collagen dispersion is prepared by mixing purified type I collagen fibers in an acidic or basic aqueous solution in which fibers do not cross-link with each other.
- an acidic aqueous solution containing either an organic acid (e.g., acetic acid or lactic acid) or an inorganic acid (e.g., hydrochloric acid or sulfuric acid).
- the solid content of collagen fibers in the dispersion preferably ranges from 0.5 wt % to 15 wt %.
- a basic aqueous solution containing a base such as sodium hydroxide, potassium hydroxide, or calcium hydroxide.
- collagen dispersion Methods for preparing a collagen dispersion are well known in the art. See, e.g., U.S. Pat. No. 5,206,028.
- a suitable means such as using a blender.
- the collagen dispersion thus obtained is then filtered to remove any residual non-collagenous materials, such as by passing the dispersion through a stainless steel mesh filter of a suitable mesh size.
- the fibers in the filtered dispersion are generally less than 1 cm in length.
- the collagen fibers in the filtered dispersion are then coacervated to obtain long fibers of certain lengths (e.g., 10 to 1,000 cm). This can be achieved by adjusting the pH of the dispersion to the isoelectric point of the collagen (e.g., pH of about 5). Either a base or an acid can be used as a coacervating agent, depending upon whether the collagen fibers are dispersed in an acid or alkaline solution. Other coacervating agents (e.g., neutral salts or non-aqueous solvents) can also be used. The lengths of coacervated fibers in their extended conformation are measured to ensure that fibers of desired lengths are obtained.
- coacervating agents e.g., neutral salts or non-aqueous solvents
- coacervated fibers are placed on a surface with a dark background and their lengths are measured with a ruler. If the desired lengths are not obtained, vacuum can be applied to the coacervated fibers to remove trapped air bubbles that interfere with the fiber alignment. Removing trapped air bubbles elongates fibers by improving adhesion between adjacent fibers. This process can be repeated until the lengths of fibers are within the range of 10-1,000 cm. The desired lengths can also be obtained by adjusting the total amount of the dispersion used in the coacervation process.
- the coacervated collagen fibers are substantially collected from the solution, e.g., using a mesh screen.
- the fibers are partially dehydrated either by dripping or by squeezing in a stainless steel mesh holder to reach a solid collagen content in the range of 5% to 25% by weight.
- the fibers thus obtained are randomly oriented and possess dough-like properties. They can be conveniently flattened with a roller into a sheet membrane containing an isotropic layer of collagen fibers. While some collagen fibers in the sheet membrane are in a more extended conformation, most are in a coiled or bent conformation.
- the sheet membrane thus obtained is then dried. Drying can be carried out by either air-drying or freeze-drying, depending upon the desired permeability of the membrane.
- air-drying produces a membrane allowing permeation of molecules having molecular weights ranging from 50 to 30,000 (e.g., ions and small peptides), and freeze-drying produces a membrane allowing permeation of molecules having molecular weights ranging from 1,000 to 100,000 (e.g., various growth factors and bioactive macromolecules).
- Permeability of a sheet membrane can be further adjusted by controlling the extent of partial dehydration mentioned above. Methods for determining permeability of a sheet membrane are well known in the art. See, e.g., Li, et al., Clinical Materials, 9:195-200, 1992.
- a collagen sponge having a density in the range of 0.005 to 0.02 g/cm 3 such as DuraGen and Helistat marketed by Integra LifeSciences, Plainsboro, N.J.
- the majority of pores in the sponge have diameters ranging from 50 to 250
- a collagen sponge allows permeation of cells. See Doillon, et al. J. Biomed. Materials Res. 20:1219-1228, 1986. Because of its porous structure, a collagen sponge facilitates cellular ingrowth.
- a collagen sponge typically contains spherical pores, and its pore size (which corresponds to permeability) can be determined by scanning electron microscopy (SEM).
- a collagen sheet membrane of this invention does not have spherical porous structures. It typically has a laminated, multi-layered structure of a high density (e.g., 0.1 to 1.2 g/cm 3 ), and can be produced by mechanical compression (e.g., flattening) as described above. As the spaces between collagen fibers collapse during compression, a collagen sheet membrane may contain surface morphology of pore-like defects (e.g., shallow depth), inter-layer gaps, or slits, not porous structures contained in a collagen sponge. Given its laminated structure, a sheet membrane can be used as a molecular sieve or as a cell barrier (e.g., those disclosed in U.S. Pat. Nos. 5,206,028 and 6,391,333).
- a cell barrier e.g., those disclosed in U.S. Pat. Nos. 5,206,028 and 6,391,333.
- U.S. Pat. No. 4,963,146 discloses a laminated multi-layered tubular membrane prepared by mechanical compression of coacervated, hydrated oriented collagen fibers.
- the membrane is only permeable to macromolecules of the size of bovine serum albumin (having a molecular weight of about 67,000 daltons), but not permeable to macromolecules of the size of ⁇ -galactosidase (having a molecular weight of about 5.4 ⁇ 10 5 daltons).
