US8782979B2 - Method and arrangement for attaching a tower-like structure to a foundation - Google Patents

Method and arrangement for attaching a tower-like structure to a foundation Download PDF

Info

Publication number
US8782979B2
US8782979B2 US13/824,707 US201113824707A US8782979B2 US 8782979 B2 US8782979 B2 US 8782979B2 US 201113824707 A US201113824707 A US 201113824707A US 8782979 B2 US8782979 B2 US 8782979B2
Authority
US
United States
Prior art keywords
ring
shaped element
concrete
foundation
tower
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
US13/824,707
Other versions
US20130199117A1 (en
Inventor
Kari Tuominen
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Peikko Group Oy
Original Assignee
Peikko Group Oy
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Peikko Group Oy filed Critical Peikko Group Oy
Publication of US20130199117A1 publication Critical patent/US20130199117A1/en
Assigned to PEIKKO GROUP OY reassignment PEIKKO GROUP OY ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: TUOMINEN, KARI
Application granted granted Critical
Publication of US8782979B2 publication Critical patent/US8782979B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04BGENERAL BUILDING CONSTRUCTIONS; WALLS, e.g. PARTITIONS; ROOFS; FLOORS; CEILINGS; INSULATION OR OTHER PROTECTION OF BUILDINGS
    • E04B1/00Constructions in general; Structures which are not restricted either to walls, e.g. partitions, or floors or ceilings or roofs
    • E04B1/38Connections for building structures in general
    • E04B1/41Connecting devices specially adapted for embedding in concrete or masonry
    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02DFOUNDATIONS; EXCAVATIONS; EMBANKMENTS; UNDERGROUND OR UNDERWATER STRUCTURES
    • E02D27/00Foundations as substructures
    • E02D27/32Foundations for special purposes
    • E02D27/42Foundations for poles, masts or chimneys
    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02DFOUNDATIONS; EXCAVATIONS; EMBANKMENTS; UNDERGROUND OR UNDERWATER STRUCTURES
    • E02D27/00Foundations as substructures
    • E02D27/32Foundations for special purposes
    • E02D27/42Foundations for poles, masts or chimneys
    • E02D27/425Foundations for poles, masts or chimneys specially adapted for wind motors masts
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03DWIND MOTORS
    • F03D13/00Assembly, mounting or commissioning of wind motors; Arrangements specially adapted for transporting wind motor components
    • F03D13/20Arrangements for mounting or supporting wind motors; Masts or towers for wind motors
    • F03D13/22Foundations specially adapted for wind motors
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05BINDEXING SCHEME RELATING TO WIND, SPRING, WEIGHT, INERTIA OR LIKE MOTORS, TO MACHINES OR ENGINES FOR LIQUIDS COVERED BY SUBCLASSES F03B, F03D AND F03G
    • F05B2260/00Function
    • F05B2260/30Retaining components in desired mutual position
    • F05B2260/301Retaining bolts or nuts
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/70Wind energy
    • Y02E10/72Wind turbines with rotation axis in wind direction
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/70Wind energy
    • Y02E10/728Onshore wind turbines

