US8765757B2 - 3-heterocyclic substituted indole derivatives and methods of use thereof - Google Patents

3-heterocyclic substituted indole derivatives and methods of use thereof Download PDF

Info

Publication number
US8765757B2
US8765757B2 US12/743,016 US74301608A US8765757B2 US 8765757 B2 US8765757 B2 US 8765757B2 US 74301608 A US74301608 A US 74301608A US 8765757 B2 US8765757 B2 US 8765757B2
Authority
US
United States
Prior art keywords
alkyl
compound
cycloalkyl
heterocycloalkyl
aryl
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active, expires
Application number
US12/743,016
Other versions
US20110165118A1 (en
Inventor
Tin-Yau Chan
Jose S. Duca
Liwu Hong
Charles A. Lesburg
Brian A. McKittrick
Haiyan Pu
Li Wang
Henry M. Vaccaro
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Merck Sharp and Dohme LLC
Original Assignee
Merck Sharp and Dohme LLC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Merck Sharp and Dohme LLC filed Critical Merck Sharp and Dohme LLC
Priority to US12/743,016 priority Critical patent/US8765757B2/en
Assigned to SCHERING CORPORATION reassignment SCHERING CORPORATION ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: MCKITTRICK, BRIAN A., CHAN, TIN-YAU, DUCA, JOSE S., HONG, LIWU, LESBURG, CHARLES A., PU, HAIYAN, VACCARO, HENRY M., WANG, LI
Assigned to SCHERING CORPORATION reassignment SCHERING CORPORATION ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: MCKITTRICK, BRIAN A., CHAN, TIN-YAU, DUCA, JOSE S., HONG, LIWU, LESBURG, CHARLES A., PU, HAIYAN, VACARRO, HENRY M., WANG, LI
Publication of US20110165118A1 publication Critical patent/US20110165118A1/en
Assigned to MERCK SHARP & DOHME CORP. reassignment MERCK SHARP & DOHME CORP. CHANGE OF NAME (SEE DOCUMENT FOR DETAILS). Assignors: SCHERING CORPORATION
Application granted granted Critical
Publication of US8765757B2 publication Critical patent/US8765757B2/en
Assigned to MERCK SHARP & DOHME LLC reassignment MERCK SHARP & DOHME LLC MERGER (SEE DOCUMENT FOR DETAILS). Assignors: MERCK SHARP & DOHME CORP.
Active legal-status Critical Current
Adjusted expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D403/00Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, not provided for by group C07D401/00
    • C07D403/02Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, not provided for by group C07D401/00 containing two hetero rings
    • C07D403/04Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, not provided for by group C07D401/00 containing two hetero rings directly linked by a ring-member-to-ring-member bond
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P31/00Antiinfectives, i.e. antibiotics, antiseptics, chemotherapeutics
    • A61P31/12Antivirals
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P31/00Antiinfectives, i.e. antibiotics, antiseptics, chemotherapeutics
    • A61P31/12Antivirals
    • A61P31/14Antivirals for RNA viruses
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P31/00Antiinfectives, i.e. antibiotics, antiseptics, chemotherapeutics
    • A61P31/12Antivirals
    • A61P31/20Antivirals for DNA viruses
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D401/00Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, at least one ring being a six-membered ring with only one nitrogen atom
    • C07D401/02Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, at least one ring being a six-membered ring with only one nitrogen atom containing two hetero rings
    • C07D401/04Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, at least one ring being a six-membered ring with only one nitrogen atom containing two hetero rings directly linked by a ring-member-to-ring-member bond
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D403/00Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, not provided for by group C07D401/00
    • C07D403/14Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, not provided for by group C07D401/00 containing three or more hetero rings
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D487/00Heterocyclic compounds containing nitrogen atoms as the only ring hetero atoms in the condensed system, not provided for by groups C07D451/00 - C07D477/00
    • C07D487/02Heterocyclic compounds containing nitrogen atoms as the only ring hetero atoms in the condensed system, not provided for by groups C07D451/00 - C07D477/00 in which the condensed system contains two hetero rings
    • C07D487/04Ortho-condensed systems
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D495/00Heterocyclic compounds containing in the condensed system at least one hetero ring having sulfur atoms as the only ring hetero atoms
    • C07D495/02Heterocyclic compounds containing in the condensed system at least one hetero ring having sulfur atoms as the only ring hetero atoms in which the condensed system contains two hetero rings
    • C07D495/04Ortho-condensed systems