- the permeability of the membrane correlates with the Stokes radius of the macromolecule in an aqueous environment (e.g., 0.007 ⁇ m for bovine serum albumin and 0.02 ⁇ m for ⁇ -galactosidase).
- the permeability of a sheet membrane e.g., permeable to biomolecules smaller than 0.02 ⁇ m
- a sponge e.g., permeable to cells of about 50 ⁇ m.
- a sheet membrane can be used to exchange nutrients while excluding cells at the same time.
- the permeability of a sheet membrane can be determined by using probe molecules, i.e., macromolecules having various molecular sizes. See, e.g., Li, et al., Clinical Materials, 9:195-200, 1992. As a sheet membrane does not contain spherical pores, its permeability cannot be determined by measuring the pore size using SEM.
- the dried sheet membrane mentioned above is then subjected to reaction with a suitable cross-linking agent (e.g., an aldehyde compound). It can be cross-linked in a solution containing a cross-linking agent, with the extent of cross-linking being controlled by the concentration of the cross-linking agent, the temperature and pH of the solution, and the reaction time. Alternatively, the dried membrane can be cross-linked in a vapor generated from a solution containing a cross-linking agent, with the extent of cross-linking being controlled by the vapor pressure, the solution temperature, and the reaction time.
- a suitable cross-linking agent e.g., an aldehyde compound
- the extent of cross-linking determines the in vivo stability of a sheet membrane.
- collagen fibers with a hydrothermal transition temperature of 50° C. to 55° C. and 55° C. to 60° C. can have a complete resorption time in vivo of 8 to 16 weeks and 12 to 36 weeks, respectively. See Yuen, et al., Trans Soc. Biomaterials, 1288, 2000.
- the hydrothermal transition temperature should be tailored to the range of 55° C. to 75° C.
- the cross-linked membrane thus obtained can be rinsed extensively with distilled water to remove any residual aldehyde, thereby rendering the membrane non-cytotoxic.
- the rinsed membrane can then be freeze-dried to produce a white sheet membrane.
- White color is preferred as it facilitates precise placement of a sheet membrane onto a repair site.
- the freeze-drying can be carried out at or below ⁇ 40° C. if the membrane is air-dried before cross-linking.
- the freezing point depression of protein-bound water is more pronounced in a cross-linked air-dried membrane (i.e., a high density material)
- the water absorbed in the cross-linked membrane may not completely freeze at a temperature above ⁇ 40° C. during the freeze drying cycles.
- freeze-drying a cross-linked air-dried membrane at a higher temperature may produce membranes with transparent patches similar to those produced by air drying.
- In vivo stability of a sheet membrane also depends on the types of cross-linking agents. Generally, glutaraldehyde forms more stable membranes than formaldehyde or carbodiimide. Thus, glutaraldehyde has been used to cross-link tissue heart valves that require high in vivo stability, while formaldehyde has often been used to cross-link resorbable implants whose in vivo stability is less critical.
- a sheet membrane can include one or more bioactive agents.
- a bioactive agent can be dissolved or dispersed in a collagen dispersion used to prepare the sheet membrane.
- bioactive molecules can be covalently linked to the surface of collagen fibers in a sheet membrane.
- a bioactive molecule containing a reactive group can be linked via a coupling agent to a functional group on the side chains of collagen. Examples of such a suitable coupling agent include aldehyde or carbodiimide compounds.
- Examples of such a functional group include the side-chain amino groups in lysines and hydroxylysines, the side-chain carboxyl groups in aspartic and glutamic acids, and the side-chain hydroxyl groups in hydroxyproline, serines, and threonines. See, e.g., Lundblad R., Techniques in protein modification , CRC Press, Boca Raton, 1995.
- spacer molecules can be used to form links between the functional groups on the side chains of collagen and the reactive groups on the bioactive molecules so as to confer more flexibility on such bioactive molecules on the surface of the membrane.
- a sheet membrane of this invention contains an isotropic layer of long cross-linked biopolymeric fibers. As a result, it provides enhanced suture retention strength and tensile strength in all directions.
- a sheet membrane containing oriented fibers provides high suture retention strength and tensile strength only in certain directions. See Example 5 below.
- a sheet membrane containing oriented fibers has higher suture retention strength in the direction perpendicular to the fiber orientation than in the direction parallel to the fiber orientation.
- it has higher tensile strength in the direction parallel to the fiber orientation than in the direction perpendicular to the fiber orientation. Since it is difficult to discern the fiber orientation in a sheet membrane containing oriented fibers, failure may occur if the sheet membrane is not properly placed in a target site.
- a sheet membrane of this invention can be used in soft tissues repair.
- the membrane when used in repairing of a pericardium tissue after open-heart surgery, the membrane provides uniform strength in all directions such that it can be sutured with the host pericardium to prevent tear and to protect the tissue.
- the membrane when used in repairing hernia of the abdominal-wall, it provides uniform strength to support the herniated tissue.
- a sheet membrane of this invention can also be used in gastric and lung surgeries.