Definitions

  • the invention relates to a method for attaching a tower-like structure to a foundation, in which method a circular element is anchored to the concrete forming the foundation.
  • the invention also relates to an arrangement for attaching a tower-like structure to a foundation.
  • tower-like structures are used in connection with a large variety of structures.
  • structures in connection with which tower-like structures are used, mention can be made of wind power plants, antenna masts, different kinds of mast structures used in radio and telephone technology, different kinds of columns, for example, in connection with the structures of bridge and electric transfer, etc.
  • Such tower-like structures are usually produced from metal, for example, from steel, and they are joined to a foundation produced from reinforced concrete.
  • a typical solution according to known art is to form a flange at the bottom end of a tower-like structure.
  • the flange has normally through holes, into which anchoring bolts are fitted.
  • At the heads of the anchoring bolts are fitted nuts, with which the flange and, along with it, the tower-like structure is attached to the anchoring bolts.
  • the anchoring bolts are generally attached to a circular anchoring element, which is fitted inside the concrete.
  • the concrete surface of the foundation is often rough, so on the surface in question is normally fitted a soldering surface, on top of which the flange is fitted.
  • the disadvantage of the arrangement described above is that the base of the tower-like structure must be fitted onto the solder layer before the final curing of the solders. After installing the base of the tower-like structure, it is necessary to wait a given period of time, which is dependent on curing of the solder, before the next elements of the tower-like structure can be installed. Curing of the solder typically takes about a day. However, it must be noted that, under some conditions, curing of the solder may require even a considerably greater time. While the solder is curing, the installation work of the tower-like structure cannot be continued.
  • the base of the tower-like structure i.e. that part, which is against the foundation, is often relatively large and heavy.
  • the base of the tower of a wind power plant can be approx. 10-20 m long.
  • the cranes used in the installation are typically mobile cranes, which as such are very expensive and their operating costs are also high. Nonetheless, there is no use for the cranes while the solder is curing, and because use of the cranes is expensive, it is not desirable to leave them standing idle.
  • the advantage of the solution according to EP 1 849 920 A2 is that the installation stage is managed using one crane that is smaller than previously required, wherein the costs from operation time and downtime can be decreased in comparison to the corresponding costs created by two larger cranes.
  • the problem with the solution according to EP 1 849 920 A2 is that the adapter described is quite an expensive solution.
  • the structure is a uniform forged or welded structure, wherein the production costs are significantly high.
  • welding a web on the surface of a T-flange is a great risk factor, especially in dynamically loaded joints.
  • the problem with the flange is further that it widens the structure, which, in turn, complicates transportation.
  • the structures to be transported are already over-wide, wherein even a slight increase in the width of the structure may create serious practical problems, which can lead, for example, to the use of long detour routes during transportation.
  • the adapter can, in principle, be smaller than the base of the tower-like structure, the reality is that the adapter is also a quite heavy element.
  • the weight of the adapter can easily rise to the range of 10-20 tons, so that moving the adapter, in any event, requires special arrangements, which will create costs.
  • the factor presented above is due to the fact that the adapter is installed on the worksite in connection with foundation casting, wherein there is normally not adequately heavy lifting equipment on the worksite.
  • the problem is that while installing the described adapter a separate installation frame is always required.
  • the object of the invention is to provide a solution, with which the disadvantages of prior known art are eliminated. This is achieved with a method and an arrangement according to the invention.
  • a method according to the invention is characterized in that a circular element is fitted onto the surface of the foundation such that the circular element remains partially inside the concrete and that the lowest part of the tower-like structure is attached by a screw connection to the circular element.
  • An arrangement according to the invention is, in turn, characterized in that a circular element is fitted to be placed partially inside the concrete of the foundation and that the circular element is provided with means for providing a screw connection between the lowest part of the tower-like structure and the circular element.
  • the advantage of the invention is that welding joints are not used at all, wherein the disadvantages of known art created by welding joints are eliminated.
  • the advantage of the invention is further that the solution can be implemented from separate parts, wherein the parts can be delivered as a normal shipment.
  • the weight of the parts to be lifted, in this case, forms as relatively small.
  • the weights for the parts are in the range of 1-4 tons and for the whole 4-12 tons.
  • An advantage is also that a solution according to the invention is attached with a joint formed by an ordinary P-flange.
  • the advantage of the invention is that, in connection with installation, no installation frame is required, as the structure can also be used as an installation frame.