Definitions

  • the present invention relates to 3-Heterocyclic Substituted Indole Derivatives, compositions comprising at least one 3-Heterocyclic Substituted Indole Derivative, and methods of using the 3-Heterocyclic Substituted Indole Derivatives for treating or preventing a viral infection or a virus-related disorder in a patient.
  • HCV is a (+)-sense single-stranded RNA virus that has been implicated as the major causative agent in non-A, non-B hepatitis (NANBH).
  • NANBH is distinguished from other types of viral-induced liver disease, such as hepatitis A virus (HAV), hepatitis B virus (HBV), hepatitis delta virus (HDV), as well as from other forms of liver disease such as alcoholism and primary biliary cirrhosis.
  • HAV hepatitis A virus
  • HBV hepatitis B virus
  • HDV hepatitis delta virus
  • Hepatitis C virus is a member of the hepacivirus genus in the family Flaviviridae. It is the major causative agent of non-A, non-B viral hepatitis and is the major cause of transfusion-associated hepatitis and accounts for a significant proportion of hepatitis cases worldwide.
  • acute HCV infection is often asymptomatic, nearly 80% of cases resolve to chronic hepatitis.
  • About 60% of patients develop liver disease with various clinical outcomes ranging from an asymptomatic carrier state to chronic active hepatitis and liver cirrhosis (occurring in about 20% of patients), which is strongly associated with the development of hepatocellular carcinoma (occurring in about 1-5% of patients).
  • the World Health Organization estimates that 170 million people are chronically infected with HCV, with an estimated 4 million living in the United States.
  • HCV has been implicated in cirrhosis of the liver and in induction of hepatocellular carcinoma.
  • the prognosis for patients suffering from HCV infection remains poor as HCV infection is more difficult to treat than other forms of hepatitis.
  • Current data indicates a four-year survival rate below 50% for patients suffering from cirrhosis and a five-year survival rate below 30% for patients diagnosed with localized resectable hepatocellular carcinoma. Patients diagnosed with localized unresectable hepatocellular carcinoma fare even worse, having a five-year survival rate less than 1%.
  • HCV is an enveloped RNA virus containing a single-stranded positive-sense RNA genome approximately 9.5 kb in length.
  • the RNA genome contains a 5′-nontranslated region (5′ NTR) of 341 nucleotides, a large open reading frame (ORF) encoding a single polypeptide of 3,010 to 3,040 amino acids, and a 3′-nontranslated region (3′-NTR) of variable length of about 230 nucleotides.
  • 5′ NTR 5′-nontranslated region
  • ORF open reading frame
  • 3′-NTR 3′-nontranslated region
  • HCV is similar in amino acid sequence and genome organization to flaviviruses and pestiviruses, and therefore HCV has been classified as a third genus of the family Flaviviridae.
  • the 5′ NTR contains an internal ribosome entry site (IRES) which plays a pivotal role in the initiation of translation of the viral polyprotein.
  • IRS internal ribosome entry site
  • a single long open reading frame encodes a polyprotein, which is co- or post-translationally processed into structural (core, E1, E2 and p7) and nonstructural (NS2, NS3, NS4A, NS4B, NS5A, and NS5B) viral proteins by either cellular or viral proteinases.
  • the 3′ NTR consists of three distinct regions: a variable region of about 38 nucleotides following the stop codon of the polyprotein, a polyuridine tract of variable length with interspersed substitutions of cytidines, and 98 nucleotides (nt) at the very 3′ end which are highly conserved among various HCV isolates.
  • the 3′-NTR is thought to play an important role in viral RNA synthesis.
  • the order of the genes within the genome is: NH 2 -C-E1-E2-p7-NS2-NS3-NS4A-NS4B-NS5A-NS5B-COOH.
  • the HCV polyprotein is first cleaved by a host signal peptidase generating the structural proteins C/E1, E1/E2, E2/p7, and p7/NS2.
  • the NS2-3 proteinase which is a metalloprotease, then cleaves at the NS2/NS3 junction.
  • NS3/4A proteinase complex (NS3 being a serine protease and NS4A acting as a cofactor of the NS3 protease), is then responsible for processing all the remaining cleavage junctions.
  • RNA helicase and NTPase activities have also been identified in the NS3 protein.
  • One-third of the NS3 protein functions as a protease, and the remaining two-thirds of the molecule acts as the helicase/ATPase that is thought to be involved in HCV replication.
  • NS5A may be phosphorylated and acts as a putative cofactor of NS5B.
  • NS5B The fourth viral enzyme, NS5B, is a membrane-associated RNA-dependent RNA polymerase (RdRp) and a key component responsible for replication of the viral RNA genome.
  • RdRp membrane-associated RNA-dependent RNA polymerase
  • NS5B contains the “GDD” sequence motif, which is highly conserved among all RdRps characterized to date.
  • RNA-dependent RNA polymerase RNA-dependent RNA polymerase
  • NS5B Using recombinant baculoviruses to express NS5B in insect cells and a synthetic nonviral RNA as a substrate, two enzymatic activities have been identified as being associated with it: a primer-dependent RdRp and a terminal transferase (TNTase) activity. It was subsequently confirmed and further characterized through the use of the HCV RNA genome as a substrate. Other studies have shown that NS5B with a C-terminal 21 amino-acid truncation expressed in Escherichia coli is also active for in vitro RNA synthesis.
  • NS5B has been shown to catalyze RNA synthesis via a de novo initiation mechanism, which has been postulated to be the mode of viral replication in vivo. Templates with single-stranded 3′ termini, especially those containing a 3′-terminal cytidylate moiety, have been found to direct de novo synthesis efficiently. There has also been evidence for NS5B to utilize di- or tri-nucleotides as short primers to initiate replication.
  • HCV replication inhibitors that are useful for the treatment and prevention of HCV related disorders.
  • New approaches currently under investigation include the development of prophylactic and therapeutic vaccines, the identification of interferons with improved pharmacokinetic characteristics, and the discovery of agents designed to inhibit the function of three major viral proteins: protease, helicase and polymerase.
  • the HCV RNA genome itself, particularly the IRES element is being actively exploited as an antiviral target using antisense molecules and catalytic ribozymes.
  • Particular therapies for HCV infection include ⁇ -interferon monotherapy and combination therapy comprising ⁇ -interferon and ribavirin. These therapies have been shown to be effective in some patients with chronic HCV infection.
  • the use of antisense oligonucleotides for treatment of HCV infection has also been proposed as has the use of free bile acids, such as ursodeoxycholic acid and chenodeoxycholic acid, and conjugated bile acids, such as tauroursodeoxycholic acid.
  • Phosphonoformic acid esters have also been proposed as potentially for the treatment of various viral infections including HCV.
  • Vaccine development has been hampered by the high degree of viral strain heterogeneity and immune evasion and the lack of protection against reinfection, even with the same inoculum.
  • NS5B the RNA-dependent RNA polymerase
  • VP32947 (3-[((2-dipropylamino)ethyl)thio]-5H-1,2,4-triazino[5,6-b]indole) is a potent inhibitor of pestivirus replication and most likely inhibits the NS5B enzyme since resistant strains are mutated in this gene
  • Inhibition of RdRp activity by ( ⁇ ) ⁇ -L-2′,3′-dideoxy-3′-thiacytidine 5′-triphosphate (3TC; lamivudine triphosphate) and phosphonoacetic acid also has been observed.
  • the present invention provides compounds of formula (I):
  • R 1 is a bond, —[C(R 12 ) 2 ] r —, —[C(R 12 ) 2 ] r —O—[C(R 12 ) 2 ] q —, —[C(R 12 ) 2 ] r —N(R 9 )—[C(R 12 ) 2 ] q —, —[C(R 12 ) 2 ] q —CH ⁇ CH—[C(R 12 ) 2 ] q —, —[C(R 12 ) 2 ] q —C ⁇ C—[C(R 12 ) 2 ] q —, or —[C(R 12 ) 2 ] q —SO 2 —[C(R 12 ) 2 ] q —;
  • R 2 is —[C(R 12 ) 2 ] q —C(O)N(R 9 )SOR 11 , —[C(R 12 ) 2 ] q —C(O)N(R 9 )SO 2 R 11 , —[C(R 12 ) 2 ] q —C(O)N(R 9 )SO 2 N(R 11 ) 2 ,
  • R 3 is:
  • dotted line indicates an optional and additional bond such that when the optional and additional bond is absent, a hydrogen atom is understood to be present on the two ring atoms connected by the dotted line;
  • R 4 , R 5 , R 6 and R 7 are each, independently, H, alkyl, alkenyl, alkynyl, aryl, —[C(R 12 ) 2 ] q -cycloalkyl, —[C(R 12 ) 2 ] q -cycloalkenyl, —[C(R 12 ) 2 ] q -heterocycloalkyl, —[C(R 12 ) 2 ] q -heterocycloalkenyl, —[C(R 12 ) 2 ] q -heteroaryl, —[C(R 12 ) 2 ] q -haloalkyl, —[C(R 12 ) 2 ] q -hydroxyalkyl, halo, hydroxy, —OR 9 , —CN, —[C(R 12 ) 2 ] q —C(O)R 8 , —[C(R 12 ) 2 ]
  • each occurrence of R 8 is independently H, alkyl, alkenyl, alkynyl, —[C(R 12 ) 2 ] q -aryl, —[C(R 12 ) 2 ] q -cycloalkyl, —[C(R 12 ) 2 ] q -cycloalkenyl, —[C(R 12 ) 2 ] q -heterocycloalkyl, —[C(R 12 ) 2 ] q -heterocycloalkenyl, —[C(R 12 ) 2 ] q -heteroaryl, haloalkyl or hydroxyalkyl;
  • each occurrence of R 9 is independently H, alkyl, alkenyl, alkynyl, —[C(R 12 ) 2 ] q -aryl, —[C(R 12 ) 2 ] q -cycloalkyl, —[C(R 12 ) 2 ] q -cycloalkenyl, —[C(R 12 ) 2 ] q -heterocycloalkyl, —[C(R 12 ) 2 ] q -heterocycloalkenyl, —[C(R 12 ) 2 ] q -heteroaryl, haloalkyl or hydroxyalkyl;
  • R 10 is H, cycloalkyl, cycloalkenyl, heterocycloalkyl, heterocycloalkenyl, aryl, or heteroaryl, wherein a cycloalkyl, cycloalkenyl, heterocycloalkyl, heterocycloalkenyl, aryl or heteroaryl group can be optionally substituted with up to 4 substituents, which are each independently selected from H, alkyl, alkenyl, alkynyl, aryl, —[C(R 12 ) 2 ] q -cycloalkyl, —O—[C(R 12 ) 2 ] q -cycloalkyl, —[C(R 12 ) 2 ] q -cycloalkenyl, —[C(R 12 ) 2 ] q -heterocycloalkyl, —[C(R 12 ) 2 ] q -heterocycloalkenyl, —[C(R 12
  • each occurrence of R 11 is independently alkyl, aryl, cycloalkyl, cycloalkenyl, heterocycloalkyl, heterocycloalkenyl, heteroaryl, haloalkyl, hydroxy or hydroxyalkyl, wherein a cycloalkyl, cycloalkenyl, heterocycloalkyl, heterocycloalkenyl, aryl or heteroaryl group can be optionally substituted with up to 4 substituents, which are each independently selected from H, alkyl, alkenyl, alkynyl, aryl, —[C(R 12 ) 2 ] q -cycloalkyl, —[C(R 12 ) 2 ] q -cycloalkenyl, —[C(R 12 ) 2 ] q -heterocycloalkyl, —[C(R 12 ) 2 ] q -heterocycloalkenyl, —[C(R 12 )
  • each occurrence of R 12 is independently H, halo, —N(R 9 ) 2 , —OR 9 , alkyl, cycloalkyl, cycloalkenyl, heterocycloalkyl or heterocycloalkenyl, wherein a cycloalkyl, cycloalkenyl, heterocycloalkyl or heterocycloalkenyl group can be optionally substituted with up to 4 substituents, which are each independently selected from alkyl, halo, haloalkyl, hydroxyalkyl, hydroxy, —CN, —C(O)alkyl, —C(O)Oalkyl, —C(O)NHalkyl, —C(O)N(alkyl) 2 , —O-alkyl, —NH 2 , —NH(alkyl), —N(alkyl) 2 , —NHC(O)alkyl, —NHSO 2 alkyl, —SO 2 alkyl
  • each occurrence of R 20 is independently alkyl, aryl, cycloalkyl, heterocycloalkyl or heteroaryl, or both R 20 groups and the carbon atoms to which they are attached, join to form a cycloalkyl, cycloheteroalkyl, aryl or heteroaryl group wherein a cycloalkyl, cycloheteroalkyl, aryl or heteroaryl group can be optionally substituted with up to 4 groups, which are each independently selected from alkyl, alkenyl, alkynyl, halo, hydroxy, —OR 9 , —CN, —[C(R 12 ) 2 ] q -cycloalkyl, —[C(R 12 ) 2 ] q -cycloalkenyl, —[C(R 12 ) 2 ] q -heterocycloalkyl, —[C(R 12 ) 2 ] q -heterocycloalkeny
  • each occurrence of R 30 is independently, H, alkyl, alkenyl, alkynyl, aryl, —[C(R 12 ) 2 ] q -cycloalkyl, —[C(R 12 ) 2 ] q -cycloalkenyl, —[C(R 12 ) 2 ] q -heterocycloalkyl, —[C(R 12 ) 2 ] q -heterocycloalkenyl, —[C(R 12 ) 2 ] q -heteroaryl, —[C(R 12 ) 2 ] q -haloalkyl, —[C(R 12 ) 2 ] q -hydroxyalkyl, halo, hydroxy, —OR 9 , —CN, —[C(R 12 ) 2 ] q —C(O)R 8 , —[C(R 12 ) 2 ] q —C(O)OR 9
  • each occurrence of p is independently 0, 1 or 2;
  • each occurrence of q is independently an integer ranging from 0 to 4.
  • each occurrence of r is independently an integer ranging from 1 to 4.
  • the present invention provides compounds of formula (II):
  • R 1 is a bond, —[C(R 12 ) 2 ] r —, —[C(R 12 ) 2 ] r —O—[C(R 12 ) 2 ] q —, —[C(R 12 ) 2 ] r —N(R 9 )—[C(R 12 ) 2 ] q —, —[C(R 12 ) 2 ] q —CH ⁇ CH—[C(R 12 ) 2 ] q —, —[C(R 12 ) 2 ] q —C ⁇ C—[C(R 12 ) 2 ] q —, or —[C(R 12 ) 2 ] q —SO 2 —[C(R 12 ) 2 ] q —;
  • R 2 is —C(O)R 9 , —C(O)OR 9 , —C(O)OCH 2 OR 9 , —C(O)N(R 9 ) 2 , —[C(R 12 ) 2 ] q —C(O)OR 9 , —[C(R 12 ) 2 ] q —C(O)N(R 9 ) 2 , —[C(R 12 ) 2 ] q —C(O)N(R 9 )C ⁇ N(R 9 ) 2 , -alkyl, —[C(R 12 ) 2 ] q -aryl, —[C(R 12 ) 2 ] q -cycloalkyl, —[C(R 12 ) 2 ] q -cycloalkenyl, —[C(R 12 ) 2 ] q -heterocycloalkyl, —[C(R 12 ) 2 ] q -heter
  • R 3 is:
  • dotted line indicates an optional and additional bond such that when the optional and additional bond is absent, a hydrogen atom is understood to be present on the two ring atoms connected by the dotted line;
  • R 4 , R 5 , R 6 and R 7 are each, independently, H, alkyl, alkenyl, alkynyl, aryl, —[C(R 12 ) 2 ] q -cycloalkyl, —[C(R 12 ) 2 ] q -cycloalkenyl, —[C(R 12 ) 2 ] q -heterocycloalkyl, —[C(R 12 ) 2 ] q -heterocycloalkenyl, —[C(R 12 ) 2 ] q -heteroaryl, —[C(R 12 ) 2 ] q -haloalkyl, —[C(R 12 ) 2 ] q -hydroxyalkyl, halo, hydroxy, —OR 9 , —CN, —[C(R 12 ) 2 ] q —C(O)R 8 , —[C(R 12 ) 2 ]
  • each occurrence of R 8 is independently H, alkyl, alkenyl, alkynyl, —[C(R 12 ) 2 ] q -aryl, —[C(R 12 ) 2 ] q -cycloalkyl, —[C(R 12 ) 2 ] q -cycloalkenyl, —[C(R 12 ) 2 ] q -heterocycloalkyl, —[C(R 12 ) 2 ] q -heterocycloalkenyl, —[C(R 12 ) 2 ] q -heteroaryl, haloalkyl or hydroxyalkyl;
  • each occurrence of R 9 is independently H, alkyl, alkenyl, alkynyl, —[C(R 12 ) 2 ] q -aryl, —[C(R 12 ) 2 ] q -cycloalkyl, —[C(R 12 ) 2 ] q -cycloalkenyl, —[C(R 12 ) 2 ] q -heterocycloalkyl, —[C(R 12 ) 2 ] q -heterocycloalkenyl, —[C(R 12 ) 2 ] q -heteroaryl, haloalkyl or hydroxyalkyl;
  • R 10 is H, cycloalkyl, cycloalkenyl, heterocycloalkyl, heterocycloalkenyl, aryl, or heteroaryl, wherein a cycloalkyl, cycloalkenyl, heterocycloalkyl, heterocycloalkenyl, aryl or heteroaryl group can be optionally substituted with up to 4 substituents, which are each independently selected from H, alkyl, alkenyl, alkynyl, aryl, —[C(R 12 ) 2 ] q -cycloalkyl, —[C(R 12 ) 2 ] q -cycloalkenyl, —[C(R 12 ) 2 ] q -heterocycloalkyl, —[C(R 12 ) 2 ] q -heterocycloalkenyl, —[C(R 12 ) 2 ] q -heterocycloalkenyl, —[C(
  • each occurrence of R 11 is independently alkyl, aryl, cycloalkyl, cycloalkenyl, heterocycloalkyl, heterocycloalkenyl, heteroaryl, haloalkyl, hydroxy or hydroxyalkyl, wherein a cycloalkyl, cycloalkenyl, heterocycloalkyl, heterocycloalkenyl, aryl or heteroaryl group can be optionally substituted with up to 4 substituents, which are each independently selected from H, alkyl, alkenyl, alkynyl, aryl, —[C(R 12 ) 2 ] q -cycloalkyl, —[C(R 12 ) 2 ] q -cycloalkenyl, —[C(R 12 ) 2 ] q -heterocycloalkyl, —[C(R 12 ) 2 ] q -heterocycloalkenyl, —[C(R 12 )
  • each occurrence of R 12 is independently H, halo, —N(R 9 ) 2 , —OR 9 , alkyl, cycloalkyl, cycloalkenyl, heterocycloalkyl or heterocycloalkenyl, wherein a cycloalkyl, cycloalkenyl, heterocycloalkyl or heterocycloalkenyl group can be optionally substituted with up to 4 substituents, which are each independently selected from alkyl, halo, haloalkyl, hydroxyalkyl, hydroxy, —CN, —C(O)alkyl, —C(O)Oalkyl, —C(O)NHalkyl, —C(O)N(alkyl) 2 , —O-alkyl, —NH 2 , —NH(alkyl), —N(alkyl) 2 , —NHC(O)alkyl, —NHSO 2 alkyl, —SO 2 alkyl
  • each occurrence of R 30 is independently, H, alkyl, alkenyl, alkynyl, aryl, —[C(R 12 ) 2 ] q -cycloalkyl, —[C(R 12 ) 2 ] q -cycloalkenyl, —[C(R 12 ) 2 ] q -heterocycloalkyl, —[C(R 12 ) 2 ] q -heterocycloalkenyl, —[C(R 12 ) 2 ] q -heteroaryl, —[C(R 12 ) 2 ] q -haloalkyl, —[C(R 12 ) 2 ] q -hydroxyalkyl, halo, hydroxy, —OR 9 , —CN, —[C(R 12 ) 2 ] q —C(O)R 8 , —[C(R 12 ) 2 ] q —C(O)OR 9
  • each occurrence of p is independently 0, 1 or 2;
  • each occurrence of q is independently an integer ranging from 0 to 4.
  • each occurrence of r is independently an integer ranging from 1 to 4.
  • the compounds of formulas (I) and (II) (herein referred to collectively as the “3-Heterocyclic Substituted Indole Derivatives”) and pharmaceutically acceptable salts, solvates, esters and prodrugs thereof can be useful for treating or preventing a viral infection or a virus-related disorder in a patient.
  • Also provided by the invention are methods for treating or preventing a viral infection or a virus-related disorder in a patient, comprising administering to the patient an effective amount of at least one 3-Heterocyclic Substituted Indole Derivative or a pharmaceutically acceptable salt, solvate, ester or prodrug thereof.
  • the present invention further provides pharmaceutical compositions comprising an effective amount of at least one 3-Heterocyclic Substituted Indole Derivative or a pharmaceutically acceptable salt, solvate, ester or prodrug thereof, and a pharmaceutically acceptable carrier.
  • the compositions can be useful for treating or preventing a viral infection or a virus-related disorder in a patient.
  • the present invention provides 3-Heterocyclic Substituted Indole Derivatives, pharmaceutical compositions comprising at least one 3-Heterocyclic Substituted Indole Derivative, and methods of using the 3-Heterocyclic Substituted Indole Derivatives for treating or preventing a viral infection or a virus-related disorder in a patient.
  • a “patient” is a human or non-human mammal.
  • a patient is a human.
  • a patient is a non-human mammal, including, but not limited to, a monkey, dog, baboon, rhesus, mouse, rat, horse, cat or rabbit.
  • a patient is a companion animal, including but not limited to a dog, cat, rabbit, horse or ferret.
  • a patient is a dog.
  • a patient is a cat.
  • alkyl refers to an aliphatic hydrocarbon group, wherein one of the aliphatic hydrocarbon group's hydrogen atoms is replaced with a single bond.
  • An alkyl group can be straight or branched and can contain from about 1 to about 20 carbon atoms. In one embodiment, an alkyl group contains from about 1 to about 12 carbon atoms. In another embodiment, an alkyl group contains from about 1 to about 6 carbon atoms.
  • Non-limiting examples of alkyl groups include methyl, ethyl, n-propyl, isopropyl, n-butyl, sec-butyl, isobutyl, tert-butyl, n-pentyl, neopentyl, isopentyl, n-hexyl, isohexyl and neohexyl.
  • An alkyl group may be unsubstituted or optionally substituted by one or more substituents which may be the same or different, each substituent being independently selected from the group consisting of halo, alkenyl, alkynyl, —O-aryl, aryl, heteroaryl, cycloalkyl, cycloalkenyl, cyano, hydroxy, —O-alkyl, —O-haloalkyl, -alkylene-O-alkyl, alkylthio, —NH 2 , —NH(alkyl), —N(alkyl) 2 , —NH-aryl, —NH-heteroaryl, —NHC(O)-alkyl, —NHC(O)NH-alkyl, —NHSO 2 -alkyl, —NHSO 2 -aryl, —NHSO 2 -heteroaryl, —NH(cycloalkyl), —OC(O)-alkyl
  • alkylene refers to an alkyl group, as defined above, wherein one of the alkyl group's hydrogen atoms is replaced with a bond.
  • alkylene include, but are not limited to, —CH 2 —, —CH 2 CH 2 —, —CH 2 CH 2 CH 2 —, —CH 2 CH 2 CH 2 CH 2 —, —CH(CH 3 )CH 2 CH 2 —, —CH 2 CH(CH 3 )CH 2 — and —CH 2 CH 2 CH(CH 3 )—.
  • an alkylene group is a straight chain alkylene group.
  • an alkylene group is a branched alkylene group.
  • alkenyl refers to an aliphatic hydrocarbon group having at least one carbon-carbon double bond, wherein one of the aliphatic hydrocarbon group's hydrogen atoms is replaced with a single bond.
  • An alkenyl group can be straight or branched and can contain from about 2 to about 15 carbon atoms. In one embodiment, an alkenyl group contains from about 2 to about 10 carbon atoms. In another embodiment, an alkenyl group contains from about 2 to about 6 carbon atoms.
  • Non-limiting examples of illustrative alkenyl groups include ethenyl, propenyl, n-butenyl, 3-methylbut-2-enyl, n-pentenyl, octenyl and decenyl.
  • An alkenyl group may be unsubstituted or optionally substituted by one or more substituents which may be the same or different, each substituent being independently selected from the group consisting of halo, alkyl, alkynyl, —O-aryl, aryl, cycloalkyl, cycloalkenyl, cyano, hydroxy, —O-alkyl, —O-haloalkyl, -alkylene-O-alkyl, alkylthio, —NH 2 , —NH(alkyl), —N(alkyl) 2 , —NH-aryl, —NH-heteroaryl, —NHC(O)-alkyl, —NHC(O)NH-alkyl, —NHSO 2 -alkyl, —NHSO 2 -aryl, —NHSO 2 -heteroaryl, —NH(cycloalkyl), —OC(O)-alkyl, —OC
  • alkynyl refers to an aliphatic hydrocarbon group having at least one carbon-carbon triple bond, wherein one of the aliphatic hydrocarbon group's hydrogen atoms is replaced with a single bond.
  • An alkynyl group can be straight or branched and can contain from about 2 to about 15 carbon atoms. In one embodiment, an alkynyl group contains from about 2 to about 10 carbon atoms. In another embodiment, an alkynyl group contains from about 2 to about 6 carbon atoms.
  • Non-limiting examples of illustrative alkynyl groups include ethynyl, propynyl, 2-butynyl and 3-methylbutynyl.
  • An alkynyl group may be unsubstituted or optionally substituted by one or more substituents which may be the same or different, each substituent being independently selected from the group consisting of halo, alkyl, alkenyl, —O-aryl, aryl, cycloalkyl, cycloalkenyl, cyano, hydroxy, —O-alkyl, -alkylene-O-alkyl, —O-haloalkyl, -alkylthio, —NH 2 , —NH(alkyl), —N(alkyl) 2 , —NH-aryl, —NH-heteroaryl, -NHC(O)-alkyl, —NHC(O)NH-alkyl, —NHSO 2 -alkyl, —NHSO 2 -aryl, —NHSO 2 -heteroaryl, —NH(cycloalkyl), —OC(O)-alkyl,
  • an alkynyl group is unsubstituted. In another embodiment, an alkynyl group is a straight chain alkynyl group. In another embodiment, an alkynyl group is a branched alkynyl group.
  • Aryl means an aromatic monocyclic or multicyclic ring system having from about 6 to about 14 ring carbon atoms. In one embodiment, an aryl group has from about 6 to about 10 ring carbon atoms. An aryl group can be optionally substituted with one or more “ring system substituents” which may be the same or different, and are as defined herein below. Non-limiting examples of illustrative aryl groups include phenyl and naphthyl. In one embodiment, an aryl group is unsubstituted. In another embodiment, an aryl group is a phenyl group.
  • arylene refers to an aryl group, as defined above herein, wherein a hydrogen atom connected to one of the aryl group's ring carbon atoms is replaced with a bond.
  • cycloalkyl refers to a non-aromatic mono- or multicyclic ring system having from about 3 to about 10 ring carbon atoms. In one embodiment, a cycloalkyl has from about 5 to about 10 ring carbon atoms. In another embodiment, a cycloalkyl has from about 5 to about 7 ring carbon atoms.
  • Non-limiting examples of illustrative monocyclic cycloalkyls include cyclopropyl, cyclopentyl, cyclohexyl, cycloheptyl and the like.
  • Non-limiting examples of illustrative multicyclic cycloalkyls include 1-decalinyl, norbornyl, adamantyl and the like.
  • a cycloalkyl group can be optionally substituted with one or more “ring system substituents” which may be the same or different, and are as defined herein below.
  • a cycloalkyl group is unsubstituted.
  • cycloalkylene refers to a cycloalkyl group, as defined above herein, wherein a hydrogen atom connected to one of the cycloalkyl group's ring carbon atoms is replaced with a bond.
  • cycloalkenyl refers to a non-aromatic mono- or multicyclic ring system comprising from about 3 to about 10 ring carbon atoms and containing at least one endocyclic double bond. In one embodiment, a cycloalkenyl contains from about 5 to about 10 ring carbon atoms. In another embodiment, a cycloalkenyl contains 5 or 6 ring carbon atoms.
  • Non-limiting examples of illustrative monocyclic cycloalkenyls include cyclopentenyl, cyclohexenyl, cyclohepta-1,3-dienyl, and the like.
  • a cycloalkenyl group can be optionally substituted with one or more “ring system substituents” which may be the same or different, and are as defined herein below. In one embodiment, a cycloalkenyl group is unsubstituted.
  • halo means —F, —Cl, —Br or —I. In one embodiment, halo refers to —Cl or —F.
  • haloalkyl refers to an alkyl group as defined above, wherein one or more of the alkyl group's hydrogen atoms has been replaced with a halogen.
  • a haloalkyl group has from 1 to 6 carbon atoms.
  • a haloalkyl group is substituted with from 1 to 3 F atoms.
  • Non-limiting examples of illustrative haloalkyl groups include —CH 2 F, —CHF 2 , —CF 3 , —CH 2 Cl and —CCl 3 .
  • hydroxyalkyl refers to an alkyl group as defined above, wherein one or more of the alkyl group's hydrogen atoms has been replaced with an —OH group.
  • a hydroxyalkyl group has from 1 to 6 carbon atoms.
  • Non-limiting examples of illustrative hydroxyalkyl groups include hydroxymethyl, 2-hydroxyethyl, 3-hydroxypropyl, 4-hydroxybutyl and —CH(OH)CH 2 CH 3 .
  • heteroaryl refers to an aromatic monocyclic or multicyclic ring system comprising about 5 to about 14 ring atoms, wherein from 1 to 4 of the ring atoms is independently O, N or S and the remaining ring atoms are carbon atoms.
  • a heteroaryl group has 5 to 10 ring atoms.
  • a heteroaryl group is monocyclic and has 5 or 6 ring atoms.
  • a heteroaryl group is monocyclic and has 5 or 6 ring atoms and at least one nitrogen ring atom.
  • a heteroaryl group can be optionally substituted by one or more “ring system substituents” which may be the same or different, and are as defined herein below.
  • a heteroaryl group is joined via a ring carbon atom and any nitrogen atom of a heteroaryl can be optionally oxidized to the corresponding N-oxide.
  • the term “heteroaryl” also encompasses a heteroaryl group, as defined above, which has been fused to a benzene ring.
  • Non-limiting examples of illustrative heteroaryls include pyridyl, pyrazinyl, furanyl, thienyl, pyrimidinyl, isoxazolyl, isothiazolyl, oxazolyl, thiazolyl, pyrazolyl, furazanyl, pyrrolyl, pyrazolyl, triazolyl, 1,2,4-thiadiazolyl, pyrazinyl, pyridazinyl, quinoxalinyl, phthalazinyl, oxindolyl, imidazo[1,2-a]pyridinyl, imidazo[2,1-b]thiazolyl, benzofurazanyl, indolyl, azaindolyl, benzimidazolyl, benzothienyl, quinolinyl, imidazolyl, thienopyridyl, quinazolinyl, thienopyrimidyl,
  • heteroaryl also refers to partially saturated heteroaryl moieties such as, for example, tetrahydroisoquinolyl, tetrahydroquinolyl and the like.
  • a heteroaryl group is a 6-membered heteroaryl group.
  • a heteroaryl group is a 5-membered heteroaryl group.
  • heteroarylene refers to a heteroaryl group, as defined above herein, wherein a hydrogen atom connected to one of the heteroaryl group's ring carbon atoms is replaced with a bond.
  • heterocycloalkyl refers to a non-aromatic saturated monocyclic or multicyclic ring system comprising 3 to about 10 ring atoms, wherein from 1 to 4 of the ring atoms are independently O, S or N and the remainder of the ring atoms are carbon atoms. In one embodiment, a heterocycloalkyl group has from about 5 to about 10 ring atoms.
  • a heterocycloalkyl group has 5 or 6 ring atoms. There are no adjacent oxygen and/or sulfur atoms present in the ring system. Any —NH group in a heterocycloalkyl ring may exist protected such as, for example, as an —N(Boc), —N(CBz), —N(Tos) group and the like; such protected heterocycloalkyl groups are considered part of this invention.
  • a heterocycloalkyl group can be optionally substituted by one or more “ring system substituents” which may be the same or different, and are as defined herein below.
  • the nitrogen or sulfur atom of the heterocyclyl can be optionally oxidized to the corresponding N-oxide, S-oxide or S,S-dioxide.
  • illustrative monocyclic heterocycloalkyl rings include piperidyl, pyrrolidinyl, piperazinyl, morpholinyl, thiomorpholinyl, thiazolidinyl, 1,4-dioxanyl, tetrahydrofuranyl, tetrahydrothiophenyl, lactam, lactone, and the like.
  • a ring carbon atom of a heterocycloalkyl group may be functionalized as a carbonyl group.
  • An illustrative example of such a heterocycloalkyl group is pyrrolidonyl:
  • a heterocycloalkyl group is a 6-membered heterocycloalkyl group. In another embodiment, a heterocycloalkyl group is a 5-membered heterocycloalkyl group.
  • heterocycloalkylene refers to a heterocycloalkylene group, as defined above herein, wherein a hydrogen atom connected to one of the heterocycloalkylene group's ring carbon atoms is replaced with a bond.
  • heterocycloalkenyl refers to a heterocycloalkyl group, as defined above, wherein the heterocycloalkyl group contains from 3 to 10 ring atoms, and at least one endocyclic carbon-carbon or carbon-nitrogen double bond.
  • a heterocycloalkenyl group has from 5 to 10 ring atoms.
  • a heterocycloalkenyl group is monocyclic and has 5 or 6 ring atoms.
  • a heterocycloalkenyl group can optionally substituted by one or more ring system substituents, wherein “ring system substituent” is as defined above.
  • heterocycloalkenyl can be optionally oxidized to the corresponding N-oxide, S-oxide or S,S-dioxide.
  • illustrative heterocycloalkenyl groups include 1,2,3,4-tetrahydropyridinyl, 1,2-dihydropyridinyl, 1,4-dihydropyridinyl, 1,2,3,6-tetrahydropyridinyl, 1,4,5,6-tetrahydropyrimidinyl, 2-pyrrolinyl, 3-pyrrolinyl, 2-imidazolinyl, 2-pyrazolinyl, dihydroimidazolyl, dihydrooxazolyl, dihydrooxadiazolyl, dihydrothiazolyl, 3,4-dihydro-2H-pyranyl, dihydrofuranyl, fluorodihydrofuranyl, 7-oxabicyclo[2.2.1]heptenyl, dihydro
  • a heterocycloalkenyl group is a 6-membered heterocycloalkenyl group. In another embodiment, a heterocycloalkenyl group is a 5-membered heterocycloalkenyl group.
  • Ring system substituent refers to a substituent group attached to an aromatic or non-aromatic ring system which, for example, replaces an available hydrogen on the ring system.
  • Ring system substituents may be the same or different, each being independently selected from the group consisting of alkyl, alkenyl, alkynyl, aryl, heteroaryl, aralkyl, alkylaryl, heteroaralkyl, heteroarylalkenyl, heteroarylalkynyl, alkylheteroaryl, hydroxy, hydroxyalkyl, haloalkyl, —O-alkyl, —O-haloalkyl, -alkylene-O-alkyl, —O-aryl, aralkoxy, acyl, halo, nitro, cyano, carboxy, alkoxycarbonyl, aryloxycarbonyl, aralkoxycarbonyl, alkylsulfonyl, arylsulf
  • Ring system substituent may also mean a single moiety which simultaneously replaces two available hydrogens on the same carbon atom (such as to form a carbonyl group) or replaces two available hydrogen atome on two adjacent carbon atoms (one H on each carbon) on a ring system.
  • Examples of such moiety are ⁇ O, methylene dioxy, ethylenedioxy, —C(CH 3 ) 2 — and the like which form moieties such as, for example:
  • substituted means that one or more hydrogens on the designated atom is replaced with a selection from the indicated group, provided that the designated atom's normal valency under the existing circumstances is not exceeded, and that the substitution results in a stable compound. Combinations of substituents and/or variables are permissible only if such combinations result in stable compounds.
  • stable compound or “stable structure” is meant a compound that is sufficiently robust to survive isolation to a useful degree of purity from a reaction mixture, and formulation into an efficacious therapeutic agent.
  • purified in purified form or “in isolated and purified form” as used herein, for a compound refers to the physical state of said compound after being isolated from a synthetic process (e.g. from a reaction mixture), or natural source or combination thereof.
  • purified in purified form or “in isolated and purified form” for a compound refers to the physical state of said compound after being obtained from a purification process or processes described herein or well known to the skilled artisan (e.g., chromatography, recrystallization and the like), in sufficient purity to be characterizable by standard analytical techniques described herein or well known to the skilled artisan.
  • protecting groups When a functional group in a compound is termed “protected”, this means that the group is in modified form to preclude undesired side reactions at the protected site when the compound is subjected to a reaction. Suitable protecting groups will be recognized by those with ordinary skill in the art as well as by reference to standard textbooks such as, for example, T. W. Greene et al, Protective Groups in organic Synthesis (1991), Wiley, New York.
  • variable e.g., aryl, heterocycle, R 11 , etc.
  • its definition on each occurrence is independent of its definition at every other occurrence, unless otherwise noted.
  • Prodrugs and solvates of the compounds of the invention are also contemplated herein.
  • a discussion of prodrugs is provided in T. Higuchi and V. Stella, Pro - drugs as Novel Delivery Systems (1987) 14 of the A.C.S. Symposium Series, and in Bioreversible Carriers in Drug Design , (1987) Edward B. Roche, ed., American Pharmaceutical Association and Pergamon Press.
  • the transformation may occur by various mechanisms (e.g., by metabolic or chemical processes), such as, for example, through hydrolysis in blood.
  • mechanisms e.g., by metabolic or chemical processes
  • prodrugs are provided by T. Higuchi and W. Stella, “Pro-drugs as Novel Delivery Systems,” Vol. 14 of the A.C.S. Symposium Series, and in Bioreversible Carriers in Drug Design, ed. Edward B. Roche, American Pharmaceutical Association and Pergamon Press, 1987.
  • a prodrug can comprise an ester formed by the replacement of the hydrogen atom of the acid group with a group such as, for example, (C 1 -C 8 )alkyl, (C 2 -C 12 )alkanoyloxymethyl, 1-(alkanoyloxy)ethyl having from 4 to 9 carbon atoms, 1-methyl-1-(alkanoyloxy)-ethyl having from 5 to 10 carbon atoms, alkoxycarbonyloxymethyl having from 3 to 6 carbon atoms, 1-(alkoxycarbonyloxy)ethyl having from 4 to 7 carbon atoms, 1-methyl-1-(alkoxycarbonyloxy)ethyl having from 5 to 8 carbon atoms, N-(alkoxycarbonyl)aminomethyl having from 3 to 9 carbon atoms
  • a prodrug can be formed by the replacement of the hydrogen atom of the alcohol group with a group such as, for example, (C 1 -C 6 )alkanoyloxymethyl, 1-((C 1 -C 6 )alkanoyloxy)ethyl, 1-methyl-1-((C 1 -C 6 )alkanoyloxy)ethyl, (C 1 -C 6 )alkoxycarbonyloxymethyl, N—(C 1 -C 6 )alkoxycarbonylaminomethyl, succinoyl, (C 1 -C 6 )alkanoyl, ⁇ -amino(C 1 -C 4 )alkanyl, arylacyl and ⁇ -aminoacyl, or ⁇ -aminoacyl- ⁇ -aminoacyl, where each ⁇ -aminoacyl group is independently selected from the naturally occurring
  • a prodrug can be formed by the replacement of a hydrogen atom in the amine group with a group such as, for example, R-carbonyl, RO-carbonyl, NRR′-carbonyl where R and R′ are each independently (C 1 -C 10 )alkyl, (C 3 -C 7 ) cycloalkyl, benzyl, or R-carbonyl is a natural ⁇ -aminoacyl or natural ⁇ -aminoacyl, —C(OH)C(O)OY 1 wherein Y 1 is H, (C 1 -C 6 )alkyl or benzyl, —C(OY 2 )Y 3 wherein Y 2 is (C 1 -C 4 ) alkyl and Y 3 is (C 1 -C 6 )alkyl, carboxy (C 1 -C 6 )alkyl, amino(C 1 -C 6 )
  • One or more compounds of the invention may exist in unsolvated as well as solvated forms with pharmaceutically acceptable solvents such as water, ethanol, and the like, and it is intended that the invention embrace both solvated and unsolvated forms.
  • “Solvate” means a physical association of a compound of this invention with one or more solvent molecules. This physical association involves varying degrees of ionic and covalent bonding, including hydrogen bonding. In certain instances the solvate will be capable of isolation, for example when one or more solvent molecules are incorporated in the crystal lattice of the crystalline solid. “Solvate” encompasses both solution-phase and isolatable solvates. Non-limiting examples of illustrative solvates include ethanolates, methanolates, and the like. “Hydrate” is a solvate wherein the solvent molecule is H 2 O.
  • One or more compounds of the invention may optionally be converted to a solvate.
  • Preparation of solvates is generally known.
  • M. Caira et al, J. Pharmaceutical Sci., 93(3), 601-611 (2004) describe the preparation of the solvates of the antifungal fluconazole in ethyl acetate as well as from water.
  • Similar preparations of solvates, hemisolvate, hydrates and the like are described by E. C. van Tonder et al, AAPS PharmSciTech., 5(1), article 12 (2004); and A. L. Bingham et al, Chem. Commun., 603-604 (2001).
  • a typical, non-limiting, process involves dissolving the inventive compound in desired amounts of the desired solvent (organic or water or mixtures thereof) at a higher than ambient temperature, and cooling the solution at a rate sufficient to form crystals which are then isolated by standard methods.
  • Analytical techniques such as, for example I. R. spectroscopy, show the presence of the solvent (or water) in the crystals as a solvate (or hydrate).
  • an effective amount or “therapeutically effective amount” is meant to describe an amount of compound or a composition of the present invention that is effective to treat or prevent a viral infection or a virus-related disorder.
  • Metabolic conjugates such as glucuronides and sulfates which can undergo reversible conversion to the 3-Heterocyclic Substituted Indole Derivatives are contemplated in the present invention.
  • the 3-Heterocyclic Substituted Indole Derivatives may form salts, and all such salts are contemplated within the scope of this invention.
  • Reference to a 3-Heterocyclic Substituted Indole Derivative herein is understood to include reference to salts thereof, unless otherwise indicated.
  • the term “salt(s)”, as employed herein, denotes acidic salts formed with inorganic and/or organic acids, as well as basic salts formed with inorganic and/or organic bases.
  • zwitterions may be formed and are included within the term “salt(s)” as used herein.
  • Pharmaceutically acceptable (i.e., non-toxic, physiologically acceptable) salts are preferred, although other salts are also useful.
  • Salts of the compounds of the Formula I may be formed, for example, by reacting a 3-Heterocyclic Substituted Indole Derivative with an amount of acid or base, such as an equivalent amount, in a medium such as one in which the salt precipitates or in an aqueous medium followed by lyophilization.
  • Exemplary acid addition salts include acetates, ascorbates, benzoates, benzenesulfonates, bisulfates, borates, butyrates, citrates, camphorates, camphorsulfonates, fumarates, hydrochlorides, hydrobromides, hydroiodides, lactates, maleates, methanesulfonates, naphthalenesulfonates, nitrates, oxalates, phosphates, propionates, salicylates, succinates, sulfates, tartarates, thiocyanates, toluenesulfonates (also known as tosylates,) and the like.
  • Exemplary basic salts include ammonium salts, alkali metal salts such as sodium, lithium, and potassium salts, alkaline earth metal salts such as calcium and magnesium salts, salts with organic bases (for example, organic amines) such as dicyclohexylamines, t-butyl amines, choline, and salts with amino acids such as arginine, lysine and the like.
  • Basic nitrogen-containing groups may be quarternized with agents such as lower alkyl halides (e.g. methyl, ethyl, and butyl chlorides, bromides and iodides), dialkyl sulfates (e.g.
  • dimethyl, diethyl, and dibutyl sulfates dimethyl, diethyl, and dibutyl sulfates
  • long chain halides e.g. decyl, lauryl, and stearyl chlorides, bromides and iodides
  • aralkyl halides e.g. benzyl and phenethyl bromides
  • esters of the present compounds include the following groups: (1) carboxylic acid esters obtained by esterification of the hydroxy groups, in which the non-carbonyl moiety of the carboxylic acid portion of the ester grouping is selected from straight or branched chain alkyl (for example, acetyl, n-propyl, t-butyl, or n-butyl), alkoxyalkyl (for example, methoxymethyl), aralkyl (for example, benzyl), aryloxyalkyl (for example, phenoxymethyl), aryl (for example, phenyl optionally substituted with, for example, halogen, C 1-4 alkyl, or C 1-4 alkoxy or amino); (2) sulfonate esters, such as alkyl- or aralkylsulfonyl (for example, methanesulfonyl); (3) amino acid esters (for example, L-valyl or L-isoleucyl); (4) phosphoric acid
  • the 3-Heterocyclic Substituted Indole Derivatives may contain asymmetric or chiral centers, and, therefore, exist in different stereoisomeric forms. It is intended that all stereoisomeric forms of the 3-Heterocyclic Substituted Indole Derivatives as well as mixtures thereof, including racemic mixtures, form part of the present invention.
  • the present invention embraces all geometric and positional isomers. For example, if a 3-Heterocyclic Substituted Indole Derivative incorporates a double bond or a fused ring, both the cis- and trans-forms, as well as mixtures, are embraced within the scope of the invention.
  • Diastereomeric mixtures can be separated into their individual diastereomers on the basis of their physical chemical differences by methods well known to those skilled in the art, such as, for example, by chromatography and/or fractional crystallization.
  • Enantiomers can be separated by converting the enantiomeric mixture into a diastereomeric mixture by reaction with an appropriate optically active compound (e.g., chiral auxiliary such as a chiral alcohol or Mosher's acid chloride), separating the diastereomers and converting (e.g., hydrolyzing) the individual diastereomers to the corresponding pure enantiomers.
  • an appropriate optically active compound e.g., chiral auxiliary such as a chiral alcohol or Mosher's acid chloride
  • 3-Heterocyclic Substituted Indole Derivatives may be atropisomers (e.g., substituted biaryls) and are considered as part of this invention. Enantiomers can also be separated by use of chiral HPLC column.
  • the straight line — as a bond generally indicates a mixture of, or either of, the possible isomers, non-limiting example(s) include, containing (R)- and (S)-stereochemistry.
  • the possible isomers non-limiting example(s) include, containing (R)- and (S)-stereochemistry.
  • a dashed line (-----) represents an optional bond.
  • the indicated line (bond) may be attached to any of the substitutable ring atoms, non limiting examples include carbon, nitrogen and sulfur ring atoms.
  • All stereoisomers (for example, geometric isomers, optical isomers and the like) of the present compounds including those of the salts, solvates, hydrates, esters and prodrugs of the compounds as well as the salts, solvates and esters of the prodrugs), such as those which may exist due to asymmetric carbons on various substituents, including enantiomeric forms (which may exist even in the absence of asymmetric carbons), rotameric forms, atropisomers, and diastereomeric forms, are contemplated within the scope of this invention, as are positional isomers (such as, for example, 4-pyridyl and 3-pyridyl).
  • Individual stereoisomers of the compounds of the invention may, for example, be substantially free of other isomers, or may be admixed, for example, as racemates or with all other, or other selected, stereoisomers.
  • the chiral centers of the present invention can have the S or R configuration as defined by the IUPAC 1974 Recommendations.
  • the use of the terms “salt”, “solvate”, “ester”, “prodrug” and the like, is intended to equally apply to the salt, solvate, ester and prodrug of enantiomers, stereoisomers, rotamers, positional isomers, racemates or prodrugs of the inventive compounds.
  • the present invention also embraces isotopically-labelled compounds of the present invention which are identical to those recited herein, but for the fact that one or more atoms are replaced by an atom having an atomic mass or mass number different from the atomic mass or mass number usually found in nature. Such compounds are useful as therapeutic, diagnostic or research reagents.
  • isotopes that can be incorporated into compounds of the invention include isotopes of hydrogen, carbon, nitrogen, oxygen, phosphorus, fluorine and chlorine, such as 2 H, 3 H, 13 C, 14 C, 15 N, 18 O, 17 O, 31 P, 32 P, 35 S, 18 F, and 36 Cl, respectively.
  • Certain isotopically-labelled 3-Heterocyclic Substituted Indole Derivatives are useful in compound and/or substrate tissue distribution assays. Tritiated (i.e., 3 H) and carbon-14 (i.e., 14 C) isotopes are particularly preferred for their ease of preparation and detectability. Further, substitution with heavier isotopes such as deuterium (i.e., 2 H) may afford certain therapeutic advantages resulting from greater metabolic stability (e.g., increased in vivo half-life or reduced dosage requirements) and hence may be preferred in some circumstances.
  • Isotopically labelled 3-Heterocyclic Substituted Indole Derivatives can generally be prepared by following procedures analogous to those disclosed in the Schemes and/or in the Examples herein below, by substituting an appropriate isotopically labelled reagent for a non-isotopically labelled reagent.
  • BINAP is racemic-2,2′-bis(diphenylphosphino)-1,1′-binaphthyl
  • CSA camphorsulfonic acid
  • DBPD 2-(Di-t-butylphosphino)biphenyl
  • DBU is 1,8-diazabicyclo[5.4.0]undec-7-ene
  • DBN is 1,5-diazabicyclo[4.3.0]non-5-ene
  • DCC is dicyclohexylcarbodiimide
  • DCM is dichloromethane
  • DMF is dimethylformamide
  • EDCI is 1-(3-dimethylaminopropyl)-3-ethylcarbodiimide
  • HATU is N-(diethylamino)-1H-1,2,3-triazolo[4,5-b]pyridine-1-ylmethylene]-
  • the present invention provides 3-Heterocyclic Substituted Indole Derivatives having the formula:
  • R 1 , R 2 , R 3 , R 4 , R 5 , R 6 , R 7 and R 16 are defined above for the compounds of formula (I).
  • R 1 is bond
  • R 1 is —[C(R 12 ) 2 ] r —.
  • R 1 is —[C(R 12 ) 2 ] r —O—[C(R 12 ) 2 ] q —.
  • R 1 is —[C(R 12 ) 2 ] r —N(R 9 )—[C(R 12 ) 2 ] q —.
  • R 1 is —[C(R 12 ) 2 ] q —CH ⁇ CH—[C(R 12 ) 2 ] q —.
  • R 1 is —[C(R 12 ) 2 ] q —C ⁇ C—[C(R 12 ) 2 ] 4 —.
  • R 1 is —[C(R 12 ) 2 ] q —SO 2 —[C(R 12 ) 2 ] q —.
  • R 1 is —CH 2 —.
  • R 10 is H and R 1 is other than a bond.
  • R 10 is aryl
  • R 10 is cycloalkyl
  • R 10 is cycloalkenyl
  • R 10 is heterocycloalkenyl.
  • R 10 is heteroaryl
  • R 10 is heterocycloalkyl.
  • R 10 is phenyl
  • R 10 is phenyl, which is substituted with from 1-3 groups independently selected from: alkyl, —O-alkyl, halo, —O-haloalkyl, —OH, —NH 2 , —NH(alkyl), —N(alkyl) 2 , —NO 2 , —CN, —NHC(O)-alkyl, —O-alkylene-heterocycloalkyl —C(O)O-alkyl and —O-haloalkyl.
  • R 10 is pyridyl
  • R 10 is furanyl
  • R 10 is thiophenyl.
  • R 10 is thiophenyl
  • R 10 is thiazolyl
  • R 10 is quinolinyl
  • R 10 is
  • —R 10 is:
  • R represents up to 2 optional and additional phenyl substituents, each independently selected from alkyl, —O-alkyl, halo, —O-haloalkyl, —OH, —NH 2 , —NH(alkyl), —N(alkyl) 2 , —NO 2 , —CN, —NHC(O)-alkyl, —O-alkylene-heterocycloalkyl —C(O)O-alkyl and —O-haloalkyl.
  • —R 10 is:
  • R 13 is H, F, Br or Cl