- Bovine deep flexor tendon was used to prepare type I collagen fibers. Initially, the fat and fascia of the tendon were carefully removed and washed with water. The tendon thus obtained contained mostly type I collagen fibers and was subsequently frozen and comminuted into 0.5 mm slices with a meat slicer. 1 kg of sliced wet tendon was first extracted in 5 liters of distilled water at room temperature for 24 hours. The extractant was discarded. A 5-liter solution containing 0.2 N HCl and 0.5 M Na 2 SO 4 was added and the tendon slices were extracted at room temperature for 24 hours. After decantation of the acidic extractant, the tendon was washed with 5 liters of a 0.5 M Na 2 SO 4 solution to remove the residual acid.
- the acid extracted tendon was then extracted in a 5-liter solution containing 0.8 M NaOH and 1 M Na 2 SO 4 at room temperature for 24 hours.
- the basic extractant was then discarded.
- the residual base was neutralized with a 0.5 N HCl solution to pH 5, followed by several changes of distilled water to remove the residual salts associated with the tendon.
- the defatted tendon was then equilibrated in a 0.05 M phosphate buffer solution, pH 7.4 for 24 hours.
- the excess buffer solution was decanted and the purified collagen fibers were stored wet in a freezer at a temperature lower than ⁇ 20° C. or stored in the air-dried form at room temperature.
- Example 2 1.5 kg of the collagen fiber dispersion prepared in Example 2 (0.62%) was added into a 4 liter flask.
- the collagen fibers were coacervated by adding 200 ml of a 0.3% NH 4 OH solution to adjust the pH of the dispersion to the isoelectric point of collagen (pH of about 5.0).
- the coacervated collagen fibers were removed from the beaker and placed in a 20 mesh stainless steel screen. The excess solution was removed by slowly moving the coacervated fibers back and forth with a teflon spatula until the solid content of the hydrated fibers reached between 10% to 15% by weight.
- the coacervated, partially dehydrated fibers, i.e., collagen dough were then evenly distributed on a flat plat and flattened with a roller to form a sheet membrane, which was generally rectangular in shape.
- the membrane covered an area of about 150 cm 2 , and had a thickness of about 0.3-0.4 mm (measured by a height gauge).
- the average length of the fibers was about 350 ⁇ 70 cm.
- the flattened, wet membrane was then freeze-dried at ⁇ 10° C. for 24 hours and 20° C. for 10 hours under a pressure less than 200 millitorr using a Virtis Freeze Dryer (Virtis, Gardiner, N.Y.).
- the freeze-dried membrane was cross-linked with formaldehyde vapor generated from a 2% formaldehyde solution at 20° C. for 6 hours.
- the cross-linked membrane was extensively rinsed with distilled water to remove any residue formaldehyde. It was then freeze-dried again at ⁇ 10° C. for 24 hours and 20° C. for 10 hours to obtain a white sheet membrane.
- the sheet membrane thus obtained was then cut into various sizes and shapes (e.g., squares, rectangles, or circles) depending on the desired applications. For example, it can be cut into sizes of from 6.25 cm 2 to 125 cm 2 for dura mater repair.
- Example 2 1.5 kg of the collagen fiber dispersion prepared in Example 2 (0.62%) was added into a 4 L flask.
- Collagen fibers were coacervated by adding 250 ml of a 0.3% NH 4 OH solution to adjust the pH of the dispersion to about 5.0.
- the coacervated collagen fibers were removed from the flask and placed in a 20 mesh stainless steel screen. The excess solution was removed by slowly moving the coacervated fibers back and forth with a teflon spatula until the solid content of the hydrated fibers reached between 10% to 15% by weight.
- the coacervated, partially dehydrated collagen fibers were then evenly distributed on a flat plate and flattened with a roller to form a sheet membrane.
- the membrane covered an area of about 150 cm 2 and had a thickness of 0.45-0.55 mm (measured by a height gauge). The average length of the fibers was about 350 ⁇ 70 cm.
- the flattened, wet membrane was air-dried in a clean hood.
- the air-dried sheet membrane was then cross-linked in a 0.8% formaldehyde solution (having a pH of 7) at room temperature for 8 hours.
- the cross-linked sheet membrane was extensively rinsed with distilled water to remove any residual formaldehyde. It was then freeze-dried at ⁇ 40° C. for 24 hours and 20° C. for 10 hours to obtain a white membrane sheet.
- the thickness of a sheet membrane was determined with a caliper.
- the membrane When determining the density (g/cm 3 ) of a sheet membrane, the membrane was first dried under vacuum for 24 hours or over P 2 O 5 for 24 hours and the dry weight was recorded. The dimensions (i.e., the length, width, and thickness) of the membrane were then measured using a caliper. The density was determined by the amount of collagen per unit volume of the membrane.
- a portion having a diameter of 2.5 mm was punched out, hydrated in phosphate buffered saline (PBS), placed in an aluminum cell, and sealed.
- PBS phosphate buffered saline
- the sample was then placed in a sample holder of a differential scanning calorimeter (Mettler/Toledo DSC882, Mettler-Toledo Inc., Columbus, Ohio) and heated at a rate of 5° C. per minute.