  • FIG. 1 shows an arrangement according to the invention viewed from above in cross-section
  • FIG. 2 shows an arrangement according to the invention as a perspective view
  • FIG. 3 shows an arrangement according to the invention as a principle cross-section viewed from the side when installed on the foundation and
  • FIG. 4 shows a detail of FIG. 3 viewed on a larger scale.
  • FIGS. 1-4 show in principle an exemplary embodiment of an arrangement according to the invention.
  • the foundation is marked by reference number 1 .
  • the foundation is formed from concrete having steel reinforcements.
  • reference number 2 is marked the circular element, which is anchored to the foundation 1 .
  • Anchoring can take place, for example, with anchoring bolts 4 and the circular anchoring element 3 .
  • the circular anchoring element 3 is placed in the foundation such that it remains inside the concrete.
  • the circular element 2 is fitted on the surface of the foundation 1 such that the circular element 2 remains partially inside the concrete.
  • the circular element 2 can be formed from one or several parts.
  • the lowest part 7 of the tower-like structure is attached by a screw connection 5 to the circular element.
  • the circular element 2 is produced from a sheet-like material.
  • the circular element 2 can, naturally, be produced also from another kind of material, for example, from a square-profile shaped material. It is essential that above the upper surface of the concrete is formed an even surface for attachment of the lowest part of the tower-like structure, as is shown in the figures. Above said facts are clearly visible in FIG. 3 .
  • the lowest part 7 of the tower-like structure is attached to the circular element 2 by an interior flange connection (P-flange).
  • the interior flange connection is shown by reference number 6 .
  • the lowest part 7 of the tower-like structure is preferably a part having a circular-cylindrical shape.
  • the invention is in no way limited to a circular-cylindrical shape, rather the shape of the lowest part 7 of the tower-like structure can vary in accordance with each respective need, i.e. the cross-section of the tower part of the tower-like structure to be built can also be other than round.
  • the foundation 1 is, naturally, fitted to be supported by the soil.
  • the tower-like structure is formed in a normal manner by installing the parts of the tower-like structure on top of each other and attaching the parts together successively at their ends.
  • the circular element is fitted on the surface of the foundation 1 such that the circular element remains partially inside the concrete of the foundation 1 , wherein the upper surface of the circular element 2 remains slightly above the upper surface of the concrete. Above said fact is clearly visible in FIG. 3 .
  • the upper surface of the circular element 2 remains visible on the upper surface of the concrete, wherein the lowest part 7 of the tower-like structure can be attached to it.
  • the circular element 2 is arranged partially inside the concrete of the foundation such that the circular element 2 is anchored to the foundation with anchoring bolts 4 .
  • the anchoring bolts 4 come through the circular element 2 and are tightened with nuts on the upper surface of the circular element 2 or in its vicinity.
  • the anchoring bolts 4 there is a circular element 2 , through which the anchoring bolts 4 go and above which circular element 2 the anchoring bolts 4 are attached with nuts or other corresponding attachment organs.
  • a circular anchoring element 3 At the bottom end of the anchoring bolts 4 , there is preferably a circular anchoring element 3 , which is preferably completely within the foundation.
  • the circular element 2 can be anchored to the foundation with the anchoring bolts 4 .
  • the arrangement according to the invention is installed in place during the stage of reinforcing the foundation, wherein, after casting the concrete, the circular element 2 is on the surface of the concrete partially inside the concrete, as is shown in FIG. 3 .
  • a solution according to the invention is also cost-effective and technically inexpensive, as the expensive structures produced by forging, used in prior known art, are not used and the problems of welding joints are also eliminated.
  • the holes 8 in the circular element 2 for the anchoring bolts 4 are through holes.
  • the holes 8 are visible in FIG. 4 . Tightening of the anchoring bolts takes place by turning the nuts on the ends of the anchoring rods.
  • the nuts 9 are visible in FIG. 4 .
  • the holes 10 of the screw connection 5 in the circular element 2 are, in turn, threaded holes.
  • the circular element 2 can also be used as an installation frame.
  • the element in question is cast in the concrete, as presented above.
  • the screws are turned the required amount into the inner screw holes 10 of the screw connection.
  • the screws are turned through the circular element 2 such that they press against the surface of the concrete.
  • the circular element 2 begins to rise under the influence of the force created by the screws and rises to the correct position and/or height.
  • the gap created between the concrete and the circular element 2 is soldered shut. After the solder has cured, the structure transfers the compression directly from the circular element 2 to the concrete.
  • the lowest part 7 of the tower-like structure is tightened directly against the circular element 2 with the screws of the screw connection 5 .
  • the force transfers as compression directly from the tower-like structure to the circular element 2 and further to the concrete of the foundation 1 .
  • force is transferred through the screws of the screw connection 5 from the P-flange further to the circular element 2 .
  • the circular element is anchored to the concrete of the foundation with anchoring bolts, as is disclosed above.