  • R 14 represents up to 4 optional and additional substituents, each independently selected from alkyl, cycloalkyl, CF 3 , —CN, halo, —O-alkyl, —O-haloalkyl, —NHSO 2 -alkyl, —NO 2 , —C(O)NH 2 , —C(O)NH-alkyl, —C(O)OH, hydroxy, —NH 2 , —SO 2 alkyl, —SO 2 NHalkyl, —S-alkyl, —CH 2 NH 2 , —CH 2 OH, —SO 2 NH 2 , —NHC(O)-alkyl, —C(O)O-alkyl, —C(O)-heterocycloalkyl and heteroaryl; and
  • —R 10 is:
  • R 10 is H, alkyl, alkenyl, aryl, cycloalkyl, —CN, aryl, cycloalkyl or heteroaryl.
  • R 10 is aryl, cycloalkyl or heteroaryl, any of which can be optionally and substituted with up to 3 groups, each independently selected from —NH 2 , alkyl, alkenyl, halo, —NO 2 or —C(O)O-alkyl.
  • R 10 is phenyl, cyclopropyl, furanyl, pyridyl or thiophenyl, any of which can be optionally and independently substituted with up to 3 groups selected from alkyl, —O-alkyl, halo, —O-haloalkyl, —OH, —NH 2 , —NH(alkyl), —N(alkyl) 2 , —NO 2 , —CN, —NHC(O)-alkyl, —O-alkylene-heterocycloalkyl —C(O)O-alkyl and —O-haloalkyl.
  • —R 1 -R 10 is alkyl.
  • R 1 is —CH 2 — and R 10 is H, alkyl, alkenyl, aryl, cycloalkyl, —CN, aryl, cycloalkyl or heteroaryl.
  • R 1 is —CH 2 — and R 10 is aryl, cycloalkyl or heteroaryl, any of which can be optionally and substituted with up to 3 groups, each independently selected from alkyl, —O-alkyl, halo, —O-haloalkyl, —OH, —NH 2 , —NH(alkyl), —N(alkyl) 2 , —NO 2 , —CN, —NHC(O)-alkyl, —O-alkylene-heterocycloalkyl —C(O)O-alkyl and —O-haloalkyl.
  • R 1 is —CH 2 — and R 10 is phenyl, cyclopropyl, furanyl, pyridyl, isoxazolyl or thiophenyl, any of which can be optionally and independently substituted with up to 3 groups selected from alkyl, —O-alkyl, halo, —O-haloalkyl, —OH, —NH 2 , —NH(alkyl), —N(alkyl) 2 , —NO 2 , —CN, —NHC(O)-alkyl, —O-alkylene-heterocycloalkyl —C(O)O-alkyl and —O-haloalkyl.
  • R 1 is —CH 2 — and —R 10 is:
  • R 13 is H, F, Br or Cl
  • R 14 represents up to 4 optional and additional substituents, each independently selected from alkyl, cycloalkyl, CF 3 , —CN, halo, —O-alkyl, —O-haloalkyl, —NHSO 2 -alkyl, —NO 2 , —C(O)NH 2 , —C(O)NH-alkyl, —C(O)OH, hydroxy, —NH 2 , —SO 2 alkyl, —SO 2 NHalkyl, —S-alkyl, —CH 2 NH 2 , —CH 2 OH, —SO 2 NH 2 , —NHC(O)-alkyl, —C(O)O-alkyl, —C(O)-heterocycloalkyl and heteroaryl; and
  • —R 1 -R 10 is benzyl.
  • —R 1 -R 10 is benzyl, wherein the phenyl moiety of the benzyl group is substituted with from 1-4 groups independently selected from: alkyl, —O-alkyl, halo, —O-haloalkyl, —OH, —NH 2 , —NH(alkyl), —N(alkyl) 2 , —NO 2 , —CN, —NHC(O)-alkyl, —O-alkylene-heterocycloalkyl —C(O)O-alkyl and —O-haloalkyl.
  • —R 1 -R 10 is
  • R represents up to 2 optional and additional phenyl substituents, each independently selected from alkyl, —O-alkyl, halo, —O-haloalkyl, —OH, —NH 2 , —NH(alkyl), —N(alkyl) 2 , —NO 2 , —CN, —NHC(O)-alkyl, —O-alkylene-heterocycloalkyl —C(O)O-alkyl and —O-haloalkyl.
  • —R 1 -R 10 is
  • —R 1 -R 10 is alkyl.
  • —R 1 -R 10 is benzyl, wherein the phenyl moiety of the benzyl group is substituted with 1 or 2 fluorine atoms.
  • —R 1 -R 10 is benzyl, wherein the phenyl moiety of the benzyl group is substituted with 1 or 2 methyl groups.
  • —R 1 -R 10 is benzyl, wherein the phenyl moiety of the benzyl group is substituted with one fluorine atom and one methyl group.
  • —R 1 — R 10 is haloalkyl.
  • —R 1 -R 10 is —CH 2 -cycloalkyl.
  • —R 1 -R 10 is —CH 2 -heteroaryl.
  • —R 1 -R 10 is:
  • R 2 is —[C(R 12 ) 2 ]-C(O)N(R 9 )SO 2 R 11 .
  • R 2 is —[C(R 12 ) 2 ] q —C(O)N(R 9 )SOR 11 .
  • R 2 is —[C(R 12 ) 2 ] q —C(O)N(R 9 )SO 2 N(R 11 ) 2 .
  • R 2 is —C(O)N(R 9 )SO 2 R 11 .
  • R 2 is —C(O)NHSO 2 R 11 .
  • R 2 is —C(O)NHSO 2 R 11 and R 11 is -alkylene-alkyl.
  • R 2 is —C(O)NHSO 2 R 11 and R 11 is -alkylene-aryl.
  • R 2 is —C(O)NHSO 2 R 11 and R 11 is -alkylene-cycloalkyl.
  • R 2 is —C(O)NHSO 2 R 11 and R 11 is -alkylene-heterocycloalkyl.
  • R 2 is —C(O)NHSO 2 R 11 and R 11 is -alkylene-heteroaryl.
  • R 2 is —C(O)NHSO 2 R 11 and R 11 is -alkylene-haloalkyl.
  • R 2 is —C(O)NHSO 2 R 11 and R 11 is -alkylene-hydroxyalkyl.
  • R 2 is —C(O)NHSO 2 R 11 and R 11 is alkyl.
  • R 2 is —C(O)NHSO 2 R 11 and R 11 is aryl.
  • R 2 is —C(O)NHSO 2 R 11 and R 11 is cycloalkyl.
  • R 2 is —C(O)NHSO 2 R 11 and R 11 is heterocycloalkyl.
  • R 2 is —C(O)NHSO 2 R 11 and R 11 is heteroaryl.
  • R 2 is —C(O)NHSO 2 R 11 and R 11 is haloalkyl.
  • R 2 is —C(O)NHSO 2 R 11 and R 11 is hydroxyalkyl.
  • R 2 is —C(O)NHSO 2 R 11 and R 11 is -alkylene-phenyl.
  • R 2 is —C(O)NHSO 2 R 11 and R 11 is benzyl.
  • R 2 is —C(O)NHSO 2 R 11 and R 11 is naphthyl.
  • R 2 is —C(O)NHSO 2 R 11 and R 11 is methyl, ethyl, —CH 2 CH 2 NH 2 , —CH 2 CH 2 N(CH 3 ) 2 , —CH 2 CH 2 CH 2 NH 2 , —CH 2 CH 2 CH 2 N(CH 3 ) 2 , phenyl or cyclopropyl.
  • R 2 is —C(O)NHSO 2 R 11 and R 11 is —NH 2 or —N(CH 3 ) 2 .
  • R 2 is —C(O)NHSO 2 CH 3 .
  • R 2 is —C(O)NHSO 2 CH 2 CH 3 .
  • R 2 is —C(O)NHSO 2 R 11 and R 11 is phenyl.
  • R 2 is —C(O)NHSO 2 R 11 and R 11 is phenyl, which is optionally substituted with up to 3 groups independently selected from: alkyl, F, Cl, methyl, —NH 2 , —NO 2 , methoxy, —SO 2 NH 2 , —COOH, -(alkylene) s —C(O)O-alkyl, hydroxy, —NHSO 2 -alkyl, -(alkylene) s -SO 2 -alkyl, —CF 3 , —CN, thiazolyl, —C(O)NH-alkyl, —NHSO 2 -phenyl, —NHSO 2 -cyclopropyl, —NHSO 2 -alkyl, -(alkylene) s -NHC(O)-alkyl, pyrazolyl or —OCH 2 C(O)NH 2 .
  • R 2 is —C(O)NHSO 2 R 11 and R 11 is cyclopropyl, cyclobutyl, cyclopentyl or cyclohexyl.
  • R 2 is:
  • R 2 is:
  • R 2 is:
  • R 3 is
  • R 3 is
  • R 3 is
  • R 3 is
  • R 3 is
  • R 3 is
  • R 3 is
  • R 30 groups together with the carbon atoms to which they are attached, join to form an aryl or heteroaryl group.
  • R 3 is
  • each R 30 group is independently selected from H and alkyl.
  • R 3 is:
  • R 3 is:
  • R 3 is:
  • R 3 is:
  • R 3 is:
  • R 4 is H.
  • R 4 is H or F.
  • R 4 is F.
  • R 5 is H.
  • R 6 is H.
  • R 6 is H or F.
  • R 6 is F.
  • R 5 is H.
  • R 5 is other than H.
  • R 5 is alkyl
  • R 5 is halo or haloalkyl.
  • R 5 is halo
  • R 5 is haloalkyl
  • R 5 is methyl
  • R 5 is ethyl
  • R 5 is Cl, Br or CF 3 .
  • R 6 is H.
  • R 6 is H or F.
  • R 6 is other than H.
  • R 6 is alkyl
  • R 6 is halo
  • R 6 is methyl
  • R 6 is F.
  • R 7 is H.
  • R 4 and R 7 are each H.
  • R 4 , R 6 and R 7 are each H.
  • R 4 , R 5 , R 6 and R 7 are each H.
  • R 4 , R 6 and R 7 are each H and R 5 is other than H.
  • R 4 , R 6 and R 7 are each H and R 5 is haloalkyl.
  • R 4 , R 6 and R 7 are each H and R 5 is halo.
  • R 4 , R 6 and R 7 are each H and R 5 is Cl.
  • R 4 , R 6 and R 7 are each H and R 5 is Br.
  • R 4 , R 6 and Ware each H and R 5 is CF 3 .
  • R 2 is —C(O)NHSO 2 R 11 and R 3 is
  • R 2 is —C(O)NHSO 2 R 11
  • R 11 is alkyl
  • R 3 is
  • R 2 is —C(O)NHSO 2 CH 3
  • R 3 is
  • R 2 is —C(O)NHSO 2 R 11 ;
  • R 11 is phenyl, which is optionally substituted with up to 3 groups independently selected from: alkyl, F, Cl, methyl, —NH 2 , —NO 2 , methoxy, —SO 2 NH 2 , —COOH, -(alkylene) s -C(O)O-alkyl, hydroxy, —NHSO 2 -alkyl, -(alkylene) s -SO 2 -alkyl, —CF 3 , —CN, thiazolyl, —C(O)NH-alkyl, —NHSO 2 -phenyl, —NHSO 2 -cyclopropyl, —NHSO 2 -alkyl, -(alkylene) s -NHC(O)-alkyl, pyrazolyl or —OCH 2 C(O)NH 2 ; and R 3 is
  • R 1 -R 10 is
  • R 2 is —C(O)NHSO 2 R 11 ; and R 3 is
  • R 1 -R 10 is
  • R 2 is —C(O)NHSO 2 R 11 ;
  • R 11 is alkyl; and
  • R 3 is
  • R 1 -R 10 is
  • R 2 is —C(O)NHSO 2 CH 3 ; and R 3 is
  • R 1 -R 10 is
  • R 2 is —C(O)NHSO 2 R 11
  • R 11 is phenyl, which is optionally substituted with up to 3 groups independently selected from: alkyl, F, Cl, methyl, —NH 2 , —NO 2 , methoxy, —SO 2 NH 2 , —COOH, -(alkylene) s -C(O)O-alkyl, hydroxy, —NHSO 2 -alkyl, -(alkylene) s -SO 2 -alkyl, —CF 3 , —CN, thiazolyl, —C(O)NH-alkyl, —NHSO 2 -phenyl, —NHSO 2 -cyclopropyl, —NHSO 2 -alkyl, -(alkylene) s -NHC(O)-alkyl, pyrazolyl or —OCH 2 C(O)NH 2 ; and R 3 is
  • R 1 -R 10 is
  • R 2 is —C(O)NHSO 2 R 11 ; and R 3 is
  • R 1 -R 10 is
  • R 2 is —C(O)NHSO 2 R 11 ;
  • R 11 is alkyl; and
  • R 3 is
  • R 1 -R 10 is
  • R 2 is —C(O)NHSO 2 CH 3 ; and R 3 is
  • R 1 -R 10 is
  • R 2 is —C(O)NHSO 2 R 11
  • R 11 is phenyl, which is optionally substituted with up to 3 groups independently selected from: alkyl, F, Cl, methyl, —NH 2 , —NO 2 , methoxy, —SO 2 NH 2 , —COOH, -(alkylene) s -C(O)O-alkyl, hydroxy, —NHSO 2 -alkyl, -(alkylene) s -SO 2 -alkyl, —CF 3 , —CN, thiazolyl, —C(O)NH-alkyl, —NHSO 2 -phenyl, —NHSO 2 -cyclopropyl, —NHSO 2 -alkyl, -(alkylene) s -NHC(O)-alkyl, pyrazolyl or —OCH 2 C(O)NH 2 ; and R 3 is
  • R 1 -R 10 is —CH 2 -heteroaryl or alkyl; R 2 is —C(O)NHSO 2 R 11 ; and R 3 is
  • R 1 -R 10 is —CH 2 -heteroaryl or alkyl;
  • R 2 is —C(O)NHSO 2 R 11 ;
  • R 11 is alkyl; and
  • R 3 is
  • R 1 -R 10 is —CH 2 -heteroaryl or alkyl;
  • R 2 is —C(O)NHSO 2 CH 3 ; and
  • R 3 is
  • R 1 -R 10 is —CH 2 -heteroaryl or alkyl;
  • R 2 is —C(O)NHSO 2 R 11 ,
  • R 11 is phenyl, which is optionally substituted with up to 3 groups independently selected from: alkyl, F, Cl, methyl, —NH 2 , —NO 2 , methoxy, —SO 2 NH 2 , —COOH, -(alkylene) s -C(O)O-alkyl, hydroxy, —NHSO 2 -alkyl, -(alkylene) s -SO 2 -alkyl, —CF 3 , —CN, thiazolyl, —C(O)NH-alkyl, —NHSO 2 -phenyl, —NHSO 2 -cyclopropyl, —NHSO 2 -alkyl, -(alkylene) s -NHC(O)-alkyl, pyrazolyl or —OC
  • R 1 -R 10 is benzyl, wherein the phenyl moiety of the benzyl group is optionally substituted with from 1-4 groups independently selected from: alkyl, —O-alkyl, halo, —O-haloalkyl, —OH, —NH 2 , —NH(alkyl), —N(alkyl) 2 , —NO 2 , —CN, —NHC(O)-alkyl, —O-alkylene-heterocycloalkyl —C(O)O-alkyl and —O-haloalkyl; R 2 is —C(O)NHSO 2 R 11 ; and R 3 is
  • R 1 -R 10 is benzyl, wherein the phenyl moiety of the benzyl group is optionally substituted with from 1-4 groups independently selected from: alkyl, —O-alkyl, halo, —O-haloalkyl, —OH, —NH 2 , —NH(alkyl), —N(alkyl) 2 , —NO 2 , —CN, —NHC(O)-alkyl, —O-alkylene-heterocycloalkyl —C(O)O-alkyl and —O-haloalkyl; R 2 is —C(O)NHSO 2 -alkyl; and R 3 is
  • R 1 -R 10 is benzyl, wherein the phenyl moiety of the benzyl group is optionally substituted with from 1-4 groups independently selected from: alkyl, —O-alkyl, halo, —O-haloalkyl, —OH, —NH 2 , —NH(alkyl), —N(alkyl) 2 , —NO 2 , —CN, —NHC(O)-alkyl, —O-alkylene-heterocycloalkyl —C(O)O-alkyl and —O-haloalkyl;
  • R 2 is —C(O)NHSO 2 R 11
  • R 11 is phenyl, which is optionally substituted with up to 3 groups independently selected from: alkyl, F, Cl, methyl, —NH 2 , —NO 2 , methoxy, —SO 2 NH 2 , —COOH, -(alkylene) s -C(O)
  • R 1 -R 10 is
  • R 2 is —C(O)NHSO 2 R 11
  • R 4 , R 6 and R 7 are each H; and R 5 is halo or haloalkyl.
  • R 1 -R 10 is
  • R 2 is —C(O)NHSO 2 R 11
  • R 4 , R 6 and R 7 are each H; and R 5 is halo or haloalkyl.
  • R 1 -R 10 is —CH 2 -heteroaryl or alkyl;
  • R 2 is —C(O)NHSO 2 R 11 ;
  • R 3 is
  • R 4 , R 6 and R 7 are each H; and R 5 is halo or haloalkyl.
  • R 1 -R 10 is —CH 2 -heteroaryl or alkyl;
  • R 2 is —C(O)NHSO 2 R 11 ;
  • R 11 is alkyl;
  • R 3 is
  • R 4 , R 6 and R 7 are each H; and R 5 is halo or haloalkyl.
  • R 1 -R 10 is —CH 2 -heteroaryl or —CH 2 -cycloalkyl;
  • R 2 is —C(O)NHSO 2 CH 3 ;
  • R 3 is
  • R 4 , R 6 and R 7 are each H; and R 5 is halo or haloalkyl.
  • R 1 -R 10 is —CH 2 -heteroaryl or alkyl;
  • R 2 is —C(O)NHSO 2 R 11 ,
  • R 11 is phenyl, which is optionally substituted with up to 3 groups independently selected from: alkyl, F, Cl, methyl, —NH 2 , —NO 2 , methoxy, —SO 2 NH 2 , —COOH, -(alkylene) s -C(O)O-alkyl, hydroxy, —NHSO 2 -alkyl, -(alkylene) s -SO 2 -alkyl, —CF 3 , —CN, thiazolyl, —C(O)NH-alkyl, —NHSO 2 -phenyl, —NHSO 2 -cyclopropyl, —NHSO 2 -alkyl, -(alkylene) s -NHC(O)-alkyl, pyrazolyl or —OC
  • R 4 , R 6 and R 7 are each H; and R 5 is halo or haloalkyl.
  • R 1 -R 10 is benzyl, wherein the phenyl moiety of the benzyl group is optionally substituted with from 1-4 groups independently selected from: alkyl, —O-alkyl, halo, —O-haloalkyl, —OH, —NH 2 , —NH(alkyl), —N(alkyl) 2 , —NO 2 , —CN, —NHC(O)-alkyl, —O-alkylene-heterocycloalkyl —C(O)O-alkyl and —O-haloalkyl;
  • R 2 is —C(O)NHSO 2 R 11 ;
  • R 3 is
  • R 4 , R 6 and R 7 are each H; and R 5 is halo or haloalkyl.
  • R 1 -R 10 is benzyl, wherein the phenyl moiety of the benzyl group is optionally substituted with from 1-4 groups independently selected from: alkyl, —O-alkyl, halo, —O-haloalkyl, —OH, —NH 2 , —NH(alkyl), —N(alkyl) 2 , —NO 2 , —CN, —NHC(O)-alkyl, —O-alkylene-heterocycloalkyl —C(O)O-alkyl and —O-haloalkyl;
  • R 2 is —C(O)NHSO 2 -alkyl;
  • R 3 is
  • R 4 , R 6 and R 7 are each H; and R 5 is halo or haloalkyl.
  • R 1 -R 10 is benzyl, wherein the phenyl moiety of the benzyl group is optionally substituted with from 1-4 groups independently selected from: alkyl, —O-alkyl, halo, —O-haloalkyl, —OH, —NH 2 , —NH(alkyl), —N(alkyl) 2 , —NO 2 , —CN, —NHC(O)-alkyl, —O-alkylene-heterocycloalkyl —C(O)O-alkyl and —O-haloalkyl;
  • R 2 is —C(O)NHSO 2 R 11
  • R 11 is phenyl, which is optionally substituted with up to 3 groups independently selected from: alkyl, F, Cl, methyl, —NH 2 , —NO 2 , methoxy, —SO 2 NH 2 , —COOH, -(alkylene) s -C(O)
  • R 4 , R 6 and R 7 are each H; and R 5 is halo or haloalkyl.
  • the compounds of formula (I) have the formula (Ia):
  • R 1 is —[C(R 12 ) 2 ] r -;
  • R 2 is —C(O)NHSO 2 R 11 ;
  • R 3 is:
  • R 4 , R 5 , R 6 and R 7 are each, independently, H, alkyl, —O-alkyl, halo, haloalkyl or hydroxyalkyl;
  • R 10 is H, aryl, cycloalkyl, heterocycloalkyl or heteroaryl, wherein a cycloalkyl, heterocycloalkyl, aryl or heteroaryl group can be optionally substituted with one or more substituents, which are each independently selected from alkyl, —O-alkyl, halo, —O-haloalkyl, —OH, —NH 2 , —NH(alkyl), —N(alkyl) 2 , —NO 2 , —CN, —NHC(O)-alkyl, —O-alkylene-heterocycloalkyl —C(O)O-alkyl and —O-haloalkyl;
  • R 11 is alkyl, aryl or cycloalkyl
  • each occurrence of R 12 is H, alkyl or halo, or two geminal R 12 groups, together with the common carbon atom to which they are attached, join to form a 3- to 6-membered cycloalkyl group;
  • each occurrence of R 30 is independently, H, alkyl, aryl, halo, hydroxy, hydroxyalkyl, haloalkyl, —O-alkyl or —CN, or two adjacent R 30 groups, together with the carbon atoms to which they are attached, join to form a cycloalkyl, heterocycloalkyl, aryl or heteroaryl group; and
  • r is an integer ranging from 1 to 4.
  • R 1 is —CH 2 —
  • R 2 is —C(O)NHSO 2 R 11 ;
  • R 3 is:
  • R 4 , R 6 and R 7 are each H;
  • R 5 is H, alkyl, —O-alkyl, halo or haloalkyl
  • R 10 is H aryl, cycloalkyl or heteroaryl, wherein a cycloalkyl, aryl or heteroaryl group can be optionally substituted with one or more substituents, which are each independently selected from alkyl, —O-alkyl, halo, —O-haloalkyl, —OH, —NH 2 , —NH(alkyl), —N(alkyl) 2 , —NO 2 , —CN, —NHC(O)-alkyl, —O-alkylene-heterocycloalkyl —C(O)O-alkyl and —O-haloalkyl;
  • R 11 is alkyl, aryl or cycloalkyl
  • r is an integer ranging from 1 to 4.
  • R 1 is —CH 2 —
  • R 2 is —C(O)NHSO 2 R 11 ;
  • R 3 is:
  • R 4 , R 6 and R 7 are each H;
  • R 5 is H, halo or haloalkyl
  • R 10 is phenyl, which can be optionally substituted with one or more substituents, which are each independently selected from alkyl, —O-alkyl, halo, —O-haloalkyl, —OH, —NH 2 , —NH(alkyl), —N(alkyl) 2 , —NO 2 , —CN, —NHC(O)-alkyl, —O-alkylene-heterocycloalkyl —C(O)O-alkyl and —O-haloalkyl;
  • R 11 is alkyl, aryl or cycloalkyl
  • r is an integer ranging from 1 to 4.
  • R 1 is —CH 2 —
  • R 2 is —C(O)NHSO 2 R 11 ;
  • R 3 is:
  • R 4 , R 6 and R 7 are each H;
  • R 5 is H, halo or haloalkyl
  • R 10 is phenyl, which can be optionally substituted with one or more substituents, which are each independently selected from alkyl, —O-alkyl, halo, —O-haloalkyl, —OH, —NH 2 , —NH(alkyl), —N(alkyl) 2 , —NO 2 , —CN, —NHC(O)-alkyl, —O-alkylene-heterocycloalkyl —C(O)O-alkyl and —O-haloalkyl;
  • R 11 is alkyl, aryl or cycloalkyl
  • r is an integer ranging from 1 to 4.
  • R 1 is —CH 2 —
  • R 2 is —C(O)NHSO 2 R 11 ;
  • R 3 is:
  • R 4 , R 6 and R 7 are each H;
  • R 5 is Cl, Br or CF 3 ;
  • R 10 is phenyl, which can be optionally substituted with one or more substituents, which are each independently selected from alkyl, —O-alkyl, halo, —O-haloalkyl, —OH, —NH 2 , —NH(alkyl), —N(alkyl) 2 , —NO 2 , —CN, —NHC(O)-alkyl, —O-alkylene-heterocycloalkyl —C(O)O-alkyl and —O-haloalkyl;
  • R 11 is methyl, ethyl, —CH 2 CH 2 NH 2 , —CH 2 CH 2 N(CH 3 ) 2 , —CH 2 CH 2 CH 2 NH 2 , —CH 2 CH 2 CH 2 N(CH 3 ) 2 , phenyl or cyclopropyl;
  • each occurrence of R 12 is H, alkyl or halo, or two geminal R 12 groups, together with the common carbon atom to which they are attached, join to form a 3- to 6-membered cycloalkyl group;
  • r is an integer ranging from 1 to 4.
  • R 1 is —CH 2 —
  • R 2 is —C(O)NHSO 2 R 11 ;
  • R 3 is:
  • R 4 , R 6 and R 7 are each H;
  • R 5 is H, halo or haloalkyl
  • R 10 is phenyl, which can be optionally substituted with one or more substituents, which are each independently selected from alkyl, —O-alkyl, halo, —O-haloalkyl, —OH, —NH 2 , —NH(alkyl), —N(alkyl) 2 , —NO 2 , —CN, —NHC(O)-alkyl, —O-alkylene-heterocycloalkyl —C(O)O-alkyl and —O-haloalkyl;
  • R 11 is methyl, phenyl or cyclopropyl
  • r is an integer ranging from 1 to 4.
  • R 1 , R 2 , R 3 , R 4 , R 5 , R 6 , R 7 and R 10 are selected independently of each other.
  • a compound of formula (I) is in purified form.
  • the present invention also provides 3-Heterocyclic Substituted Indole Derivatives having the formula:
  • R 1 , R 2 , R 3 , R 4 , R 5 , R 6 , R 7 and R 16 are defined above for the compounds of formula (II).
  • R 1 is bond
  • R 1 is —[C(R 12 ) 2 ] r —.
  • R 1 is —[C(R 12 ) 2 ] r —O—[C(R 12 ) 2 ] q —.
  • R 1 is —[C(R 12 ) 2 ] r —N(R 9 )—[C(R 12 ) 2 ] q —.
  • R 1 is —[C(R 12 ) 2 ] q —CH ⁇ CH—[C(R 12 ) 2 ] 4 —.
  • R 1 is —[C(R 12 ) 2 ] q —C ⁇ C—[C(R 12 ) 2 ] 4 —.
  • R 1 is —[C(R 12 ) 2 ] q —SO 2 —[C(R 12 ) 2 ] q —.
  • R 1 is —CH 2 —.
  • R 10 is H and R 1 is other than a bond.
  • R 10 is aryl
  • R 10 is cycloalkyl
  • R 10 is cycloalkenyl
  • R 10 is heterocycloalkenyl.
  • R 10 is heteroaryl
  • R 10 is heterocycloalkyl.
  • R 10 is phenyl
  • R 10 is phenyl, which is substituted with from 1-3 groups independently selected from: alkyl, —O-alkyl, halo, —O-haloalkyl, —OH, —NH 2 , —NH(alkyl), —N(alkyl) 2 , —NO 2 , —CN, —NHC(O)-alkyl, —O-alkylene-heterocycloalkyl —C(O)O-alkyl and —O-haloalkyl.
  • R 10 is pyridyl
  • R 10 is furanyl
  • R 10 is thiophenyl.
  • R 10 is thiophenyl
  • R 10 is thiazolyl
  • R 10 is quinolinyl
  • R 10 is
  • —R 10 is:
  • R represents up to 2 optional and additional phenyl substituents, each independently selected from alkyl, —O-alkyl, halo, —O-haloalkyl, —OH, —NH 2 , —NH(alkyl), —N(alkyl) 2 , —NO 2 , —CN, —NHC(O)-alkyl, —O-alkylene-heterocycloalkyl —C(O)O-alkyl and —O-haloalkyl.
  • —R 10 is:
  • R 13 is H, F, Br or Cl
  • R 14 represents up to 4 optional and additional substituents, each independently selected from alkyl, cycloalkyl, CF 3 , —CN, halo, —O-alkyl, —O-haloalkyl, —NHSO 2 -alkyl, —NO 2 , —C(O)NH 2 , —C(O)NH-alkyl, —C(O)OH, hydroxy, —NH 2 , —SO 2 alkyl, —SO 2 NHalkyl, —S-alkyl, —CH 2 NH 2 , —CH 2 OH, —SO 2 NH 2 , —NHC(O)-alkyl, —C(O)O-alkyl, —C(O)-heterocycloalkyl and heteroaryl; and
  • —R 10 is:
  • R 10 is H, alkyl, alkenyl, aryl, cycloalkyl, —CN, aryl, cycloalkyl or heteroaryl.
  • R 10 is aryl, cycloalkyl or heteroaryl, any of which can be optionally and substituted with up to 3 groups, each independently selected from —NH 2 , alkyl, alkenyl, halo, —NO 2 or —C(O)O-alkyl.
  • R 10 is phenyl, cyclopropyl, furanyl, pyridyl or thiophenyl, any of which can be optionally and independently substituted with up to 3 groups selected from alkyl, —O-alkyl, halo, —O-haloalkyl, —OH, —NH 2 , —NH(alkyl), —N(alkyl) 2 , —NO 2 , —CN, —NHC(O)-alkyl, —O-alkylene-heterocycloalkyl —C(O)O-alkyl and —O-haloalkyl.
  • —R 1 -R 10 is alkyl.
  • R 1 is —CH 2 — and R 10 is H, alkyl, alkenyl, aryl, cycloalkyl, —CN, aryl, cycloalkyl or heteroaryl.
  • R 1 is —CH 2 — and R 10 is aryl, cycloalkyl or heteroaryl, any of which can be optionally and substituted with up to 3 groups, each independently selected from alkyl, —O-alkyl, halo, —O-haloalkyl, —OH, —NH 2 , —NH(alkyl), —N(alkyl) 2 , —NO 2 , —CN, —NHC(O)-alkyl, —O-alkylene-heterocycloalkyl —C(O)O-alkyl and —O-haloalkyl.
  • R 1 is —CH 2 — and R 10 is phenyl, cyclopropyl, furanyl, pyridyl, isoxazolyl or thiophenyl, any of which can be optionally and independently substituted with up to 3 groups selected from alkyl, —O-alkyl, halo, —O-haloalkyl, —OH, —NH 2 , —NH(alkyl), —N(alkyl) 2 , —NO 2 , —CN, —NHC(O)-alkyl, —O-alkylene-heterocycloalkyl —C(O)O-alkyl and —O-haloalkyl.
  • R 1 is —CH 2 — and —R 10 is:
  • R 13 is H, F, Br or Cl
  • R 14 represents up to 4 optional and additional substituents, each independently selected from alkyl, cycloalkyl, CF 3 , —CN, halo, —O-alkyl, —O-haloalkyl, —NHSO 2 -alkyl, —NO 2 , —C(O)NH 2 , —C(O)NH-alkyl, —C(O)OH, hydroxy, —NH 2 , —SO 2 alkyl, —SO 2 NHalkyl, —S-alkyl, —CH 2 NH 2 , —CH 2 OH, —SO 2 NH 2 , —NHC(O)-alkyl, —C(O)O-alkyl, —C(O)-heterocycloalkyl and heteroaryl; and
  • —R 1 -R 10 is benzyl.
  • —R 1 -R 10 is benzyl, wherein the phenyl moiety of the benzyl group is substituted with from 1-4 groups independently selected from: alkyl, —O-alkyl, halo, —O-haloalkyl, —OH, —NH 2 , —NH(alkyl), —N(alkyl) 2 , —NO 2 , —CN, —NHC(O)-alkyl, —O-alkylene-heterocycloalkyl —C(O)O-alkyl and —O-haloalkyl.
  • —R 1 -R 10 is
  • R represents up to 2 optional and additional phenyl substituents, each independently selected from alkyl, —O-alkyl, halo, —O-haloalkyl, —OH, —NH 2 , —NH(alkyl), —N(alkyl) 2 , —NO 2 , —CN, —NHC(O)-alkyl, —O-alkylene-heterocycloalkyl —C(O)O-alkyl and —O-haloalkyl.
  • —R 1 -R 10 is
  • —R 1 -R 10 is alkyl.
  • —R 1 -R 10 is benzyl, wherein the phenyl moiety of the benzyl group is substituted with 1 or 2 fluorine atoms.
  • —R 1 -R 10 is benzyl, wherein the phenyl moiety of the benzyl group is substituted with 1 or 2 methyl groups.
  • —R 1 -R 10 is benzyl, wherein the phenyl moiety of the benzyl group is substituted with one fluorine atom and one methyl group.
  • —R 1 -R 10 is haloalkyl.
  • —R 1 — R 10 is —CH 2 -cycloalkyl.
  • —R 1 -R 10 is —CH 2 -heteroaryl.
  • —R 1 -R 10 is:
  • R 2 is —C(O)R 9 .
  • R 2 is —C(O)OR 9 .
  • R 2 is —C(O)N(R 9 ) 2 .
  • R 2 is —[C(R 12 ) 2 ] r —C(O)OR 9 .
  • R 2 is —[C(R 12 ) 2 ] r —C(O)N(R 9 ) 2 .
  • R 2 is -alkyl
  • R 2 is —[C(R 12 ) 2 ] q -aryl.
  • R 2 is —[C(R 12 ) 2 ] q -cycloalkyl.
  • R 2 is —[C(R 12 ) 2 ] q -cycloalkenyl.
  • R 2 is —[C(R 12 ) 2 ] q -heterocycloalkyl.
  • R 2 is —[C(R 12 ) 2 ] q -heteroaryl.
  • R 2 is —[C(R 12 ) 2 ] q -heterocycloalkenyl.
  • R 2 is —C(O)OR 9 or —C(O)N(R 9 ) 2 .
  • R 2 is —C(O)OH.
  • R 2 is —C(O)NH 2 .
  • R 2 is —C(O)R 9 , —C(O)OR 9 , —C(O)OCH 2 OR 9 , —C(O)N(R 9 ) 2 , —[C(R 12 ) 2 ] q —C(O)OR 9 , —[C(R 12 ) 2 ] q —C(O)N(R 9 ) 2 or —[C(R 12 ) 2 ] q -heteroaryl wherein a heteroaryl group can be optionally substituted with up to 4 substituents, which are the same or different, and are selected from alkyl, alkenyl, alkynyl, aryl, —[C(R 12 ) 2 ] q -cycloalkyl, —[C(R 12 ) 2 ] q -cycloalkenyl, —[C(R 12 ) 2 ] q -heterocycloalkyl, —[C
  • R 3 is
  • R 3 is
  • R 3 is
  • R 3 is
  • R 3 is
  • R 3 is
  • R 3 is
  • R 30 groups together with the carbon atoms to which they are attached, join to form an aryl or heteroaryl group.
  • R 3 is
  • each R 30 group is independently selected from H and alkyl.
  • R 3 is:
  • R 3 is:
  • R 3 is:
  • R 3 is:
  • R 3 is:
  • R 4 is H.
  • R 4 is H or F.
  • R 4 is F.
  • R 5 is H.
  • R 6 is H.
  • R 6 is H or F.
  • R 6 is F.
  • R 5 is H.
  • R 5 is other than H.
  • R 5 is alkyl
  • R 5 is halo or haloalkyl.
  • R 5 is halo
  • R 5 is haloalkyl
  • R 5 is methyl
  • R 5 is ethyl
  • R 5 is Cl, Br or CF 3 .
  • R 6 is H.
  • R 6 is H or F.
  • R 6 is other than H.
  • R 6 is alkyl
  • R 6 is halo
  • R 6 is methyl
  • R 6 is F.
  • R 7 is H.
  • R 4 and R 7 are each H.
  • R 4 , R 6 and R 7 are each H.
  • R 4 , R 5 , R 6 and R 7 are each H.
  • R 4 , R 6 and R 7 are each H and R 5 is other than H.
  • R 4 , R 6 and R 7 are each H and R 5 is haloalkyl.
  • R 4 , R 6 and R 7 are each H and R 5 is halo.
  • R 4 , R 6 and R 7 are each H and R 5 is Cl.
  • R 4 , R 6 and R 7 are each H and R 5 is Br.
  • R 4 , R 6 and R 7 are each H and R 5 is CF 3 .
  • R 2 is —C(O)OR 9 and R 3 is
  • R 2 is —C(O)OH and R 3 is
  • R 2 is —C(O)N(R 9 ) 2 and R 3 is
  • R 2 is —C(O)NH 2 and R 3 is
  • R 1 -R 10 is
  • R 2 is —C(O)OR 9 ; and R 3 is
  • R 1 -R 10 is
  • R 2 is —C(O)OH; and R 3 is
  • R 1 -R 10 is
  • R 2 is —C(O)N(R 9 ) 3 ; and R 3 is
  • R 1 -R 10 is
  • R 2 is —C(O)R 9 ; and R 3 is
  • R 1 -R 10 is
  • R 2 is —C(O)OH; and R 3 is
  • R 2 is —C(O)N(R 9 ) 2 ; and R 3 is
  • R 1 -R 10 is
  • R 2 is —C(O)NH 2 ; and R 3 is
  • R 1 -R 10 is —CH 2 -heteroaryl or alkyl; R 2 is —C(O)OR 9 ; and R 3 is
  • R 1 -R 10 is —CH 2 -heteroaryl or alkyl; R 2 is —C(O)OH; and R 3 is
  • R 1 -R 10 is —CH 2 -heteroaryl or alkyl; R 2 is —C(O)N(R 9 ) 2 ; and R 3 is
  • R 1 -R 10 is —CH 2 -heteroaryl or alkyl; R 2 is —C(O)NH 2 ; and R 3 is
  • R 1 -R 10 is benzyl, wherein the phenyl moiety of the benzyl group is optionally substituted with from 1-4 groups independently selected from: alkyl, —O-alkyl, halo, —O-haloalkyl, —OH, —NH 2 , —NH(alkyl), —N(alkyl) 2 , —NO 2 , —CN, —NHC(O)-alkyl, —O-alkylene-heterocycloalkyl —C(O)O-alkyl and —O-haloalkyl; R 2 is —C(O)OH; and R 3 is
  • R 1 -R 10 is benzyl, wherein the phenyl moiety of the benzyl group is optionally substituted with from 1-4 groups independently selected from: alkyl, —O-alkyl, halo, —O-haloalkyl, —OH, —NH 2 , —NH(alkyl), —N(alkyl) 2 , —NO 2 , —CN, —NHC(O)-alkyl, —O-alkylene-heterocycloalkyl —C(O)O-alkyl and —O-haloalkyl; R 2 is —C(O)N(R 9 ) 2 ; and R 3 is
  • R 1 -R 10 is
  • R 2 is —C(O)OH or —C(O)NH 2 ;
  • R 3 is
  • R 4 , R 6 and R 7 are each H; and R 5 is halo or haloalkyl.
  • R 1 -R 10 is
  • R 2 is —C(O)OH or —C(O)NH 2 ;
  • R 3 is
  • R 4 , R 6 and R 7 are each H; and R 5 is halo or haloalkyl.
  • R 1 -R 10 is —CH 2 -heteroaryl or alkyl;
  • R 2 is —C(O)OH or —C(O)NH 2 ;
  • R 3 is
  • R 4 , R 6 and R 7 are each H; and R 5 is halo or haloalkyl.
  • R 1 -R 10 is benzyl, wherein the phenyl moiety of the benzyl group is optionally substituted with from 1-4 groups independently selected from: alkyl, —O-alkyl, halo, —O-haloalkyl, —OH, —NH 2 , —NH(alkyl), —N(alkyl) 2 , —NO 2 , —CN, —NHC(O)-alkyl, —O-alkylene-heterocycloalkyl —C(O)O-alkyl and —O-haloalkyl;
  • R 2 is —C(O)OH or —C(O)NH 2 ;
  • R 3 is
  • R 4 , R 6 and R 7 are each H; and R 5 is halo or haloalkyl.
  • the compounds of formula (II) have the formula (IIa):
  • R 1 is —[C(R 12 ) 2 ] r —;
  • R 2 is —C(O)OH, —C(O)NH 2 , —C(O)OCH 2 CH 2 NH 2 , —C(O)OCH 2 CH 2 N(CH 3 ) 2 , C(O)OCH 2 CH 2 CH 2 NH 2 or —C(O)OCH 2 CH 2 CH 2 N(CH 3 ) 2 ;
  • R 3 is:
  • R 4 , R 5 , R 6 and R 7 are each, independently, H, alkyl, —O-alkyl, halo, haloalkyl or hydroxyalkyl;
  • R 10 is H, aryl, cycloalkyl, heterocycloalkyl or heteroaryl, wherein a cycloalkyl, heterocycloalkyl, aryl or heteroaryl group can be optionally substituted with one or more substituents, which are each independently selected from alkyl, —O-alkyl, halo, —O-haloalkyl, —OH, —NH 2 , —NH(alkyl), —N(alkyl) 2 , —NO 2 , —CN, —NHC(O)-alkyl, —O-alkylene-heterocycloalkyl —C(O)O-alkyl and —O-haloalkyl;
  • R 9 is H, alkyl or aryl
  • each occurrence of R 12 is H, alkyl or halo, or two geminal R 12 groups, together with the common carbon atom to which they are attached, join to form a 3- to 6-membered cycloalkyl group;
  • each occurrence of R 30 is independently, H, alkyl, aryl, halo, hydroxy, hydroxyalkyl, haloalkyl, —O-alkyl or —CN, or two adjacent R 30 groups, together with the carbon atoms to which they are attached, join to form a cycloalkyl, heterocycloalkyl, aryl or heteroaryl group; and
  • r is an integer ranging from 1 to 4.
  • R 1 is —CH 2 —
  • R 2 is —C(O)OH or —C(O)NH 2 ;
  • R 3 is:
  • R 4 , R 6 and R 7 are each H;
  • R 5 is H, halo or haloalkyl
  • R 10 is H aryl, cycloalkyl or heteroaryl, wherein a cycloalkyl, aryl or heteroaryl group can be optionally substituted with one or more substituents, which are each independently selected from alkyl, —O-alkyl, halo, —O-haloalkyl, —OH, —NH 2 , —NH(alkyl), —N(alkyl) 2 , —NO 2 , —CN, —NHC(O)-alkyl, —O-alkylene-heterocycloalkyl —C(O)O-alkyl and —O-haloalkyl; and
  • r is an integer ranging from 1 to 4.
  • R 1 is —CH 2 —
  • R 2 is —C(O)OH
  • R 3 is:
  • R 4 , R 6 and R 7 are each H;
  • R 5 is H, halo or haloalkyl
  • R 10 is H aryl, cycloalkyl or heteroaryl, wherein a cycloalkyl, aryl or heteroaryl group can be optionally substituted with one or more substituents, which are each independently selected from alkyl, —O-alkyl, halo, —O-haloalkyl, —OH, —NH 2 , —NH(alkyl), —N(alkyl) 2 , —NO 2 , —CN, —NHC(O)-alkyl, —O-alkylene-heterocycloalkyl —C(O)O-alkyl and —O-haloalkyl; and
  • r is an integer ranging from 1 to 4.
  • R 1 is —CH 2 —
  • R 2 is —C(O)OH
  • R 3 is:
  • R 4 , R 6 and R 7 are each H;
  • R 5 is H, halo or haloalkyl
  • R 10 is phenyl, which can be optionally substituted with one or more substituents, which are each independently selected from alkyl, —O-alkyl, halo, —O-haloalkyl, —OH, —NH 2 , —NH(alkyl), —N(alkyl) 2 , —NO 2 , —CN, —NHC(O)-alkyl, —O-alkylene-heterocycloalkyl —C(O)O-alkyl and —O-haloalkyl; and
  • r is an integer ranging from 1 to 4.
  • R 1 is —CH 2 —
  • R 2 is —C(O)OH
  • R 3 is:
  • R 4 , R 6 and R 7 are each H;
  • R 5 is Cl, Br, methyl, ethyl, —OCH 3 or CF 3 ;
  • R 10 is phenyl, which can be optionally substituted with one or more substituents, which are each independently selected from alkyl, —O-alkyl, halo, —O-haloalkyl, —OH, —NH 2 , —NH(alkyl), —N(alkyl) 2 , —NO 2 , —CN, —NHC(O)-alkyl, —O-alkylene-heterocycloalkyl —C(O)O-alkyl and —O-haloalkyl; and
  • r is an integer ranging from 1 to 4.
  • R 1 , R 2 , R 3 , R 4 , R 5 , R 6 , R 7 and R 10 are selected independently of each other.
  • a compound of formula (II) is in purified form.
  • Scheme 1 sets forth a method for making compounds of formula A-4, which are useful intermediates for making the 3-Heterocyclic Substituted Indole Derivatives.
  • R 4 , R 5 , R 6 and R 7 are defined above for the compounds of formulas (I) and (II) and R is ethyl.
  • An aniline compound of formula A-1 can be converted to an indole compound of formula A-4 using the method outlined in Scheme 3, which is described in Nazare et al., Angew. Chem., 116:4626-4629 (2004).
  • the compounds of formula A-4 can be obtained from the compounds of formula A-1 using various indole syntheses that are well-known to those skilled in the art of organic synthesis, such as the Fischer indole synthesis.
  • Scheme 2 shows methods useful for making compounds of formulas B-4 and B-6, which are useful intermediates for making the 3-Heterocyclic Substituted Indole Derivatives.
  • R 4 , R 5 , R 6 and R 7 are defined above for the compounds of formulas (I) and (II) and R is ethyl.
  • a substituted aniline of formula B-1, wherein R 7 is H can be di-brominated using bromine to provide the compounds of formula B-2.
  • Selective de-bromination using tin(II) chloride provides the corresponding monobromo compounds of formula B-3, which can then undergo palladium-catalyzed cyclization in the presence of pyruvate to provide the compounds of formula B-4, wherein R 7 is H.
  • a compound of formula B-1, wherein R 7 is other than H can be monobrominated using bromine to provide the compounds of formula B-5.
  • a compound of formula B-5 can then undergo palladium-catalyzed cyclization in the presence of pyruvate to provide the compounds of formula B-6, wherein R 7 is other than H.
  • Scheme 3 shows methods useful for making compounds of formula C-5, which are useful intermediates for making the 3-Heterocyclic Substituted Indole Derivatives.
  • R 1 , R 4 , R 5 , R 6 and R 7 are defined above for the compounds of formulas (I) and (II);
  • A is alkylene, cycloalkylene, heterocycloalklene, arylene or heteroarylene;
  • R′ is —C(O)O-alkyl.
  • 3-Amino indole compounds of formula C-1 can be converted into compounds of formula C-2 using triphosgene in the presence of a base, such as triethylamine.
  • the compounds of formula C-2 can then be reacted with a compound of formula C-3 to provide the urea compounds of formula C-4.
  • the compounds of formula C-4 can be converted into compounds of formula C-5 via a base-catalyzed ring closure using as base such as potassium tert-butoxide.
  • Scheme 4 shows methods useful for making compounds of formula C-5, which are useful intermediates for making the 3-Heterocyclic Substituted Indole Derivatives.
  • R 1 , R 4 , R 5 , R 6 and R 7 are defined above for the compounds of formulas (I) and (II) and R′ is —C(O)O-alkyl.
  • Compounds of either formula A-4, B-4, or B-6 can be converted into compounds of formula D-1 by treatment with sodium nitrite (NaNO 2 ).
  • Compounds of formula D-1 can be converted into compounds of formula D-2 by treatment with sodium hydrosulfite (Na 2 S 2 O 4 ).
  • Scheme 5 shows methods useful for making compounds of formula E-5, which are useful intermediates for making the 3-Heterocyclic Substituted Indole Derivatives.
  • R 1 , R 4 , R 5 , R 6 and R 7 are defined above for the compounds of formulas (I) and (II).
  • Fluorophenyl compounds of formula E-1 can be reacted with an amine of formula E-2 in the presence of a base, such as diisopropylethylamine, to provide the aminophenyl compounds of formula E-3.
  • the compounds of formula E-3 can then be reacted with ten-butyl bromoacetate (E-4) in the presence of a base, such as potassium tert-butoxide, to provide the 2-carboethoxy indole compounds of formula E-5.
  • Scheme 6 shows methods useful for making compounds of formula F-4, which correspond to the 3-Heterocyclic Substituted Indole Derivatives of formula (I), wherein R 2 is —C(O)N(R 9 )S(O) 2 —R 11 .
  • R 1 , R 4 , R 5 , R 6 , R 7 and R 11 are defined above for the compounds of formula (I), and A is alkylene, cycloalkylene, heterocycloalklene, arylene or heteroarylene.
  • the compounds of formula F-1 can be treated with trifluoroacetic acid to provide the compounds of formula F-2.
  • Compounds of formula F-2 can then be reacted with a compound of formula F-3 in the presence of a base, such as 1,8-diazabicyclo[5.4.0]undec-7-ene (DBU), to provide the compounds of formula F-4.
  • a base such as 1,8-diazabicyclo[5.4.0]undec-7-ene (DBU)
  • Scheme 7 shows a method useful for making compounds of formula J, which correspond to the compounds of formula (II), wherein R 2 is an amide.
  • R 1 , R 3 , R 4 , R 5 , R 6 , R 7 , R 9 and R 10 are defined above for the compounds of formulas (I) and (II).
  • a 2-carboxy indole compound of formula G can be coupled with an amine of formula NH(R 9 ) 2 in the presence of carbonyldiimidazole (CDI) and 1,8-diazabicyclo[5.4.0]undec-7-ene (DBU) to provide the compounds of formula J, which correspond to the Compounds of Formula (I) wherein R 2 is —C(O)N(R 9 ) 2 .
  • CDI carbonyldiimidazole
  • DBU 1,8-diazabicyclo[5.4.0]undec-7-ene
  • Scheme 8 shows a method useful for making the Compounds of Formula (I), wherein R 2 is:
  • R 1 , R 3 , R 4 , R 5 , R 6 , R 7 , R 10 and R 20 are defined above for the compounds of formulas (I) and (II).
  • a 2-carboxy indole compound of formula G can be reacted with a compound of formula 8A to provide the compounds of formula K, which correspond to the 3-Heterocyclic Substituted Indole Derivatives wherein R 2 is:
  • 3-Heterocyclic Substituted Indole Derivatives may require the need for the protection of certain functional groups (i.e., derivatization for the purpose of chemical compatibility with a particular reaction condition).
  • Suitable protecting groups for the various functional groups of the 3-Heterocyclic Substituted Indole Derivatives and methods for their installation and removal may be found in Greene et al., Protective Groups in Organic Synthesis , Wiley-Interscience, New York, (1999).
  • the synthesis of the 3-Heterocyclic Substituted Indole Derivatives may require the construction of an amide bond.
  • Methods include but are not limited to the use of a reactive carboxy derivative (e.g. acid halide, or ester at elevated temperatures) or the use of an acid with a coupling reagent (e.g. DECI, DCC) with an amine at 0° C. to 100° C.
  • a coupling reagent e.g. DECI, DCC
  • Suitable solvents for the reaction are halogenated hydrocarbons, ethereal solvents, dimethyl formamide and the like.
  • the reaction can be conducted under pressure or in a sealed vessel.
  • the starting materials and the intermediates prepared using the methods set forth in Schemes 1-8 may be isolated and purified if desired using conventional techniques, including but not limited to filtration, distillation, crystallization, chromatography and the like. Such materials can be characterized using conventional means, including physical constants and spectral data.
  • Compound 8 was prepared using the method described in Example 1 and using 5-chloro-2-fluorobenzonitrile and benzylamine in Step A (and methyl anthranilate in Step D.
  • Compound 129 was prepared using the method described in Example 1 and using 5-chloro-2-fluorobenzonitrile and benzylamine in Step A and methyl 2-amino-5-chlorobenzoate in Step D.
  • Compound 130 was prepared using the method described in Example 1 and using 5-chloro-2-fluorobenzonitrile and benzylamine in Step A and methyl 2-amino-4-chlorobenzoate in Step D.
  • Compound 13 was prepared using the method described in Example 1 and using 5-chloro-2-fluorobenzonitrile and benzylamine in Step A and 3-aminothiophene-2-carboxylic acid methyl ester in Step D.
  • Compound 131 was prepared using the method described in Example 1 and using 5-chloro-2-fluorobenzonitrile and benzylamine in Step A and 2-amino-4-methylthiophene-3-carboxylic acid methyl ester in Step D.
  • Compound 12 was prepared using the method described in Example 1 and using 5-chloro-2-fluorobenzonitrile and benzylamine in Step A and 4-aminothiophene-3-carboxylic acid methyl ester in Step D.
  • Compound 132 was prepared using the method described in Example 1 and using 5-chloro-2-fluorobenzonitrile and benzylamine in Step A and 2-aminothiophene-3-carboxylic acid methyl ester in Step D.
  • Compound 133 was prepared using the method described in Example 1 and using 5-chloro-2-fluorobenzonitrile and benzylamine in Step A and 3-amino-4-methylthiophene-2-carboxylic acid methyl ester in Step D.
  • Compound 134 was prepared using the method described in Example 1 and using 5-chloro-2-fluorobenzonitrile and benzylamine in Step A and methyl 2-amino-5-bromobenzoate in Step D.
  • Compound 135 was prepared using the method described in Example 1 and using 5-chloro-2-fluorobenzonitrile and benzylamine in Step A and dimethyl aminoterephthalate in Step D.
  • Compound 136 was prepared using the method described in Example 1 and using 5-chloro-2-fluorobenzonitrile and benzylamine in Step A and methyl 2-amino-4,5-dimethoxybenzoate in Step D.
  • Compound 137 was prepared using the method described in Example 1 and using 5-chloro-2-fluorobenzonitrile and benzylamine in Step A and 2-amino-4,5,6,7-tetrahydrobenzo[b]thiophene-3-carboxylic acid methyl ester in Step D.
  • Compound 51 was prepared using the method described in Example 1 and using 5-chloro-2-fluorobenzonitrile and benzylamine in Step A and 5-amino-1-methyl-1H-pyrazole-4-carboxylic acid ethyl ester in Step D.
  • Compound 138 was prepared using the method described in Example 1 and using 5-chloro-2-fluorobenzonitrile and benzylamine in Step A and 3-aminopyrazine-2-carboxylic acid methyl ester in Step D.
  • Compound 139 was prepared using the method described in Example 1 and using 5-chloro-2-fluorobenzonitrile and benzylamine in Step A and 2-amino-5-methylthiophene-3-carboxylic acid methyl ester in Step D.
  • Compound 140 was prepared using the method described in Example 1 and using 5-chloro-2-fluorobenzonitrile and benzylamine in Step A and 2-amino-5,6-dihydro-4H-cyclopenta[b]thiophene-3-carboxylic acid methyl ester in Step D.
  • Compound 141 was prepared using the method described in Example 1 and using 5-chloro-2-fluorobenzonitrile and benzylamine in Step A and 2-amino-4,5-dimethylthiophene-3-carboxylic acid methyl ester in Step D.
  • Compound 142 was prepared using the method described in Example 1 and using 5-chloro-2-fluorobenzonitrile and benzylamine in Step A and 2-amino-4-(4-bromophenyl)thiophene-3-carboxylic acid methyl ester in Step D.
  • Compound 143 was prepared using the method described in Example 1 and using 5-chloro-2-fluorobenzonitrile and benzylamine in Step A and 2-amino-4-furan-2-yl-thiophene-3-carboxylic acid methyl ester in Step D.
  • Compound 144 was prepared using the method described in Example 1 and using 5-chloro-2-fluorobenzonitrile and benzylamine in Step A and 2-amino-5-methyl-4-phenylthiophene-3-carboxylic acid methyl ester in Step D.
  • Compound 145 was prepared using the method described in Example 1 and using 5-chloro-2-fluorobenzonitrile and methylamine in Step A and 3-amino-thiophene-2-carboxylic acid methyl ester in Step D.
  • Compound 146 was prepared using the method described in Example 1 and using 5-chloro-2-fluorobenzonitrile and methylamine in Step A and 5-amino-3-(4-methoxybenzyl)-3H-imidazole-4-carboxylic acid methyl ester in Step D.
  • Compound 147 was prepared from compound 138 using the method described in Example 3, wherein 2,2,2-trifluoroethylamine was used.
  • Compound 148 was prepared using the method described in Example 1 and using 5-chloro-2-fluorobenzonitrile and methylamine in Step A and 4-aminothiophene-2,3-dicarboxylic acid dimethyl ester in Step D.
  • Compound 149 was prepared using the method described in Example 1 and using 5-chloro-2-fluorobenzonitrile and methylamine in Step A and 3-amino-pyridine-2-carboxylic acid methyl ester in Step D.
  • Compound 150 was prepared using the method described in Example 1 and using 5-chloro-2-fluorobenzonitrile and methylamine in Step A and 3-aminoisonicotinic acid methyl ester in Step D.
  • Compound 151 was prepared using the method described in Example 1 and using 5-chloro-2-fluorobenzonitrile and methylamine in Step A and 4-aminonicotinic acid methyl ester in Step D.
  • Compound 152 was prepared using the method described in Example 1 and using 5-chloro-2-fluorobenzonitrile and methylamine in Step A and methyl 3-aminocrotonate in Step D.
  • Compound 153 was prepared using the method described in Example 1 and using 5-chloro-2-fluorobenzonitrile and methylamine in Step A and diethyl aminomethylenemalonate in Step D.
  • Compound 154 was prepared using the method described in Example 1 and using 5-chloro-2-fluorobenzonitrile and methylamine in Step A and ethyl 3-amino-3-ethoxyacrylate in Step D.
  • Compound 155 was prepared using the method described in Example 1 and using 5-chloro-2-fluorobenzonitrile and methylamine in Step A and 2-aminocyclohex-1-enecarboxylic acid methyl ester in Step D.
  • Compound 74 was prepared from compound 138 using the method described in Example 2, wherein 4-cyanobenzenesulfonamide was used.
  • Compound 156 was prepared from compound 138 using the method described in Example 2, wherein 2-trifluoromethylbenzenesulfonamide was used.
  • Compound 157 was prepared from compound 138 using the method described in Example 2, wherein 4-methoxybenzenesulfonamide was used.
  • Compound 158 was prepared from compound 138 using the method described in Example 2, wherein 2,4-dimethoxybenzenesulfonamide was used.
  • Compound 159 was prepared from compound 138 using the method described in Example 2, wherein naphthalene-2-sulfonamide was used.
  • Compound 160 was prepared from compound 138 using the method described in Example 2, wherein 4-methoxy-3-methoxycarbonylbenzenesulfonamide was used.
  • Compound 161 was prepared from compound 138 using the method described in Example 2, wherein 6-ethoxybenzothiazole-2-sulfonamide was used.
  • Compound 162 was prepared from compound 138 using the method described in Example 2, wherein 2-methoxycarbonylbenzenesulfonamide was used.
  • Compound 163 was prepared from compound 138 using the method described in Example 2, wherein 4-trifluoromethoxybenzenesulfonamide was used.
  • Compound 164 was prepared from compound 138 using the method described in Example 2, wherein 4-methylbenzenesulfonamide was used.
  • Compound 165 was prepared from compound 138 using the method described in Example 2, wherein 2-methylbenzenesulfonamide was used.
  • Compound 166 was prepared from compound 138 using the method described in Example 2, wherein 4-chlorobenzenesulfonamide was used.
  • Compound 167 was prepared from compound 138 using the method described in Example 2, wherein 2-fluorobenzenesulfonamide was used.
  • Compound 168 was prepared from compound 138 using the method described in Example 2, wherein 3-trifluoromethylbenzenesulfonamide was used.
  • Compound 169 was prepared from compound 138 using the method described in Example 2, wherein 3-bromomethylbenzenesulfonamide was used.
  • Compound 170 was prepared from compound 138 using the method described in Example 2, wherein 2,5-dichlorothiophene-3-sulfonamide was used.
  • Compound 171 was prepared from compound 138 using the method described in Example 2, wherein 4-fluorobenzenesulfonamide was used.
  • Compound 172 was prepared from compound 138 using the method described in Example 2, wherein 3,5-difluorobenzenesulfonamide was used.
  • Compound 173 was prepared from compound 138 using the method described in Example 2, wherein 2-chlorobenzenesulfonamide was used.
  • Compound 174 was prepared from compound 138 using the method described in Example 2, wherein 3,4-difluorobenzenesulfonamide was used.
  • Compound 175 was prepared from compound 138 using the method described in Example 2, wherein 3,5-dichlorobenzenesulfonamide was used.
  • Compound 176 was prepared from compound 138 using the method described in Example 2, wherein 5-chloro-2-fluorobenzenesulfonamide was used.
  • Compound 177 was prepared from compound 138 using the method described in Example 2, wherein 2-bromo-4-trifluoromethylbenzenesulfonamide was used.
  • Compound 178 was prepared from compound 138 using the method described in Example 2, wherein 4-bromo-2-chlorobenzenesulfonamide was used.
  • Compound 179 was prepared from compound 138 using the method described in Example 2, wherein 2-bromo-5-trifluoromethylbenzenesulfonamide was used.
  • Compound 180 was prepared from compound 138 using the method described in Example 2, wherein 4-fluoro-2-methylbenzenesulfonamide was used.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Virology (AREA)
  • Pharmacology & Pharmacy (AREA)
  • General Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Communicable Diseases (AREA)
  • Veterinary Medicine (AREA)
  • Animal Behavior & Ethology (AREA)
  • Oncology (AREA)
  • Public Health (AREA)
  • Molecular Biology (AREA)
  • Engineering & Computer Science (AREA)
  • Biotechnology (AREA)
  • Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)
  • Nitrogen Condensed Heterocyclic Rings (AREA)
  • Plural Heterocyclic Compounds (AREA)
  • Heterocyclic Carbon Compounds Containing A Hetero Ring Having Oxygen Or Sulfur (AREA)
  • Medicines That Contain Protein Lipid Enzymes And Other Medicines (AREA)