- the hydrothermal transition temperature was taken as the peak temperature of the transition from the natural structure of extended collagen fibers to a denatured shrunken structure of the fibers.
- Suture retention strength For each sheet membrane, the suture retention strength of a wet membrane was determined using a mechanical tester (Chatillon, Greensboro, N.C.). The membrane was cut to a size of 20 mm ⁇ 15 mm and soaked in a PBS solution, pH 7.4 at 25° C., for about 5 minutes. A suture (3-0 silk black braided, taper SH-1, Ethicon, Somerville, N.J.) was placed through the 20 mm side at approximately 4 mm from the edge. The suture was tied into a knot and was secured to a hook adapter of the mechanical tester. The membrane was then secured with a clamp at the opposite side of the suture. The suture was pulled at a speed 1.0 in/min until the membrane was pulled apart.
- a mechanical tester Clark, Greensboro, N.C.
- Tensile strength For each sheet membrane, the tensile strength of a wet membrane was determined using the just-mentioned mechanical tester (Chatillon, Greensboro, N.C.). The membrane was cut into a dumbbell shape with a die punch. The membrane was then soaked in a PBS solution, pH 7.4, at 25° C. for about 5 minutes. It was then secured to a clamp fixture at both ends, and pulled at a speed 1.0 in/min until the membrane was pulled apart.
- a 2-cm diameter disk cut from a sheet membrane was inserted into a hole between two compartments of a specially designed chamber, thereby completely separating the two compartments.
- a fixed volume of PBS containing 50 ⁇ g/ml of various sizes of peptide and protein molecules was added to one compartment.
- the other compartment was filled with a fixed volume of PBS only.
- the solutions in both compartments were allowed to equilibrate for 24 hours.
- An assay was then conducted to determine the sizes of the peptide and protein molecules in the compartment which initially only contained PBS.
Landscapes
- Health & Medical Sciences (AREA)
- Heart & Thoracic Surgery (AREA)
- Surgery (AREA)
- Vascular Medicine (AREA)
- Epidemiology (AREA)
- Life Sciences & Earth Sciences (AREA)
- Animal Behavior & Ethology (AREA)
- General Health & Medical Sciences (AREA)
- Public Health (AREA)
- Veterinary Medicine (AREA)
- Materials For Medical Uses (AREA)
- Manufacture Of Macromolecular Shaped Articles (AREA)
- Artificial Filaments (AREA)
Abstract
Description
TABLE 1 |
Physical Properties of Various Membranes |
Membrane | Membrane | Membrane | Membrane prepared | |
prepared from | prepared from | prepared | according to U.S. | |
Example 3 | Example 4 | according to U.S. | Pat. No. 5,206,028 | |
(unoriented, | (unoriented, | Pat. No. 6,391,333 | (unoriented, short | |
Test | long fibers) | long fibers) | (oriented fibers) | fibers) |
Thickness (mm) | 0.26 ± 0.01 | 0.14 ± 0.01 | 0.26 ± 0.01 | 0.19 ± 0.002 |
Density (g/cm3) | 0.36 ± 0.02 | 0.63 ± 0.09 | 0.42 ± 0.03 | 0.67 ± 0.10 |
Hydrothermal transition temp. (° C.) | 55 ± 0.4 | 59 ± 0.2 | 56 ± 0.6 | 54.8 ± 1.0 |
Suture retention strength (kg) | ||||
X-axis | 0.25 ± 0.10 | 0.32 ± 0.05 | N/A | 0.13 ± 0.02 |
Y-axis | 0.26 ± 0.11 | 0.32 ± 0.11 | ||
Tensile strength (kg/cm2) | ||||
X-axis | 87 ± 20 | 79 ± 27 | N/A | 33.6 ± 6.10 |
Y-axis | 71 ± 3 | 68 ± 25 | ||
Suture retention strength (kg) | ||||
Parallel to fiber orientation | N/A | N/A | 0.19 ± 0.03 | N/A |
Perpendicular to fiber orientation | 0.27 ± 0.03 | |||
Tensile strength (kg/cm2) | ||||
Parallel to fiber orientation | N/A | N/A | 82.1 ± 12.7 | N/A |
Perpendicular to fiber orientation | 39.5 ± 6.4 | |||
Permeability to carbonic anhydrase | 11 | 2.5 ± 2.3 | 2.8 ± 0.8 | Non-permeable |
(MW 29,000) (%) | ||||
Results are expressed as average of 5 measurements ± S.D. |
Claims (10)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US12/897,155 US8821917B2 (en) | 2004-10-22 | 2010-10-04 | Biopolymeric membranes |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US10/971,435 US7807192B2 (en) | 2004-10-22 | 2004-10-22 | Biopolymeric membranes |
US12/897,155 US8821917B2 (en) | 2004-10-22 | 2010-10-04 | Biopolymeric membranes |
Related Parent Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US10/971,435 Division US7807192B2 (en) | 2004-10-22 | 2004-10-22 | Biopolymeric membranes |