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Civil Engineering (AREA)
  • Structural Engineering (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Mining & Mineral Resources (AREA)
  • Paleontology (AREA)
  • Architecture (AREA)
  • Sustainable Energy (AREA)
  • Sustainable Development (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • Electromagnetism (AREA)
  • Physics & Mathematics (AREA)
  • Foundations (AREA)

Abstract

The invention relates to method and arrangement for attaching a tower-like structure to a foundation. In the invention, a circular element is anchored to the concrete forming the foundation. The circular element is fitted on the surface of the foundation such that the circular element remains partially inside the concrete. The lowest part of the tower-like structure is attached by a screw connection to the circular element.

Description

The invention relates to a method for attaching a tower-like structure to a foundation, in which method a circular element is anchored to the concrete forming the foundation. The invention also relates to an arrangement for attaching a tower-like structure to a foundation.
Currently, tower-like structures are used in connection with a large variety of structures. As examples of structures, in connection with which tower-like structures are used, mention can be made of wind power plants, antenna masts, different kinds of mast structures used in radio and telephone technology, different kinds of columns, for example, in connection with the structures of bridge and electric transfer, etc. Such tower-like structures are usually produced from metal, for example, from steel, and they are joined to a foundation produced from reinforced concrete.
A typical solution according to known art is to form a flange at the bottom end of a tower-like structure. The flange has normally through holes, into which anchoring bolts are fitted. At the heads of the anchoring bolts are fitted nuts, with which the flange and, along with it, the tower-like structure is attached to the anchoring bolts. The anchoring bolts are generally attached to a circular anchoring element, which is fitted inside the concrete. The concrete surface of the foundation is often rough, so on the surface in question is normally fitted a soldering surface, on top of which the flange is fitted.
However, the disadvantage of the arrangement described above is that the base of the tower-like structure must be fitted onto the solder layer before the final curing of the solders. After installing the base of the tower-like structure, it is necessary to wait a given period of time, which is dependent on curing of the solder, before the next elements of the tower-like structure can be installed. Curing of the solder typically takes about a day. However, it must be noted that, under some conditions, curing of the solder may require even a considerably greater time. While the solder is curing, the installation work of the tower-like structure cannot be continued.
The base of the tower-like structure, i.e. that part, which is against the foundation, is often relatively large and heavy. For example, the base of the tower of a wind power plant can be approx. 10-20 m long. Thus, the part in question is transported in the horizontal position and, typically, two cranes are required to lift the part into the vertical position and fit it onto the solder. The cranes used in the installation are typically mobile cranes, which as such are very expensive and their operating costs are also high. Nonetheless, there is no use for the cranes while the solder is curing, and because use of the cranes is expensive, it is not desirable to leave them standing idle. As a whole, the situation is difficult, as installation sites of tower-like structures, for example, installation sites of wind power plants, are very often far from other settled areas. Thus, transporting the cranes in the meantime to other work is also expensive. Thus, in practise, the cranes quite often stand idle for that time while the solder cures, even though the costs of the waiting period are quite high.
Relating to the basic principle briefly described above, in the field different types of additional solutions have been developed.
As an example of such additional applications of basic technique mention can be made of the solution described in EP 1 849 920 A2. In above said known solution is described a type of middle section or adapter, which is fitted between the foundation and the base of the tower-like structure. Above said adapter is a relatively small part, so it can be transported in the vertical position to the installation site and lifted onto the solder formed on the foundation using one small crane.
The advantage of the solution according to EP 1 849 920 A2 is that the installation stage is managed using one crane that is smaller than previously required, wherein the costs from operation time and downtime can be decreased in comparison to the corresponding costs created by two larger cranes.
However, the problem with the solution according to EP 1 849 920 A2 is that the adapter described is quite an expensive solution. The structure is a uniform forged or welded structure, wherein the production costs are significantly high. Additionally, it must be noted that, for example, welding a web on the surface of a T-flange is a great risk factor, especially in dynamically loaded joints. The problem with the flange is further that it widens the structure, which, in turn, complicates transportation. In this connection, it must be noted that the structures to be transported are already over-wide, wherein even a slight increase in the width of the structure may create serious practical problems, which can lead, for example, to the use of long detour routes during transportation. However, although the adapter can, in principle, be smaller than the base of the tower-like structure, the reality is that the adapter is also a quite heavy element. The weight of the adapter can easily rise to the range of 10-20 tons, so that moving the adapter, in any event, requires special arrangements, which will create costs. The factor presented above is due to the fact that the adapter is installed on the worksite in connection with foundation casting, wherein there is normally not adequately heavy lifting equipment on the worksite. Thus, for the purpose of handling the adapter, it becomes necessary, in any event, to bring to the worksite an adequately heavy-duty crane, which increases total worksite costs. The problem is that while installing the described adapter a separate installation frame is always required.
The object of the invention is to provide a solution, with which the disadvantages of prior known art are eliminated. This is achieved with a method and an arrangement according to the invention. A method according to the invention is characterized in that a circular element is fitted onto the surface of the foundation such that the circular element remains partially inside the concrete and that the lowest part of the tower-like structure is attached by a screw connection to the circular element. An arrangement according to the invention is, in turn, characterized in that a circular element is fitted to be placed partially inside the concrete of the foundation and that the circular element is provided with means for providing a screw connection between the lowest part of the tower-like structure and the circular element.