Abstract

The present invention relates to 3-Heterocyclic Substituted Indole Derivatives, compositions comprising at least one 3-Heterocyclic Substituted Indole Derivative, and methods of using the 3-Heterocyclic Substituted Indole Derivatives for treating or preventing a viral infection or a virus-related disorder in a patient.

Description

CROSS-REFERENCE TO RELATED APPLICATIONS
This application is a 371 National Stage Application of PCT/US2008/083351 with an international filing date of Nov. 13, 2008 and claims the benefit of U.S. Provisional Patent Application No. 60/988,528 filed Nov. 16, 2007, each of which is hereby incorporated by reference in its entirety.
FIELD OF THE INVENTION
The present invention relates to 3-Heterocyclic Substituted Indole Derivatives, compositions comprising at least one 3-Heterocyclic Substituted Indole Derivative, and methods of using the 3-Heterocyclic Substituted Indole Derivatives for treating or preventing a viral infection or a virus-related disorder in a patient.
BACKGROUND OF THE INVENTION
HCV is a (+)-sense single-stranded RNA virus that has been implicated as the major causative agent in non-A, non-B hepatitis (NANBH). NANBH is distinguished from other types of viral-induced liver disease, such as hepatitis A virus (HAV), hepatitis B virus (HBV), hepatitis delta virus (HDV), as well as from other forms of liver disease such as alcoholism and primary biliary cirrhosis.
Hepatitis C virus is a member of the hepacivirus genus in the family Flaviviridae. It is the major causative agent of non-A, non-B viral hepatitis and is the major cause of transfusion-associated hepatitis and accounts for a significant proportion of hepatitis cases worldwide. Although acute HCV infection is often asymptomatic, nearly 80% of cases resolve to chronic hepatitis. About 60% of patients develop liver disease with various clinical outcomes ranging from an asymptomatic carrier state to chronic active hepatitis and liver cirrhosis (occurring in about 20% of patients), which is strongly associated with the development of hepatocellular carcinoma (occurring in about 1-5% of patients). The World Health Organization estimates that 170 million people are chronically infected with HCV, with an estimated 4 million living in the United States.
HCV has been implicated in cirrhosis of the liver and in induction of hepatocellular carcinoma. The prognosis for patients suffering from HCV infection remains poor as HCV infection is more difficult to treat than other forms of hepatitis. Current data indicates a four-year survival rate below 50% for patients suffering from cirrhosis and a five-year survival rate below 30% for patients diagnosed with localized resectable hepatocellular carcinoma. Patients diagnosed with localized unresectable hepatocellular carcinoma fare even worse, having a five-year survival rate less than 1%.
HCV is an enveloped RNA virus containing a single-stranded positive-sense RNA genome approximately 9.5 kb in length. The RNA genome contains a 5′-nontranslated region (5′ NTR) of 341 nucleotides, a large open reading frame (ORF) encoding a single polypeptide of 3,010 to 3,040 amino acids, and a 3′-nontranslated region (3′-NTR) of variable length of about 230 nucleotides. HCV is similar in amino acid sequence and genome organization to flaviviruses and pestiviruses, and therefore HCV has been classified as a third genus of the family Flaviviridae.
The 5′ NTR, one of the most conserved regions of the viral genome, contains an internal ribosome entry site (IRES) which plays a pivotal role in the initiation of translation of the viral polyprotein. A single long open reading frame encodes a polyprotein, which is co- or post-translationally processed into structural (core, E1, E2 and p7) and nonstructural (NS2, NS3, NS4A, NS4B, NS5A, and NS5B) viral proteins by either cellular or viral proteinases. The 3′ NTR consists of three distinct regions: a variable region of about 38 nucleotides following the stop codon of the polyprotein, a polyuridine tract of variable length with interspersed substitutions of cytidines, and 98 nucleotides (nt) at the very 3′ end which are highly conserved among various HCV isolates. By analogy to other plus-strand RNA viruses, the 3′-NTR is thought to play an important role in viral RNA synthesis. The order of the genes within the genome is: NH2-C-E1-E2-p7-NS2-NS3-NS4A-NS4B-NS5A-NS5B-COOH.
Processing of the structural proteins core (C), envelope protein 1 and (E1, E2), and the p7 region is mediated by host signal peptidases. In contrast, maturation of the nonstructural (NS) region is accomplished by two viral enzymes. The HCV polyprotein is first cleaved by a host signal peptidase generating the structural proteins C/E1, E1/E2, E2/p7, and p7/NS2. The NS2-3 proteinase, which is a metalloprotease, then cleaves at the NS2/NS3 junction. The NS3/4A proteinase complex (NS3 being a serine protease and NS4A acting as a cofactor of the NS3 protease), is then responsible for processing all the remaining cleavage junctions. RNA helicase and NTPase activities have also been identified in the NS3 protein. One-third of the NS3 protein functions as a protease, and the remaining two-thirds of the molecule acts as the helicase/ATPase that is thought to be involved in HCV replication. NS5A may be phosphorylated and acts as a putative cofactor of NS5B. The fourth viral enzyme, NS5B, is a membrane-associated RNA-dependent RNA polymerase (RdRp) and a key component responsible for replication of the viral RNA genome. NS5B contains the “GDD” sequence motif, which is highly conserved among all RdRps characterized to date.
Replication of HCV is thought to occur in membrane-associated replication complexes. Within these, the genomic plus-strand RNA is transcribed into minus-strand RNA, which in turn can be used as a template for synthesis of progeny genomic plus-strands. At least two viral enzymes appear to be involved in this reaction: the NS3 helicase/NTPase, and the NS5B RNA-dependent RNA polymerase. While the role of NS3 in RNA replication is less clear, NS5B is the key enzyme responsible for synthesis of progeny RNA strands. Using recombinant baculoviruses to express NS5B in insect cells and a synthetic nonviral RNA as a substrate, two enzymatic activities have been identified as being associated with it: a primer-dependent RdRp and a terminal transferase (TNTase) activity. It was subsequently confirmed and further characterized through the use of the HCV RNA genome as a substrate. Other studies have shown that NS5B with a C-terminal 21 amino-acid truncation expressed in Escherichia coli is also active for in vitro RNA synthesis. On certain RNA templates, NS5B has been shown to catalyze RNA synthesis via a de novo initiation mechanism, which has been postulated to be the mode of viral replication in vivo. Templates with single-stranded 3′ termini, especially those containing a 3′-terminal cytidylate moiety, have been found to direct de novo synthesis efficiently. There has also been evidence for NS5B to utilize di- or tri-nucleotides as short primers to initiate replication.
It is well-established that persistent infection of HCV is related to chronic hepatitis, and as such, inhibition of HCV replication is a viable strategy for the prevention of hepatocellular carcinoma. Present treatment approaches for HCV infection suffer from poor efficacy and unfavorable side-effects and there is currently a strong effort directed to the discovery of HCV replication inhibitors that are useful for the treatment and prevention of HCV related disorders. New approaches currently under investigation include the development of prophylactic and therapeutic vaccines, the identification of interferons with improved pharmacokinetic characteristics, and the discovery of agents designed to inhibit the function of three major viral proteins: protease, helicase and polymerase. In addition, the HCV RNA genome itself, particularly the IRES element, is being actively exploited as an antiviral target using antisense molecules and catalytic ribozymes.
Particular therapies for HCV infection include α-interferon monotherapy and combination therapy comprising α-interferon and ribavirin. These therapies have been shown to be effective in some patients with chronic HCV infection. The use of antisense oligonucleotides for treatment of HCV infection has also been proposed as has the use of free bile acids, such as ursodeoxycholic acid and chenodeoxycholic acid, and conjugated bile acids, such as tauroursodeoxycholic acid. Phosphonoformic acid esters have also been proposed as potentially for the treatment of various viral infections including HCV. Vaccine development, however, has been hampered by the high degree of viral strain heterogeneity and immune evasion and the lack of protection against reinfection, even with the same inoculum.
The development of small-molecule inhibitors directed against specific viral targets has become a major focus of anti-HCV research. The determination of crystal structures for NS3 protease, NS3 RNA helicase, and NS5B polymerase has provided important structural insights that should assist in the rational design of specific inhibitors.
NS5B, the RNA-dependent RNA polymerase, is an important and attractive target for small-molecule inhibitors. Studies with pestiviruses have shown that the small molecule compound VP32947 (3-[((2-dipropylamino)ethyl)thio]-5H-1,2,4-triazino[5,6-b]indole) is a potent inhibitor of pestivirus replication and most likely inhibits the NS5B enzyme since resistant strains are mutated in this gene Inhibition of RdRp activity by (−)β-L-2′,3′-dideoxy-3′-thiacytidine 5′-triphosphate (3TC; lamivudine triphosphate) and phosphonoacetic acid also has been observed.
Despite the intensive effort directed at the treatment and prevention of HCV and related viral infections, there exists a need in the art for non-peptide, small-molecule compounds having desirable or improved physicochemical properties that are useful for inhibiting viruses and treating viral infections and virus-related disorders.
SUMMARY OF THE INVENTION
In one aspect, the present invention provides compounds of formula (I):
Figure US08765757-20140701-C00001

and pharmaceutically acceptable salts, solvates, esters and prodrugs thereof, wherein:
R1 is a bond, —[C(R12)2]r—, —[C(R12)2]r—O—[C(R12)2]q—, —[C(R12)2]r—N(R9)—[C(R12)2]q—, —[C(R12)2]q—CH═CH—[C(R12)2]q—, —[C(R12)2]q—C≡C—[C(R12)2]q—, or —[C(R12)2]q—SO2—[C(R12)2]q—;
R2 is —[C(R12)2]q—C(O)N(R9)SOR11, —[C(R12)2]q—C(O)N(R9)SO2R11, —[C(R12)2]q—C(O)N(R9)SO2N(R11)2,
Figure US08765757-20140701-C00002
R3 is:
Figure US08765757-20140701-C00003
wherein the dotted line indicates an optional and additional bond such that when the optional and additional bond is absent, a hydrogen atom is understood to be present on the two ring atoms connected by the dotted line;
R4, R5, R6 and R7 are each, independently, H, alkyl, alkenyl, alkynyl, aryl, —[C(R12)2]q-cycloalkyl, —[C(R12)2]q-cycloalkenyl, —[C(R12)2]q-heterocycloalkyl, —[C(R12)2]q-heterocycloalkenyl, —[C(R12)2]q-heteroaryl, —[C(R12)2]q-haloalkyl, —[C(R12)2]q-hydroxyalkyl, halo, hydroxy, —OR9, —CN, —[C(R12)2]q—C(O)R8, —[C(R12)2]q—C(O)OR9, —[C(R12)2]q—C(O)N(R9)2, —[C(R12)2]q—OR9, —[C(R12)2]q—N(R9)2, —[C(R12)2]q—NHC(O)R8, —[C(R12)2]q—NR8C(O)N(R9)2, —[C(R12)2]q—NHSO2R11, —[C(R12)2]q—S(O)pR11, —[C(R12)2]q—SO2N(R9)2 or —SO2N(R9)C(O)N(R9)2;
each occurrence of R8 is independently H, alkyl, alkenyl, alkynyl, —[C(R12)2]q-aryl, —[C(R12)2]q-cycloalkyl, —[C(R12)2]q-cycloalkenyl, —[C(R12)2]q-heterocycloalkyl, —[C(R12)2]q-heterocycloalkenyl, —[C(R12)2]q-heteroaryl, haloalkyl or hydroxyalkyl;
each occurrence of R9 is independently H, alkyl, alkenyl, alkynyl, —[C(R12)2]q-aryl, —[C(R12)2]q-cycloalkyl, —[C(R12)2]q-cycloalkenyl, —[C(R12)2]q-heterocycloalkyl, —[C(R12)2]q-heterocycloalkenyl, —[C(R12)2]q-heteroaryl, haloalkyl or hydroxyalkyl;
R10 is H, cycloalkyl, cycloalkenyl, heterocycloalkyl, heterocycloalkenyl, aryl, or heteroaryl, wherein a cycloalkyl, cycloalkenyl, heterocycloalkyl, heterocycloalkenyl, aryl or heteroaryl group can be optionally substituted with up to 4 substituents, which are each independently selected from H, alkyl, alkenyl, alkynyl, aryl, —[C(R12)2]q-cycloalkyl, —O—[C(R12)2]q-cycloalkyl, —[C(R12)2]q-cycloalkenyl, —[C(R12)2]q-heterocycloalkyl, —[C(R12)2]q-heterocycloalkenyl, —[C(R12)2]q-heteroaryl, —[C(R12)2]q-haloalkyl, —[C(R12)2]q-hydroxyalkyl, halo, hydroxy, —NO2, —OR9, —CN, —[C(R12)2]q—C(O)R8, —[C(R12)2]q—C(O)OR9, —[C(R12)2]q—C(O)N(R9)2, —[C(R12)2]q—OR9, —[C(R12)2]q—N(R9)2, —[C(R12)2]q—NHC(O)R8, —[C(R12)2]q—NR8C(O)N(R9)2, —[C(R12)2]q—NHSO2R11, —[C(R12)2]q—S(O)pR11, —[C(R12)2]q—SO2N(R9)2 and —SO2N(R9)C(O)N(R9)2, such that when R1 is a bond, R10 is not H;
each occurrence of R11 is independently alkyl, aryl, cycloalkyl, cycloalkenyl, heterocycloalkyl, heterocycloalkenyl, heteroaryl, haloalkyl, hydroxy or hydroxyalkyl, wherein a cycloalkyl, cycloalkenyl, heterocycloalkyl, heterocycloalkenyl, aryl or heteroaryl group can be optionally substituted with up to 4 substituents, which are each independently selected from H, alkyl, alkenyl, alkynyl, aryl, —[C(R12)2]q-cycloalkyl, —[C(R12)2]q-cycloalkenyl, —[C(R12)2]q-heterocycloalkyl, —[C(R12)2]q-heterocycloalkenyl, —[C(R12)2]q-heteroaryl, —[C(R12)2]q-haloalkyl, —[C(R12)2]q-hydroxyalkyl, halo, hydroxy, —OR9, —CN, —[C(R12)2]q—C(O)R8, —[C(R12)2]q—C(O)OR9, —[C(R12)2]q—C(O)N(R9)2, —[C(R12)2]q—OR9, —[C(R12)2]q—N(R9)2, —[C(R12)2]q—NHC(O)R8, —[C(R12)2]q—NR8C(O)N(R9)2, —[C(R12)2]q—NHSO2alkyl, —[C(R12)2]q—NHSO2cycloalkyl, —[C(R12)2]q—NHSO2aryl, —[C(R12)2]q—SO2N(R9)2 and —SO2N(R9)C(O)N(R9)2;
each occurrence of R12 is independently H, halo, —N(R9)2, —OR9, alkyl, cycloalkyl, cycloalkenyl, heterocycloalkyl or heterocycloalkenyl, wherein a cycloalkyl, cycloalkenyl, heterocycloalkyl or heterocycloalkenyl group can be optionally substituted with up to 4 substituents, which are each independently selected from alkyl, halo, haloalkyl, hydroxyalkyl, hydroxy, —CN, —C(O)alkyl, —C(O)Oalkyl, —C(O)NHalkyl, —C(O)N(alkyl)2, —O-alkyl, —NH2, —NH(alkyl), —N(alkyl)2, —NHC(O)alkyl, —NHSO2alkyl, —SO2alkyl or —SO2NH-alkyl, or two R12 groups, together with the carbon atoms to which they are attached, join to form a cycloalkyl, heterocycloalkyl or C═O group;
each occurrence of R20 is independently alkyl, aryl, cycloalkyl, heterocycloalkyl or heteroaryl, or both R20 groups and the carbon atoms to which they are attached, join to form a cycloalkyl, cycloheteroalkyl, aryl or heteroaryl group wherein a cycloalkyl, cycloheteroalkyl, aryl or heteroaryl group can be optionally substituted with up to 4 groups, which are each independently selected from alkyl, alkenyl, alkynyl, halo, hydroxy, —OR9, —CN, —[C(R12)2]q-cycloalkyl, —[C(R12)2]q-cycloalkenyl, —[C(R12)2]q-heterocycloalkyl, —[C(R12)2]q-heterocycloalkenyl, —[C(R12)2]q-haloalkyl, —[C(R12)2]q-hydroxyalkyl, —[C(R12)2]q—C(O)R8, —[C(R12)2]q—C(O)OR9, —[C(R12)2]q—C(O)N(R9)2, —[C(R12)2]q—OR9, —[C(R12)2]q—N(R9)2, —[C(R12)2]q—NHC(O)R8, —[C(R12)2]q—NR8C(O)N(R9)2, —[C(R12)2]q—NHSO2R11, —[C(R12)2]q—S(O)pR11, —[C(R12)2]q—SO2N(R9)2 and —SO2N(R9)C(O)N(R9)2;
each occurrence of R30 is independently, H, alkyl, alkenyl, alkynyl, aryl, —[C(R12)2]q-cycloalkyl, —[C(R12)2]q-cycloalkenyl, —[C(R12)2]q-heterocycloalkyl, —[C(R12)2]q-heterocycloalkenyl, —[C(R12)2]q-heteroaryl, —[C(R12)2]q-haloalkyl, —[C(R12)2]q-hydroxyalkyl, halo, hydroxy, —OR9, —CN, —[C(R12)2]q—C(O)R8, —[C(R12)2]q—C(O)OR9, —[C(R12)2]q—C(O)N(R9)2, —[C(R12)2]q—OR9, —[C(R12)2]q—N(R9)2, —[C(R12)2]q—NHC(O)R8, —[C(R12)2]q—NR8C(O)N(R9)2, —[C(R12)2]q—NHSO2R11, —[C(R12)2]q—S(O)pR11, —[C(R12)2]q—SO2N(R9)2 or —SO2N(R9)C(O)N(R9)2, or two adjacent R30 groups, together with the carbon atoms to which they are attached, join to form a cycloalkyl, heterocycloalkyl, aryl or heteroaryl group;
each occurrence of p is independently 0, 1 or 2;
each occurrence of q is independently an integer ranging from 0 to 4; and
each occurrence of r is independently an integer ranging from 1 to 4.
In another aspect, the present invention provides compounds of formula (II):
Figure US08765757-20140701-C00004

and pharmaceutically acceptable salts, solvates, esters and prodrugs thereof, wherein:
R1 is a bond, —[C(R12)2]r—, —[C(R12)2]r—O—[C(R12)2]q—, —[C(R12)2]r—N(R9)—[C(R12)2]q—, —[C(R12)2]q—CH═CH—[C(R12)2]q—, —[C(R12)2]q—C≡C—[C(R12)2]q—, or —[C(R12)2]q—SO2—[C(R12)2]q—;
R2 is —C(O)R9, —C(O)OR9, —C(O)OCH2OR9, —C(O)N(R9)2, —[C(R12)2]q—C(O)OR9, —[C(R12)2]q—C(O)N(R9)2, —[C(R12)2]q—C(O)N(R9)C═N(R9)2, -alkyl, —[C(R12)2]q-aryl, —[C(R12)2]q-cycloalkyl, —[C(R12)2]q-cycloalkenyl, —[C(R12)2]q-heterocycloalkyl, —[C(R12)2]q-heteroaryl or —[C(R12)2]q-heterocycloalkenyl, wherein an aryl, cycloalkyl, cycloalkenyl, heterocycloalkyl, heterocycloalkenyl or heteroaryl, group can be optionally substituted with up to 4 substituents, which are each independently selected from alkyl, alkenyl, alkynyl, aryl, —[C(R12)2]q-cycloalkyl, —[C(R12)2]q-cycloalkenyl, —[C(R12)2]q-heterocycloalkyl, —[C(R12)2]q-heterocycloalkenyl, —[C(R12)2]q-heteroaryl, —[C(R12)2]q-haloalkyl, —[C(R12)2]q-hydroxyalkyl, halo, hydroxy, —OR9, —CN, —[C(R12)2]q—C(O)R8, —[C(R12)2]q—C(O)OR9, —[C(R12)2]q—C(O)N(R9)2, —[C(R12)2]q—OR9, —[C(R12)2]q—N(R9)2, —[C(R12)2]q—NHC(O)R8, —[C(R12)2]q—NR8C(O)N(R9)2, —[C(R12)2]q—NHSO2R11, —[C(R12)2]q—S(O)pR11, —[C(R12)2]q—SO2N(R9)2 and —SO2N(R9)C(O)N(R9)2;
R3 is:
Figure US08765757-20140701-C00005
wherein the dotted line indicates an optional and additional bond such that when the optional and additional bond is absent, a hydrogen atom is understood to be present on the two ring atoms connected by the dotted line;
R4, R5, R6 and R7 are each, independently, H, alkyl, alkenyl, alkynyl, aryl, —[C(R12)2]q-cycloalkyl, —[C(R12)2]q-cycloalkenyl, —[C(R12)2]q-heterocycloalkyl, —[C(R12)2]q-heterocycloalkenyl, —[C(R12)2]q-heteroaryl, —[C(R12)2]q-haloalkyl, —[C(R12)2]q-hydroxyalkyl, halo, hydroxy, —OR9, —CN, —[C(R12)2]q—C(O)R8, —[C(R12)2]q—C(O)OR9, —[C(R12)2]q—C(O)N(R9)2, —[C(R12)2]q—OR9, —[C(R12)2]q—N(R9)2, —[C(R12)2]q—NHC(O)R8, —[C(R12)2]q—NR8C(O)N(R9)2, —[C(R12)2]q—NHSO2R11, —[C(R12)2]q—S(O)pR11, —[C(R12)2]q—SO2N(R9)2 or —SO2N(R9)C(O)N(R9)2;
each occurrence of R8 is independently H, alkyl, alkenyl, alkynyl, —[C(R12)2]q-aryl, —[C(R12)2]q-cycloalkyl, —[C(R12)2]q-cycloalkenyl, —[C(R12)2]q-heterocycloalkyl, —[C(R12)2]q-heterocycloalkenyl, —[C(R12)2]q-heteroaryl, haloalkyl or hydroxyalkyl;
each occurrence of R9 is independently H, alkyl, alkenyl, alkynyl, —[C(R12)2]q-aryl, —[C(R12)2]q-cycloalkyl, —[C(R12)2]q-cycloalkenyl, —[C(R12)2]q-heterocycloalkyl, —[C(R12)2]q-heterocycloalkenyl, —[C(R12)2]q-heteroaryl, haloalkyl or hydroxyalkyl;
R10 is H, cycloalkyl, cycloalkenyl, heterocycloalkyl, heterocycloalkenyl, aryl, or heteroaryl, wherein a cycloalkyl, cycloalkenyl, heterocycloalkyl, heterocycloalkenyl, aryl or heteroaryl group can be optionally substituted with up to 4 substituents, which are each independently selected from H, alkyl, alkenyl, alkynyl, aryl, —[C(R12)2]q-cycloalkyl, —[C(R12)2]q-cycloalkenyl, —[C(R12)2]q-heterocycloalkyl, —[C(R12)2]q-heterocycloalkenyl, —[C(R12)2]q-heteroaryl, —[C(R12)2]q-haloalkyl, —[C(R12)2]q-hydroxyalkyl, halo, hydroxy, —OR9, —CN, —[C(R12)2]q—C(O)R8, —[C(R12)2]q—C(O)OR9, —[C(R12)2]q—C(O)N(R9)2, —[C(R12)2]q—OR9, —[C(R12)2]q—N(R9)2, —[C(R12)2]q—NHC(O)R8, —[C(R12)2]q—NR8C(O)N(R9)2, —[C(R12)2]q—NHSO2R11, —[C(R12)2]q—S(O)pR11, —[C(R12)2]q—SO2N(R9)q and —SO2N(R9)C(O)N(R9)2, such that when R1 is a bond, R10 is not H;
each occurrence of R11 is independently alkyl, aryl, cycloalkyl, cycloalkenyl, heterocycloalkyl, heterocycloalkenyl, heteroaryl, haloalkyl, hydroxy or hydroxyalkyl, wherein a cycloalkyl, cycloalkenyl, heterocycloalkyl, heterocycloalkenyl, aryl or heteroaryl group can be optionally substituted with up to 4 substituents, which are each independently selected from H, alkyl, alkenyl, alkynyl, aryl, —[C(R12)2]q-cycloalkyl, —[C(R12)2]q-cycloalkenyl, —[C(R12)2]q-heterocycloalkyl, —[C(R12)2]q-heterocycloalkenyl, —[C(R12)2]q-heteroaryl, —[C(R12)2]q-haloalkyl, —[C(R12)2]q-hydroxyalkyl, halo, hydroxy, —OR9, —CN, —[C(R12)2]q—C(O)R8, —[C(R12)2]q—C(O)OR9, —[C(R12)2]q—OR9, —[C(R12)2]q—N(R9)2, —[C(R12)2]q—NHC(O)R8, —[C(R12)2]q—NR8C(O)N(R9)2, —[C(R12)2]q—NHSO2alkyl, —[C(R12)2]q—NHSO2cycloalkyl, —[C(R12)2]q—NHSO2aryl, —[C(R12)2]q—SO2N(R9)2 and —SO2N(R9)C(O)N(R9)2;
each occurrence of R12 is independently H, halo, —N(R9)2, —OR9, alkyl, cycloalkyl, cycloalkenyl, heterocycloalkyl or heterocycloalkenyl, wherein a cycloalkyl, cycloalkenyl, heterocycloalkyl or heterocycloalkenyl group can be optionally substituted with up to 4 substituents, which are each independently selected from alkyl, halo, haloalkyl, hydroxyalkyl, hydroxy, —CN, —C(O)alkyl, —C(O)Oalkyl, —C(O)NHalkyl, —C(O)N(alkyl)2, —O-alkyl, —NH2, —NH(alkyl), —N(alkyl)2, —NHC(O)alkyl, —NHSO2alkyl, —SO2alkyl or —SO2NH-alkyl, or two R12 groups, together with the carbon atoms to which they are attached, join to form a cycloalkyl, heterocycloalkyl or C═O group;
each occurrence of R30 is independently, H, alkyl, alkenyl, alkynyl, aryl, —[C(R12)2]q-cycloalkyl, —[C(R12)2]q-cycloalkenyl, —[C(R12)2]q-heterocycloalkyl, —[C(R12)2]q-heterocycloalkenyl, —[C(R12)2]q-heteroaryl, —[C(R12)2]q-haloalkyl, —[C(R12)2]q-hydroxyalkyl, halo, hydroxy, —OR9, —CN, —[C(R12)2]q—C(O)R8, —[C(R12)2]q—C(O)OR9, —[C(R12)2]q—C(O)N(R9)2, —[C(R12)2]q—OR9, —[C(R12)2]q—N(R9)2, —[C(R12)2]q—NHC(O)R8, —[C(R12)2]q—NR8C(O)N(R9)2, —[C(R12)2]q—NHSO2R11, —[C(R12)2]q—S(O)pR11, —[C(R12)2]q—SO2N(R9)2 or —SO2N(R9)C(O)N(R9)2, or two adjacent R30 groups, together with the carbon atoms to which they are attached, join to form a cycloalkyl, heterocycloalkyl, aryl or heteroaryl group;
each occurrence of p is independently 0, 1 or 2;
each occurrence of q is independently an integer ranging from 0 to 4; and
each occurrence of r is independently an integer ranging from 1 to 4.
The compounds of formulas (I) and (II) (herein referred to collectively as the “3-Heterocyclic Substituted Indole Derivatives”) and pharmaceutically acceptable salts, solvates, esters and prodrugs thereof can be useful for treating or preventing a viral infection or a virus-related disorder in a patient.
Also provided by the invention are methods for treating or preventing a viral infection or a virus-related disorder in a patient, comprising administering to the patient an effective amount of at least one 3-Heterocyclic Substituted Indole Derivative or a pharmaceutically acceptable salt, solvate, ester or prodrug thereof.
The present invention further provides pharmaceutical compositions comprising an effective amount of at least one 3-Heterocyclic Substituted Indole Derivative or a pharmaceutically acceptable salt, solvate, ester or prodrug thereof, and a pharmaceutically acceptable carrier. The compositions can be useful for treating or preventing a viral infection or a virus-related disorder in a patient.
The details of the invention are set forth in the accompanying detailed description below.
Although any methods and materials similar to those described herein can be used in the practice or testing of the present invention, illustrative methods and materials are now described. Other features, objects, and advantages of the invention will be apparent from the description and the claims. All patents and publications cited in this specification are incorporated herein by reference.
DETAILED DESCRIPTION OF THE INVENTION
In an embodiment, the present invention provides 3-Heterocyclic Substituted Indole Derivatives, pharmaceutical compositions comprising at least one 3-Heterocyclic Substituted Indole Derivative, and methods of using the 3-Heterocyclic Substituted Indole Derivatives for treating or preventing a viral infection or a virus-related disorder in a patient.
Definitions and Abbreviations
The terms used herein have their ordinary meaning and the meaning of such terms is independent at each occurrence thereof. That notwithstanding and except where stated otherwise, the following definitions apply throughout the specification and claims. Chemical names, common names, and chemical structures may be used interchangeably to describe the same structure. If a chemical compound is referred to using both a chemical structure and a chemical name and an ambiguity exists between the structure and the name, the structure predominates. These definitions apply regardless of whether a term is used by itself or in combination with other terms, unless otherwise indicated. Hence, the definition of “alkyl” applies to “alkyl” as well as the “alkyl” portions of “hydroxyalkyl,” “haloalkyl,” “alkoxy,” etc.
As used herein, and throughout this disclosure, the following terms, unless otherwise indicated, shall be understood to have the following meanings:
A “patient” is a human or non-human mammal. In one embodiment, a patient is a human. In another embodiment, a patient is a non-human mammal, including, but not limited to, a monkey, dog, baboon, rhesus, mouse, rat, horse, cat or rabbit. In another embodiment, a patient is a companion animal, including but not limited to a dog, cat, rabbit, horse or ferret. In one embodiment, a patient is a dog. In another embodiment, a patient is a cat.
The term “alkyl” as used herein, refers to an aliphatic hydrocarbon group, wherein one of the aliphatic hydrocarbon group's hydrogen atoms is replaced with a single bond. An alkyl group can be straight or branched and can contain from about 1 to about 20 carbon atoms. In one embodiment, an alkyl group contains from about 1 to about 12 carbon atoms. In another embodiment, an alkyl group contains from about 1 to about 6 carbon atoms. Non-limiting examples of alkyl groups include methyl, ethyl, n-propyl, isopropyl, n-butyl, sec-butyl, isobutyl, tert-butyl, n-pentyl, neopentyl, isopentyl, n-hexyl, isohexyl and neohexyl. An alkyl group may be unsubstituted or optionally substituted by one or more substituents which may be the same or different, each substituent being independently selected from the group consisting of halo, alkenyl, alkynyl, —O-aryl, aryl, heteroaryl, cycloalkyl, cycloalkenyl, cyano, hydroxy, —O-alkyl, —O-haloalkyl, -alkylene-O-alkyl, alkylthio, —NH2, —NH(alkyl), —N(alkyl)2, —NH-aryl, —NH-heteroaryl, —NHC(O)-alkyl, —NHC(O)NH-alkyl, —NHSO2-alkyl, —NHSO2-aryl, —NHSO2-heteroaryl, —NH(cycloalkyl), —OC(O)-alkyl, —OC(O)-aryl, —OC(O)-cycloalkyl, —C(O)alkyl, —C(O)NH2, —C(O)NH-alkyl, —C(O)OH and —C(O)O-alkyl. In one embodiment, an alkyl group is unsubstituted. In another embodiment, an alkyl group is a straight chain alkyl group. In another embodiment, an alkyl group is a branched alkyl group.
The term “alkylene” as used herein, refers to an alkyl group, as defined above, wherein one of the alkyl group's hydrogen atoms is replaced with a bond. Illustrative examples of alkylene include, but are not limited to, —CH2—, —CH2CH2—, —CH2CH2CH2—, —CH2CH2CH2CH2—, —CH(CH3)CH2CH2—, —CH2CH(CH3)CH2— and —CH2CH2CH(CH3)—. In one embodiment, an alkylene group is a straight chain alkylene group. In another embodiment, an alkylene group is a branched alkylene group.
The term “alkenyl” as used herein, refers to an aliphatic hydrocarbon group having at least one carbon-carbon double bond, wherein one of the aliphatic hydrocarbon group's hydrogen atoms is replaced with a single bond. An alkenyl group can be straight or branched and can contain from about 2 to about 15 carbon atoms. In one embodiment, an alkenyl group contains from about 2 to about 10 carbon atoms. In another embodiment, an alkenyl group contains from about 2 to about 6 carbon atoms. Non-limiting examples of illustrative alkenyl groups include ethenyl, propenyl, n-butenyl, 3-methylbut-2-enyl, n-pentenyl, octenyl and decenyl. An alkenyl group may be unsubstituted or optionally substituted by one or more substituents which may be the same or different, each substituent being independently selected from the group consisting of halo, alkyl, alkynyl, —O-aryl, aryl, cycloalkyl, cycloalkenyl, cyano, hydroxy, —O-alkyl, —O-haloalkyl, -alkylene-O-alkyl, alkylthio, —NH2, —NH(alkyl), —N(alkyl)2, —NH-aryl, —NH-heteroaryl, —NHC(O)-alkyl, —NHC(O)NH-alkyl, —NHSO2-alkyl, —NHSO2-aryl, —NHSO2-heteroaryl, —NH(cycloalkyl), —OC(O)-alkyl, —OC(O)-aryl, —OC(O)-cycloalkyl, —C(O)alkyl, —C(O)NH2, —C(O)NH-alkyl, —C(O)OH and —C(O)O-alkyl. In one embodiment, an alkenyl group is unsubstituted. In another embodiment, an alkenyl group is a straight chain alkenyl group. In another embodiment, an alkyl group is a branched alkenyl group.
The term “alkynyl” as used herein, refers to an aliphatic hydrocarbon group having at least one carbon-carbon triple bond, wherein one of the aliphatic hydrocarbon group's hydrogen atoms is replaced with a single bond. An alkynyl group can be straight or branched and can contain from about 2 to about 15 carbon atoms. In one embodiment, an alkynyl group contains from about 2 to about 10 carbon atoms. In another embodiment, an alkynyl group contains from about 2 to about 6 carbon atoms. Non-limiting examples of illustrative alkynyl groups include ethynyl, propynyl, 2-butynyl and 3-methylbutynyl. An alkynyl group may be unsubstituted or optionally substituted by one or more substituents which may be the same or different, each substituent being independently selected from the group consisting of halo, alkyl, alkenyl, —O-aryl, aryl, cycloalkyl, cycloalkenyl, cyano, hydroxy, —O-alkyl, -alkylene-O-alkyl, —O-haloalkyl, -alkylthio, —NH2, —NH(alkyl), —N(alkyl)2, —NH-aryl, —NH-heteroaryl, -NHC(O)-alkyl, —NHC(O)NH-alkyl, —NHSO2-alkyl, —NHSO2-aryl, —NHSO2-heteroaryl, —NH(cycloalkyl), —OC(O)-alkyl, —OC(O)-aryl, —OC(O)-cycloalkyl, —C(O)alkyl, —C(O)NH2, —C(O)NH-alkyl, —C(O)OH and —C(O)O-alkyl. In one embodiment, an alkynyl group is unsubstituted. In another embodiment, an alkynyl group is a straight chain alkynyl group. In another embodiment, an alkynyl group is a branched alkynyl group.
“Aryl” means an aromatic monocyclic or multicyclic ring system having from about 6 to about 14 ring carbon atoms. In one embodiment, an aryl group has from about 6 to about 10 ring carbon atoms. An aryl group can be optionally substituted with one or more “ring system substituents” which may be the same or different, and are as defined herein below. Non-limiting examples of illustrative aryl groups include phenyl and naphthyl. In one embodiment, an aryl group is unsubstituted. In another embodiment, an aryl group is a phenyl group.
The term “arylene” as used herein, refers to an aryl group, as defined above herein, wherein a hydrogen atom connected to one of the aryl group's ring carbon atoms is replaced with a bond.
The term “cycloalkyl” as used herein, refers to a non-aromatic mono- or multicyclic ring system having from about 3 to about 10 ring carbon atoms. In one embodiment, a cycloalkyl has from about 5 to about 10 ring carbon atoms. In another embodiment, a cycloalkyl has from about 5 to about 7 ring carbon atoms. Non-limiting examples of illustrative monocyclic cycloalkyls include cyclopropyl, cyclopentyl, cyclohexyl, cycloheptyl and the like. Non-limiting examples of illustrative multicyclic cycloalkyls include 1-decalinyl, norbornyl, adamantyl and the like. A cycloalkyl group can be optionally substituted with one or more “ring system substituents” which may be the same or different, and are as defined herein below. In one embodiment, a cycloalkyl group is unsubstituted.
The term “cycloalkylene” as used herein, refers to a cycloalkyl group, as defined above herein, wherein a hydrogen atom connected to one of the cycloalkyl group's ring carbon atoms is replaced with a bond.
The term “cycloalkenyl” as used herein, refers to a non-aromatic mono- or multicyclic ring system comprising from about 3 to about 10 ring carbon atoms and containing at least one endocyclic double bond. In one embodiment, a cycloalkenyl contains from about 5 to about 10 ring carbon atoms. In another embodiment, a cycloalkenyl contains 5 or 6 ring carbon atoms. Non-limiting examples of illustrative monocyclic cycloalkenyls include cyclopentenyl, cyclohexenyl, cyclohepta-1,3-dienyl, and the like. A cycloalkenyl group can be optionally substituted with one or more “ring system substituents” which may be the same or different, and are as defined herein below. In one embodiment, a cycloalkenyl group is unsubstituted.
The term “halo” as used herein, means —F, —Cl, —Br or —I. In one embodiment, halo refers to —Cl or —F.
The term “haloalkyl” as used herein, refers to an alkyl group as defined above, wherein one or more of the alkyl group's hydrogen atoms has been replaced with a halogen. In one embodiment, a haloalkyl group has from 1 to 6 carbon atoms. In another embodiment, a haloalkyl group is substituted with from 1 to 3 F atoms. Non-limiting examples of illustrative haloalkyl groups include —CH2F, —CHF2, —CF3, —CH2Cl and —CCl3.
The term “hydroxyalkyl” as used herein, refers to an alkyl group as defined above, wherein one or more of the alkyl group's hydrogen atoms has been replaced with an —OH group. In one embodiment, a hydroxyalkyl group has from 1 to 6 carbon atoms. Non-limiting examples of illustrative hydroxyalkyl groups include hydroxymethyl, 2-hydroxyethyl, 3-hydroxypropyl, 4-hydroxybutyl and —CH(OH)CH2CH3.
The term “heteroaryl” as used herein, refers to an aromatic monocyclic or multicyclic ring system comprising about 5 to about 14 ring atoms, wherein from 1 to 4 of the ring atoms is independently O, N or S and the remaining ring atoms are carbon atoms. In one embodiment, a heteroaryl group has 5 to 10 ring atoms. In another embodiment, a heteroaryl group is monocyclic and has 5 or 6 ring atoms. In another embodiment, a heteroaryl group is monocyclic and has 5 or 6 ring atoms and at least one nitrogen ring atom. A heteroaryl group can be optionally substituted by one or more “ring system substituents” which may be the same or different, and are as defined herein below. A heteroaryl group is joined via a ring carbon atom and any nitrogen atom of a heteroaryl can be optionally oxidized to the corresponding N-oxide. The term “heteroaryl” also encompasses a heteroaryl group, as defined above, which has been fused to a benzene ring. Non-limiting examples of illustrative heteroaryls include pyridyl, pyrazinyl, furanyl, thienyl, pyrimidinyl, isoxazolyl, isothiazolyl, oxazolyl, thiazolyl, pyrazolyl, furazanyl, pyrrolyl, pyrazolyl, triazolyl, 1,2,4-thiadiazolyl, pyrazinyl, pyridazinyl, quinoxalinyl, phthalazinyl, oxindolyl, imidazo[1,2-a]pyridinyl, imidazo[2,1-b]thiazolyl, benzofurazanyl, indolyl, azaindolyl, benzimidazolyl, benzothienyl, quinolinyl, imidazolyl, thienopyridyl, quinazolinyl, thienopyrimidyl, pyrrolopyridyl, imidazopyridyl, isoquinolinyl, benzoazaindolyl, 1,2,4-triazinyl, benzothiazolyl and the like. The term “heteroaryl” also refers to partially saturated heteroaryl moieties such as, for example, tetrahydroisoquinolyl, tetrahydroquinolyl and the like. In one embodiment, a heteroaryl group is a 6-membered heteroaryl group. In another embodiment, a heteroaryl group is a 5-membered heteroaryl group.
The term “heteroarylene” as used herein, refers to a heteroaryl group, as defined above herein, wherein a hydrogen atom connected to one of the heteroaryl group's ring carbon atoms is replaced with a bond.
The term “heterocycloalkyl” as used herein, refers to a non-aromatic saturated monocyclic or multicyclic ring system comprising 3 to about 10 ring atoms, wherein from 1 to 4 of the ring atoms are independently O, S or N and the remainder of the ring atoms are carbon atoms. In one embodiment, a heterocycloalkyl group has from about 5 to about 10 ring atoms.
In another embodiment, a heterocycloalkyl group has 5 or 6 ring atoms. There are no adjacent oxygen and/or sulfur atoms present in the ring system. Any —NH group in a heterocycloalkyl ring may exist protected such as, for example, as an —N(Boc), —N(CBz), —N(Tos) group and the like; such protected heterocycloalkyl groups are considered part of this invention. A heterocycloalkyl group can be optionally substituted by one or more “ring system substituents” which may be the same or different, and are as defined herein below. The nitrogen or sulfur atom of the heterocyclyl can be optionally oxidized to the corresponding N-oxide, S-oxide or S,S-dioxide. Non-limiting examples of illustrative monocyclic heterocycloalkyl rings include piperidyl, pyrrolidinyl, piperazinyl, morpholinyl, thiomorpholinyl, thiazolidinyl, 1,4-dioxanyl, tetrahydrofuranyl, tetrahydrothiophenyl, lactam, lactone, and the like. A ring carbon atom of a heterocycloalkyl group may be functionalized as a carbonyl group. An illustrative example of such a heterocycloalkyl group is pyrrolidonyl:
Figure US08765757-20140701-C00006