Publications (2)
Publication Number | Publication Date |
---|---|
US20110021754A1 US20110021754A1 (en) | 2011-01-27 |
US8821917B2 true US8821917B2 (en) | 2014-09-02 |
Family
ID=36206453
Family Applications (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US10/971,435 Active 2029-02-09 US7807192B2 (en) | 2004-10-22 | 2004-10-22 | Biopolymeric membranes |
US12/897,155 Expired - Lifetime US8821917B2 (en) | 2004-10-22 | 2010-10-04 | Biopolymeric membranes |
Family Applications Before (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US10/971,435 Active 2029-02-09 US7807192B2 (en) | 2004-10-22 | 2004-10-22 | Biopolymeric membranes |
Country Status (6)
Country | Link |
---|---|
US (2) | US7807192B2 (en) |
EP (1) | EP1802253B1 (en) |
AU (1) | AU2005299493B2 (en) |
CA (1) | CA2584781C (en) |
ES (1) | ES2625615T3 (en) |
WO (1) | WO2006047496A2 (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US11116876B2 (en) | 2018-02-20 | 2021-09-14 | Shu-Tung And Alice Li Foundation Inc. | Methods and devices for repair of severed peripheral nerves with erythropoietin |
US11273026B2 (en) | 2019-02-07 | 2022-03-15 | Biorez, Inc. | Composite scaffold for the repair, reconstruction, and regeneration of soft tissues |
Families Citing this family (41)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20070042326A1 (en) * | 2005-06-01 | 2007-02-22 | Osseous Technologies Of America | Collagen antral membrane expander |
US9056151B2 (en) | 2007-02-12 | 2015-06-16 | Warsaw Orthopedic, Inc. | Methods for collagen processing and products using processed collagen |
US20080260794A1 (en) * | 2007-02-12 | 2008-10-23 | Lauritzen Nels J | Collagen products and methods for producing collagen products |
US9061464B2 (en) * | 2008-09-03 | 2015-06-23 | Collagen Matrix, Inc. | Re-rollable wrapping implant |
US8298584B2 (en) * | 2008-12-30 | 2012-10-30 | Collagen Matrix, Inc. | Biopolymeric membrane for wound protection and repair |
WO2010081029A1 (en) | 2009-01-08 | 2010-07-15 | Rotation Medical, Inc. | Implantable tendon protection systems and related kits and methods |
KR20100082406A (en) * | 2009-01-09 | 2010-07-19 | 삼성전자주식회사 | Method and apparatus for setting a sampling point of low voltage differential signal transmitted between field programmable gate arrays |
US9179910B2 (en) | 2009-03-20 | 2015-11-10 | Rotation Medical, Inc. | Medical device delivery system and method |
EP2437686B1 (en) | 2009-06-04 | 2017-12-13 | Rotation Medical, Inc. | Apparatus for deploying sheet-like materials |
AU2010256415B2 (en) | 2009-06-04 | 2015-04-02 | Rotation Medical, Inc. | Apparatus having bowstring-like staple delivery to a target tissue |
US9198750B2 (en) | 2010-03-11 | 2015-12-01 | Rotation Medical, Inc. | Tendon repair implant and method of arthroscopic implantation |
US8790699B2 (en) | 2010-04-23 | 2014-07-29 | Warsaw Orthpedic, Inc. | Foam-formed collagen strand |
US8460691B2 (en) | 2010-04-23 | 2013-06-11 | Warsaw Orthopedic, Inc. | Fenestrated wound repair scaffold |
WO2012112565A2 (en) | 2011-02-15 | 2012-08-23 | Rotation Medical, Inc. | Methods and apparatus for delivering and positioning sheet-like materials |
WO2012145059A1 (en) | 2011-02-15 | 2012-10-26 | Rotation Medical, Inc. | Methods and apparatus for fixing sheet-like materials to a target tissue |
US9308219B2 (en) * | 2011-06-30 | 2016-04-12 | Collagen Matrix, Inc. | Flat self-curling permeable sheet membrane |
EP2793712B1 (en) | 2011-12-19 | 2018-03-28 | Rotation Medical, Inc. | Fasteners for affixing sheet -like materials to bone or tissue |
EP2793715B1 (en) | 2011-12-19 | 2018-06-06 | Rotation Medical, Inc. | Apparatus for forming pilot holes in bone and delivering fasteners therein for retaining an implant |
US9107661B2 (en) | 2011-12-19 | 2015-08-18 | Rotation Medical, Inc. | Fasteners and fastener delivery devices for affixing sheet-like materials to bone or tissue |
US9271726B2 (en) | 2011-12-19 | 2016-03-01 | Rotation Medical, Inc. | Fasteners and fastener delivery devices for affixing sheet-like materials to bone or tissue |
WO2013101641A2 (en) | 2011-12-29 | 2013-07-04 | Rotation Medical, Inc. | Anatomical location markers and methods of use in positioning sheet-like materials during surgery |