The advantage of the invention is that welding joints are not used at all, wherein the disadvantages of known art created by welding joints are eliminated. The advantage of the invention is further that the solution can be implemented from separate parts, wherein the parts can be delivered as a normal shipment. The weight of the parts to be lifted, in this case, forms as relatively small. The weights for the parts are in the range of 1-4 tons and for the whole 4-12 tons. An advantage is also that a solution according to the invention is attached with a joint formed by an ordinary P-flange. In addition, the advantage of the invention is that, in connection with installation, no installation frame is required, as the structure can also be used as an installation frame.
In the following, the invention is described in greater detail by means of an exemplary embodiment depicted in the accompanying drawings, wherein
FIG. 1 shows an arrangement according to the invention viewed from above in cross-section,
FIG. 2 shows an arrangement according to the invention as a perspective view,
FIG. 3 shows an arrangement according to the invention as a principle cross-section viewed from the side when installed on the foundation and
FIG. 4 shows a detail of FIG. 3 viewed on a larger scale.
FIGS. 1-4 show in principle an exemplary embodiment of an arrangement according to the invention.
In the figures, the foundation is marked by reference number 1. The foundation is formed from concrete having steel reinforcements. By reference number 2 is marked the circular element, which is anchored to the foundation 1. Anchoring can take place, for example, with anchoring bolts 4 and the circular anchoring element 3. The circular anchoring element 3 is placed in the foundation such that it remains inside the concrete.
The facts presented above are obvious to the person skilled in the art, so that the facts in question are not described in greater detail in this connection.
According to the essential idea of the invention, the circular element 2 is fitted on the surface of the foundation 1 such that the circular element 2 remains partially inside the concrete. The circular element 2 can be formed from one or several parts.
The lowest part 7 of the tower-like structure is attached by a screw connection 5 to the circular element. In the example of the figures, the circular element 2 is produced from a sheet-like material. The circular element 2 can, naturally, be produced also from another kind of material, for example, from a square-profile shaped material. It is essential that above the upper surface of the concrete is formed an even surface for attachment of the lowest part of the tower-like structure, as is shown in the figures. Above said facts are clearly visible in FIG. 3.
In the example of the figures, the lowest part 7 of the tower-like structure is attached to the circular element 2 by an interior flange connection (P-flange). The interior flange connection is shown by reference number 6.
In the example of the figures, the lowest part 7 of the tower-like structure is preferably a part having a circular-cylindrical shape. However, the invention is in no way limited to a circular-cylindrical shape, rather the shape of the lowest part 7 of the tower-like structure can vary in accordance with each respective need, i.e. the cross-section of the tower part of the tower-like structure to be built can also be other than round. The foundation 1 is, naturally, fitted to be supported by the soil.
In the figures is shown only the lowest part of the tower-like structure. The tower-like structure is formed in a normal manner by installing the parts of the tower-like structure on top of each other and attaching the parts together successively at their ends.
As stated above, the circular element is fitted on the surface of the foundation 1 such that the circular element remains partially inside the concrete of the foundation 1, wherein the upper surface of the circular element 2 remains slightly above the upper surface of the concrete. Above said fact is clearly visible in FIG. 3. The upper surface of the circular element 2 remains visible on the upper surface of the concrete, wherein the lowest part 7 of the tower-like structure can be attached to it. The circular element 2 is arranged partially inside the concrete of the foundation such that the circular element 2 is anchored to the foundation with anchoring bolts 4. The anchoring bolts 4 come through the circular element 2 and are tightened with nuts on the upper surface of the circular element 2 or in its vicinity. Thus, at the upper end of the anchoring bolts 4, there is a circular element 2, through which the anchoring bolts 4 go and above which circular element 2 the anchoring bolts 4 are attached with nuts or other corresponding attachment organs. At the bottom end of the anchoring bolts 4, there is preferably a circular anchoring element 3, which is preferably completely within the foundation. Thus, the circular element 2 can be anchored to the foundation with the anchoring bolts 4.
Thus, the arrangement according to the invention is installed in place during the stage of reinforcing the foundation, wherein, after casting the concrete, the circular element 2 is on the surface of the concrete partially inside the concrete, as is shown in FIG. 3.
Due to the screw connection, the parts of the arrangement can be transported to the installation site as separate parts, wherein transportation is significantly easier than using prior known art. A solution according to the invention is also cost-effective and technically inexpensive, as the expensive structures produced by forging, used in prior known art, are not used and the problems of welding joints are also eliminated.
The holes 8 in the circular element 2 for the anchoring bolts 4 are through holes. The holes 8 are visible in FIG. 4. Tightening of the anchoring bolts takes place by turning the nuts on the ends of the anchoring rods. The nuts 9 are visible in FIG. 4. The holes 10 of the screw connection 5 in the circular element 2 are, in turn, threaded holes.
An arrangement according to the invention, more specifically stated, the circular element 2 can also be used as an installation frame. The element in question is cast in the concrete, as presented above.
If above said circular element is, after casting, at the correct position and height, then nothing need be done to the structure, rather the installation work of the tower-like structure may continue.
If above said circular element is, in turn, at the wrong height, for example, skewed and/or at the wrong height, then, in that case, the screws are turned the required amount into the inner screw holes 10 of the screw connection. The screws are turned through the circular element 2 such that they press against the surface of the concrete. In this case, the circular element 2 begins to rise under the influence of the force created by the screws and rises to the correct position and/or height. Next, the gap created between the concrete and the circular element 2 is soldered shut. After the solder has cured, the structure transfers the compression directly from the circular element 2 to the concrete.
The lowest part 7 of the tower-like structure is tightened directly against the circular element 2 with the screws of the screw connection 5. In this case, the force transfers as compression directly from the tower-like structure to the circular element 2 and further to the concrete of the foundation 1. In a tensile situation, force is transferred through the screws of the screw connection 5 from the P-flange further to the circular element 2. The circular element is anchored to the concrete of the foundation with anchoring bolts, as is disclosed above.
The embodiment of the invention presented above is not intended to limit the invention in any way, rather the invention may be freely modified within the claims. The invention is, for example, not limited in any way to the forms and dimensions/proportions shown in the figures, rather the forms and dimensions/proportions of the different parts can vary according to each respective situation, etc.