In one embodiment, a heterocycloalkyl group is a 6-membered heterocycloalkyl group. In another embodiment, a heterocycloalkyl group is a 5-membered heterocycloalkyl group.
The term “heterocycloalkylene” as used herein, refers to a heterocycloalkylene group, as defined above herein, wherein a hydrogen atom connected to one of the heterocycloalkylene group's ring carbon atoms is replaced with a bond.
The term “heterocycloalkenyl” as used herein, refers to a heterocycloalkyl group, as defined above, wherein the heterocycloalkyl group contains from 3 to 10 ring atoms, and at least one endocyclic carbon-carbon or carbon-nitrogen double bond. In one embodiment, a heterocycloalkenyl group has from 5 to 10 ring atoms. In another embodiment, a heterocycloalkenyl group is monocyclic and has 5 or 6 ring atoms. A heterocycloalkenyl group can optionally substituted by one or more ring system substituents, wherein “ring system substituent” is as defined above. The nitrogen or sulfur atom of the heterocycloalkenyl can be optionally oxidized to the corresponding N-oxide, S-oxide or S,S-dioxide. Non-limiting examples of illustrative heterocycloalkenyl groups include 1,2,3,4-tetrahydropyridinyl, 1,2-dihydropyridinyl, 1,4-dihydropyridinyl, 1,2,3,6-tetrahydropyridinyl, 1,4,5,6-tetrahydropyrimidinyl, 2-pyrrolinyl, 3-pyrrolinyl, 2-imidazolinyl, 2-pyrazolinyl, dihydroimidazolyl, dihydrooxazolyl, dihydrooxadiazolyl, dihydrothiazolyl, 3,4-dihydro-2H-pyranyl, dihydrofuranyl, fluorodihydrofuranyl, 7-oxabicyclo[2.2.1]heptenyl, dihydrothiophenyl, dihydrothiopyranyl, and the like. A ring carbon atom of a heterocyclenyl group may be functionalized as a carbonyl group. An illustrative example of such a heterocyclenyl group is:
Figure US08765757-20140701-C00007

In one embodiment, a heterocycloalkenyl group is a 6-membered heterocycloalkenyl group. In another embodiment, a heterocycloalkenyl group is a 5-membered heterocycloalkenyl group.
The term “ring system substituent” as used herein, refers to a substituent group attached to an aromatic or non-aromatic ring system which, for example, replaces an available hydrogen on the ring system. Ring system substituents may be the same or different, each being independently selected from the group consisting of alkyl, alkenyl, alkynyl, aryl, heteroaryl, aralkyl, alkylaryl, heteroaralkyl, heteroarylalkenyl, heteroarylalkynyl, alkylheteroaryl, hydroxy, hydroxyalkyl, haloalkyl, —O-alkyl, —O-haloalkyl, -alkylene-O-alkyl, —O-aryl, aralkoxy, acyl, halo, nitro, cyano, carboxy, alkoxycarbonyl, aryloxycarbonyl, aralkoxycarbonyl, alkylsulfonyl, arylsulfonyl, heteroarylsulfonyl, alkylthio, arylthio, heteroarylthio, aralkylthio, heteroaralkylthio, cycloalkyl, heterocyclyl, —OC(O)-alkyl, —OC(O)-aryl, —OC(O)-cycloalkyl, —C(═N—CN)—NH2, —C(═NH)—NH2, —C(═NH)—NH(alkyl), —NY1Y2, -alkylene-NY1Y2, —C(O)NY1Y2 and —SO2NY1Y2, wherein Y1 and Y2 can be the same or different and are independently selected from the group consisting of hydrogen, alkyl, aryl, cycloalkyl, and aralkyl. “Ring system substituent” may also mean a single moiety which simultaneously replaces two available hydrogens on the same carbon atom (such as to form a carbonyl group) or replaces two available hydrogen atome on two adjacent carbon atoms (one H on each carbon) on a ring system. Examples of such moiety are ═O, methylene dioxy, ethylenedioxy, —C(CH3)2— and the like which form moieties such as, for example:
Figure US08765757-20140701-C00008
The term “substituted,” as used herein, means that one or more hydrogens on the designated atom is replaced with a selection from the indicated group, provided that the designated atom's normal valency under the existing circumstances is not exceeded, and that the substitution results in a stable compound. Combinations of substituents and/or variables are permissible only if such combinations result in stable compounds. By “stable compound’ or “stable structure” is meant a compound that is sufficiently robust to survive isolation to a useful degree of purity from a reaction mixture, and formulation into an efficacious therapeutic agent.
The term “optionally substituted” as used herein, means optional substitution with the specified groups, radicals or moieties.
The terms “purified”, “in purified form” or “in isolated and purified form” as used herein, for a compound refers to the physical state of said compound after being isolated from a synthetic process (e.g. from a reaction mixture), or natural source or combination thereof. Thus, the term “purified”, “in purified form” or “in isolated and purified form” for a compound refers to the physical state of said compound after being obtained from a purification process or processes described herein or well known to the skilled artisan (e.g., chromatography, recrystallization and the like), in sufficient purity to be characterizable by standard analytical techniques described herein or well known to the skilled artisan.
It should also be noted that any carbon as well as heteroatom with unsatisfied valences in the text, schemes, examples and Tables herein is assumed to have the sufficient number of hydrogen atom(s) to satisfy the valences.
When a functional group in a compound is termed “protected”, this means that the group is in modified form to preclude undesired side reactions at the protected site when the compound is subjected to a reaction. Suitable protecting groups will be recognized by those with ordinary skill in the art as well as by reference to standard textbooks such as, for example, T. W. Greene et al, Protective Groups in organic Synthesis (1991), Wiley, New York.
When any variable (e.g., aryl, heterocycle, R11, etc.) occurs more than one time in any constituent or in Formula (I), its definition on each occurrence is independent of its definition at every other occurrence, unless otherwise noted.
Prodrugs and solvates of the compounds of the invention are also contemplated herein. A discussion of prodrugs is provided in T. Higuchi and V. Stella, Pro-drugs as Novel Delivery Systems (1987) 14 of the A.C.S. Symposium Series, and in Bioreversible Carriers in Drug Design, (1987) Edward B. Roche, ed., American Pharmaceutical Association and Pergamon Press. The term “prodrug” as used herein, refers to a compound (e.g, a drug precursor) that is transformed in vivo to yield a 3-Heterocyclic Substituted Indole Derivative or a pharmaceutically acceptable salt, hydrate or solvate of the compound. The transformation may occur by various mechanisms (e.g., by metabolic or chemical processes), such as, for example, through hydrolysis in blood. A discussion of the use of prodrugs is provided by T. Higuchi and W. Stella, “Pro-drugs as Novel Delivery Systems,” Vol. 14 of the A.C.S. Symposium Series, and in Bioreversible Carriers in Drug Design, ed. Edward B. Roche, American Pharmaceutical Association and Pergamon Press, 1987.
For example, if a 3-Heterocyclic Substituted Indole Derivative or a pharmaceutically acceptable salt, hydrate or solvate of the compound contains a carboxylic acid functional group, a prodrug can comprise an ester formed by the replacement of the hydrogen atom of the acid group with a group such as, for example, (C1-C8)alkyl, (C2-C12)alkanoyloxymethyl, 1-(alkanoyloxy)ethyl having from 4 to 9 carbon atoms, 1-methyl-1-(alkanoyloxy)-ethyl having from 5 to 10 carbon atoms, alkoxycarbonyloxymethyl having from 3 to 6 carbon atoms, 1-(alkoxycarbonyloxy)ethyl having from 4 to 7 carbon atoms, 1-methyl-1-(alkoxycarbonyloxy)ethyl having from 5 to 8 carbon atoms, N-(alkoxycarbonyl)aminomethyl having from 3 to 9 carbon atoms, 1-(N-(alkoxycarbonyl)amino)ethyl having from 4 to 10 carbon atoms, 3-phthalidyl, 4-crotonolactonyl, gamma-butyrolacton-4-yl, di-N,N-(C1-C2)alkylamino(C2-C3)alkyl (such as β-dimethylaminoethyl), carbamoyl-(C1-C2)alkyl, N,N-di (C1-C2)alkylcarbamoyl-(C1-C2)alkyl and piperidino-, pyrrolidino- or morpholino(C2-C3)alkyl, and the like.
Similarly, if a 3-Heterocyclic Substituted Indole Derivative contains an alcohol functional group, a prodrug can be formed by the replacement of the hydrogen atom of the alcohol group with a group such as, for example, (C1-C6)alkanoyloxymethyl, 1-((C1-C6)alkanoyloxy)ethyl, 1-methyl-1-((C1-C6)alkanoyloxy)ethyl, (C1-C6)alkoxycarbonyloxymethyl, N—(C1-C6)alkoxycarbonylaminomethyl, succinoyl, (C1-C6)alkanoyl, α-amino(C1-C4)alkanyl, arylacyl and α-aminoacyl, or α-aminoacyl-α-aminoacyl, where each α-aminoacyl group is independently selected from the naturally occurring L-amino acids, P(O)(OH)2, —P(O)(O(C1-C6)alkyl)2 or glycosyl (the radical resulting from the removal of a hydroxyl group of the hemiacetal form of a carbohydrate), and the like.
If a 3-Heterocyclic Substituted Indole Derivative incorporates an amine functional group, a prodrug can be formed by the replacement of a hydrogen atom in the amine group with a group such as, for example, R-carbonyl, RO-carbonyl, NRR′-carbonyl where R and R′ are each independently (C1-C10)alkyl, (C3-C7) cycloalkyl, benzyl, or R-carbonyl is a natural α-aminoacyl or natural α-aminoacyl, —C(OH)C(O)OY1 wherein Y1 is H, (C1-C6)alkyl or benzyl, —C(OY2)Y3 wherein Y2 is (C1-C4) alkyl and Y3 is (C1-C6)alkyl, carboxy (C1-C6)alkyl, amino(C1-C4)alkyl or mono-N— or di-N,N—(C1-C6)alkylaminoalkyl, —C(Y4)Y5 wherein Y4 is H or methyl and Y5 is mono-N— or di-N,N—(C1-C6)alkylamino morpholino, piperidin-1-yl or pyrrolidin-1-yl, and the like.
One or more compounds of the invention may exist in unsolvated as well as solvated forms with pharmaceutically acceptable solvents such as water, ethanol, and the like, and it is intended that the invention embrace both solvated and unsolvated forms. “Solvate” means a physical association of a compound of this invention with one or more solvent molecules. This physical association involves varying degrees of ionic and covalent bonding, including hydrogen bonding. In certain instances the solvate will be capable of isolation, for example when one or more solvent molecules are incorporated in the crystal lattice of the crystalline solid. “Solvate” encompasses both solution-phase and isolatable solvates. Non-limiting examples of illustrative solvates include ethanolates, methanolates, and the like. “Hydrate” is a solvate wherein the solvent molecule is H2O.
One or more compounds of the invention may optionally be converted to a solvate. Preparation of solvates is generally known. Thus, for example, M. Caira et al, J. Pharmaceutical Sci., 93(3), 601-611 (2004) describe the preparation of the solvates of the antifungal fluconazole in ethyl acetate as well as from water. Similar preparations of solvates, hemisolvate, hydrates and the like are described by E. C. van Tonder et al, AAPS PharmSciTech., 5(1), article 12 (2004); and A. L. Bingham et al, Chem. Commun., 603-604 (2001). A typical, non-limiting, process involves dissolving the inventive compound in desired amounts of the desired solvent (organic or water or mixtures thereof) at a higher than ambient temperature, and cooling the solution at a rate sufficient to form crystals which are then isolated by standard methods. Analytical techniques such as, for example I. R. spectroscopy, show the presence of the solvent (or water) in the crystals as a solvate (or hydrate).
The term “effective amount” or “therapeutically effective amount” is meant to describe an amount of compound or a composition of the present invention that is effective to treat or prevent a viral infection or a virus-related disorder.
Metabolic conjugates, such as glucuronides and sulfates which can undergo reversible conversion to the 3-Heterocyclic Substituted Indole Derivatives are contemplated in the present invention.
The 3-Heterocyclic Substituted Indole Derivatives may form salts, and all such salts are contemplated within the scope of this invention. Reference to a 3-Heterocyclic Substituted Indole Derivative herein is understood to include reference to salts thereof, unless otherwise indicated. The term “salt(s)”, as employed herein, denotes acidic salts formed with inorganic and/or organic acids, as well as basic salts formed with inorganic and/or organic bases. In addition, when a 3-Heterocyclic Substituted Indole Derivative contains both a basic moiety, such as, but not limited to a pyridine or imidazole, and an acidic moiety, such as, but not limited to a carboxylic acid, zwitterions (“inner salts”) may be formed and are included within the term “salt(s)” as used herein. Pharmaceutically acceptable (i.e., non-toxic, physiologically acceptable) salts are preferred, although other salts are also useful. Salts of the compounds of the Formula I may be formed, for example, by reacting a 3-Heterocyclic Substituted Indole Derivative with an amount of acid or base, such as an equivalent amount, in a medium such as one in which the salt precipitates or in an aqueous medium followed by lyophilization.
Exemplary acid addition salts include acetates, ascorbates, benzoates, benzenesulfonates, bisulfates, borates, butyrates, citrates, camphorates, camphorsulfonates, fumarates, hydrochlorides, hydrobromides, hydroiodides, lactates, maleates, methanesulfonates, naphthalenesulfonates, nitrates, oxalates, phosphates, propionates, salicylates, succinates, sulfates, tartarates, thiocyanates, toluenesulfonates (also known as tosylates,) and the like. Additionally, acids which are generally considered suitable for the formation of pharmaceutically useful salts from basic pharmaceutical compounds are discussed, for example, by P. Stahl et al, Camille G. (eds.) Handbook of Pharmaceutical Salts. Properties, Selection and Use. (2002) Zurich: Wiley-VCH; S. Berge et al, Journal of Pharmaceutical Sciences (1977) 66(1) 1-19; P. Gould, International J. of Pharmaceutics (1986) 33 201-217; Anderson et al, The Practice of Medicinal Chemistry (1996), Academic Press, New York; and in The Orange Book (Food & Drug Administration, Washington, D.C. on their website). These disclosures are incorporated herein by reference thereto.
Exemplary basic salts include ammonium salts, alkali metal salts such as sodium, lithium, and potassium salts, alkaline earth metal salts such as calcium and magnesium salts, salts with organic bases (for example, organic amines) such as dicyclohexylamines, t-butyl amines, choline, and salts with amino acids such as arginine, lysine and the like. Basic nitrogen-containing groups may be quarternized with agents such as lower alkyl halides (e.g. methyl, ethyl, and butyl chlorides, bromides and iodides), dialkyl sulfates (e.g. dimethyl, diethyl, and dibutyl sulfates), long chain halides (e.g. decyl, lauryl, and stearyl chlorides, bromides and iodides), aralkyl halides (e.g. benzyl and phenethyl bromides), and others.
All such acid salts and base salts are intended to be pharmaceutically acceptable salts within the scope of the invention and all acid and base salts are considered equivalent to the free forms of the corresponding compounds for purposes of the invention.
Pharmaceutically acceptable esters of the present compounds include the following groups: (1) carboxylic acid esters obtained by esterification of the hydroxy groups, in which the non-carbonyl moiety of the carboxylic acid portion of the ester grouping is selected from straight or branched chain alkyl (for example, acetyl, n-propyl, t-butyl, or n-butyl), alkoxyalkyl (for example, methoxymethyl), aralkyl (for example, benzyl), aryloxyalkyl (for example, phenoxymethyl), aryl (for example, phenyl optionally substituted with, for example, halogen, C1-4alkyl, or C1-4alkoxy or amino); (2) sulfonate esters, such as alkyl- or aralkylsulfonyl (for example, methanesulfonyl); (3) amino acid esters (for example, L-valyl or L-isoleucyl); (4) phosphonate esters and (5) mono-, di- or triphosphate esters. The phosphate esters may be further esterified by, for example, a C1-20 alcohol or reactive derivative thereof, or by a 2,3-di (C6-24)acyl glycerol.
The 3-Heterocyclic Substituted Indole Derivatives may contain asymmetric or chiral centers, and, therefore, exist in different stereoisomeric forms. It is intended that all stereoisomeric forms of the 3-Heterocyclic Substituted Indole Derivatives as well as mixtures thereof, including racemic mixtures, form part of the present invention. In addition, the present invention embraces all geometric and positional isomers. For example, if a 3-Heterocyclic Substituted Indole Derivative incorporates a double bond or a fused ring, both the cis- and trans-forms, as well as mixtures, are embraced within the scope of the invention.
Diastereomeric mixtures can be separated into their individual diastereomers on the basis of their physical chemical differences by methods well known to those skilled in the art, such as, for example, by chromatography and/or fractional crystallization. Enantiomers can be separated by converting the enantiomeric mixture into a diastereomeric mixture by reaction with an appropriate optically active compound (e.g., chiral auxiliary such as a chiral alcohol or Mosher's acid chloride), separating the diastereomers and converting (e.g., hydrolyzing) the individual diastereomers to the corresponding pure enantiomers. Also, some of the 3-Heterocyclic Substituted Indole Derivatives may be atropisomers (e.g., substituted biaryls) and are considered as part of this invention. Enantiomers can also be separated by use of chiral HPLC column.
The straight line — as a bond generally indicates a mixture of, or either of, the possible isomers, non-limiting example(s) include, containing (R)- and (S)-stereochemistry. For example,
Figure US08765757-20140701-C00009

means containing both
Figure US08765757-20140701-C00010
A dashed line (-----)represents an optional bond.
Lines drawn into the ring systems, such as, for example:
Figure US08765757-20140701-C00011

indicate that the indicated line (bond) may be attached to any of the substitutable ring atoms, non limiting examples include carbon, nitrogen and sulfur ring atoms.
As well known in the art, a bond drawn from a particular atom wherein no moiety is depicted at the terminal end of the bond indicates a methyl group bound through that bond to the atom, unless stated otherwise. For example:
Figure US08765757-20140701-C00012
All stereoisomers (for example, geometric isomers, optical isomers and the like) of the present compounds (including those of the salts, solvates, hydrates, esters and prodrugs of the compounds as well as the salts, solvates and esters of the prodrugs), such as those which may exist due to asymmetric carbons on various substituents, including enantiomeric forms (which may exist even in the absence of asymmetric carbons), rotameric forms, atropisomers, and diastereomeric forms, are contemplated within the scope of this invention, as are positional isomers (such as, for example, 4-pyridyl and 3-pyridyl). For example, if a 3-Heterocyclic Substituted Indole Derivative incorporates a double bond or a fused ring, both the cis- and trans-forms, as well as mixtures, are embraced within the scope of the invention.
Individual stereoisomers of the compounds of the invention may, for example, be substantially free of other isomers, or may be admixed, for example, as racemates or with all other, or other selected, stereoisomers. The chiral centers of the present invention can have the S or R configuration as defined by the IUPAC 1974 Recommendations. The use of the terms “salt”, “solvate”, “ester”, “prodrug” and the like, is intended to equally apply to the salt, solvate, ester and prodrug of enantiomers, stereoisomers, rotamers, positional isomers, racemates or prodrugs of the inventive compounds.
The present invention also embraces isotopically-labelled compounds of the present invention which are identical to those recited herein, but for the fact that one or more atoms are replaced by an atom having an atomic mass or mass number different from the atomic mass or mass number usually found in nature. Such compounds are useful as therapeutic, diagnostic or research reagents. Examples of isotopes that can be incorporated into compounds of the invention include isotopes of hydrogen, carbon, nitrogen, oxygen, phosphorus, fluorine and chlorine, such as 2H, 3H, 13C, 14C, 15N, 18O, 17O, 31P, 32P, 35S, 18F, and 36Cl, respectively.
Certain isotopically-labelled 3-Heterocyclic Substituted Indole Derivatives (e.g., those labeled with 3H and 14C) are useful in compound and/or substrate tissue distribution assays. Tritiated (i.e., 3H) and carbon-14 (i.e., 14C) isotopes are particularly preferred for their ease of preparation and detectability. Further, substitution with heavier isotopes such as deuterium (i.e., 2H) may afford certain therapeutic advantages resulting from greater metabolic stability (e.g., increased in vivo half-life or reduced dosage requirements) and hence may be preferred in some circumstances. Isotopically labelled 3-Heterocyclic Substituted Indole Derivatives can generally be prepared by following procedures analogous to those disclosed in the Schemes and/or in the Examples herein below, by substituting an appropriate isotopically labelled reagent for a non-isotopically labelled reagent.
Polymorphic forms of the 3-Heterocyclic Substituted Indole Derivatives, and of the salts, solvates, hydrates, esters and prodrugs of the 3-Heterocyclic Substituted Indole Derivatives, are intended to be included in the present invention.
The following abbreviations are used below and have the following meanings: BINAP is racemic-2,2′-bis(diphenylphosphino)-1,1′-binaphthyl; CSA is camphorsulfonic acid; DBPD is 2-(Di-t-butylphosphino)biphenyl, DBU is 1,8-diazabicyclo[5.4.0]undec-7-ene, DBN is 1,5-diazabicyclo[4.3.0]non-5-ene; DCC is dicyclohexylcarbodiimide; DCM is dichloromethane; Dibal-His diisobutylaluminum hydride; DMF is dimethylformamide; EDCI is 1-(3-dimethylaminopropyl)-3-ethylcarbodiimide; HATU is N-(diethylamino)-1H-1,2,3-triazolo[4,5-b]pyridine-1-ylmethylene]-N-methylmethanaminium Hexafluorophosphate N-oxide; HOBT is 1-hydroxybenzotriazole; LAH is lithium aluminum hydride; LDA is lithium diisopropylamide; m-CPBA is m-chloroperbenzoic acid; NaBH(OAc)3 is sodium triacetoxyborohydride; NaBH4 is sodium borohydride; NaBH3CN is sodium cyanoborohydride; NaHMDS is sodium hexamethyl disilylazide; p-TsOH is p-toluenesulfonic acid; p-TsCl is p-toluenesulfonyl chloride; PPTS is pyridinium p-toluenesulfonate; TMAD is N,N,N′,N′-tetramethylazodicarboxamide; HRMS is high resolution mass spectrometry; HPLC is high performance liquid chromatography; LRMS is low resolution mass spectrometry; Tr is triphenylmethyl; Tris is tris (hydroxymethyl)aminomethane; THF is tetrahydrofuran; TFA is trifluoroacetic acid; Ci/mmol is Curie/mmol (a measure of specific activity); and Ki represents the dissociation constant for a substrate/receptor complex.
The 3-Heterocyclic Substituted Indole Derivatives of Formula (I)
The present invention provides 3-Heterocyclic Substituted Indole Derivatives having the formula:
Figure US08765757-20140701-C00013

and pharmaceutically acceptable salts, solvates, esters and prodrugs thereof, wherein R1, R2, R3, R4, R5, R6, R7 and R16 are defined above for the compounds of formula (I).
In one embodiment, R1 is bond.
In another embodiment, R1 is —[C(R12)2]r—.
In another embodiment, R1 is —[C(R12)2]r—O—[C(R12)2]q—.
In still another embodiment, R1 is —[C(R12)2]r—N(R9)—[C(R12)2]q—.
In yet another embodiment, R1 is —[C(R12)2]q—CH═CH—[C(R12)2]q—.
In another embodiment, R1 is —[C(R12)2]q—C≡C—[C(R12)2]4—.
In a further embodiment, R1 is —[C(R12)2]q—SO2—[C(R12)2]q—.
In another embodiment, R1 is —CH2—.
In one embodiment, R10 is H and R1 is other than a bond.
In another embodiment, R10 is aryl.
In another embodiment, R10 is cycloalkyl.
In still another embodiment, R10 is cycloalkenyl.
In another embodiment, R10 is heterocycloalkenyl.
In another embodiment, R10 is heteroaryl.
In yet another embodiment, R10 is heterocycloalkyl.
In another embodiment, R10 is phenyl.
In a further embodiment, R10 is phenyl, which is substituted with from 1-3 groups independently selected from: alkyl, —O-alkyl, halo, —O-haloalkyl, —OH, —NH2, —NH(alkyl), —N(alkyl)2, —NO2, —CN, —NHC(O)-alkyl, —O-alkylene-heterocycloalkyl —C(O)O-alkyl and —O-haloalkyl.
In one embodiment, R10 is pyridyl.
In another embodiment, R10 is furanyl.
In another embodiment, R10 is thiophenyl.
In still another embodiment, R10 is thiophenyl.
In another embodiment, R10 is thiazolyl.
In another embodiment, R10 is quinolinyl.
In a further embodiment, R10 is
Figure US08765757-20140701-C00014
In another embodiment, —R10 is:
Figure US08765757-20140701-C00015

wherein R represents up to 2 optional and additional phenyl substituents, each independently selected from alkyl, —O-alkyl, halo, —O-haloalkyl, —OH, —NH2, —NH(alkyl), —N(alkyl)2, —NO2, —CN, —NHC(O)-alkyl, —O-alkylene-heterocycloalkyl —C(O)O-alkyl and —O-haloalkyl.
In another embodiment, —R10 is:
Figure US08765757-20140701-C00016

wherein R13 is H, F, Br or Cl; R14 represents up to 4 optional and additional substituents, each independently selected from alkyl, cycloalkyl, CF3, —CN, halo, —O-alkyl, —O-haloalkyl, —NHSO2-alkyl, —NO2, —C(O)NH2, —C(O)NH-alkyl, —C(O)OH, hydroxy, —NH2, —SO2alkyl, —SO2NHalkyl, —S-alkyl, —CH2NH2, —CH2OH, —SO2NH2, —NHC(O)-alkyl, —C(O)O-alkyl, —C(O)-heterocycloalkyl and heteroaryl; and
Figure US08765757-20140701-C00017

represents a pyridyl group, wherein the ring nitrogen atom can be at any of the five unsubstituted ring atom positions.
In another embodiment, —R10 is:
Figure US08765757-20140701-C00018
In one embodiment, R10 is H, alkyl, alkenyl, aryl, cycloalkyl, —CN, aryl, cycloalkyl or heteroaryl.
In another embodiment, R10 is aryl, cycloalkyl or heteroaryl, any of which can be optionally and substituted with up to 3 groups, each independently selected from —NH2, alkyl, alkenyl, halo, —NO2 or —C(O)O-alkyl.
In another embodiment, R10 is phenyl, cyclopropyl, furanyl, pyridyl or thiophenyl, any of which can be optionally and independently substituted with up to 3 groups selected from alkyl, —O-alkyl, halo, —O-haloalkyl, —OH, —NH2, —NH(alkyl), —N(alkyl)2, —NO2, —CN, —NHC(O)-alkyl, —O-alkylene-heterocycloalkyl —C(O)O-alkyl and —O-haloalkyl.
In one embodiment, —R1-R10 is alkyl.
In another embodiment, R1 is —CH2— and R10 is H, alkyl, alkenyl, aryl, cycloalkyl, —CN, aryl, cycloalkyl or heteroaryl.
In another embodiment, R1 is —CH2— and R10 is aryl, cycloalkyl or heteroaryl, any of which can be optionally and substituted with up to 3 groups, each independently selected from alkyl, —O-alkyl, halo, —O-haloalkyl, —OH, —NH2, —NH(alkyl), —N(alkyl)2, —NO2, —CN, —NHC(O)-alkyl, —O-alkylene-heterocycloalkyl —C(O)O-alkyl and —O-haloalkyl.
In yet another embodiment, R1 is —CH2— and R10 is phenyl, cyclopropyl, furanyl, pyridyl, isoxazolyl or thiophenyl, any of which can be optionally and independently substituted with up to 3 groups selected from alkyl, —O-alkyl, halo, —O-haloalkyl, —OH, —NH2, —NH(alkyl), —N(alkyl)2, —NO2, —CN, —NHC(O)-alkyl, —O-alkylene-heterocycloalkyl —C(O)O-alkyl and —O-haloalkyl.
In another embodiment, R1 is —CH2— and —R10 is:
Figure US08765757-20140701-C00019

wherein R13 is H, F, Br or Cl; R14 represents up to 4 optional and additional substituents, each independently selected from alkyl, cycloalkyl, CF3, —CN, halo, —O-alkyl, —O-haloalkyl, —NHSO2-alkyl, —NO2, —C(O)NH2, —C(O)NH-alkyl, —C(O)OH, hydroxy, —NH2, —SO2alkyl, —SO2NHalkyl, —S-alkyl, —CH2NH2, —CH2OH, —SO2NH2, —NHC(O)-alkyl, —C(O)O-alkyl, —C(O)-heterocycloalkyl and heteroaryl; and
Figure US08765757-20140701-C00020

represents a pyridyl group, wherein the ring nitrogen atom can be at any of the five unsubstituted ring atom positions.
In one embodiment, —R1-R10 is benzyl.
In another embodiment, —R1-R10 is benzyl, wherein the phenyl moiety of the benzyl group is substituted with from 1-4 groups independently selected from: alkyl, —O-alkyl, halo, —O-haloalkyl, —OH, —NH2, —NH(alkyl), —N(alkyl)2, —NO2, —CN, —NHC(O)-alkyl, —O-alkylene-heterocycloalkyl —C(O)O-alkyl and —O-haloalkyl.
In still another embodiment, —R1-R10 is
Figure US08765757-20140701-C00021

wherein R represents up to 2 optional and additional phenyl substituents, each independently selected from alkyl, —O-alkyl, halo, —O-haloalkyl, —OH, —NH2, —NH(alkyl), —N(alkyl)2, —NO2, —CN, —NHC(O)-alkyl, —O-alkylene-heterocycloalkyl —C(O)O-alkyl and —O-haloalkyl.
In another embodiment, —R1-R10 is
Figure US08765757-20140701-C00022
In still another embodiment, —R1-R10 is alkyl.
In another embodiment, —R1-R10 is benzyl, wherein the phenyl moiety of the benzyl group is substituted with 1 or 2 fluorine atoms.
In yet another embodiment, —R1-R10 is benzyl, wherein the phenyl moiety of the benzyl group is substituted with 1 or 2 methyl groups.
In one another embodiment, —R1-R10 is benzyl, wherein the phenyl moiety of the benzyl group is substituted with one fluorine atom and one methyl group.
In another embodiment, —R1— R10 is haloalkyl.
In a further embodiment, —R1-R10 is —CH2-cycloalkyl.
In another embodiment, —R1-R10 is —CH2-heteroaryl.
In another embodiment, —R1-R10 is:
Figure US08765757-20140701-C00023
In one embodiment, R2 is —[C(R12)2]-C(O)N(R9)SO2R11.
In another embodiment, R2 is —[C(R12)2]q—C(O)N(R9)SOR11.
In another embodiment, R2 is —[C(R12)2]q—C(O)N(R9)SO2N(R11)2.
In still another embodiment, R2 is —C(O)N(R9)SO2R11.
In another embodiment, R2 is —C(O)NHSO2R11.
In another embodiment, R2 is —C(O)NHSO2R11 and R11 is -alkylene-alkyl.
In yet another embodiment, R2 is —C(O)NHSO2R11 and R11 is -alkylene-aryl.
In another embodiment, R2 is —C(O)NHSO2R11 and R11 is -alkylene-cycloalkyl.
In a further embodiment, R2 is —C(O)NHSO2R11 and R11 is -alkylene-heterocycloalkyl.
In another embodiment, R2 is —C(O)NHSO2R11 and R11 is -alkylene-heteroaryl.
In another embodiment, R2 is —C(O)NHSO2R11 and R11 is -alkylene-haloalkyl.
In still another embodiment, R2 is —C(O)NHSO2R11 and R11 is -alkylene-hydroxyalkyl.
In still another embodiment, R2 is —C(O)NHSO2R11 and R11 is alkyl.
In yet another embodiment, R2 is —C(O)NHSO2R11 and R11 is aryl.
In another embodiment, R2 is —C(O)NHSO2R11 and R11 is cycloalkyl.
In a further embodiment, R2 is —C(O)NHSO2R11 and R11 is heterocycloalkyl.
In another embodiment, R2 is —C(O)NHSO2R11 and R11 is heteroaryl.
In another embodiment, R2 is —C(O)NHSO2R11 and R11 is haloalkyl.
In still another embodiment, R2 is —C(O)NHSO2R11 and R11 is hydroxyalkyl.
In another embodiment, R2 is —C(O)NHSO2R11 and R11 is -alkylene-phenyl.
In one embodiment, R2 is —C(O)NHSO2R11 and R11 is benzyl.
In another embodiment, R2 is —C(O)NHSO2R11 and R11 is naphthyl.
In one embodiment, R2 is —C(O)NHSO2R11 and R11 is methyl, ethyl, —CH2CH2NH2, —CH2CH2N(CH3)2, —CH2CH2CH2NH2, —CH2CH2CH2N(CH3)2, phenyl or cyclopropyl.
In yet another embodiment, R2 is —C(O)NHSO2R11 and R11 is —NH2 or —N(CH3)2.
In another embodiment, R2 is —C(O)NHSO2CH3.
In another embodiment, R2 is —C(O)NHSO2CH2CH3.
In one embodiment, R2 is —C(O)NHSO2R11 and R11 is phenyl.
In still another embodiment, R2 is —C(O)NHSO2R11 and R11 is phenyl, which is optionally substituted with up to 3 groups independently selected from: alkyl, F, Cl, methyl, —NH2, —NO2, methoxy, —SO2NH2, —COOH, -(alkylene)s—C(O)O-alkyl, hydroxy, —NHSO2-alkyl, -(alkylene)s-SO2-alkyl, —CF3, —CN, thiazolyl, —C(O)NH-alkyl, —NHSO2-phenyl, —NHSO2-cyclopropyl, —NHSO2-alkyl, -(alkylene)s-NHC(O)-alkyl, pyrazolyl or —OCH2C(O)NH2.
In yet another embodiment, R2 is —C(O)NHSO2R11 and R11 is cyclopropyl, cyclobutyl, cyclopentyl or cyclohexyl.
In one embodiment, R2 is:
Figure US08765757-20140701-C00024
In another embodiment, R2 is:
Figure US08765757-20140701-C00025
In another embodiment, R2 is:
Figure US08765757-20140701-C00026
In one embodiment, R3 is
Figure US08765757-20140701-C00027
In another embodiment, R3 is
Figure US08765757-20140701-C00028
In another embodiment, R3 is
Figure US08765757-20140701-C00029
In still another embodiment, R3 is
Figure US08765757-20140701-C00030
In another embodiment, R3 is
Figure US08765757-20140701-C00031
In yet another embodiment, R3 is
Figure US08765757-20140701-C00032
In another embodiment, R3 is
Figure US08765757-20140701-C00033

and both R30 groups, together with the carbon atoms to which they are attached, join to form an aryl or heteroaryl group.
In another embodiment, R3 is
Figure US08765757-20140701-C00034

and each R30 group is independently selected from H and alkyl.
In one embodiment, R3 is:
Figure US08765757-20140701-C00035
In another embodiment, R3 is:
Figure US08765757-20140701-C00036
In another embodiment, R3 is:
Figure US08765757-20140701-C00037
In yet another embodiment, R3 is:
Figure US08765757-20140701-C00038
In a further embodiment, R3 is:
Figure US08765757-20140701-C00039
In one embodiment, R4 is H.
In another embodiment, R4 is H or F.
In another embodiment, R4 is F.
In still another embodiment, R5 is H.
In another embodiment, R6 is H.
In yet another embodiment, R6 is H or F.
In another embodiment, R6 is F.
In still another embodiment, R5 is H.
In another embodiment, R5 is other than H.
In still another embodiment, R5 is alkyl.
In another embodiment, R5 is halo or haloalkyl.
In yet another embodiment, R5 is halo.
In yet another embodiment, R5 is haloalkyl.
In still another embodiment, R5 is methyl.
In another embodiment, R5 is ethyl.
In another embodiment, R5 is Cl, Br or CF3.
In another embodiment, R6 is H.
In yet another embodiment, R6 is H or F.
In another embodiment, R6 is other than H.
In a further embodiment, R6 is alkyl.
In yet another embodiment, R6 is halo.
In still another embodiment, R6 is methyl.
In another embodiment, R6 is F.
In a further embodiment, R7 is H.
In one embodiment, R4 and R7 are each H.
In yet another embodiment, R4, R6 and R7 are each H.
In another embodiment, R4, R5, R6 and R7 are each H.
In a further embodiment, R4, R6 and R7 are each H and R5 is other than H.
In another embodiment, R4, R6 and R7 are each H and R5 is haloalkyl.
In still another embodiment, R4, R6 and R7 are each H and R5 is halo.
In another embodiment, R4, R6 and R7 are each H and R5 is Cl.
In a further embodiment, R4, R6 and R7 are each H and R5 is Br.
In another embodiment, R4, R6 and Ware each H and R5 is CF3.
In one embodiment, R2 is —C(O)NHSO2R11 and R3 is
Figure US08765757-20140701-C00040
In another embodiment, R2 is —C(O)NHSO2R11, R11 is alkyl, and R3 is
Figure US08765757-20140701-C00041
In one embodiment, R2 is —C(O)NHSO2CH3, and R3 is
Figure US08765757-20140701-C00042
In another embodiment, R2 is —C(O)NHSO2R11; R11 is phenyl, which is optionally substituted with up to 3 groups independently selected from: alkyl, F, Cl, methyl, —NH2, —NO2, methoxy, —SO2NH2, —COOH, -(alkylene)s-C(O)O-alkyl, hydroxy, —NHSO2-alkyl, -(alkylene)s-SO2-alkyl, —CF3, —CN, thiazolyl, —C(O)NH-alkyl, —NHSO2-phenyl, —NHSO2-cyclopropyl, —NHSO2-alkyl, -(alkylene)s-NHC(O)-alkyl, pyrazolyl or —OCH2C(O)NH2; and R3 is
Figure US08765757-20140701-C00043
In another embodiment, R1-R10 is
Figure US08765757-20140701-C00044

R2 is —C(O)NHSO2R11; and R3 is
Figure US08765757-20140701-C00045
In still another embodiment, R1-R10 is
Figure US08765757-20140701-C00046

R2 is —C(O)NHSO2R11; R11 is alkyl; and R3 is
Figure US08765757-20140701-C00047
In one embodiment, R1-R10 is
Figure US08765757-20140701-C00048

R2 is —C(O)NHSO2CH3; and R3 is
Figure US08765757-20140701-C00049
In another embodiment, R1-R10 is
Figure US08765757-20140701-C00050

R2 is —C(O)NHSO2R11, R11 is phenyl, which is optionally substituted with up to 3 groups independently selected from: alkyl, F, Cl, methyl, —NH2, —NO2, methoxy, —SO2NH2, —COOH, -(alkylene)s-C(O)O-alkyl, hydroxy, —NHSO2-alkyl, -(alkylene)s-SO2-alkyl, —CF3, —CN, thiazolyl, —C(O)NH-alkyl, —NHSO2-phenyl, —NHSO2-cyclopropyl, —NHSO2-alkyl, -(alkylene)s-NHC(O)-alkyl, pyrazolyl or —OCH2C(O)NH2; and R3 is
Figure US08765757-20140701-C00051
In another embodiment, R1-R10 is
Figure US08765757-20140701-C00052

R2 is —C(O)NHSO2R11; and R3 is
Figure US08765757-20140701-C00053
In still another embodiment, R1-R10 is
Figure US08765757-20140701-C00054

R2 is —C(O)NHSO2R11; R11 is alkyl; and R3 is
Figure US08765757-20140701-C00055
In one embodiment, R1-R10 is
Figure US08765757-20140701-C00056

R2 is —C(O)NHSO2CH3; and R3 is
Figure US08765757-20140701-C00057
In another embodiment, R1-R10 is
Figure US08765757-20140701-C00058