CA2859649A1 (en) | 2011-12-29 | 2013-07-04 | Rotation Medical, Inc. | Methods and apparatus for delivering and positioning sheet -like materials in surgery |
WO2013101640A1 (en) | 2011-12-29 | 2013-07-04 | Rotation Medical, Inc. | Guidewire having a distal fixation member for delivering and positioning sheet-like materials in surgery |
US10071184B2 (en) | 2012-02-29 | 2018-09-11 | Collagen Matrix, Inc. | Collagen-coated tissue-based membranes |
KR101434041B1 (en) * | 2012-11-08 | 2014-08-29 | 주식회사 제네웰 | and method of preparing membrane for leading regeneration produced from material derived from biological tissue |
US9452240B2 (en) | 2013-03-15 | 2016-09-27 | Orthovita, Inc. | Pepsinized collagen implants and biomedical uses thereof |
DK178553B1 (en) | 2014-04-25 | 2016-06-13 | Teknologisk Inst | Temperature fluctuation and temperature gradient resistant coating composition having also corrosion inhibiting properties, method for making the coating and use thereof |
CA2945821C (en) | 2014-05-09 | 2018-09-04 | Rotation Medical, Inc. | Medical implant delivery system for sheet-like implant |
WO2016073502A1 (en) | 2014-11-04 | 2016-05-12 | Rotation Medical, Inc. | Medical implant delivery system and related methods |
AU2015343273B2 (en) | 2014-11-04 | 2017-12-14 | Rotation Medical, Inc. | Medical implant delivery system and related methods |
US10123796B2 (en) | 2014-11-04 | 2018-11-13 | Rotation Medical, Inc. | Medical implant delivery system and related methods |
JP2018515196A (en) | 2015-05-06 | 2018-06-14 | ローテーション メディカル インコーポレイテッドRotation Medical,Inc. | Medical implant delivery system and related methods |
US10265156B2 (en) | 2015-06-15 | 2019-04-23 | Rotation Medical, Inc | Tendon repair implant and method of implantation |
US10314689B2 (en) | 2015-12-31 | 2019-06-11 | Rotation Medical, Inc. | Medical implant delivery system and related methods |
CA3008670A1 (en) | 2015-12-31 | 2017-07-06 | Rotation Medical, Inc. | Fastener delivery system and related methods |
US10537417B2 (en) | 2016-07-07 | 2020-01-21 | Collagen Matrix, Inc. | Density gradient biopolymeric matrix implants |
KR102182883B1 (en) * | 2016-12-30 | 2020-11-25 | 주식회사 네오바이오텍 | Collagen Membrane and Method for Fabricating the Same |
KR102182882B1 (en) * | 2016-12-30 | 2020-11-25 | 주식회사 네오바이오텍 | Porcine Dermis-derived Barrier Membrane for Dental Applications and Method for Fabricating the Same |
AU2018233180B2 (en) * | 2017-03-15 | 2023-12-14 | Aspect Biosystems Ltd. | Systems and methods for printing a fiber structure |
US20190054208A1 (en) | 2017-08-18 | 2019-02-21 | Collagen Matrix, Inc. | Collagen-based meniscus implants |
CN110225726A (en) | 2017-12-07 | 2019-09-10 | 罗特迅医疗有限公司 | Medical implant transportation system and correlation technique |
Citations (13)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4349026A (en) | 1980-02-28 | 1982-09-14 | Collagen Development Corp. | Regenerated fiber collagen condom and method of preparation |
US4725671A (en) | 1984-12-24 | 1988-02-16 | Collagen Corporation | Collagen membranes for medical use |
US4963146A (en) | 1989-04-20 | 1990-10-16 | Colla-Tec Incorporated | Multi-layered, semi-permeable conduit for nerve regeneration |
US5206028A (en) | 1991-02-11 | 1993-04-27 | Li Shu Tung | Dense collagen membrane matrices for medical uses |
US5512291A (en) | 1992-01-13 | 1996-04-30 | Li; Shu-Tung | Method of making resorbable vascular wound dressing |
US6110590A (en) | 1998-04-15 | 2000-08-29 | The University Of Akron | Synthetically spun silk nanofibers and a process for making the same |
US6179872B1 (en) | 1998-03-17 | 2001-01-30 | Tissue Engineering | Biopolymer matt for use in tissue repair and reconstruction |
US6391333B1 (en) | 1999-04-14 | 2002-05-21 | Collagen Matrix, Inc. | Oriented biopolymeric membrane |
US6592623B1 (en) | 1999-08-31 | 2003-07-15 | Virginia Commonwealth University Intellectual Property Foundation | Engineered muscle |
US20040001877A1 (en) | 1999-04-14 | 2004-01-01 | Shu-Tung Li | Biopolymeric membrane for meningeal tissue repair |
US20040037813A1 (en) | 1999-02-25 | 2004-02-26 | Simpson David G. | Electroprocessed collagen and tissue engineering |