Claims (13)

The invention claimed is:
1. An attaching method for attaching a tower-like structure to a foundation formed of concrete, a ring-shaped element being anchored to the concrete forming the foundation, the method comprising the steps of:
fitting the ring-shaped element on a surface of the concrete of the foundation such that the ring-shaped element remains partially inside the concrete and such that an upper surface of the ring-shaped element remains above the surface of the concrete of the foundation and such that the ring-shaped element is anchored to the foundation with anchoring bolts; and
attaching a lowest part of the tower-like structure by a screw connection to the ring-shaped element.
2. The attaching method according to claim 1, further comprising forming the ring-shaped element from several parts.
3. The attaching method according to claim 1, further comprising attaching the lowest part of the tower-like structure to the ring-shaped element by an internal flange connection.
4. The attaching method according to claim 1, further comprising:
placing the ring-shaped element to a correct position by turning screws of the screw connection in threaded holes of the ring-shaped element;
tightening the screws of the screw connection against the surface of the concrete of the foundation to lift the ring-shaped element from the surface of the concrete of the foundation into the correct position; and
soldering the gap between the concrete of the foundation and the ring-shaped element shut when the ring-shaped element is in the correct position.
5. An attaching arrangement for attaching a tower-like structure to a foundation formed of concrete, the attaching arrangement comprising a ring-shaped element, which is anchored to the concrete forming the foundation, wherein:
the ring-shaped element is located partially inside the concrete of the foundation such that an upper surface of the ring-shaped element remains above a surface of the concrete of the foundation and such that the ring-shaped element is anchored to the foundation with anchoring bolts, and
the ring-shaped element is provided with screw connection means for providing a screw connection between a lowest part of the tower-like structure and the ring-shaped element.
6. The attaching arrangement according to claim 5, wherein ring-shaped element is formed from several parts.
7. The attaching arrangement according to claim 5, wherein:
the lowest part of the tower-like structure comprises an inner flange, and
the screw connection means for providing a screw connection are formed in the inner flange of the lowest part of the tower-like structure.
8. The attaching arrangement according to claim 5, wherein the screw connection means for providing a screw connection comprise threaded holes.
9. The attaching arrangement according to claim 8, wherein:
the threaded holes are formed in the ring-shaped element for the screw connection, and
the ring-shaped element can be moved into the correct position by turning screws in the threaded holes and tightening the screws against the surface of the concrete.
10. The attaching method according to claim 2, further comprising:
placing the ring-shaped element to the correct position by turning the screws in the threaded holes of the ring-shaped element;
tightening the screws against the concrete surface to lift the ring-shaped element from the surface of the concrete into the correct position; and
soldering the gap between the concrete and the ring-shaped element shut when the ring-shaped element is in the correct position.
11. The attaching method according to claim 3, further comprising:
placing the ring-shaped element to the correct position by turning the screws in the threaded holes of the ring-shaped element;
tightening the screws against the concrete surface to lift the ring-shaped element from the surface of the concrete into the correct position; and
soldering the gap between the concrete and the ring-shaped element shut when the ring-shaped element is in the correct position.
12. The attaching method according to claim 1, further comprising forming the ring-shaped element from one part.
13. The attaching arrangement according to claim 5, wherein the ring-shaped element is formed from one part.
US13/824,707 2010-09-16 2011-09-15 Method and arrangement for attaching a tower-like structure to a foundation Active US8782979B2 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
FI20105949A FI125153B (en) 2010-09-16 2010-09-16 Method and apparatus for attaching a tower structure to a foundation
FI20105949 2010-09-16
PCT/FI2011/050793 WO2012035206A1 (en) 2010-09-16 2011-09-15 Method and arrangement for attaching a tower-like structure to a foundation

Publications (2)

Publication Number Publication Date
US20130199117A1 US20130199117A1 (en) 2013-08-08
US8782979B2 true US8782979B2 (en) 2014-07-22

Family

ID=42829683

Family Applications (1)

Application Number Title Priority Date Filing Date
US13/824,707 Active US8782979B2 (en) 2010-09-16 2011-09-15 Method and arrangement for attaching a tower-like structure to a foundation

Country Status (5)

Country Link
US (1) US8782979B2 (en)
EP (1) EP2616594B1 (en)
CA (1) CA2810763C (en)
FI (1) FI125153B (en)
WO (1) WO2012035206A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20140318033A1 (en) * 2011-11-08 2014-10-30 Wobben Properties Gmbh Foundation for a wind turbine
US10358787B2 (en) 2015-08-27 2019-07-23 Wobben Properties Gmbh Wind turbine