R2 is —C(O)NHSO2R11, R11 is phenyl, which is optionally substituted with up to 3 groups independently selected from: alkyl, F, Cl, methyl, —NH2, —NO2, methoxy, —SO2NH2, —COOH, -(alkylene)s-C(O)O-alkyl, hydroxy, —NHSO2-alkyl, -(alkylene)s-SO2-alkyl, —CF3, —CN, thiazolyl, —C(O)NH-alkyl, —NHSO2-phenyl, —NHSO2-cyclopropyl, —NHSO2-alkyl, -(alkylene)s-NHC(O)-alkyl, pyrazolyl or —OCH2C(O)NH2; and R3 is
Figure US08765757-20140701-C00059
In another embodiment, R1-R10 is —CH2-heteroaryl or alkyl; R2 is —C(O)NHSO2R11; and R3 is
Figure US08765757-20140701-C00060
In still another embodiment, R1-R10 is —CH2-heteroaryl or alkyl; R2 is —C(O)NHSO2R11; R11 is alkyl; and R3 is
Figure US08765757-20140701-C00061
In another embodiment, R1-R10 is —CH2-heteroaryl or alkyl; R2 is —C(O)NHSO2CH3; and R3 is
Figure US08765757-20140701-C00062
In yet another embodiment, R1-R10 is —CH2-heteroaryl or alkyl; R2 is —C(O)NHSO2R11, R11 is phenyl, which is optionally substituted with up to 3 groups independently selected from: alkyl, F, Cl, methyl, —NH2, —NO2, methoxy, —SO2NH2, —COOH, -(alkylene)s-C(O)O-alkyl, hydroxy, —NHSO2-alkyl, -(alkylene)s-SO2-alkyl, —CF3, —CN, thiazolyl, —C(O)NH-alkyl, —NHSO2-phenyl, —NHSO2-cyclopropyl, —NHSO2-alkyl, -(alkylene)s-NHC(O)-alkyl, pyrazolyl or —OCH2C(O)NH2; and R3 is
Figure US08765757-20140701-C00063
In a further embodiment, R1-R10 is benzyl, wherein the phenyl moiety of the benzyl group is optionally substituted with from 1-4 groups independently selected from: alkyl, —O-alkyl, halo, —O-haloalkyl, —OH, —NH2, —NH(alkyl), —N(alkyl)2, —NO2, —CN, —NHC(O)-alkyl, —O-alkylene-heterocycloalkyl —C(O)O-alkyl and —O-haloalkyl; R2 is —C(O)NHSO2R11; and R3 is
Figure US08765757-20140701-C00064
In one embodiment, R1-R10 is benzyl, wherein the phenyl moiety of the benzyl group is optionally substituted with from 1-4 groups independently selected from: alkyl, —O-alkyl, halo, —O-haloalkyl, —OH, —NH2, —NH(alkyl), —N(alkyl)2, —NO2, —CN, —NHC(O)-alkyl, —O-alkylene-heterocycloalkyl —C(O)O-alkyl and —O-haloalkyl; R2 is —C(O)NHSO2-alkyl; and R3 is
Figure US08765757-20140701-C00065
In another embodiment, R1-R10 is benzyl, wherein the phenyl moiety of the benzyl group is optionally substituted with from 1-4 groups independently selected from: alkyl, —O-alkyl, halo, —O-haloalkyl, —OH, —NH2, —NH(alkyl), —N(alkyl)2, —NO2, —CN, —NHC(O)-alkyl, —O-alkylene-heterocycloalkyl —C(O)O-alkyl and —O-haloalkyl; R2 is —C(O)NHSO2R11, R11 is phenyl, which is optionally substituted with up to 3 groups independently selected from: alkyl, F, Cl, methyl, —NH2, —NO2, methoxy, —SO2NH2, —COOH, -(alkylene)s-C(O)O-alkyl, hydroxy, —NHSO2-alkyl, -(alkylene)s-SO2-alkyl, —CF3, —CN, thiazolyl, —C(O)NH-alkyl, —NHSO2-phenyl, —NHSO2-cyclopropyl, —NHSO2-alkyl, -(alkylene)s-NHC(O)-alkyl, pyrazolyl or —OCH2C(O)NH2; and R3 is
Figure US08765757-20140701-C00066
In another embodiment, R1-R10 is
Figure US08765757-20140701-C00067

R2 is —C(O)NHSO2R11, R11 is phenyl, which is optionally substituted with up to 3 groups independently selected from: alkyl, F, Cl, methyl, —NH2, —NO2, methoxy, —SO2NH2, —COOH, -(alkylene)s-C(O)O-alkyl, hydroxy, —NHSO2-alkyl, -(alkylene)s-SO2-alkyl, —CF3, —CN, thiazolyl, —C(O)NH-alkyl, —NHSO2-phenyl, —NHSO2-cyclopropyl, —NHSO2-alkyl, -(alkylene)s-NHC(O)-alkyl, pyrazolyl or —OCH2C(O)NH2; R3 is
Figure US08765757-20140701-C00068

R4, R6 and R7 are each H; and R5 is halo or haloalkyl.
In another embodiment, R1-R10 is
Figure US08765757-20140701-C00069

R2 is —C(O)NHSO2R11, R11 is phenyl, which is optionally substituted with up to 3 groups independently selected from: alkyl, F, Cl, methyl, —NH2, —NO2, methoxy, —SO2NH2, —COOH, -(alkylene)s-C(O)O-alkyl, hydroxy, —NHSO2-alkyl, -(alkylene)s-SO2-alkyl, —CF3, —CN, thiazolyl, —C(O)NH-alkyl, —NHSO2-phenyl, —NHSO2-cyclopropyl, —NHSO2-alkyl, -(alkylene)s-NHC(O)-alkyl, pyrazolyl or —OCH2C(O)NH2; R3 is
Figure US08765757-20140701-C00070

R4, R6 and R7 are each H; and R5 is halo or haloalkyl.
In another embodiment, R1-R10 is —CH2-heteroaryl or alkyl; R2 is —C(O)NHSO2R11; R3 is
Figure US08765757-20140701-C00071

R4, R6 and R7 are each H; and R5 is halo or haloalkyl.
In still another embodiment. R1-R10 is —CH2-heteroaryl or alkyl; R2 is —C(O)NHSO2R11; R11 is alkyl; R3 is
Figure US08765757-20140701-C00072

R4, R6 and R7 are each H; and R5 is halo or haloalkyl.
In another embodiment, R1-R10 is —CH2-heteroaryl or —CH2-cycloalkyl; R2 is —C(O)NHSO2CH3; R3 is
Figure US08765757-20140701-C00073

R4, R6 and R7 are each H; and R5 is halo or haloalkyl.
In yet another embodiment, R1-R10 is —CH2-heteroaryl or alkyl; R2 is —C(O)NHSO2R11, R11 is phenyl, which is optionally substituted with up to 3 groups independently selected from: alkyl, F, Cl, methyl, —NH2, —NO2, methoxy, —SO2NH2, —COOH, -(alkylene)s-C(O)O-alkyl, hydroxy, —NHSO2-alkyl, -(alkylene)s-SO2-alkyl, —CF3, —CN, thiazolyl, —C(O)NH-alkyl, —NHSO2-phenyl, —NHSO2-cyclopropyl, —NHSO2-alkyl, -(alkylene)s-NHC(O)-alkyl, pyrazolyl or —OCH2C(O)NH2; R3 is
Figure US08765757-20140701-C00074

R4, R6 and R7 are each H; and R5 is halo or haloalkyl.
In a further embodiment, R1-R10 is benzyl, wherein the phenyl moiety of the benzyl group is optionally substituted with from 1-4 groups independently selected from: alkyl, —O-alkyl, halo, —O-haloalkyl, —OH, —NH2, —NH(alkyl), —N(alkyl)2, —NO2, —CN, —NHC(O)-alkyl, —O-alkylene-heterocycloalkyl —C(O)O-alkyl and —O-haloalkyl; R2 is —C(O)NHSO2R11; R3 is
Figure US08765757-20140701-C00075

R4, R6 and R7 are each H; and R5 is halo or haloalkyl.
In one embodiment, R1-R10 is benzyl, wherein the phenyl moiety of the benzyl group is optionally substituted with from 1-4 groups independently selected from: alkyl, —O-alkyl, halo, —O-haloalkyl, —OH, —NH2, —NH(alkyl), —N(alkyl)2, —NO2, —CN, —NHC(O)-alkyl, —O-alkylene-heterocycloalkyl —C(O)O-alkyl and —O-haloalkyl; R2 is —C(O)NHSO2-alkyl; R3 is
Figure US08765757-20140701-C00076

R4, R6 and R7 are each H; and R5 is halo or haloalkyl.
In another embodiment, R1-R10 is benzyl, wherein the phenyl moiety of the benzyl group is optionally substituted with from 1-4 groups independently selected from: alkyl, —O-alkyl, halo, —O-haloalkyl, —OH, —NH2, —NH(alkyl), —N(alkyl)2, —NO2, —CN, —NHC(O)-alkyl, —O-alkylene-heterocycloalkyl —C(O)O-alkyl and —O-haloalkyl; R2 is —C(O)NHSO2R11, R11 is phenyl, which is optionally substituted with up to 3 groups independently selected from: alkyl, F, Cl, methyl, —NH2, —NO2, methoxy, —SO2NH2, —COOH, -(alkylene)s-C(O)O-alkyl, hydroxy, —NHSO2-alkyl, -(alkylene)s-SO2-alkyl, —CF3, —CN, thiazolyl, —C(O)NH-alkyl, —NHSO2-phenyl, —NHSO2-cyclopropyl, —NHSO2-alkyl, -(alkylene)s-NHC(O)-alkyl, pyrazolyl or —OCH2C(O)NH2; R3 is
Figure US08765757-20140701-C00077

R4, R6 and R7 are each H; and R5 is halo or haloalkyl.
In one embodiment, the compounds of formula (I) have the formula (Ia):
Figure US08765757-20140701-C00078

wherein:
R1 is —[C(R12)2]r-;
R2 is —C(O)NHSO2R11;
R3 is:
Figure US08765757-20140701-C00079
R4, R5, R6 and R7 are each, independently, H, alkyl, —O-alkyl, halo, haloalkyl or hydroxyalkyl;
R10 is H, aryl, cycloalkyl, heterocycloalkyl or heteroaryl, wherein a cycloalkyl, heterocycloalkyl, aryl or heteroaryl group can be optionally substituted with one or more substituents, which are each independently selected from alkyl, —O-alkyl, halo, —O-haloalkyl, —OH, —NH2, —NH(alkyl), —N(alkyl)2, —NO2, —CN, —NHC(O)-alkyl, —O-alkylene-heterocycloalkyl —C(O)O-alkyl and —O-haloalkyl;
R11 is alkyl, aryl or cycloalkyl;
each occurrence of R12 is H, alkyl or halo, or two geminal R12 groups, together with the common carbon atom to which they are attached, join to form a 3- to 6-membered cycloalkyl group;
each occurrence of R30 is independently, H, alkyl, aryl, halo, hydroxy, hydroxyalkyl, haloalkyl, —O-alkyl or —CN, or two adjacent R30 groups, together with the carbon atoms to which they are attached, join to form a cycloalkyl, heterocycloalkyl, aryl or heteroaryl group; and
r is an integer ranging from 1 to 4.
In one embodiment, for the compounds of formula (Ia):
R1 is —CH2—;
R2 is —C(O)NHSO2R11;
R3 is:
Figure US08765757-20140701-C00080
R4, R6 and R7 are each H;
R5 is H, alkyl, —O-alkyl, halo or haloalkyl;
R10 is H aryl, cycloalkyl or heteroaryl, wherein a cycloalkyl, aryl or heteroaryl group can be optionally substituted with one or more substituents, which are each independently selected from alkyl, —O-alkyl, halo, —O-haloalkyl, —OH, —NH2, —NH(alkyl), —N(alkyl)2, —NO2, —CN, —NHC(O)-alkyl, —O-alkylene-heterocycloalkyl —C(O)O-alkyl and —O-haloalkyl;
R11 is alkyl, aryl or cycloalkyl; and
r is an integer ranging from 1 to 4.
In another embodiment, for the compounds of formula (Ia):
R1 is —CH2—;
R2 is —C(O)NHSO2R11;
R3 is:
Figure US08765757-20140701-C00081
R4, R6 and R7 are each H;
R5 is H, halo or haloalkyl;
R10 is phenyl, which can be optionally substituted with one or more substituents, which are each independently selected from alkyl, —O-alkyl, halo, —O-haloalkyl, —OH, —NH2, —NH(alkyl), —N(alkyl)2, —NO2, —CN, —NHC(O)-alkyl, —O-alkylene-heterocycloalkyl —C(O)O-alkyl and —O-haloalkyl;
R11 is alkyl, aryl or cycloalkyl; and
r is an integer ranging from 1 to 4.
In another embodiment, for the compounds of formula (Ia):
R1 is —CH2—;
R2 is —C(O)NHSO2R11;
R3 is:
Figure US08765757-20140701-C00082
R4, R6 and R7 are each H;
R5 is H, halo or haloalkyl;
R10 is phenyl, which can be optionally substituted with one or more substituents, which are each independently selected from alkyl, —O-alkyl, halo, —O-haloalkyl, —OH, —NH2, —NH(alkyl), —N(alkyl)2, —NO2, —CN, —NHC(O)-alkyl, —O-alkylene-heterocycloalkyl —C(O)O-alkyl and —O-haloalkyl;
R11 is alkyl, aryl or cycloalkyl; and
r is an integer ranging from 1 to 4.
In another embodiment, for the compounds of formula (Ia):
R1 is —CH2—;
R2 is —C(O)NHSO2R11;
R3 is:
Figure US08765757-20140701-C00083
R4, R6 and R7 are each H;
R5 is Cl, Br or CF3;
R10 is phenyl, which can be optionally substituted with one or more substituents, which are each independently selected from alkyl, —O-alkyl, halo, —O-haloalkyl, —OH, —NH2, —NH(alkyl), —N(alkyl)2, —NO2, —CN, —NHC(O)-alkyl, —O-alkylene-heterocycloalkyl —C(O)O-alkyl and —O-haloalkyl;
R11 is methyl, ethyl, —CH2CH2NH2, —CH2CH2N(CH3)2, —CH2CH2CH2NH2, —CH2CH2CH2N(CH3)2, phenyl or cyclopropyl;
each occurrence of R12 is H, alkyl or halo, or two geminal R12 groups, together with the common carbon atom to which they are attached, join to form a 3- to 6-membered cycloalkyl group; and
r is an integer ranging from 1 to 4.
In a further embodiment, for the compounds of formula (Ia):
R1 is —CH2—;
R2 is —C(O)NHSO2R11;
R3 is:
Figure US08765757-20140701-C00084
R4, R6 and R7 are each H;
R5 is H, halo or haloalkyl;
R10 is phenyl, which can be optionally substituted with one or more substituents, which are each independently selected from alkyl, —O-alkyl, halo, —O-haloalkyl, —OH, —NH2, —NH(alkyl), —N(alkyl)2, —NO2, —CN, —NHC(O)-alkyl, —O-alkylene-heterocycloalkyl —C(O)O-alkyl and —O-haloalkyl;
R11 is methyl, phenyl or cyclopropyl; and
r is an integer ranging from 1 to 4.
In one embodiment, for the compounds of formula (I), R1, R2, R3, R4, R5, R6, R7 and R10 are selected independently of each other.
In another embodiment, a compound of formula (I) is in purified form.
The 3-Heterocyclic Substituted Indole Derivatives of Formula (II)
The present invention also provides 3-Heterocyclic Substituted Indole Derivatives having the formula:
Figure US08765757-20140701-C00085

and pharmaceutically acceptable salts, solvates, esters and prodrugs thereof, wherein R1, R2, R3, R4, R5, R6, R7 and R16 are defined above for the compounds of formula (II).
In one embodiment, R1 is bond.
In another embodiment, R1 is —[C(R12)2]r—.
In another embodiment, R1 is —[C(R12)2]r—O—[C(R12)2]q—.
In still another embodiment, R1 is —[C(R12)2]r—N(R9)—[C(R12)2]q—.
In yet another embodiment, R1 is —[C(R12)2]q—CH═CH—[C(R12)2]4—.
In another embodiment, R1 is —[C(R12)2]q—C≡C—[C(R12)2]4—.
In a further embodiment, R1 is —[C(R12)2]q—SO2—[C(R12)2]q—.
In another embodiment, R1 is —CH2—.
In one embodiment, R10 is H and R1 is other than a bond.
In another embodiment, R10 is aryl.
In another embodiment, R10 is cycloalkyl.
In still another embodiment, R10 is cycloalkenyl.
In another embodiment, R10 is heterocycloalkenyl.
In another embodiment, R10 is heteroaryl.
In yet another embodiment, R10 is heterocycloalkyl.
In another embodiment, R10 is phenyl.
In a further embodiment, R10 is phenyl, which is substituted with from 1-3 groups independently selected from: alkyl, —O-alkyl, halo, —O-haloalkyl, —OH, —NH2, —NH(alkyl), —N(alkyl)2, —NO2, —CN, —NHC(O)-alkyl, —O-alkylene-heterocycloalkyl —C(O)O-alkyl and —O-haloalkyl.
In one embodiment, R10 is pyridyl.
In another embodiment, R10 is furanyl.
In another embodiment, R10 is thiophenyl.
In still another embodiment, R10 is thiophenyl.
In another embodiment, R10 is thiazolyl.
In another embodiment, R10 is quinolinyl.
In a further embodiment, R10 is
In another embodiment, —R10 is:
Figure US08765757-20140701-C00086
Figure US08765757-20140701-C00087

wherein R represents up to 2 optional and additional phenyl substituents, each independently selected from alkyl, —O-alkyl, halo, —O-haloalkyl, —OH, —NH2, —NH(alkyl), —N(alkyl)2, —NO2, —CN, —NHC(O)-alkyl, —O-alkylene-heterocycloalkyl —C(O)O-alkyl and —O-haloalkyl.
In another embodiment, —R10 is:
Figure US08765757-20140701-C00088

wherein R13 is H, F, Br or Cl; R14 represents up to 4 optional and additional substituents, each independently selected from alkyl, cycloalkyl, CF3, —CN, halo, —O-alkyl, —O-haloalkyl, —NHSO2-alkyl, —NO2, —C(O)NH2, —C(O)NH-alkyl, —C(O)OH, hydroxy, —NH2, —SO2alkyl, —SO2NHalkyl, —S-alkyl, —CH2NH2, —CH2OH, —SO2NH2, —NHC(O)-alkyl, —C(O)O-alkyl, —C(O)-heterocycloalkyl and heteroaryl; and
Figure US08765757-20140701-C00089

represents a pyridyl group, wherein the ring nitrogen atom can be at any of the five unsubstituted ring atom positions.
In another embodiment, —R10 is:
Figure US08765757-20140701-C00090
In one embodiment, R10 is H, alkyl, alkenyl, aryl, cycloalkyl, —CN, aryl, cycloalkyl or heteroaryl.
In another embodiment, R10 is aryl, cycloalkyl or heteroaryl, any of which can be optionally and substituted with up to 3 groups, each independently selected from —NH2, alkyl, alkenyl, halo, —NO2 or —C(O)O-alkyl.
In another embodiment, R10 is phenyl, cyclopropyl, furanyl, pyridyl or thiophenyl, any of which can be optionally and independently substituted with up to 3 groups selected from alkyl, —O-alkyl, halo, —O-haloalkyl, —OH, —NH2, —NH(alkyl), —N(alkyl)2, —NO2, —CN, —NHC(O)-alkyl, —O-alkylene-heterocycloalkyl —C(O)O-alkyl and —O-haloalkyl.
In one embodiment, —R1-R10 is alkyl.
In another embodiment, R1 is —CH2— and R10 is H, alkyl, alkenyl, aryl, cycloalkyl, —CN, aryl, cycloalkyl or heteroaryl.
In another embodiment, R1 is —CH2— and R10 is aryl, cycloalkyl or heteroaryl, any of which can be optionally and substituted with up to 3 groups, each independently selected from alkyl, —O-alkyl, halo, —O-haloalkyl, —OH, —NH2, —NH(alkyl), —N(alkyl)2, —NO2, —CN, —NHC(O)-alkyl, —O-alkylene-heterocycloalkyl —C(O)O-alkyl and —O-haloalkyl.
In yet another embodiment, R1 is —CH2— and R10 is phenyl, cyclopropyl, furanyl, pyridyl, isoxazolyl or thiophenyl, any of which can be optionally and independently substituted with up to 3 groups selected from alkyl, —O-alkyl, halo, —O-haloalkyl, —OH, —NH2, —NH(alkyl), —N(alkyl)2, —NO2, —CN, —NHC(O)-alkyl, —O-alkylene-heterocycloalkyl —C(O)O-alkyl and —O-haloalkyl.
In another embodiment, R1 is —CH2— and —R10 is:
Figure US08765757-20140701-C00091

wherein R13 is H, F, Br or Cl; R14 represents up to 4 optional and additional substituents, each independently selected from alkyl, cycloalkyl, CF3, —CN, halo, —O-alkyl, —O-haloalkyl, —NHSO2-alkyl, —NO2, —C(O)NH2, —C(O)NH-alkyl, —C(O)OH, hydroxy, —NH2, —SO2alkyl, —SO2NHalkyl, —S-alkyl, —CH2NH2, —CH2OH, —SO2NH2, —NHC(O)-alkyl, —C(O)O-alkyl, —C(O)-heterocycloalkyl and heteroaryl; and
Figure US08765757-20140701-C00092

represents a pyridyl group, wherein the ring nitrogen atom can be at any of the five unsubstituted ring atom positions.
In one embodiment, —R1-R10 is benzyl.
In another embodiment, —R1-R10 is benzyl, wherein the phenyl moiety of the benzyl group is substituted with from 1-4 groups independently selected from: alkyl, —O-alkyl, halo, —O-haloalkyl, —OH, —NH2, —NH(alkyl), —N(alkyl)2, —NO2, —CN, —NHC(O)-alkyl, —O-alkylene-heterocycloalkyl —C(O)O-alkyl and —O-haloalkyl.
In still another embodiment, —R1-R10 is
Figure US08765757-20140701-C00093

wherein R represents up to 2 optional and additional phenyl substituents, each independently selected from alkyl, —O-alkyl, halo, —O-haloalkyl, —OH, —NH2, —NH(alkyl), —N(alkyl)2, —NO2, —CN, —NHC(O)-alkyl, —O-alkylene-heterocycloalkyl —C(O)O-alkyl and —O-haloalkyl.
In another embodiment, —R1-R10 is
Figure US08765757-20140701-C00094
In still another embodiment, —R1-R10 is alkyl.
In another embodiment, —R1-R10 is benzyl, wherein the phenyl moiety of the benzyl group is substituted with 1 or 2 fluorine atoms.
In yet another embodiment, —R1-R10 is benzyl, wherein the phenyl moiety of the benzyl group is substituted with 1 or 2 methyl groups.
In one another embodiment, —R1-R10 is benzyl, wherein the phenyl moiety of the benzyl group is substituted with one fluorine atom and one methyl group.
In another embodiment, —R1-R10 is haloalkyl.
In a further embodiment, —R1— R10 is —CH2-cycloalkyl.
In another embodiment, —R1-R10 is —CH2-heteroaryl.
In another embodiment, —R1-R10 is:
Figure US08765757-20140701-C00095
In one embodiment, R2 is —C(O)R9.
In another embodiment, R2 is —C(O)OR9.
In still another embodiment, R2 is —C(O)N(R9)2.
In yet another embodiment, R2 is —[C(R12)2]r—C(O)OR9.
In another embodiment, R2 is —[C(R12)2]r—C(O)N(R9)2.
In a further embodiment, R2 is -alkyl.
In another embodiment, R2 is —[C(R12)2]q-aryl.
In another embodiment, R2 is —[C(R12)2]q-cycloalkyl.
In still another embodiment, R2 is —[C(R12)2]q-cycloalkenyl.
In still another embodiment, R2 is —[C(R12)2]q-heterocycloalkyl.
In yet another embodiment, R2 is —[C(R12)2]q-heteroaryl.
In another embodiment, R2 is —[C(R12)2]q-heterocycloalkenyl.
In a further embodiment, R2 is —C(O)OR9 or —C(O)N(R9)2.
In another embodiment, R2 is —C(O)OH.
In another embodiment, R2 is —C(O)NH2.
In still another embodiment, R2 is —C(O)R9, —C(O)OR9, —C(O)OCH2OR9, —C(O)N(R9)2, —[C(R12)2]q—C(O)OR9, —[C(R12)2]q—C(O)N(R9)2 or —[C(R12)2]q-heteroaryl wherein a heteroaryl group can be optionally substituted with up to 4 substituents, which are the same or different, and are selected from alkyl, alkenyl, alkynyl, aryl, —[C(R12)2]q-cycloalkyl, —[C(R12)2]q-cycloalkenyl, —[C(R12)2]q-heterocycloalkyl, —[C(R12)2]q-heterocycloalkenyl, —[C(R12)2]q-heteroaryl, —[C(R12)2]q-haloalkyl, —[C(R12)2]q-hydroxyalkyl, halo, hydroxy, —OR9, —CN, —[C(R12)2]q—C(O)R8, —[C(R12)2]q—C(O)OR9, —[C(R12)2]q—C(O)N(R9)2, —[C(R12)2]q—OR9, —[C(R12)2]q—N(R9)2, —[C(R12)2]q—NHC(O)R8, —[C(R12)2]q—NR8C(O)N(R9)2, —[C(R12)2]q—NHSO2R11, —[C(R12)2]q—S(O)pR11, —[C(R12)2]q—SO2N(R9)2 and —SO2N(R9)C(O)N(R9)2.
In one embodiment, R3 is
Figure US08765757-20140701-C00096
In another embodiment, R3 is
Figure US08765757-20140701-C00097
In another embodiment, R3 is
Figure US08765757-20140701-C00098
In still another embodiment, R3 is
Figure US08765757-20140701-C00099
In another embodiment, R3 is
Figure US08765757-20140701-C00100
In yet another embodiment, R3 is
Figure US08765757-20140701-C00101
In another embodiment, R3 is
Figure US08765757-20140701-C00102

and both R30 groups, together with the carbon atoms to which they are attached, join to form an aryl or heteroaryl group.
In another embodiment, R3 is
Figure US08765757-20140701-C00103

and each R30 group is independently selected from H and alkyl.
In one embodiment, R3 is:
Figure US08765757-20140701-C00104
In another embodiment, R3 is:
Figure US08765757-20140701-C00105
In another embodiment, R3 is:
Figure US08765757-20140701-C00106
In yet another embodiment, R3 is:
Figure US08765757-20140701-C00107
In a further embodiment, R3 is:
Figure US08765757-20140701-C00108
In one embodiment, R4 is H.
In another embodiment, R4 is H or F.
In another embodiment, R4 is F.
In still another embodiment, R5 is H.
In another embodiment, R6 is H.
In yet another embodiment, R6 is H or F.
In another embodiment, R6 is F.
In still another embodiment, R5 is H.
In another embodiment, R5 is other than H.
In still another embodiment, R5 is alkyl.
In another embodiment, R5 is halo or haloalkyl.
In yet another embodiment, R5 is halo.
In yet another embodiment, R5 is haloalkyl.
In still another embodiment, R5 is methyl.
In another embodiment, R5 is ethyl.
In another embodiment, R5 is Cl, Br or CF3.
In another embodiment, R6 is H.
In yet another embodiment, R6 is H or F.
In another embodiment, R6 is other than H.
In a further embodiment, R6 is alkyl.
In yet another embodiment, R6 is halo.
In still another embodiment, R6 is methyl.
In another embodiment, R6 is F.
In a further embodiment, R7 is H.
In one embodiment, R4 and R7 are each H.
In yet another embodiment, R4, R6 and R7 are each H.
In another embodiment, R4, R5, R6 and R7 are each H.
In a further embodiment, R4, R6 and R7 are each H and R5 is other than H.
In another embodiment, R4, R6 and R7 are each H and R5 is haloalkyl.
In still another embodiment, R4, R6 and R7 are each H and R5 is halo.
In another embodiment, R4, R6 and R7 are each H and R5 is Cl.
In a further embodiment, R4, R6 and R7 are each H and R5 is Br.
In another embodiment, R4, R6 and R7 are each H and R5 is CF3.
In one embodiment, R2 is —C(O)OR9 and R3 is
Figure US08765757-20140701-C00109
In another embodiment, R2 is —C(O)OH and R3 is
Figure US08765757-20140701-C00110
In one embodiment, R2 is —C(O)N(R9)2 and R3 is
Figure US08765757-20140701-C00111
In another embodiment, R2 is —C(O)NH2 and R3 is
Figure US08765757-20140701-C00112
In another embodiment, R1-R10 is
Figure US08765757-20140701-C00113

R2 is —C(O)OR9; and R3 is
Figure US08765757-20140701-C00114
In still another embodiment, R1-R10 is
Figure US08765757-20140701-C00115

R2 is —C(O)OH; and R3 is
Figure US08765757-20140701-C00116
In one embodiment, R1-R10 is
Figure US08765757-20140701-C00117

R2 is —C(O)N(R9)3; and R3 is
Figure US08765757-20140701-C00118
In another embodiment, R1-R10 is
Figure US08765757-20140701-C00119

R2 is —C(O)R9; and R3 is
Figure US08765757-20140701-C00120
In still another embodiment, R1-R10 is
Figure US08765757-20140701-C00121

R2 is —C(O)OH; and R3 is
Figure US08765757-20140701-C00122
In one embodiment, R1-R10 is
Figure US08765757-20140701-C00123

R2 is —C(O)N(R9)2; and R3 is
Figure US08765757-20140701-C00124
In another embodiment, R1-R10 is
Figure US08765757-20140701-C00125

R2 is —C(O)NH2; and R3 is
Figure US08765757-20140701-C00126
In another embodiment, R1-R10 is —CH2-heteroaryl or alkyl; R2 is —C(O)OR9; and R3 is
Figure US08765757-20140701-C00127
In still another embodiment, R1-R10 is —CH2-heteroaryl or alkyl; R2 is —C(O)OH; and R3 is
Figure US08765757-20140701-C00128
In another embodiment, R1-R10 is —CH2-heteroaryl or alkyl; R2 is —C(O)N(R9)2; and R3 is
Figure US08765757-20140701-C00129
In another embodiment, R1-R10 is —CH2-heteroaryl or alkyl; R2 is —C(O)NH2; and R3 is
Figure US08765757-20140701-C00130
In one embodiment, R1-R10 is benzyl, wherein the phenyl moiety of the benzyl group is optionally substituted with from 1-4 groups independently selected from: alkyl, —O-alkyl, halo, —O-haloalkyl, —OH, —NH2, —NH(alkyl), —N(alkyl)2, —NO2, —CN, —NHC(O)-alkyl, —O-alkylene-heterocycloalkyl —C(O)O-alkyl and —O-haloalkyl; R2 is —C(O)OR9; and R3 is
Figure US08765757-20140701-C00131
In another embodiment, R1-R10 is benzyl, wherein the phenyl moiety of the benzyl group is optionally substituted with from 1-4 groups independently selected from: alkyl, —O-alkyl, halo, —O-haloalkyl, —OH, —NH2, —NH(alkyl), —N(alkyl)2, —NO2, —CN, —NHC(O)-alkyl, —O-alkylene-heterocycloalkyl —C(O)O-alkyl and —O-haloalkyl; R2 is —C(O)OH; and R3 is
Figure US08765757-20140701-C00132
In another embodiment, R1-R10 is benzyl, wherein the phenyl moiety of the benzyl group is optionally substituted with from 1-4 groups independently selected from: alkyl, —O-alkyl, halo, —O-haloalkyl, —OH, —NH2, —NH(alkyl), —N(alkyl)2, —NO2, —CN, —NHC(O)-alkyl, —O-alkylene-heterocycloalkyl —C(O)O-alkyl and —O-haloalkyl; R2 is —C(O)N(R9)2; and R3 is
Figure US08765757-20140701-C00133
In another embodiment, R1-R10 is benzyl, wherein the phenyl moiety of the benzyl group is optionally substituted with from 1-4 groups independently selected from: alkyl, —O-alkyl, halo, —O-haloalkyl, —OH, —NH2, —NH(alkyl), —N(alkyl)2, —NO2, —CN, —NHC(O)-alkyl, —O-alkylene-heterocycloalkyl —C(O)O-alkyl and —O-haloalkyl; R2 is —C(O)NH2; and R3 is
Figure US08765757-20140701-C00134
In another embodiment, R1-R10 is
Figure US08765757-20140701-C00135

R2 is —C(O)OH or —C(O)NH2; R3 is
Figure US08765757-20140701-C00136

and R4, R6 and R7 are each H; and R5 is halo or haloalkyl.
In another embodiment, R1-R10 is
Figure US08765757-20140701-C00137

R2 is —C(O)OH or —C(O)NH2; R3 is
Figure US08765757-20140701-C00138

and R4, R6 and R7 are each H; and R5 is halo or haloalkyl.
In another embodiment, R1-R10 is —CH2-heteroaryl or alkyl; R2 is —C(O)OH or —C(O)NH2; R3 is
Figure US08765757-20140701-C00139

and R4, R6 and R7 are each H; and R5 is halo or haloalkyl.
In a further embodiment, R1-R10 is benzyl, wherein the phenyl moiety of the benzyl group is optionally substituted with from 1-4 groups independently selected from: alkyl, —O-alkyl, halo, —O-haloalkyl, —OH, —NH2, —NH(alkyl), —N(alkyl)2, —NO2, —CN, —NHC(O)-alkyl, —O-alkylene-heterocycloalkyl —C(O)O-alkyl and —O-haloalkyl; R2 is —C(O)OH or —C(O)NH2; R3 is
Figure US08765757-20140701-C00140

and R4, R6 and R7 are each H; and R5 is halo or haloalkyl.
In one embodiment, the compounds of formula (II) have the formula (IIa):
Figure US08765757-20140701-C00141