US20040110439A1 (en) | 2001-04-20 | 2004-06-10 | Chaikof Elliot L | Native protein mimetic fibers, fiber networks and fabrics for medical use |
US20050181977A1 (en) | 2003-11-10 | 2005-08-18 | Angiotech International Ag | Medical implants and anti-scarring agents |
-
2004
- 2004-10-22 US US10/971,435 patent/US7807192B2/en active Active
-
2005
- 2005-10-21 EP EP05818054.8A patent/EP1802253B1/en active Active
- 2005-10-21 AU AU2005299493A patent/AU2005299493B2/en active Active
- 2005-10-21 ES ES05818054.8T patent/ES2625615T3/en active Active
- 2005-10-21 CA CA2584781A patent/CA2584781C/en active Active
- 2005-10-21 WO PCT/US2005/038331 patent/WO2006047496A2/en active Application Filing
-
2010
- 2010-10-04 US US12/897,155 patent/US8821917B2/en not_active Expired - Lifetime
Patent Citations (13)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4349026A (en) | 1980-02-28 | 1982-09-14 | Collagen Development Corp. | Regenerated fiber collagen condom and method of preparation |
US4725671A (en) | 1984-12-24 | 1988-02-16 | Collagen Corporation | Collagen membranes for medical use |
US4963146A (en) | 1989-04-20 | 1990-10-16 | Colla-Tec Incorporated | Multi-layered, semi-permeable conduit for nerve regeneration |
US5206028A (en) | 1991-02-11 | 1993-04-27 | Li Shu Tung | Dense collagen membrane matrices for medical uses |
US5512291A (en) | 1992-01-13 | 1996-04-30 | Li; Shu-Tung | Method of making resorbable vascular wound dressing |
US6179872B1 (en) | 1998-03-17 | 2001-01-30 | Tissue Engineering | Biopolymer matt for use in tissue repair and reconstruction |
US6110590A (en) | 1998-04-15 | 2000-08-29 | The University Of Akron | Synthetically spun silk nanofibers and a process for making the same |
US20040037813A1 (en) | 1999-02-25 | 2004-02-26 | Simpson David G. | Electroprocessed collagen and tissue engineering |
US6391333B1 (en) | 1999-04-14 | 2002-05-21 | Collagen Matrix, Inc. | Oriented biopolymeric membrane |
US20040001877A1 (en) | 1999-04-14 | 2004-01-01 | Shu-Tung Li | Biopolymeric membrane for meningeal tissue repair |
US6592623B1 (en) | 1999-08-31 | 2003-07-15 | Virginia Commonwealth University Intellectual Property Foundation | Engineered muscle |
US20040110439A1 (en) | 2001-04-20 | 2004-06-10 | Chaikof Elliot L | Native protein mimetic fibers, fiber networks and fabrics for medical use |
US20050181977A1 (en) | 2003-11-10 | 2005-08-18 | Angiotech International Ag | Medical implants and anti-scarring agents |
Non-Patent Citations (3)
Title |
---|
Chvapil, M. et al., "Collagen fibers as a temporary scaffold for replacement of ACL in goats" Journal of Biomedical Materials Research, Mar. 1993, vol. 27, No. 3, pp. 313-325. |
Oneson et al., "The Preparation of Highly Purified Insoluble Collagens", Journal of the American Leather Chemists Association 65:440-450, 1970. |
Yuen et al., "A Resorbable, Reconstituted Type I Collagen Membrane for Guided Tissue Regeneration and Soft Tissue Augmentation", Transactions of the Sixth World Biomaterials Congress p. 1288, 2000. |
Cited By (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US11116876B2 (en) | 2018-02-20 | 2021-09-14 | Shu-Tung And Alice Li Foundation Inc. | Methods and devices for repair of severed peripheral nerves with erythropoietin |
US11273026B2 (en) | 2019-02-07 | 2022-03-15 | Biorez, Inc. | Composite scaffold for the repair, reconstruction, and regeneration of soft tissues |
US11357613B2 (en) | 2019-02-07 | 2022-06-14 | Biorez, Inc. | Composite scaffold for the repair, reconstruction, and regeneration of soft tissues |
US11523895B2 (en) | 2019-02-07 | 2022-12-13 | Biorez, Inc. | Composite scaffold for the repair, reconstruction, and regeneration of soft tissues |
US11622847B2 (en) | 2019-02-07 | 2023-04-11 | Biorez, Inc. | Composite scaffold for the repair, reconstruction, and regeneration of soft tissues |
US11672646B2 (en) | 2019-02-07 | 2023-06-13 | Biorez, Inc. | Composite scaffold for the repair, reconstruction, and regeneration of soft tissues |
US11701217B2 (en) | 2019-02-07 | 2023-07-18 | Biorez, Inc. | Composite scaffold for the repair, reconstruction, and regeneration of soft tissues |
US11712332B2 (en) | 2019-02-07 | 2023-08-01 | Biorez, Inc. | Composite scaffold for the repair, reconstruction, and regeneration of soft tissues |