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102677691A (en) * 2012-05-14 2012-09-19 杭州锅炉集团股份有限公司 Circumference positioning device of foundation anchor bolt in steel chimney construction and field construction process
CN102767190A (en) * 2012-07-18 2012-11-07 北京金风科创风电设备有限公司 Tower foundation and method for manufacturing same
US10100548B2 (en) * 2012-10-01 2018-10-16 Valmont Industries, Inc. Base angle attachment assemblies
DE102013211750A1 (en) * 2013-06-21 2014-12-24 Wobben Properties Gmbh Wind turbine and wind turbine foundation
CN103410367B (en) * 2013-07-08 2016-06-01 浙江和勤通信工程有限公司 Landscape style small station
US10544559B2 (en) * 2016-11-02 2020-01-28 Inventus Holdings, Llc Pier and mat foundation fortification and monitoring system
WO2018086022A1 (en) 2016-11-10 2018-05-17 General Electric Company Methods and apparatus for refurbishing wind turbine foundations
US10472792B2 (en) * 2017-05-16 2019-11-12 General Electric Company Tower flange for a wind turbine
US11365523B2 (en) * 2018-11-13 2022-06-21 Terracon Consultants, Inc. Methods for constructing tensionless concrete pier foundations and foundations constructed thereby
CN109989413B (en) * 2019-04-18 2021-05-04 中国建筑西北设计研究院有限公司 Splicing type foundation for power station equipment
US11319724B2 (en) * 2019-08-01 2022-05-03 Tindall Corporation System and method for coupling a post to a foundation
CN110700500A (en) * 2019-10-12 2020-01-17 中国十七冶集团有限公司 Roof crane steel structure foundation and construction method thereof
WO2021219928A1 (en) 2020-04-28 2021-11-04 Peikko Group Oy Method and arrangement for connecting a first ring element and a second ring element in a tower construction
US11293407B1 (en) * 2020-10-26 2022-04-05 Dongyuan Wang Circular can-shape foundation and construction method for onshore wind turbines

Citations (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR1406299A (en) 1964-09-01 1965-07-16 Bloctube Controls Ltd Pole mount
US4331314A (en) * 1980-05-22 1982-05-25 Allis-Chalmers Corporation Hydraulic pump/turbine discharge ring support anchorage
US5548939A (en) * 1994-05-25 1996-08-27 Carmical; Clifton Adjustable insert for use with concrete or steel
DK200300203U3 (en) 2003-08-06 2003-09-12 Thisted Peter Foundation of pipe tower via rock adapter flange divided into segments
EP1849920A2 (en) 2006-04-30 2007-10-31 General Electric Company Tower adapter, method of producing a tower foundation and tower foundation
WO2008003749A1 (en) 2006-07-05 2008-01-10 Vestas Wind Systems A/S A tower construction
US20080236075A1 (en) 2005-03-16 2008-10-02 Densit A/S Tower Foundation System And Method For Providing Such System
US20080302038A1 (en) 2004-04-02 2008-12-11 Aloys Wobben Method for Erecting a Tower
US7475518B2 (en) * 2002-12-18 2009-01-13 Suehiro-System Co., Ltd. Anchor bolt and installing method thereof
EP2149703A2 (en) 2008-07-30 2010-02-03 General Electric Company Wind turbine assembly with tower mount
WO2011047723A1 (en) 2009-10-22 2011-04-28 Amsc Windtec Gmbh Foundation fixing unit, wind energy converter, and method for fixing a tower of a wind energy converter onto a foundation
US20110138706A1 (en) 2010-08-13 2011-06-16 Stefan Voss Wind turbine anchor element
US8307593B2 (en) * 2010-08-18 2012-11-13 General Electric Company Tower with adapter section
US8443557B2 (en) * 2011-09-16 2013-05-21 General Electric Company Tower base section of a wind turbine, a wind turbine and a system for mounting a tower
US8443939B2 (en) * 2004-09-21 2013-05-21 Werner Co. Method for producing a combo brace rail shield

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20090044482A1 (en) * 2007-01-30 2009-02-19 Tooman Norman L Wind turbine installation comprising an apparatus for protection of anchor bolts and method of installation