wherein:
R1 is —[C(R12)2]r—;
R2 is —C(O)OH, —C(O)NH2, —C(O)OCH2CH2NH2, —C(O)OCH2CH2N(CH3)2, C(O)OCH2CH2CH2NH2 or —C(O)OCH2CH2CH2N(CH3)2;
R3 is:
Figure US08765757-20140701-C00142
R4, R5, R6 and R7 are each, independently, H, alkyl, —O-alkyl, halo, haloalkyl or hydroxyalkyl;
R10 is H, aryl, cycloalkyl, heterocycloalkyl or heteroaryl, wherein a cycloalkyl, heterocycloalkyl, aryl or heteroaryl group can be optionally substituted with one or more substituents, which are each independently selected from alkyl, —O-alkyl, halo, —O-haloalkyl, —OH, —NH2, —NH(alkyl), —N(alkyl)2, —NO2, —CN, —NHC(O)-alkyl, —O-alkylene-heterocycloalkyl —C(O)O-alkyl and —O-haloalkyl;
R9 is H, alkyl or aryl;
each occurrence of R12 is H, alkyl or halo, or two geminal R12 groups, together with the common carbon atom to which they are attached, join to form a 3- to 6-membered cycloalkyl group;
each occurrence of R30 is independently, H, alkyl, aryl, halo, hydroxy, hydroxyalkyl, haloalkyl, —O-alkyl or —CN, or two adjacent R30 groups, together with the carbon atoms to which they are attached, join to form a cycloalkyl, heterocycloalkyl, aryl or heteroaryl group; and
r is an integer ranging from 1 to 4.
In another embodiment, for the compounds of formula (IIa):
R1 is —CH2—;
R2 is —C(O)OH or —C(O)NH2;
R3 is:
Figure US08765757-20140701-C00143
R4, R6 and R7 are each H;
R5 is H, halo or haloalkyl;
R10 is H aryl, cycloalkyl or heteroaryl, wherein a cycloalkyl, aryl or heteroaryl group can be optionally substituted with one or more substituents, which are each independently selected from alkyl, —O-alkyl, halo, —O-haloalkyl, —OH, —NH2, —NH(alkyl), —N(alkyl)2, —NO2, —CN, —NHC(O)-alkyl, —O-alkylene-heterocycloalkyl —C(O)O-alkyl and —O-haloalkyl; and
r is an integer ranging from 1 to 4.
In another embodiment, for the compounds of formula (IIa):
R1 is —CH2—;
R2 is —C(O)OH;
R3 is:
Figure US08765757-20140701-C00144
R4, R6 and R7 are each H;
R5 is H, halo or haloalkyl;
R10 is H aryl, cycloalkyl or heteroaryl, wherein a cycloalkyl, aryl or heteroaryl group can be optionally substituted with one or more substituents, which are each independently selected from alkyl, —O-alkyl, halo, —O-haloalkyl, —OH, —NH2, —NH(alkyl), —N(alkyl)2, —NO2, —CN, —NHC(O)-alkyl, —O-alkylene-heterocycloalkyl —C(O)O-alkyl and —O-haloalkyl; and
r is an integer ranging from 1 to 4.
In still another embodiment, for the compounds of formula (IIa):
R1 is —CH2—;
R2 is —C(O)OH;
R3 is:
Figure US08765757-20140701-C00145
R4, R6 and R7 are each H;
R5 is H, halo or haloalkyl;
R10 is phenyl, which can be optionally substituted with one or more substituents, which are each independently selected from alkyl, —O-alkyl, halo, —O-haloalkyl, —OH, —NH2, —NH(alkyl), —N(alkyl)2, —NO2, —CN, —NHC(O)-alkyl, —O-alkylene-heterocycloalkyl —C(O)O-alkyl and —O-haloalkyl; and
r is an integer ranging from 1 to 4.
In one embodiment, for the compounds of formula (IIa):
R1 is —CH2—;
R2 is —C(O)OH;
R3 is:
Figure US08765757-20140701-C00146
R4, R6 and R7 are each H;
R5 is Cl, Br, methyl, ethyl, —OCH3 or CF3;
R10 is phenyl, which can be optionally substituted with one or more substituents, which are each independently selected from alkyl, —O-alkyl, halo, —O-haloalkyl, —OH, —NH2, —NH(alkyl), —N(alkyl)2, —NO2, —CN, —NHC(O)-alkyl, —O-alkylene-heterocycloalkyl —C(O)O-alkyl and —O-haloalkyl; and
r is an integer ranging from 1 to 4.
In one embodiment, for the compounds of formula (II), R1, R2, R3, R4, R5, R6, R7 and R10 are selected independently of each other.
In another embodiment, a compound of formula (II) is in purified form.
Non-limiting illustrative examples of the 3-Heterocyclic Substituted Indole Derivatives are set forth in the following table and in the Examples section below.
Compound LCMS
No. Structure (M + H)
1
Figure US08765757-20140701-C00147
359.7
2
Figure US08765757-20140701-C00148
383.8
3
Figure US08765757-20140701-C00149
409.3
4
Figure US08765757-20140701-C00150
414.2
5
Figure US08765757-20140701-C00151
423.4
6
Figure US08765757-20140701-C00152
434.4
7
Figure US08765757-20140701-C00153
435.4
8
Figure US08765757-20140701-C00154
445.9
9
Figure US08765757-20140701-C00155
446.9
10
Figure US08765757-20140701-C00156
449.4
11
Figure US08765757-20140701-C00157
370.2
12
Figure US08765757-20140701-C00158
451.9
13
Figure US08765757-20140701-C00159
451.9
14
Figure US08765757-20140701-C00160
460.9
15
Figure US08765757-20140701-C00161
461.9
16
Figure US08765757-20140701-C00162
466.9
17
Figure US08765757-20140701-C00163
401.9
18
Figure US08765757-20140701-C00164
475.4
19
Figure US08765757-20140701-C00165
475.4
20
Figure US08765757-20140701-C00166
475.9
21
Figure US08765757-20140701-C00167
465.9
22
Figure US08765757-20140701-C00168
481.4
23
Figure US08765757-20140701-C00169
481.9
24
Figure US08765757-20140701-C00170
484.4
25
Figure US08765757-20140701-C00171
485.4
26
Figure US08765757-20140701-C00172
486.4
27
Figure US08765757-20140701-C00173
486.4
28
Figure US08765757-20140701-C00174
490.9
29
Figure US08765757-20140701-C00175
491.5
30
Figure US08765757-20140701-C00176
411.9
31
Figure US08765757-20140701-C00177
494.4
32
Figure US08765757-20140701-C00178
495.3
33
Figure US08765757-20140701-C00179
499.5
34
Figure US08765757-20140701-C00180
499.5
35
Figure US08765757-20140701-C00181
499.5
36
Figure US08765757-20140701-C00182
500.5
37
Figure US08765757-20140701-C00183
500.5
38
Figure US08765757-20140701-C00184
501.4
39
Figure US08765757-20140701-C00185
501.4
40
Figure US08765757-20140701-C00186
501.4
41
Figure US08765757-20140701-C00187
503.4
42
Figure US08765757-20140701-C00188
505.3
43
Figure US08765757-20140701-C00189
521.4
44
Figure US08765757-20140701-C00190
506.5
45
Figure US08765757-20140701-C00191
508.9
46
Figure US08765757-20140701-C00192
509.4
47
Figure US08765757-20140701-C00193
510.5
48
Figure US08765757-20140701-C00194
510.5
49
Figure US08765757-20140701-C00195
511.4
50
Figure US08765757-20140701-C00196
512.5
51
Figure US08765757-20140701-C00197
449.9
52
Figure US08765757-20140701-C00198
513.5
53
Figure US08765757-20140701-C00199
514.4
54
Figure US08765757-20140701-C00200
515.5
55
Figure US08765757-20140701-C00201
515.5
56
Figure US08765757-20140701-C00202
451.9
57
Figure US08765757-20140701-C00203
517.5
58
Figure US08765757-20140701-C00204
517.5
59
Figure US08765757-20140701-C00205
517.5
60
Figure US08765757-20140701-C00206
519.9
61
Figure US08765757-20140701-C00207
519.9
62
Figure US08765757-20140701-C00208
520.3
63
Figure US08765757-20140701-C00209
520.4
64
Figure US08765757-20140701-C00210
392.4
65
Figure US08765757-20140701-C00211
406.4
66
Figure US08765757-20140701-C00212
521.4
67
Figure US08765757-20140701-C00213
521.4
68
Figure US08765757-20140701-C00214
521.4
69
Figure US08765757-20140701-C00215
524.4
70
Figure US08765757-20140701-C00216
526.4
71
Figure US08765757-20140701-C00217
526.9
72
Figure US08765757-20140701-C00218
529.5
73
Figure US08765757-20140701-C00219
530.4
74
Figure US08765757-20140701-C00220
533.9
75
Figure US08765757-20140701-C00221
537.9
76
Figure US08765757-20140701-C00222
537.9
77
Figure US08765757-20140701-C00223
537.9
78
Figure US08765757-20140701-C00224
537.9
79
Figure US08765757-20140701-C00225
537.9
80
Figure US08765757-20140701-C00226
537.9
81
Figure US08765757-20140701-C00227
537.9
82
Figure US08765757-20140701-C00228
537.9
83
Figure US08765757-20140701-C00229
461.9
84
Figure US08765757-20140701-C00230
539.4
85
Figure US08765757-20140701-C00231
543.5
86
Figure US08765757-20140701-C00232
544.0
87
Figure US08765757-20140701-C00233
545.5
88
Figure US08765757-20140701-C00234
545.5
89
Figure US08765757-20140701-C00235
552.5
90
Figure US08765757-20140701-C00236
552.5
91
Figure US08765757-20140701-C00237
552.9
92
Figure US08765757-20140701-C00238
553.4
93
Figure US08765757-20140701-C00239
553.4
94
Figure US08765757-20140701-C00240
559.0
95
Figure US08765757-20140701-C00241
564.341
96
Figure US08765757-20140701-C00242
564.3
97
Figure US08765757-20140701-C00243
564.9
98
Figure US08765757-20140701-C00244
568.6
99
Figure US08765757-20140701-C00245
568.6
100
Figure US08765757-20140701-C00246
571.5
101
Figure US08765757-20140701-C00247
576.6
102
Figure US08765757-20140701-C00248
577.6
103
Figure US08765757-20140701-C00249
578.5
104
Figure US08765757-20140701-C00250
578.6
105
Figure US08765757-20140701-C00251
580.5
106
Figure US08765757-20140701-C00252
582.4
107
Figure US08765757-20140701-C00253
586.6
108
Figure US08765757-20140701-C00254
588.5
109
Figure US08765757-20140701-C00255
592.6
110
Figure US08765757-20140701-C00256
570.9
111
Figure US08765757-20140701-C00257
597.4
112
Figure US08765757-20140701-C00258
406.4
113
Figure US08765757-20140701-C00259
603.5
114
Figure US08765757-20140701-C00260
606.6
115
Figure US08765757-20140701-C00261
350.3
116
Figure US08765757-20140701-C00262
614.6
117
Figure US08765757-20140701-C00263
520.9
118
Figure US08765757-20140701-C00264
620.6
119
Figure US08765757-20140701-C00265
622.6
120
Figure US08765757-20140701-C00266
622.6
121
Figure US08765757-20140701-C00267
624.5
122
Figure US08765757-20140701-C00268
641.4
123
Figure US08765757-20140701-C00269
644.5
124
Figure US08765757-20140701-C00270
646.5
125
Figure US08765757-20140701-C00271
691.7
126
Figure US08765757-20140701-C00272
598.5
127
Figure US08765757-20140701-C00273
517.4
128
Figure US08765757-20140701-C00274
594.5
129
Figure US08765757-20140701-C00275
480.3
130
Figure US08765757-20140701-C00276
480.3
131
Figure US08765757-20140701-C00277
465.9
132
Figure US08765757-20140701-C00278
451.9
133
Figure US08765757-20140701-C00279
465.9
134
Figure US08765757-20140701-C00280
524.8
135
Figure US08765757-20140701-C00281
489.9
136
Figure US08765757-20140701-C00282
505.9
137
Figure US08765757-20140701-C00283
505.9
138
Figure US08765757-20140701-C00284
447.8
139
Figure US08765757-20140701-C00285
465.9
140
Figure US08765757-20140701-C00286
491.9
141
Figure US08765757-20140701-C00287
479.9
142
Figure US08765757-20140701-C00288
606.9
143
Figure US08765757-20140701-C00289
517.9
144
Figure US08765757-20140701-C00290
542.0
145
Figure US08765757-20140701-C00291
375.8
146
Figure US08765757-20140701-C00292
479.9
147
Figure US08765757-20140701-C00293
484.4
148
Figure US08765757-20140701-C00294
433.8
149
Figure US08765757-20140701-C00295
370.8
150
Figure US08765757-20140701-C00296
370.8
151
Figure US08765757-20140701-C00297
370.8
152
Figure US08765757-20140701-C00298
333.7
153
Figure US08765757-20140701-C00299
391.8
154
Figure US08765757-20140701-C00300
363.8
155
Figure US08765757-20140701-C00301
373.8
156
Figure US08765757-20140701-C00302
576.9
157
Figure US08765757-20140701-C00303
538.9
158
Figure US08765757-20140701-C00304
568.9
159
Figure US08765757-20140701-C00305
559.0
160
Figure US08765757-20140701-C00306
597.0
161
Figure US08765757-20140701-C00307
610.1
162
Figure US08765757-20140701-C00308
566.9
163
Figure US08765757-20140701-C00309
592.9
164
Figure US08765757-20140701-C00310
522.9
165
Figure US08765757-20140701-C00311
522.9
166
Figure US08765757-20140701-C00312
543.4
167
Figure US08765757-20140701-C00313
526.9
168
Figure US08765757-20140701-C00314
576.9
169
Figure US08765757-20140701-C00315
587.8
170
Figure US08765757-20140701-C00316
583.9
171
Figure US08765757-20140701-C00317
526.9
172
Figure US08765757-20140701-C00318
544.9
173
Figure US08765757-20140701-C00319
543.4
174
Figure US08765757-20140701-C00320
544.9
175
Figure US08765757-20140701-C00321
577.8
176
Figure US08765757-20140701-C00322
561.4
177
Figure US08765757-20140701-C00323
655.8
178
Figure US08765757-20140701-C00324
622.3
179
Figure US08765757-20140701-C00325
655.8
180
Figure US08765757-20140701-C00326
540.9
181
Figure US08765757-20140701-C00327
605.8
182
Figure US08765757-20140701-C00328
655.8
183
Figure US08765757-20140701-C00329
605.8
184
Figure US08765757-20140701-C00330
593.9
185
Figure US08765757-20140701-C00331
549.4
186
Figure US08765757-20140701-C00332
583.9
187
Figure US08765757-20140701-C00333
364.4
188
Figure US08765757-20140701-C00334
576.9
189
Figure US08765757-20140701-C00335
587.8
190
Figure US08765757-20140701-C00336
526.9
191
Figure US08765757-20140701-C00337
544.9
192
Figure US08765757-20140701-C00338
544.9
193
Figure US08765757-20140701-C00339
503.4
194
Figure US08765757-20140701-C00340
533.4
195
Figure US08765757-20140701-C00341
504.4
196
Figure US08765757-20140701-C00342
547.5
197
Figure US08765757-20140701-C00343
510.5
198
Figure US08765757-20140701-C00344
521.4
199
Figure US08765757-20140701-C00345
553.4
200
Figure US08765757-20140701-C00346
503.4
201
Figure US08765757-20140701-C00347
519.9
202
Figure US08765757-20140701-C00348
564.3
203
Figure US08765757-20140701-C00349
9
553.4
204
Figure US08765757-20140701-C00350
521.4
205
Figure US08765757-20140701-C00351
521.4
206
Figure US08765757-20140701-C00352
477.4
207
Figure US08765757-20140701-C00353
490.4
208
Figure US08765757-20140701-C00354
525.9
209
Figure US08765757-20140701-C00355
517.5
210
Figure US08765757-20140701-C00356
513.5
211
Figure US08765757-20140701-C00357
513.5
212
Figure US08765757-20140701-C00358
515.5
213
Figure US08765757-20140701-C00359
543.5
214
Figure US08765757-20140701-C00360
437.4
215
Figure US08765757-20140701-C00361
451.4
216
Figure US08765757-20140701-C00362
439.4
217
Figure US08765757-20140701-C00363
414.2
218
Figure US08765757-20140701-C00364
403.3
219
Figure US08765757-20140701-C00365
380.3
220
Figure US08765757-20140701-C00366
438.9
221
Figure US08765757-20140701-C00367
452.9
222
Figure US08765757-20140701-C00368
452.9
223
Figure US08765757-20140701-C00369
470.4
224
Figure US08765757-20140701-C00370
523.9
225
Figure US08765757-20140701-C00371
475.9
226
Figure US08765757-20140701-C00372
473.9
227
Figure US08765757-20140701-C00373
550.0
228
Figure US08765757-20140701-C00374
513.9
229
Figure US08765757-20140701-C00375
499.9
230
Figure US08765757-20140701-C00376
501.9
231
Figure US08765757-20140701-C00377
504.3
232
Figure US08765757-20140701-C00378
465.9
233
Figure US08765757-20140701-C00379
459.9
234
Figure US08765757-20140701-C00380
532.4
235
Figure US08765757-20140701-C00381
562.4
236
Figure US08765757-20140701-C00382
580.4
237
Figure US08765757-20140701-C00383
753.4
238
Figure US08765757-20140701-C00384
704.5
239
Figure US08765757-20140701-C00385
569.4
240
Figure US08765757-20140701-C00386
533.9
241
Figure US08765757-20140701-C00387
564.0
242
Figure US08765757-20140701-C00388
538.9
243
Figure US08765757-20140701-C00389
413.8
244
Figure US08765757-20140701-C00390
427.8
245
Figure US08765757-20140701-C00391
378.4
246
Figure US08765757-20140701-C00392
369.8
247
Figure US08765757-20140701-C00393
368.8
248
Figure US08765757-20140701-C00394
450.8
249
Figure US08765757-20140701-C00395
437.9
250
Figure US08765757-20140701-C00396
438.9
251
Figure US08765757-20140701-C00397
375.8
252
Figure US08765757-20140701-C00398
680.4
253
Figure US08765757-20140701-C00399
598.5
254
Figure US08765757-20140701-C00400
614.9
255
Figure US08765757-20140701-C00401
596.9
256
Figure US08765757-20140701-C00402
521.4
257
Figure US08765757-20140701-C00403
505.4
258
Figure US08765757-20140701-C00404
519.4
259
Figure US08765757-20140701-C00405
516.4
260
Figure US08765757-20140701-C00406
479.4
261
Figure US08765757-20140701-C00407
NA
262
Figure US08765757-20140701-C00408
473.9
263
Figure US08765757-20140701-C00409
548.4
264
Figure US08765757-20140701-C00410
612.4
265
Figure US08765757-20140701-C00411
426.8
266
Figure US08765757-20140701-C00412
550.3
267
Figure US08765757-20140701-C00413
435.2
268
Figure US08765757-20140701-C00414
396.2
269
Figure US08765757-20140701-C00415
451.2
270
Figure US08765757-20140701-C00416
427.2
271
Figure US08765757-20140701-C00417
513.5
272
Figure US08765757-20140701-C00418
NA
273
Figure US08765757-20140701-C00419
NA
274
Figure US08765757-20140701-C00420
NA
275
Figure US08765757-20140701-C00421
NA
276
Figure US08765757-20140701-C00422
NA
277
Figure US08765757-20140701-C00423
NA
278
Figure US08765757-20140701-C00424
NA
279
Figure US08765757-20140701-C00425
NA
280
Figure US08765757-20140701-C00426
NA
281
Figure US08765757-20140701-C00427
NA
282
Figure US08765757-20140701-C00428
NA
283
Figure US08765757-20140701-C00429
NA
284
Figure US08765757-20140701-C00430
NA
285
Figure US08765757-20140701-C00431
NA
NA = not available

and pharmaceutically acceptable salts, solvates, esters and prodrugs thereof.
Methods for Making the 3-Heterocyclic Substituted Indole Derivatives
Methods useful for making the 3-Heterocyclic Substituted Indole Derivatives are set forth below in Schemes 1-8 and in the Examples section. Examples of commonly known methodologies useful for the synthesis of indoles are set forth, for example, in G. R. Humphrey and J. T. Kuethe, Chemical Reviews 106:2875-2911, 2006.
Scheme 1 sets forth a method for making compounds of formula A-4, which are useful intermediates for making the 3-Heterocyclic Substituted Indole Derivatives.
Figure US08765757-20140701-C00432

wherein R4, R5, R6 and R7 are defined above for the compounds of formulas (I) and (II) and R is ethyl.
An aniline compound of formula A-1 can be converted to an indole compound of formula A-4 using the method outlined in Scheme 3, which is described in Nazare et al., Angew. Chem., 116:4626-4629 (2004). Alternatively, the compounds of formula A-4 can be obtained from the compounds of formula A-1 using various indole syntheses that are well-known to those skilled in the art of organic synthesis, such as the Fischer indole synthesis.
Scheme 2 shows methods useful for making compounds of formulas B-4 and B-6, which are useful intermediates for making the 3-Heterocyclic Substituted Indole Derivatives.
Figure US08765757-20140701-C00433

wherein R4, R5, R6 and R7 are defined above for the compounds of formulas (I) and (II) and R is ethyl.
A substituted aniline of formula B-1, wherein R7 is H, can be di-brominated using bromine to provide the compounds of formula B-2. Selective de-bromination using tin(II) chloride provides the corresponding monobromo compounds of formula B-3, which can then undergo palladium-catalyzed cyclization in the presence of pyruvate to provide the compounds of formula B-4, wherein R7 is H. Alternatively, a compound of formula B-1, wherein R7 is other than H, can be monobrominated using bromine to provide the compounds of formula B-5. A compound of formula B-5 can then undergo palladium-catalyzed cyclization in the presence of pyruvate to provide the compounds of formula B-6, wherein R7 is other than H.
Scheme 3 shows methods useful for making compounds of formula C-5, which are useful intermediates for making the 3-Heterocyclic Substituted Indole Derivatives.
Figure US08765757-20140701-C00434

wherein R1, R4, R5, R6 and R7 are defined above for the compounds of formulas (I) and (II); A is alkylene, cycloalkylene, heterocycloalklene, arylene or heteroarylene; R′ is —C(O)O-alkyl.
3-Amino indole compounds of formula C-1 can be converted into compounds of formula C-2 using triphosgene in the presence of a base, such as triethylamine. The compounds of formula C-2 can then be reacted with a compound of formula C-3 to provide the urea compounds of formula C-4. The compounds of formula C-4 can be converted into compounds of formula C-5 via a base-catalyzed ring closure using as base such as potassium tert-butoxide.
Scheme 4 shows methods useful for making compounds of formula C-5, which are useful intermediates for making the 3-Heterocyclic Substituted Indole Derivatives.
Figure US08765757-20140701-C00435

wherein R1, R4, R5, R6 and R7 are defined above for the compounds of formulas (I) and (II) and R′ is —C(O)O-alkyl.
Compounds of either formula A-4, B-4, or B-6 can be converted into compounds of formula D-1 by treatment with sodium nitrite (NaNO2). Compounds of formula D-1 can be converted into compounds of formula D-2 by treatment with sodium hydrosulfite (Na2S2O4).
Scheme 5 shows methods useful for making compounds of formula E-5, which are useful intermediates for making the 3-Heterocyclic Substituted Indole Derivatives.
Figure US08765757-20140701-C00436

wherein R1, R4, R5, R6 and R7 are defined above for the compounds of formulas (I) and (II).
Fluorophenyl compounds of formula E-1 can be reacted with an amine of formula E-2 in the presence of a base, such as diisopropylethylamine, to provide the aminophenyl compounds of formula E-3. The compounds of formula E-3 can then be reacted with ten-butyl bromoacetate (E-4) in the presence of a base, such as potassium tert-butoxide, to provide the 2-carboethoxy indole compounds of formula E-5.
Scheme 6 shows methods useful for making compounds of formula F-4, which correspond to the 3-Heterocyclic Substituted Indole Derivatives of formula (I), wherein R2 is —C(O)N(R9)S(O)2—R11.
Figure US08765757-20140701-C00437

wherein R1, R4, R5, R6, R7 and R11 are defined above for the compounds of formula (I), and A is alkylene, cycloalkylene, heterocycloalklene, arylene or heteroarylene.
The compounds of formula F-1 can be treated with trifluoroacetic acid to provide the compounds of formula F-2. Compounds of formula F-2 can then be reacted with a compound of formula F-3 in the presence of a base, such as 1,8-diazabicyclo[5.4.0]undec-7-ene (DBU), to provide the compounds of formula F-4.
Scheme 7 shows a method useful for making compounds of formula J, which correspond to the compounds of formula (II), wherein R2 is an amide.
Figure US08765757-20140701-C00438

wherein R1, R3, R4, R5, R6, R7, R9 and R10 are defined above for the compounds of formulas (I) and (II).
A 2-carboxy indole compound of formula G can be coupled with an amine of formula NH(R9)2 in the presence of carbonyldiimidazole (CDI) and 1,8-diazabicyclo[5.4.0]undec-7-ene (DBU) to provide the compounds of formula J, which correspond to the Compounds of Formula (I) wherein R2 is —C(O)N(R9)2.
Scheme 8 shows a method useful for making the Compounds of Formula (I), wherein R2 is:
Figure US08765757-20140701-C00439
Figure US08765757-20140701-C00440