US11957565B2 (en) | 2019-02-07 | 2024-04-16 | Conmed Corporation | Composite scaffold for the repair, reconstruction, and regeneration of soft tissues |
US11986384B2 (en) | 2019-02-07 | 2024-05-21 | Biorez, Inc. | Composite scaffold for the repair, reconstruction, and regeneration of soft tissues |
US12070384B2 (en) | 2019-02-07 | 2024-08-27 | Conmed Corporation | Composite scaffold for the repair, reconstruction, and regeneration of soft tissues |
Also Published As
Publication number | Publication date |
---|---|
CA2584781C (en) | 2013-12-03 |
ES2625615T3 (en) | 2017-07-20 |
US20110021754A1 (en) | 2011-01-27 |
WO2006047496A3 (en) | 2006-10-12 |
EP1802253A4 (en) | 2011-09-21 |
WO2006047496A2 (en) | 2006-05-04 |
EP1802253A2 (en) | 2007-07-04 |
AU2005299493A1 (en) | 2006-05-04 |
US7807192B2 (en) | 2010-10-05 |
AU2005299493B2 (en) | 2011-04-07 |
CA2584781A1 (en) | 2006-05-04 |
EP1802253B1 (en) | 2017-02-22 |
US20060088578A1 (en) | 2006-04-27 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US8821917B2 (en) | Biopolymeric membranes | |
CA2369180C (en) | Oriented biopolymeric membrane | |
JP4251665B2 (en) | Collagen material and production method thereof | |
US7514097B1 (en) | Use of soluble cellulose derivative having been made hardly soluble in water and process for producing the same | |
EP1098024A1 (en) | Collagen material and process for producing the same | |
JP4968976B2 (en) | Collagen material and production method thereof | |
CA2529789C (en) | Oriented biopolymeric membrane for meningeal tissue repair | |
US8298584B2 (en) | Biopolymeric membrane for wound protection and repair | |
US20100098924A1 (en) | Collagen membrane for medical use and method for manufacturing the same | |
EP3148599A1 (en) | Method for preparing neutralized matrix of non-antigenic collagenous material | |
JP2010029684A (en) | Collagen material and process for producing the same | |
CN111407926B (en) | Biological repairing mesh and preparation method and application thereof |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
AS | Assignment |
Owner name: COLLAGEN MATRIX, INC., NEW JERSEY Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:LI, SHU-TUNG;YUEN, DEBBIE;HANSEN, PEGGY;REEL/FRAME:025086/0216 Effective date: 20041014 |
|
STCF | Information on status: patent grant |
Free format text: PATENTED CASE |
|
AS | Assignment |
Owner name: GENERAL ELECTRIC CAPITAL CORPORATION, AS COLLATERA Free format text: SECURITY INTEREST;ASSIGNOR:COLLAGEN MATRIX, INC.;REEL/FRAME:034021/0474 Effective date: 20141023 |
|
AS | Assignment |
Owner name: HEALTHCARE FINANCIAL SOLUTIONS, LLC, AS SUCCESSOR Free format text: ASSIGNMENT OF INTELLECTUAL PROPERTY SECURITY AGREEMENT;ASSIGNOR:GENERAL ELECTRIC CAPITAL CORPORATION, AS RETIRING AGENT;REEL/FRAME:037111/0808 Effective date: 20151113 |
|
MAFP | Maintenance fee payment |
Free format text: PAYMENT OF MAINTENANCE FEE, 4TH YR, SMALL ENTITY (ORIGINAL EVENT CODE: M2551) Year of fee payment: 4 |
|
AS | Assignment |
Owner name: THE NORTHWESTERN MUTUAL LIFE INSURANCE COMPANY, WI Free format text: SECURITY INTEREST;ASSIGNOR:COLLAGEN MATRIX, INC.;REEL/FRAME:049933/0378 Effective date: 20190801 Owner name: COLLAGEN MATRIX, INC., NEW JERSEY Free format text: RELEASE OF SECURITY INTEREST IN INTELLECTUAL PROPERTY;ASSIGNOR:CAPITAL ONE, NATIONAL ASSOCIATION;REEL/FRAME:049934/0317 Effective date: 20190801 Owner name: THE NORTHWESTERN MUTUAL LIFE INSURANCE COMPANY, WISCONSIN Free format text: SECURITY INTEREST;ASSIGNOR:COLLAGEN MATRIX, INC.;REEL/FRAME:049933/0378 Effective date: 20190801 Owner name: GOLUB CAPITAL, LLC, ILLINOIS Free format text: FIRST LIEN PATENT SECURITY AGREEMENT;ASSIGNOR:COLLAGEN MATRIX, INC.;REEL/FRAME:051594/0368 Effective date: 20190801 |
|
MAFP | Maintenance fee payment |
Free format text: PAYMENT OF MAINTENANCE FEE, 8TH YR, SMALL ENTITY (ORIGINAL EVENT CODE: M2552); ENTITY STATUS OF PATENT OWNER: SMALL ENTITY Year of fee payment: 8 |
|
AS | Assignment |
Owner name: COLLAGEN MATRIX, INC., NEW JERSEY Free format text: RELEASE OF SECURITY INTEREST IN PATENTS RECORDED AT R/F 049933/0378;ASSIGNOR:THE NORTHWESTERN MUTUAL LIFE INSURANCE COMPANY;REEL/FRAME:068256/0450 Effective date: 20240731 |