Patent Citations (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR1406299A (en) 1964-09-01 1965-07-16 Bloctube Controls Ltd Pole mount
US4331314A (en) * 1980-05-22 1982-05-25 Allis-Chalmers Corporation Hydraulic pump/turbine discharge ring support anchorage
US5548939A (en) * 1994-05-25 1996-08-27 Carmical; Clifton Adjustable insert for use with concrete or steel
US7475518B2 (en) * 2002-12-18 2009-01-13 Suehiro-System Co., Ltd. Anchor bolt and installing method thereof
DK200300203U3 (en) 2003-08-06 2003-09-12 Thisted Peter Foundation of pipe tower via rock adapter flange divided into segments
US20080302038A1 (en) 2004-04-02 2008-12-11 Aloys Wobben Method for Erecting a Tower
US8443939B2 (en) * 2004-09-21 2013-05-21 Werner Co. Method for producing a combo brace rail shield
US8261502B2 (en) * 2005-03-16 2012-09-11 Illinois Tool Works, Inc. Tower foundation system
US20080236075A1 (en) 2005-03-16 2008-10-02 Densit A/S Tower Foundation System And Method For Providing Such System
EP1849920A2 (en) 2006-04-30 2007-10-31 General Electric Company Tower adapter, method of producing a tower foundation and tower foundation
US8051627B2 (en) * 2006-04-30 2011-11-08 General Electric Company Tower adapter, method of producing a tower foundation and tower foundation
WO2008003749A1 (en) 2006-07-05 2008-01-10 Vestas Wind Systems A/S A tower construction
EP2149703A2 (en) 2008-07-30 2010-02-03 General Electric Company Wind turbine assembly with tower mount
WO2011047723A1 (en) 2009-10-22 2011-04-28 Amsc Windtec Gmbh Foundation fixing unit, wind energy converter, and method for fixing a tower of a wind energy converter onto a foundation
US20110138706A1 (en) 2010-08-13 2011-06-16 Stefan Voss Wind turbine anchor element
US8307593B2 (en) * 2010-08-18 2012-11-13 General Electric Company Tower with adapter section
US8443557B2 (en) * 2011-09-16 2013-05-21 General Electric Company Tower base section of a wind turbine, a wind turbine and a system for mounting a tower

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
Dec. 19, 2011 International Search Report issued in International Application No. PCT/FI2011/050793.
Dec. 19, 2011 Written Opinion of the International Searching Authority issued in International Application No. PCT/FI2011/050793.
Jun. 21, 2011 Finnish Search Report issued in Finnish Application No. 20105949 (with translation).
Oct. 17, 2012 International Preliminary Report on Patentability issued in International Application No. PCT/FI2011/050793.

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20140318033A1 (en) * 2011-11-08 2014-10-30 Wobben Properties Gmbh Foundation for a wind turbine
US9322396B2 (en) * 2011-11-08 2016-04-26 Wobben Properties Gmbh Foundation for a wind turbine
US10358787B2 (en) 2015-08-27 2019-07-23 Wobben Properties Gmbh Wind turbine

Also Published As

Publication number Publication date
EP2616594A4 (en) 2016-05-11
FI20105949A (en) 2012-03-17
EP2616594B1 (en) 2018-08-15
EP2616594A1 (en) 2013-07-24
US20130199117A1 (en) 2013-08-08
CA2810763C (en) 2018-02-20
FI20105949A0 (en) 2010-09-16
FI125153B (en) 2015-06-15
CA2810763A1 (en) 2012-03-22
WO2012035206A1 (en) 2012-03-22

Similar Documents

Publication Publication Date Title
US8782979B2 (en) Method and arrangement for attaching a tower-like structure to a foundation
JP4726891B2 (en) How to set up a tower
US10934679B2 (en) Foundation for a wind mill
JP4558785B2 (en) How to set up a tower
EP2252749B1 (en) Tower element
US8136329B2 (en) Tower structure and method of assembling
EP1561883B1 (en) Tower for a wind turbine, prefabricated metal wall part for use in tower for a wind turbine and method for constructing a tower for a wind turbine
US20110126488A1 (en) Upgradable lattice tower and components thereof
US10202734B2 (en) Prefabricated resuable concrete pedestal element
EP3227512B1 (en) Section of concrete
US10422465B2 (en) Prefabricated reusable concrete pedestal element
DK2574772T3 (en) The wind turbine tower
EP1526278A1 (en) Wind turbine foundation
EP3246493A1 (en) A method for construction of a mast for a windmill
CN219012058U (en) Remedying structure for rigid column foundation bolt
CN108547227B (en) Modular pier surrounding cage structure and construction method
WO2024068735A1 (en) Concrete segment of a section of a tower of a wind turbine and adapter of a tower of a wind turbine tower
EP2494112B1 (en) Arrangement for foundations of mast-like structures
KR20130059185A (en) Combining device for module leveling

Legal Events

Date Code Title Description
AS Assignment

Owner name: PEIKKO GROUP OY, FINLAND

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:TUOMINEN, KARI;REEL/FRAME:032658/0873

Effective date: 20130319

STCF Information on status: patent grant

Free format text: PATENTED CASE

MAFP Maintenance fee payment

Free format text: PAYMENT OF MAINTENANCE FEE, 4TH YEAR, LARGE ENTITY (ORIGINAL EVENT CODE: M1551)

Year of fee payment: 4

MAFP Maintenance fee payment

Free format text: PAYMENT OF MAINTENANCE FEE, 8TH YEAR, LARGE ENTITY (ORIGINAL EVENT CODE: M1552); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY

Year of fee payment: 8