wherein R1, R3, R4, R5, R6, R7, R10 and R20 are defined above for the compounds of formulas (I) and (II).
A 2-carboxy indole compound of formula G can be reacted with a compound of formula 8A to provide the compounds of formula K, which correspond to the 3-Heterocyclic Substituted Indole Derivatives wherein R2 is:
Figure US08765757-20140701-C00441
The starting material and reagents depicted in Schemes 1-8 are either available from commercial suppliers such as Sigma-Aldrich (St. Louis, Mo.) and Acros Organics Co. (Fair Lawn, N.J.), or can be prepared using methods well-known to those of skill in the art of organic synthesis.
One skilled in the art will recognize that the synthesis of 3-Heterocyclic Substituted Indole Derivatives may require the need for the protection of certain functional groups (i.e., derivatization for the purpose of chemical compatibility with a particular reaction condition). Suitable protecting groups for the various functional groups of the 3-Heterocyclic Substituted Indole Derivatives and methods for their installation and removal may be found in Greene et al., Protective Groups in Organic Synthesis, Wiley-Interscience, New York, (1999).
One skilled in the art will recognize that one route will be optimal depending on the choice of appendage substituents. Additionally, one skilled in the art will recognize that in some cases the order of steps has to be controlled to avoid functional group incompatibilities. One skilled in the art will recognize that a more convergent route (i.e. non-linear or preassembly of certain portions of the molecule) is a more efficient method of assembly of the target compounds. Methods suitable for the preparation of 3-Heterocyclic Substituted Indole Derivatives are set forth above in Schemes 1-8.
One skilled in the art will recognize that the synthesis of the 3-Heterocyclic Substituted Indole Derivatives may require the construction of an amide bond. Methods include but are not limited to the use of a reactive carboxy derivative (e.g. acid halide, or ester at elevated temperatures) or the use of an acid with a coupling reagent (e.g. DECI, DCC) with an amine at 0° C. to 100° C. Suitable solvents for the reaction are halogenated hydrocarbons, ethereal solvents, dimethyl formamide and the like. The reaction can be conducted under pressure or in a sealed vessel.
The starting materials and the intermediates prepared using the methods set forth in Schemes 1-8 may be isolated and purified if desired using conventional techniques, including but not limited to filtration, distillation, crystallization, chromatography and the like. Such materials can be characterized using conventional means, including physical constants and spectral data.
EXAMPLES
General Methods
Solvents, reagents, and intermediates that are commercially available were used as received. Reagents and intermediates that are not commercially available were prepared in the manner as described below. 1H NMR spectra were obtained on a Bruker Avance 500 (500 MHz) and are reported as ppm down field from Me4Si with number of protons, multiplicities, and coupling constants in Hertz indicated parenthetically. Where LC/MS data are presented, analyses was performed using an Applied Biosystems API-100 mass spectrometer and Shimadzu SCL-10A LC column. Altech platinum C18, 3 micron, 33 mm×7 mm ID; gradient flow: 0 min—10% CH3CN, 5 min—95% CH3CN, 5-7 min—95% CH3CN, 7 min—stop. The retention time and observed parent ion are given. Flash column chromatography was performed using pre-packed normal phase silica from Biotage, Inc. or bulk silica from Fisher Scientific.
Example 1 Preparation of Compound 30
Figure US08765757-20140701-C00442
Step A—Synthesis of Compound 1C
Figure US08765757-20140701-C00443
To a solution of 2-fluoro-5-trifluoromethylbenzonitrile 1A (1.11 g, 5.87 mmol) and 3-(aminomethyl)thiophene 1B (1.0 g, 8.85 mmol) in trifluoromethylbenzene (10 mL) was added diisopropylethylamine (2.3 g, 17.8 mmol). The reaction mixture was heated in a microwave reactor at 160° C. for 30 minutes. Ethyl acetate (100 mL) was added and the organic layer was washed with 1 N hydrochloric acid and brine. The organic layer was dried over sodium sulfate. The organic solvent was evaporated under reduced pressure to provide 2-[(thiophen-3-yl-methyl)amino]-5-trifluoromethylbenzonitrile 1C (1.42 g, 5.04 mmol) which was used in the next step without further purification.
Step B—Synthesis of Compound 1E
Figure US08765757-20140701-C00444
To a solution of 2-[(thiophen-3-yl-methyl)amino]-5-trifluoromethylbenzonitrile 1C (1.42 g, 5.04 mmol) in anhydrous tetrahydrofuran (THF) (10 mL) and anhydrous N,N-dimethylformamide (DMF) (10 mL) at 0° C. was added potassium tert-butoxide (1.13 g, 10.1 mmol). The reaction mixture was stirred at 0° C. for 5 minutes and tert-butyl bromoacetate 1D (1.47 g, 7.54 mmol) was added. The reaction mixture was stirred at room temperature overnight. Ethyl acetate (100 mL) was added and the organic layer was washed with 1 N hydrochloric acid and brine. The organic layer was dried over sodium sulfate. The organic solvent was evaporated under reduced pressure. The crude product was purified by flash column chromatography to provide 3-amino-1-thiophen-3-yl-methyl-5-trifluoromethyl-1H-indole-2-carboxylic acid tert-butyl ester 1E (1.74 g, 4.39 mmol).
Step C—Synthesis of Compound 1F
Figure US08765757-20140701-C00445
To a solution of 3-amino-1-thiophen-3-yl-methyl-5-trifluoromethyl-1H-indole-2-carboxylic acid tert-butyl ester 1E (1.74 g, 4.39 mmol) in anhydrous toluene (50 mL) was added triphosgene (0.44 g, 1.48 mmol) and triethylamine (0.89 g, 8.81 mmol). The reaction mixture was heated at reflux for 3 hours. Toluene (50 mL) was added and the organic layer was washed with water and brine. The organic layer was dried over sodium sulfate. The organic solvent was evaporated under reduced pressure to provide 3-isocyanato-1-thiophen-3-yl-methyl-5-trifluoromethyl-1H-indole-2-carboxylic acid tert-butyl ester 1F which was used in the next step without further purification.
Step D—Synthesis of Compound 1H
Figure US08765757-20140701-C00446
To a solution of 3-isocyanato-1-thiophen-3-yl-methyl-5-trifluoromethyl-1H-indole-2-carboxylic acid tert-butyl ester 1F (˜4.39 mmol) in trifluoromethylbenzene (10 mL) was added 4-aminothiophene-3-carboxylic acid methyl ester 1G (1.38 g, 8.79 mmol). The reaction mixture was heated in a microwave reactor at 150° C. for 20 minutes. Ethyl acetate (100 mL) was added and the organic layer was washed with 1 N hydrochloric acid and brine. The organic layer was dried over sodium sulfate. The organic solvent was evaporated under reduced pressure. The crude product was purified by flash column chromatography to provide 3-[3-(4-methoxycarbonyl-thiophen-3-yl)-ureido]-1-thiophen-3-yl-methyl-5-trifluoromethyl-1H-indole-2-carboxylic acid tert-butyl ester 1H (1.50 g, 2.59 mmol).
Step E—Synthesis of Compound 1J
Figure US08765757-20140701-C00447
To a solution of 3-[3-(4-methoxycarbonyl-thiophen-3-yl)-ureido]-1-thiophen-3-yl-methyl-5-trifluoromethyl-1H-indole-2-carboxylic acid tert-butyl ester 1H (1.50 g, 2.59 mmol) in anhydrous methanol (10 mL) was added a 0.5 M solution of sodium methoxide (7.8 mL, 3.90 mmol). The reaction mixture was heated in a microwave reactor at 100° C. for 20 minutes. Ethyl acetate (100 mL) was added and the organic layer was washed with 1 N hydrochloric acid and brine. The organic layer was dried over sodium sulfate. The organic solvent was evaporated under reduced pressure to provide 3-(2,4-dioxo-1,2-dihydro-4H-thieno[3,4-d]pyrimidin-3-yl)-1-thiophen-3-yl-methyl-5-trifluoromethyl-1H-indole-2-carboxylic acid tert-butyl ester 1J which was used in the next step without further purification.
Step F—Synthesis of Compound 30
Figure US08765757-20140701-C00448
To a sample of 3-(2,4-dioxo-1,2-dihydro-4H-thieno[3,4-d]pyrimidin-3-yl)-1-thiophen-3-yl-methyl-5-trifluoromethyl-1H-indole-2-carboxylic acid tert-butyl ester 1J (˜2.59 mmol) was added a 30% v/v solution of trifluoroacetic acid in dichloromethane (20 mL). The reaction mixture was stirred at room temperature for 3 hours. The organic solvent was evaporated under reduced pressure. A sample of the crude product (60 mg) was purified by RP-HPLC to provide compound 30 (34 mg, 0.069 mmol).
Example 2 Preparation of Compound 98
Figure US08765757-20140701-C00449
To a solution of compound 30 (0.20 g, 0.41 mmol) in anhydrous THF (3 mL) and anhydrous DMF (1 mL) was added N,N′-carbonyldiimidazole (66 mg, 0.41 mmol). The reaction mixture was heated at 80° C. overnight. The reaction mixture was allowed to cool to room temperature and methanesulfonamide (39 mg, 0.41 mmol) was added. The reaction mixture was stirred at room temperature for 5 minutes and 1,8-diazabicyclo[5.4.0]undec-7-ene (DBU) (62 mg, 0.41 mmol) was added. The reaction mixture was stirred at room temperature overnight. Ethyl acetate (50 mL) was added and the organic layer was washed with 1 N hydrochloric acid and brine. The organic layer was dried over sodium sulfate. The organic solvent was evaporated under reduced pressure. The crude product was purified by RP-HPLC to provide compound 98 (0.156 g, 0.27 mmol).
Example 3 Preparation of Compound 266
Figure US08765757-20140701-C00450
To a solution of 5-chloro-3-(2,4-dioxo-1,4-dihydro-2H-quinazolin-3-yl)-1-(3-nitrobenzyl)-1H-indole-2-carboxylic acid 28 (30 mg, 0.061 mmol) in DMF (2 mL) was added benzylamine (13 mg, 0.12 mmol), O-(7-azabenzotriazol-1-yl)-N,N,N′,N′-tetramethyluronium hexafluoro-phosphate (HATU) (46 mg, 0.12 mmol) and diisopropylethylamine (16 mg, 0.12 mmol). The reaction mixture was stirred at room temperature overnight. Ethyl acetate (50 mL) was added and the organic layer was washed with 1 N hydrochloric acid and brine. The organic layer was dried over sodium sulfate. The organic solvent was evaporated under reduced pressure. The crude product was purified by RP-HPLC to provide compound 266 (19 mg, 0.033 mmol).
Example 4 Preparation of Compound 127
Figure US08765757-20140701-C00451
To a solution of compound 266 (19 mg, 0.033 mmol) in ethanol (3 mL) was added stannous chloride dihydrate (30 mg, 0.13 mmol). The reaction mixture was heated in a microwave reactor at 120° C. for 20 minutes. The solvent was evaporated under reduced pressure. The crude product was purified by RP-HPLC to provide compound 127 (12 mg, 0.022 mmol).
Example 5 Preparation of Compound 65
Figure US08765757-20140701-C00452
Figure US08765757-20140701-C00453
Step A—Synthesis of Compound 5B
Figure US08765757-20140701-C00454
To a solution of 2-fluoro-5-trifluoromethylbenzonitrile 1A (10 g, 52.9 mmol) in N-methylpyrrolidinone (NMP) (100 mL) was added glycine tert-butyl ester 5A (13.8 g, 105 mmol) and diisopropylethylamine (20 g, 155 mmol). The reaction mixture was heated at 110° C. for 4 hours. Ethyl acetate (500 mL) was added and the organic layer was washed with water and brine. The organic layer was dried over sodium sulfate. The organic solvent was evaporated under reduced pressure. The crude product was purified by flash column chromatography to provide (2-cyano-4-trifluoromethylphenylamino)acetic acid tert-butyl ester 5B (15.2 g, 50.7 mmol).
Step B—Synthesis of Compound 5D
Figure US08765757-20140701-C00455
To a solution of (2-cyano-4-trifluoromethylphenylamino)acetic acid tert-butyl ester 5B (11.7 g, 39.0 mmol) in anhydrous THF (60 mL) and anhydrous DMF (60 mL) at 0° C. was added potassium tert-butoxide (8.74 g, 78.0 mmol). The reaction mixture was stirred at 0° C. for 5 minutes and benzyl chloroformate 5C (10 g, 58.7 mmol) was added. The reaction mixture was stirred at room temperature for 4 hours. Ethyl acetate (500 mL) was added and the organic layer was washed with water and brine. The organic layer was dried over sodium sulfate. The organic solvent was evaporated under reduced pressure. The crude product was purified by flash column chromatography to provide 3-amino-1-benzyloxycarbonyl-5-trifluoromethylindole-2-carboxylic acid tert-butyl ester 5D (5.96 g, 13.7 mmol).
Step C—Synthesis of Compound 5F
Figure US08765757-20140701-C00456
To a solution of 3-amino-1-benzyloxycarbonyl-5-trifluoromethylindole-2-carboxylic acid tert-butyl ester 5D (1.78 g, 4.10 mmol) in anhydrous toluene (40 mL) was added triphosgene (0.42 g, 1.41 mmol) and triethylamine (0.83 g, 8.22 mmol). The reaction mixture was heated under reflux for 2 hours. Toluene (50 mL) was added and the organic layer was washed with water and brine. The organic layer was dried over sodium sulfate. The organic solvent was evaporated under reduced pressure to provide 1-benzyloxycarbonyl-3-isocyanato-5-trifluoromethylindole-2-carboxylic acid tert-butyl ester 5E which was used in the next step without further purification.
Step D—Synthesis of Compound 5G
Figure US08765757-20140701-C00457
To a solution of 1-benzyloxycarbonyl-3-isocyanato-5-trifluoromethylindole-2-carboxylic acid tert-butyl ester 5E (˜4.10 mmol) in trifluoromethylbenzene (10 mL) was added 4-aminothiophene-3-carboxylic acid methyl ester 5F (1.30 g, 8.28 mmol). The reaction mixture was heated in a microwave reactor at 150° C. for 30 minutes. Ethyl acetate (100 mL) was added and the organic layer was washed with 1 N hydrochloric acid and brine. The organic layer was dried over sodium sulfate. The organic solvent was evaporated under reduced pressure. The crude product was purified by flash column chromatography to provide 1-benzyloxycarbonyl-3-[3-(4-methoxycarbonylthiophen-3-yl)-ureido]-5-trifluoromethyl-1H-indole-2-carboxylic acid tert-butyl ester 5G (1.89 g, 3.06 mmol).
Step E—Synthesis of Compound 5H
Figure US08765757-20140701-C00458
To a solution of 1-benzyloxycarbonyl-3-[3-(4-methoxycarbonylthiophen-3-yl)-ureido]-5-trifluoromethyl-1H-indole-2-carboxylic acid tert-butyl ester 5G (5.29 g, 8.57 mmol) in anhydrous methanol (50 mL) was added a 0.5 M solution of sodium methoxide (25 mL, 12.5 mmol). The reaction mixture was heated in a microwave reactor at 100° C. for 10 minutes. Ethyl acetate (500 mL) was added and the organic layer was washed with 1 N hydrochloric acid and brine. The organic layer was dried over sodium sulfate. The organic solvent was evaporated under reduced pressure. The crude product was purified by flash column chromatography to provide 3-(2,4-dioxo-1,2-dihydro-4H-thieno[3,4-d]pyrimidin-3-yl)-5-trifluoromethyl-1H-indole-2-carboxylic acid tert-butyl ester 5H (3.36 g, 7.45 mmol).
Step F—Synthesis of Compound 5I
Figure US08765757-20140701-C00459
To a solution of 3-(2,4-dioxo-1,2-dihydro-4H-thieno[3,4-d]pyrimidin-3-yl)-5-trifluoromethyl-1H-indole-2-carboxylic acid tert-butyl ester 5H (3.30 g, 7.32 mmol) in anhydrous 1,4-dioxane (120 mL) was added di-tert-butyl dicarbonate (1.60 g, 7.34 mmol) and 4-dimethylaminopyridine (89 mg, 0.73 mmol). The reaction mixture was stirred at room temperature for 2 hours. Ethyl acetate (500 mL) was added and the organic layer was washed with 1 N hydrochloric acid and brine. The organic layer was dried over sodium sulfate. The organic solvent was evaporated under reduced pressure. The crude product was purified by flash column chromatography to provide 3-(1-tert-butoxycarbonyl-2,4-dioxo-1,2-dihydro-4H-thieno[3,4-d]pyrimidin-3-yl)-5-trifluoromethyl-1H-indole-2-carboxylic acid tert-butyl ester 5I (2.85 g, 5.17 mmol).
Step G—Synthesis of Compound 5K
Figure US08765757-20140701-C00460
To a solution of 3-(1-tert-butoxycarbonyl-2,4-dioxo-1,2-dihydro-4H-thieno[3,4-d]pyrimidin-3-yl)-5-trifluoromethyl-1H-indole-2-carboxylic acid tert-butyl ester 51 (30 mg, 0.054 mmol) in anhydrous THF (1 mL) and anhydrous DMF (1 mL) was added potassium tert-butoxide (9 mg, 0.080 mmol) and 2,5-difluorobenzyl bromide 5J (14.6 mg, 0.071 mmol). The reaction mixture was stirred at room temperature for 3 hours. Ethyl acetate (50 mL) was added and the organic layer was washed with saturated ammonium chloride solution and brine. The organic layer was dried over sodium sulfate. The organic solvent was removed under reduced pressure to provide 3-(1-tert-butoxycarbonyl-2,4-dioxo-1,2-dihydro-4H-thieno[3,4-d]pyrimidin-3-yl)-1-(2,5-difluorobenzyl)-5-trifluoromethyl-1H-indole-2-carboxylic acid tert-butyl ester 5K which was used in the next step without further purification.
Step H—Synthesis of Compound 65
Figure US08765757-20140701-C00461
To a sample of 3-(1-tert-butoxycarbonyl-2,4-dioxo-1,2-dihydro-4H-thieno[3,4-d]pyrimidin-3-yl)-1-(2,5-difluorobenzyl)-5-trifluoromethyl-1H-indole-2-carboxylic acid tert-butyl ester 5K (˜0.054 mmol) was added a 20% v/v solution of trifluoroacetic acid in dichloromethane (5 mL). The reaction mixture was stirred at room temperature for 3 hours. The organic solvent was evaporated under reduced pressure. The crude product was purified by RP-HPLC to yield to provide compound 65 (17 mg, 0.033 mmol).
Example 6 Preparation of Compound 39
Figure US08765757-20140701-C00462
To a solution of 3-(2,4-dioxo-1,2-dihydro-4H-thieno[3,4-d]pyrimidin-3-yl)-1-(4-methoxybenzyl)-5-trifluoromethyl-1H-indole-2-carboxylic acid 212 (14.2 mg, 0.027 mmol) in anhydrous dichloromethane (2 mL) was added a 1 M solution of boron tribromide in dichloromethane (0.11 mL, 0.11 mmol). The reaction mixture was stirred at room temperature for 10 minutes. Saturated sodium bicarbonate solution (2 mL) was added. Ethyl acetate (50 mL) was added and the organic layer was washed with 1 N hydrochloric acid and brine. The organic layer was dried over sodium sulfate. The organic solvent was evaporated under reduced pressure. The crude product was purified by RP-HPLC to provide compound 39 (9.8 mg, 0.019 mmol).
Example 7 Preparation of Compound 267
Figure US08765757-20140701-C00463
To a solution of 5-amino-3-(2,4-dioxo-1,4-dihydro-2H-quinazolin-3-yl)-1-methyl-1H-indole-2-carboxylic acid tert-butyl ester 7A (56 mg, 0.138 mmol) in methanol (2.7 mL) and acetic acid (0.3 mL) was added MP-cyanoborohydride resin (2.42 mmol/g, 85 mg, 0.206 mmol) and aqueous formaldehyde solution (37% w/w, 112 mg, 1.38 mmol). The reaction mixture was stirred at room temperature overnight. The resin was removed by filtration. The solvent was evaporated under reduced pressure. The crude product was purified by RP-HPLC to provide compound 267 (36.4 mg, 0.084 mmol).
Example 8 Preparation of Compound 8
Figure US08765757-20140701-C00464
Compound 8 was prepared using the method described in Example 1 and using 5-chloro-2-fluorobenzonitrile and benzylamine in Step A (and methyl anthranilate in Step D.
Example 9 Preparation of Compound 129
Figure US08765757-20140701-C00465
Compound 129 was prepared using the method described in Example 1 and using 5-chloro-2-fluorobenzonitrile and benzylamine in Step A and methyl 2-amino-5-chlorobenzoate in Step D.
Example 10 Preparation of Compound 130
Figure US08765757-20140701-C00466
Compound 130 was prepared using the method described in Example 1 and using 5-chloro-2-fluorobenzonitrile and benzylamine in Step A and methyl 2-amino-4-chlorobenzoate in Step D.
Example 11 Preparation of Compound 13
Figure US08765757-20140701-C00467
Compound 13 was prepared using the method described in Example 1 and using 5-chloro-2-fluorobenzonitrile and benzylamine in Step A and 3-aminothiophene-2-carboxylic acid methyl ester in Step D.
Example 12 Preparation of Compound 131
Figure US08765757-20140701-C00468
Compound 131 was prepared using the method described in Example 1 and using 5-chloro-2-fluorobenzonitrile and benzylamine in Step A and 2-amino-4-methylthiophene-3-carboxylic acid methyl ester in Step D.
Example 13 Preparation of Compound 12
Figure US08765757-20140701-C00469
Compound 12 was prepared using the method described in Example 1 and using 5-chloro-2-fluorobenzonitrile and benzylamine in Step A and 4-aminothiophene-3-carboxylic acid methyl ester in Step D.
Example 14 Preparation of Compound 132
Figure US08765757-20140701-C00470
Compound 132 was prepared using the method described in Example 1 and using 5-chloro-2-fluorobenzonitrile and benzylamine in Step A and 2-aminothiophene-3-carboxylic acid methyl ester in Step D.
Example 15 Preparation of Compound 133
Figure US08765757-20140701-C00471
Compound 133 was prepared using the method described in Example 1 and using 5-chloro-2-fluorobenzonitrile and benzylamine in Step A and 3-amino-4-methylthiophene-2-carboxylic acid methyl ester in Step D.
Example 16 Preparation of Compound 134
Figure US08765757-20140701-C00472
Compound 134 was prepared using the method described in Example 1 and using 5-chloro-2-fluorobenzonitrile and benzylamine in Step A and methyl 2-amino-5-bromobenzoate in Step D.
Example 17 Preparation of Compound 135
Figure US08765757-20140701-C00473
Compound 135 was prepared using the method described in Example 1 and using 5-chloro-2-fluorobenzonitrile and benzylamine in Step A and dimethyl aminoterephthalate in Step D.
Example 18 Preparation of Compound 136
Figure US08765757-20140701-C00474
Compound 136 was prepared using the method described in Example 1 and using 5-chloro-2-fluorobenzonitrile and benzylamine in Step A and methyl 2-amino-4,5-dimethoxybenzoate in Step D.
Example 19 Preparation of Compound 137
Figure US08765757-20140701-C00475
Compound 137 was prepared using the method described in Example 1 and using 5-chloro-2-fluorobenzonitrile and benzylamine in Step A and 2-amino-4,5,6,7-tetrahydrobenzo[b]thiophene-3-carboxylic acid methyl ester in Step D.
Example 20 Preparation of Compound 51
Figure US08765757-20140701-C00476
Compound 51 was prepared using the method described in Example 1 and using 5-chloro-2-fluorobenzonitrile and benzylamine in Step A and 5-amino-1-methyl-1H-pyrazole-4-carboxylic acid ethyl ester in Step D.
Example 21 Preparation of Compound 138
Figure US08765757-20140701-C00477
Compound 138 was prepared using the method described in Example 1 and using 5-chloro-2-fluorobenzonitrile and benzylamine in Step A and 3-aminopyrazine-2-carboxylic acid methyl ester in Step D.
Example 22 Preparation of Compound 139
Figure US08765757-20140701-C00478
Compound 139 was prepared using the method described in Example 1 and using 5-chloro-2-fluorobenzonitrile and benzylamine in Step A and 2-amino-5-methylthiophene-3-carboxylic acid methyl ester in Step D.
Example 23 Preparation of Compound 140
Figure US08765757-20140701-C00479
Compound 140 was prepared using the method described in Example 1 and using 5-chloro-2-fluorobenzonitrile and benzylamine in Step A and 2-amino-5,6-dihydro-4H-cyclopenta[b]thiophene-3-carboxylic acid methyl ester in Step D.
Example 24 Preparation of Compound 141
Figure US08765757-20140701-C00480
Compound 141 was prepared using the method described in Example 1 and using 5-chloro-2-fluorobenzonitrile and benzylamine in Step A and 2-amino-4,5-dimethylthiophene-3-carboxylic acid methyl ester in Step D.
Example 25 Preparation of Compound 142
Figure US08765757-20140701-C00481
Compound 142 was prepared using the method described in Example 1 and using 5-chloro-2-fluorobenzonitrile and benzylamine in Step A and 2-amino-4-(4-bromophenyl)thiophene-3-carboxylic acid methyl ester in Step D.
Example 26 Preparation of Compound 143
Figure US08765757-20140701-C00482
Compound 143 was prepared using the method described in Example 1 and using 5-chloro-2-fluorobenzonitrile and benzylamine in Step A and 2-amino-4-furan-2-yl-thiophene-3-carboxylic acid methyl ester in Step D.
Example 27 Preparation of Compound 144
Figure US08765757-20140701-C00483
Compound 144 was prepared using the method described in Example 1 and using 5-chloro-2-fluorobenzonitrile and benzylamine in Step A and 2-amino-5-methyl-4-phenylthiophene-3-carboxylic acid methyl ester in Step D.
Example 28 Preparation of Compound 145
Figure US08765757-20140701-C00484
Compound 145 was prepared using the method described in Example 1 and using 5-chloro-2-fluorobenzonitrile and methylamine in Step A and 3-amino-thiophene-2-carboxylic acid methyl ester in Step D.
Example 29 Preparation of Compound 146
Figure US08765757-20140701-C00485
Compound 146 was prepared using the method described in Example 1 and using 5-chloro-2-fluorobenzonitrile and methylamine in Step A and 5-amino-3-(4-methoxybenzyl)-3H-imidazole-4-carboxylic acid methyl ester in Step D.
Example 30 Preparation of Compound 1
Figure US08765757-20140701-C00486
Compound 1 using the method described in Step F wherein trifluoroacetic acid was used in a microwave reactor at 120° C. for 30 minutes.
Example 31 Preparation of Compound 147
Figure US08765757-20140701-C00487
Compound 147 was prepared from compound 138 using the method described in Example 3, wherein 2,2,2-trifluoroethylamine was used.
Example 32 Preparation of Compound 148
Figure US08765757-20140701-C00488
Compound 148 was prepared using the method described in Example 1 and using 5-chloro-2-fluorobenzonitrile and methylamine in Step A and 4-aminothiophene-2,3-dicarboxylic acid dimethyl ester in Step D.
Example 33 Preparation of Compound 149
Figure US08765757-20140701-C00489
Compound 149 was prepared using the method described in Example 1 and using 5-chloro-2-fluorobenzonitrile and methylamine in Step A and 3-amino-pyridine-2-carboxylic acid methyl ester in Step D.
Example 34 Preparation of Compound 150
Figure US08765757-20140701-C00490
Compound 150 was prepared using the method described in Example 1 and using 5-chloro-2-fluorobenzonitrile and methylamine in Step A and 3-aminoisonicotinic acid methyl ester in Step D.
Example 35 Preparation of Compound 151
Figure US08765757-20140701-C00491
Compound 151 was prepared using the method described in Example 1 and using 5-chloro-2-fluorobenzonitrile and methylamine in Step A and 4-aminonicotinic acid methyl ester in Step D.
Example 36 Preparation of Compound 152
Figure US08765757-20140701-C00492
Compound 152 was prepared using the method described in Example 1 and using 5-chloro-2-fluorobenzonitrile and methylamine in Step A and methyl 3-aminocrotonate in Step D.
Example 37 Preparation of Compound 153
Figure US08765757-20140701-C00493
Compound 153 was prepared using the method described in Example 1 and using 5-chloro-2-fluorobenzonitrile and methylamine in Step A and diethyl aminomethylenemalonate in Step D.
Example 38 Preparation of Compound 154
Figure US08765757-20140701-C00494
Compound 154 was prepared using the method described in Example 1 and using 5-chloro-2-fluorobenzonitrile and methylamine in Step A and ethyl 3-amino-3-ethoxyacrylate in Step D.
Example 39 Preparation of Compound 155
Figure US08765757-20140701-C00495
Compound 155 was prepared using the method described in Example 1 and using 5-chloro-2-fluorobenzonitrile and methylamine in Step A and 2-aminocyclohex-1-enecarboxylic acid methyl ester in Step D.
Example 40 Preparation of Compound 74
Figure US08765757-20140701-C00496
Compound 74 was prepared from compound 138 using the method described in Example 2, wherein 4-cyanobenzenesulfonamide was used.
Example 41 Preparation of Compound 156
Figure US08765757-20140701-C00497
Compound 156 was prepared from compound 138 using the method described in Example 2, wherein 2-trifluoromethylbenzenesulfonamide was used.
Example 42 Preparation of Compound 157
Figure US08765757-20140701-C00498
Compound 157 was prepared from compound 138 using the method described in Example 2, wherein 4-methoxybenzenesulfonamide was used.
Example 43 Preparation of Compound 158
Figure US08765757-20140701-C00499
Compound 158 was prepared from compound 138 using the method described in Example 2, wherein 2,4-dimethoxybenzenesulfonamide was used.
Example 44 Preparation of Compound 159
Figure US08765757-20140701-C00500
Compound 159 was prepared from compound 138 using the method described in Example 2, wherein naphthalene-2-sulfonamide was used.
Example 45 Preparation of Compound 160
Figure US08765757-20140701-C00501
Compound 160 was prepared from compound 138 using the method described in Example 2, wherein 4-methoxy-3-methoxycarbonylbenzenesulfonamide was used.
Example 46 Preparation of Compound 161
Figure US08765757-20140701-C00502
Compound 161 was prepared from compound 138 using the method described in Example 2, wherein 6-ethoxybenzothiazole-2-sulfonamide was used.
Example 47 Preparation of Compound 162
Figure US08765757-20140701-C00503
Compound 162 was prepared from compound 138 using the method described in Example 2, wherein 2-methoxycarbonylbenzenesulfonamide was used.
Example 48 Preparation of Compound 163
Figure US08765757-20140701-C00504
Compound 163 was prepared from compound 138 using the method described in Example 2, wherein 4-trifluoromethoxybenzenesulfonamide was used.
Example 49 Preparation of Compound 164
Figure US08765757-20140701-C00505
Compound 164 was prepared from compound 138 using the method described in Example 2, wherein 4-methylbenzenesulfonamide was used.
Example 50 Preparation of Compound 165
Figure US08765757-20140701-C00506
Compound 165 was prepared from compound 138 using the method described in Example 2, wherein 2-methylbenzenesulfonamide was used.
Example 51 Preparation of Compound 166
Figure US08765757-20140701-C00507
Compound 166 was prepared from compound 138 using the method described in Example 2, wherein 4-chlorobenzenesulfonamide was used.
Example 52 Preparation of Compound 167
Figure US08765757-20140701-C00508
Compound 167 was prepared from compound 138 using the method described in Example 2, wherein 2-fluorobenzenesulfonamide was used.
Example 53 Preparation of Compound 168
Figure US08765757-20140701-C00509
Compound 168 was prepared from compound 138 using the method described in Example 2, wherein 3-trifluoromethylbenzenesulfonamide was used.
Example 54 Preparation of Compound 169
Figure US08765757-20140701-C00510
Compound 169 was prepared from compound 138 using the method described in Example 2, wherein 3-bromomethylbenzenesulfonamide was used.
Example 55 Preparation of Compound 170
Figure US08765757-20140701-C00511
Compound 170 was prepared from compound 138 using the method described in Example 2, wherein 2,5-dichlorothiophene-3-sulfonamide was used.
Example 56 Preparation of Compound 171
Figure US08765757-20140701-C00512
Compound 171 was prepared from compound 138 using the method described in Example 2, wherein 4-fluorobenzenesulfonamide was used.
Example 57 Preparation of Compound 172
Figure US08765757-20140701-C00513
Compound 172 was prepared from compound 138 using the method described in Example 2, wherein 3,5-difluorobenzenesulfonamide was used.
Example 58 Preparation of Compound 173
Figure US08765757-20140701-C00514
Compound 173 was prepared from compound 138 using the method described in Example 2, wherein 2-chlorobenzenesulfonamide was used.
Example 59 Preparation of Compound 174
Figure US08765757-20140701-C00515
Compound 174 was prepared from compound 138 using the method described in Example 2, wherein 3,4-difluorobenzenesulfonamide was used.
Example 60 Preparation of Compound 175
Figure US08765757-20140701-C00516
Compound 175 was prepared from compound 138 using the method described in Example 2, wherein 3,5-dichlorobenzenesulfonamide was used.
Example 61 Preparation of Compound 176
Figure US08765757-20140701-C00517
Compound 176 was prepared from compound 138 using the method described in Example 2, wherein 5-chloro-2-fluorobenzenesulfonamide was used.
Example 62 Preparation of Compound 177
Figure US08765757-20140701-C00518
Compound 177 was prepared from compound 138 using the method described in Example 2, wherein 2-bromo-4-trifluoromethylbenzenesulfonamide was used.
Example 63 Preparation of Compound 178
Figure US08765757-20140701-C00519
Compound 178 was prepared from compound 138 using the method described in Example 2, wherein 4-bromo-2-chlorobenzenesulfonamide was used.
Example 64 Preparation of Compound 179
Figure US08765757-20140701-C00520
Compound 179 was prepared from compound 138 using the method described in Example 2, wherein 2-bromo-5-trifluoromethylbenzenesulfonamide was used.
Example 65 Preparation of Compound 180
Figure US08765757-20140701-C00521
Compound 180 was prepared from compound 138 using the method described in Example 2, wherein 4-fluoro-2-methylbenzenesulfonamide was used.
Example 66 Preparation of Compound 181
Figure US08765757-20140701-C00522
Compound 181 was prepared from compound 138 using the method described in Example 2, wherein 4-bromo-3-fluorobenzenesulfonamide was used.
Example 67 Preparation of Compound 182
Figure US08765757-20140701-C00523
Compound 182 was prepared from compound 138 using the method described in Example 2, wherein 4-bromo-3-trifluoromethylbenzenesulfonamide was used.
Example 68 Preparation of Compound 183
Figure US08765757-20140701-C00524
Compound 183 was prepared from compound 138 using the method described in Example 2, wherein 4-bromo-2-fluorobenzenesulfonamide was used.
Example 69 Preparation of Compound 184
Figure US08765757-20140701-C00525
Compound 184 was prepared from compound 138 using the method described in Example 2, wherein 5-bromothiophene-2-sulfonamide was used.
Example 70 Preparation of Compound 185
Figure US08765757-20140701-C00526
Compound 185 was prepared from compound 138 using the method described in Example 2, wherein 5-chlorothiophene-2-sulfonamide was used.
Example 71 Preparation of Compound 186
Figure US08765757-20140701-C00527
Compound 186 was prepared from compound 138 using the method described in Example 2, wherein 4,5-dichlorothiophene-2-sulfonamide was used.
Example 72 Preparation of Compound 188
Figure US08765757-20140701-C00528
Compound 188 was prepared from compound 138 using the method described in Example 2, wherein 4-trifluoromethylbenzenesulfonamide was used.
Example 73 Preparation of Compound 189
Figure US08765757-20140701-C00529
Compound 189 was prepared from compound 138 using the method described in Example 2, wherein 2-bromobenzenesulfonamide was used.
Example 74 Preparation of Compound 190
Figure US08765757-20140701-C00530
Compound 190 was prepared from compound 138 using the method described in Example 2, wherein 3-fluorobenzenesulfonamide was used.
Example 75 Preparation of Compound 191
Figure US08765757-20140701-C00531
Compound 191 was prepared from compound 138 using the method described in Example 2, wherein 2,6-difluorobenzenesulfonamide was used.
Example 76 Preparation of Compound 192
Figure US08765757-20140701-C00532
Compound 192 was prepared from compound 138 using the method described in Example 2, wherein 2,5-difluorobenzenesulfonamide was used.
Example 77 Preparation of Compound 47
Figure US08765757-20140701-C00533
Compound 47 was prepared using the method described in Example 5, wherein 2-fluoro-5-trifluoromethylbenzonitrile was used in Step A, 4-aminothiophene-3-carboxylic acid methyl ester was used in Step D, and 3-cyanobenzyl bromide was used in Step G.
Example 78 Preparation of Compound 41
Figure US08765757-20140701-C00534
Compound 41 was prepared using the method described in Example 5, wherein 2-fluoro-5-trifluoromethylbenzonitrile was used in Step A, 4-aminothiophene-3-carboxylic acid methyl ester was used in Step D, and 2-fluorobenzyl bromide was used in Step G.
Example 79 Preparation of Compound 57
Figure US08765757-20140701-C00535
Compound 57 was prepared using the method described in Example 5, wherein 2-fluoro-5-trifluoromethylbenzonitrile was used in Step A, 4-aminothiophene-3-carboxylic acid methyl ester was used in Step D, and 2-fluoro-3-methylbenzyl bromide was used in Step G.
Example 80 Preparation of Compound 81
Figure US08765757-20140701-C00536
Compound 81 was prepared using the method described in Example 5, wherein 2-fluoro-5-trifluoromethylbenzonitrile was used in Step A, 4-aminothiophene-3-carboxylic acid methyl ester was used in Step D, and 3-chloro-2-fluorobenzyl bromide was used in Step G.
Example 81 Preparation of Compound 193
Figure US08765757-20140701-C00537
Compound 193 was prepared using the method described in Example 5, wherein 2-fluoro-5-trifluoromethylbenzonitrile was used in Step A, 4-aminothiophene-3-carboxylic acid methyl ester was used in Step D, and 3-fluorobenzyl bromide was used in Step G.
Example 82 Preparation of Compound 68
Figure US08765757-20140701-C00538
Compound 68 was prepared using the method described in Example 5, wherein 2-fluoro-5-trifluoromethylbenzonitrile was used in Step A, 4-aminothiophene-3-carboxylic acid methyl ester was used in Step D, and 3,5-difluorobenzyl bromide was used in Step G.
Example 83 Preparation of Compound 194
Figure US08765757-20140701-C00539
Compound 194 was prepared using the method described in Example 5, wherein 2-fluoro-5-trifluoromethylbenzonitrile was used in Step A, 4-aminothiophene-3-carboxylic acid methyl ester was used in Step D, and 5-methoxycarbonyl-furan-2-yl-methyl bromide was used in Step G.
Example 84 Preparation of Compound 48
Figure US08765757-20140701-C00540
Compound 48 was prepared using the method described in Example 5, wherein 2-fluoro-5-trifluoromethylbenzonitrile was used in Step A, 4-aminothiophene-3-carboxylic acid methyl ester was used in Step D, and 2-cyanobenzyl bromide was used in Step G.
Example 85 Preparation of Compound 43
Figure US08765757-20140701-C00541
Compound 43 was prepared using the method described in Example 5, wherein 2-fluoro-5-trifluoromethylbenzonitrile was used in Step A, 4-aminothiophene-3-carboxylic acid methyl ester was used in Step D, and 2,5-difluorobenzyl bromide was used in Step G.
Example 86 Preparation of Compound 75
Figure US08765757-20140701-C00542
Compound 75 was prepared using the method described in Example 5, wherein 2-fluoro-5-trifluoromethylbenzonitrile was used in Step A, 4-aminothiophene-3-carboxylic acid methyl ester was used in Step D, and 5-chloro-2-fluorobenzyl bromide was used in Step G.
Example 87 Preparation of Compound 195
Figure US08765757-20140701-C00543
Compound 195 was prepared using the method described in Example 5, wherein 2-fluoro-5-trifluoromethylbenzonitrile was used in Step A, 4-aminothiophene-3-carboxylic acid methyl ester was used in Step D, and 3,5-dimethylisoxazol-4-yl-methyl bromide was used in Step G.
Example 88 Preparation of Compound 196
Figure US08765757-20140701-C00544
Compound 196 was prepared using the method described in Example 5, wherein 2-fluoro-5-trifluoromethylbenzonitrile was used in Step A, 4-aminothiophene-3-carboxylic acid methyl ester was used in Step D, and 5-ethoxycarbonyl-furan-2-yl-methyl bromide was used in Step G.
Example 89 Preparation of Compound 60
Figure US08765757-20140701-C00545
Compound 196 was prepared using the method described in Example 5, wherein 2-fluoro-5-trifluoromethylbenzonitrile was used in Step A, 4-aminothiophene-3-carboxylic acid methyl ester was used in Step D, and 2-chlorobenzyl bromide was used in Step G.
Example 90 Preparation of Compound 96
Figure US08765757-20140701-C00546
Compound 96 was prepared using the method described in Example 5, wherein 2-fluoro-5-trifluoromethylbenzonitrile was used in Step A, 4-aminothiophene-3-carboxylic acid methyl ester was used in Step D, and 4-bromobenzyl bromide was used in Step G.
Example 91 Preparation of Compound 34
Figure US08765757-20140701-C00547
Compound 34 was prepared using the method described in Example 5, wherein 2-fluoro-5-trifluoromethylbenzonitrile was used in Step A, 4-aminothiophene-3-carboxylic acid methyl ester was used in Step D, and 2-methylbenzyl bromide was used in Step G.
Example 92 Preparation of Compound 51
Figure US08765757-20140701-C00548
Compound 51 was prepared using the method described in Example 5, wherein 2-fluoro-5-trifluoromethylbenzonitrile was used in Step A, 4-aminothiophene-3-carboxylic acid methyl ester was used in Step D, and 3,4-dimethylbenzyl bromide was used in Step G.
Example 93 Preparation of Compound 93
Figure US08765757-20140701-C00549
Compound 93 was prepared using the method described in Example 5, wherein 2-fluoro-5-trifluoromethylbenzonitrile was used in Step A, 4-aminothiophene-3-carboxylic acid methyl ester was used in Step D, and 2-trifluoromethylbenzyl bromide was used in Step G.
Example 94 Preparation of Compound 197
Figure US08765757-20140701-C00550
Compound 197 was prepared using the method described in Example 5, wherein 2-fluoro-5-trifluoromethylbenzonitrile was used in Step A, 4-aminothiophene-3-carboxylic acid methyl ester was used in Step D, and 4-cyanobenzyl bromide was used in Step G.
Example 95 Preparation of Compound 198
Figure US08765757-20140701-C00551
Compound 198 was prepared using the method described in Example 5, wherein 2-fluoro-5-trifluoromethylbenzonitrile was used in Step A, 4-aminothiophene-3-carboxylic acid methyl ester was used in Step D, and 2,6-difluorobenzyl bromide was used in Step G.
Example 96 Preparation of Compound 67
Figure US08765757-20140701-C00552
Compound 67 was prepared using the method described in Example 5, wherein 2-fluoro-5-trifluoromethylbenzonitrile was used in Step A, 4-aminothiophene-3-carboxylic acid methyl ester was used in Step D, and 2,3-difluorobenzyl bromide was used in Step G.
Example 97 Preparation of Compound 77
Figure US08765757-20140701-C00553
Compound 77 was prepared using the method described in Example 5, wherein 2-fluoro-5-trifluoromethylbenzonitrile was used in Step A, 4-aminothiophene-3-carboxylic acid methyl ester was used in Step D, and 4-chloro-2-fluorobenzyl bromide was used in Step G.
Example 98 Preparation of Compound 61
Figure US08765757-20140701-C00554
Compound 77 was prepared using the method described in Example 5, wherein 2-fluoro-5-trifluoromethylbenzonitrile was used in Step A, 4-aminothiophene-3-carboxylic acid methyl ester was used in Step D, and 4-chlorobenzyl bromide was used in Step G.
Example 99 Preparation of Compound 33
Figure US08765757-20140701-C00555
Compound 33 was prepared using the method described in Example 5, wherein 2-fluoro-5-trifluoromethylbenzonitrile was used in Step A, 4-aminothiophene-3-carboxylic acid methyl ester was used in Step D, and 4-methylbenzyl bromide was used in Step G.
Example 100 Preparation of Compound 199
Figure US08765757-20140701-C00556
Compound 199 was prepared using the method described in Example 5, wherein 2-fluoro-5-trifluoromethylbenzonitrile was used in Step A, 4-aminothiophene-3-carboxylic acid methyl ester was used in Step D, and 4-trifluoromethylbenzyl bromide was used in Step G.
Example 101 Preparation of Compound 200
Figure US08765757-20140701-C00557
Compound 200 was prepared using the method described in Example 5, wherein 2-fluoro-5-trifluoromethylbenzonitrile was used in Step A, 4-aminothiophene-3-carboxylic acid methyl ester was used in Step D, and 4-fluorobenzyl bromide was used in Step G.
Example 102 Preparation of Compound 201
Figure US08765757-20140701-C00558
Compound 201 was prepared using the method described in Example 5, wherein 2-fluoro-5-trifluoromethylbenzonitrile was used in Step A, 4-aminothiophene-3-carboxylic acid methyl ester was used in Step D, and 4,3-chlorobenzyl bromide was used in Step G.
Example 103 Preparation of Compound 202
Figure US08765757-20140701-C00559
Compound 202 was prepared using the method described in Example 5, wherein 2-fluoro-5-trifluoromethylbenzonitrile was used in Step A, 4-aminothiophene-3-carboxylic acid methyl ester was used in Step D, and 2-bromobenzyl bromide was used in Step G.
Example 104 Preparation of Compound 35
Figure US08765757-20140701-C00560
Compound 35 was prepared using the method described in Example 5, wherein 2-fluoro-5-trifluoromethylbenzonitrile was used in Step A, 4-aminothiophene-3-carboxylic acid methyl ester was used in Step D, and 3-methylbenzyl bromide was used in Step G.
Example 105 Preparation of Compound 203
Figure US08765757-20140701-C00561
Compound 203 was prepared using the method described in Example 5, wherein 2-fluoro-5-trifluoromethylbenzonitrile was used in Step A, 4-aminothiophene-3-carboxylic acid methyl ester was used in Step D, and 3-trifluoromethylbenzyl bromide was used in Step G.
Example 106 Preparation of Compound 52
Figure US08765757-20140701-C00562
Compound 52 was prepared using the method described in Example 5, wherein 2-fluoro-5-trifluoromethylbenzonitrile was used in Step A, 4-aminothiophene-3-carboxylic acid methyl ester was used in Step D, and 2,4-dimethylbenzyl bromide was used in Step G.
Example 107 Preparation of Compound 26
Figure US08765757-20140701-C00563
Compound 26 was prepared using the method described in Example 5, wherein 2-fluoro-5-trifluoromethylbenzonitrile was used in Step A, 4-aminothiophene-3-carboxylic acid methyl ester was used in Step D, and pyridin-2-yl-methyl bromide was used in Step G.
Example 108 Preparation of Compound 27
Figure US08765757-20140701-C00564
Compound 27 was prepared using the method described in Example 5, wherein 2-fluoro-5-trifluoromethylbenzonitrile was used in Step A, 4-aminothiophene-3-carboxylic acid methyl ester was used in Step D, and pyridin-3-yl-methyl bromide was used in Step G.
Example 109 Preparation of Compound 76
Figure US08765757-20140701-C00565
Compound 76 was prepared using the method described in Example 5, wherein 2-fluoro-5-trifluoromethylbenzonitrile was used in Step A, 4-aminothiophene-3-carboxylic acid methyl ester was used in Step D, and 2-chloro-6-fluorobenzyl bromide was used in Step G.
Example 110 Preparation of Compound 204
Figure US08765757-20140701-C00566
Compound 204 was prepared using the method described in Example 5, wherein 2-fluoro-5-trifluoromethylbenzonitrile was used in Step A, 4-aminothiophene-3-carboxylic acid methyl ester was used in Step D, and 3,4-difluorobenzyl bromide was used in Step G.
Example 111 Preparation of Compound 78
Figure US08765757-20140701-C00567
Compound 78 was prepared using the method described in Example 5, wherein 2-fluoro-5-trifluoromethylbenzonitrile was used in Step A, 4-aminothiophene-3-carboxylic acid methyl ester was used in Step D, and 2-chloro-5-fluorobenzyl bromide was used in Step G.
Example 112 Preparation of Compound 206
Figure US08765757-20140701-C00568
Compound 206 was prepared using the method described in Example 5, wherein 2-fluoro-5-trifluoromethylbenzonitrile was used in Step A, 4-aminothiophene-3-carboxylic acid methyl ester was used in Step D, and [1,2,4]oxadiazol-3-yl-methyl bromide was used in Step G.
Example 113 Preparation of Compound 207
Figure US08765757-20140701-C00569
Compound 207 was prepared using the method described in Example 5, wherein 2-fluoro-5-trifluoromethylbenzonitrile was used in Step A, 4-aminothiophene-3-carboxylic acid methyl ester was used in Step D, and 5-methylisoxazol-3-yl-methyl bromide was used in Step G.
Example 114 Preparation of Compound 208
Figure US08765757-20140701-C00570
Compound 208 was prepared using the method described in Example 5, wherein 2-fluoro-5-trifluoromethylbenzonitrile was used in Step A, 4-aminothiophene-3-carboxylic acid methyl ester was used in Step D, and 5-chlorothiophen-2-yl-methyl bromide was used in Step G.
Example 115 Preparation of Compound 58
Figure US08765757-20140701-C00571
Compound 58 was prepared using the method described in Example 5, wherein 2-fluoro-5-trifluoromethylbenzonitrile was used in Step A, 4-aminothiophene-3-carboxylic acid methyl ester was used in Step D, and 5-fluoro-2-methylbenzyl bromide was used in Step G.
Example 116 Preparation of Compound 59
Figure US08765757-20140701-C00572
Compound 59 was prepared using the method described in Example 5, wherein 2-fluoro-5-trifluoromethylbenzonitrile was used in Step A, 4-aminothiophene-3-carboxylic acid methyl ester was used in Step D, and 3-fluoro-4-methylbenzyl bromide was used in Step G.
Example 117 Preparation of Compound 95
Figure US08765757-20140701-C00573
Compound 95 was prepared using the method described in Example 5, wherein 2-fluoro-5-trifluoromethylbenzonitrile was used in Step A, 4-aminothiophene-3-carboxylic acid methyl ester was used in Step D, and 3-bromobenzyl bromide was used in Step G.
Example 118 Preparation of Compound 79
Figure US08765757-20140701-C00574
Compound 79 was prepared using the method described in Example 5, wherein 2-fluoro-5-trifluoromethylbenzonitrile was used in Step A, 4-aminothiophene-3-carboxylic acid methyl ester was used in Step D, and 3-chloro-5-fluorobenzyl bromide was used in Step G.
Example 119 Preparation of Compound 55
Figure US08765757-20140701-C00575
Compound 55 was prepared using the method described in Example 5, wherein 2-fluoro-5-trifluoromethylbenzonitrile was used in Step A, 4-aminothiophene-3-carboxylic acid methyl ester was used in Step D, and 2-methoxybenzyl chloride was used in the presence of sodium iodide in Step G.
Example 120 Preparation of Compound 80
Figure US08765757-20140701-C00576
Compound 80 was prepared using the method described in Example 5, wherein 2-fluoro-5-trifluoromethylbenzonitrile was used in Step A, 4-aminothiophene-3-carboxylic acid methyl ester was used in Step D, and 2-chloro-4-fluorobenzyl bromide was used in Step G.
Example 121 Preparation of Compound 209
Figure US08765757-20140701-C00577
Compound 209 was prepared using the method described in Example 5, wherein 2-fluoro-5-trifluoromethylbenzonitrile was used in Step A, 4-aminothiophene-3-carboxylic acid methyl ester was used in Step D, and 4-fluoro-3-methylbenzyl bromide was used in Step G.
Example 122 Preparation of Compound 210
Figure US08765757-20140701-C00578
Compound 210 was prepared using the method described in Example 5, wherein 2-fluoro-5-trifluoromethylbenzonitrile was used in Step A, 4-aminothiophene-3-carboxylic acid methyl ester was used in Step D, and 2,5-dimethylbenzyl bromide was used in Step G.
Example 123 Preparation of Compound 211
Figure US08765757-20140701-C00579
Compound 211 was prepared using the method described in Example 5, wherein 2-fluoro-5-trifluoromethylbenzonitrile was used in Step A, 4-aminothiophene-3-carboxylic acid methyl ester was used in Step D, and 2,6-dimethylbenzyl bromide was used in Step G.
Example 124 Preparation of Compound 71
Figure US08765757-20140701-C00580
Compound 211 was prepared using the method described in Example 5, wherein 2-fluoro-5-trifluoromethylbenzonitrile was used in Step A, 4-aminothiophene-3-carboxylic acid methyl ester was used in Step D, and 2-chlorothiazol-5-yl-methyl bromide was used in Step G.
Example 125 Preparation of Compound 66
Figure US08765757-20140701-C00581
Compound 66 was prepared using the method described in Example 5, wherein 2-fluoro-5-trifluoromethylbenzonitrile was used in Step A, 4-aminothiophene-3-carboxylic acid methyl ester was used in Step D, and 2,4-difluorobenzyl bromide was used in Step G.
Example 126 Preparation of Compound 212
Figure US08765757-20140701-C00582
Compound 212 was prepared using the method described in Example 5, wherein 2-fluoro-5-trifluoromethylbenzonitrile was used in Step A, 4-aminothiophene-3-carboxylic acid methyl ester was used in Step D, and 4-methoxybenzyl bromide was used in Step G.
Example 127 Preparation of Compound 5
Figure US08765757-20140701-C00583
Compound 5 was prepared using the method described in Example 5, wherein 2-fluoro-5-trifluoromethylbenzonitrile was used in Step A, 4-aminothiophene-3-carboxylic acid methyl ester was used in Step D, and ethyl bromide was used in Step G.
Example 128 Preparation of Compound 7
Figure US08765757-20140701-C00584
Compound 7 was prepared using the method described in Example 5, wherein 2-fluoro-5-trifluoromethylbenzonitrile was used in Step A, 4-aminothiophene-3-carboxylic acid methyl ester was used in Step D, and allyl bromide was used in Step G.
Example 129 Preparation of Compound 213
Figure US08765757-20140701-C00585
Compound 213 was prepared using the method described in Example 5, wherein 2-fluoro-5-trifluoromethylbenzonitrile was used in Step A, 4-aminothiophene-3-carboxylic acid methyl ester was used in Step D, and 3-methoxycarbonylbenzyl bromide was used in Step G.
Example 130 Preparation of Compound 44
Figure US08765757-20140701-C00586
Compound 44 was prepared using the method described in Example 5, wherein 2-fluoro-5-trifluoromethylbenzonitrile was used in Step A, 4-aminothiophene-3-carboxylic acid methyl ester was used in Step D, and 2-methylthiazol-4-yl-methyl bromide was used in Step G.
Example 131 Preparation of Compound 22
Figure US08765757-20140701-C00587
Compound 22 was prepared using the method described in Example 5, wherein 2-fluoro-5-trifluoromethylbenzonitrile was used in Step A, 4-aminothiophene-3-carboxylic acid methyl ester was used in Step D, and ethyl bromoacetate was used in Step G.
Example 132 Preparation of Compound 6
Figure US08765757-20140701-C00588
Compound 6 was prepared using the method described in Example 5, wherein 2-fluoro-5-trifluoromethylbenzonitrile was used in Step A, 4-aminothiophene-3-carboxylic acid methyl ester was used in Step D, and bromoacetonitrile was used in Step G.
Example 133 Preparation of Compound 3
Figure US08765757-20140701-C00589
Compound 3 was prepared using the method described in Example 5, wherein 2-fluoro-5-trifluoromethylbenzonitrile was used in Step A, 4-aminothiophene-3-carboxylic acid methyl ester was used in Step D, and methyl iodide was used in Step G.
Example 134 Preparation of Compound 65
Figure US08765757-20140701-C00590
Compound 65 was prepared using the method described in Example 5, wherein 2-fluoro-5-trifluoromethylbenzonitrile was used in Step A, 4-aminothiophene-3-carboxylic acid methyl ester was used in Step D, and 2,5-difluorobenzyl bromide was used in Step G.
Example 135 Preparation of Compound 75
Figure US08765757-20140701-C00591
Compound 75 was prepared using the method described in Example 5, wherein 2-fluoro-5-trifluoromethylbenzonitrile was used in Step A, 4-aminothiophene-3-carboxylic acid methyl ester was used in Step D, and 5-chloro-2-fluorobenzyl bromide was used in Step G.
Example 136 Preparation of Compound 60
Figure US08765757-20140701-C00592
Compound 60 was prepared using the method described in Example 5, wherein 2-fluoro-5-trifluoromethylbenzonitrile was used in Step A, 4-aminothiophene-3-carboxylic acid methyl ester was used in Step D, and 2-chlorobenzyl bromide was used in Step G.
Example 137 Preparation of Compound 214
Figure US08765757-20140701-C00593
Compound 214 was prepared using the method described in Example 5, wherein 2-fluoro-5-trifluoromethylbenzonitrile was used in Step A, 4-aminothiophene-3-carboxylic acid methyl ester was used in Step D, and propyl bromide was used in Step G.
Example 138 Preparation of Compound 215
Figure US08765757-20140701-C00594
Compound 215 was prepared using the method described in Example 5, wherein 2-fluoro-5-trifluoromethylbenzonitrile was used in Step A, 4-aminothiophene-3-carboxylic acid methyl ester was used in Step D, and butyl bromide was used in Step G.
Example 139 Preparation of Compound 216
Figure US08765757-20140701-C00595
Compound 216 was prepared using the method described in Example 5, wherein 2-fluoro-5-trifluoromethylbenzonitrile was used in Step A, 4-aminothiophene-3-carboxylic acid methyl ester was used in Step D, and methoxymethyl chloride was used in Step G.
Example 140 Preparation of Compound 97
Figure US08765757-20140701-C00596
Compound 97 was prepared using the method described in Example 1, wherein 2-fluoro-5-trifluoromethylbenzonitrile and 2-chloro-5-nitrobenzylamine was used in Step A, and 4-aminothiophene-3-carboxylic acid methyl ester was used in Step D.
Example 141 Preparation of Compound 10
Figure US08765757-20140701-C00597
Compound 10 was prepared using the method described in Example 5, wherein 2-fluoro-5-trifluoromethylbenzonitrile was used in Step A, 4-aminothiophene-3-carboxylic acid methyl ester was used in Step D, and cyclopropylmethyl bromide was used in Step G.
Example 142 Preparation of Compound 54
Figure US08765757-20140701-C00598
Compound 54 was prepared using the method described in Example 5, wherein 2-fluoro-5-trifluoromethylbenzonitrile was used in Step A, 4-aminothiophene-3-carboxylic acid methyl ester was used in Step D, and 3-methoxybenzyl bromide was used in Step G.
Example 143 Preparation of Compound 40
Figure US08765757-20140701-C00599
Compound 40 was prepared from compound 54 using the method described in Example 6.
Example 144 Preparation of Compound 104
Figure US08765757-20140701-C00600
Compound 104 was prepared using the method described in Example 5, wherein 2-fluoro-5-trifluoromethylbenzonitrile was used in Step A, (wherein was used), 4-aminothiophene-3-carboxylic acid methyl ester was used in Step D, and 2-tert-butoxycarbonylaminopyridin-4-yl-methyl bromide was used in Step G
Example 145 Preparation of Compound 39
Figure US08765757-20140701-C00601
Compound 39 was prepared from compound 212 using the method described in Example 6.
Example 146 Preparation of Compound 101
Figure US08765757-20140701-C00602
Compound 101 was prepared by reacting 34 with methanesulfonamide, using the method described in Example 2.
Example 147 Preparation of Compound 122
Figure US08765757-20140701-C00603
Compound 122 was prepared by reacting compound 202 with methanesulfonimide, using the method described in Example 2.
Example 148 Preparation of Compound 50
Figure US08765757-20140701-C00604
Compound 50 was prepared by reacting compound 7 with methanesulfonimide, using the method described in Example 2.
Example 149 Preparation of Compound 105
Figure US08765757-20140701-C00605
Compound 105 was prepared by reacting compound 41 with methanesulfonimide, using the method described in Example 2.
Example 150 Preparation of Compound 37
Figure US08765757-20140701-C00606
Compound 37 was prepared by reacting compound 127 with methanesulfonimide, using the method described in Example 2.
Example 151 Preparation of Compound 111
Figure US08765757-20140701-C00607
Compound 111 was prepared by first using the methods shown in Example 1, wherein 5-bromo-2-fluorobenzonitrile and 3-methoxybenzylamine were used in Step A, and methyl anthranilate was used in Step D. The product such obtained was then reacted with methanesulfonamide according to the method disclosed in Example 2 to provide compound 111.
Example 152 Preparation of Compound 4
Figure US08765757-20140701-C00608
Compound 4 was prepared using the methods shown in Example 1, wherein 5-bromo-2-fluorobenzonitrile and methylamine were used in Step A, and methyl anthranilate was used in Step D.
Example 153 Preparation of Compound 217
Figure US08765757-20140701-C00609
Compound 217 was prepared using the methods shown in Example 1, wherein 4-bromo-2-fluorobenzonitrile and methylamine were used in Step A, and methyl anthranilate was used in Step D.
Example 154 Preparation of Compound 218
Figure US08765757-20140701-C00610
Compound 218 was prepared using the methods shown in Example 1, wherein 2-fluoro-5-trifluoromethylbenzonitrile and methylamine were used in Step A, and methyl anthranilate was used in Step D.
Example 155 Preparation of Compound 28
Figure US08765757-20140701-C00611
Compound 28 was prepared using the methods shown in Example 1, wherein 5-chloro-2-fluorobenzonitrile and methylamine were used in Step A, and methyl anthranilate was used in Step D.
Example 156 Preparation of Compound 14
Figure US08765757-20140701-C00612
Compound 14 was prepared from compound 28 using the method described in Example 4.
Example 157 Preparation of Compound 219
Figure US08765757-20140701-C00613
Compound 219 was prepared using the methods shown in Example 1, wherein 2-fluoro-5-nitrobenzonitrile and methylamine were used in Step A, and methyl anthranilate was used in Step D.
Example 158 Preparation of Compound 220
Figure US08765757-20140701-C00614
Compound 220 was prepared using the methods shown in Example 1, wherein 5-chloro-2-fluorobenzonitrile and 3-aminomethyl-1-tert-butoxycarbonylpyrrolidine were used in Step A, and methyl anthranilate was used in Step D.
Example 159 Preparation of Compound 221
Figure US08765757-20140701-C00615
Compound 221 was prepared using the methods shown in Example 1, wherein 5-chloro-2-fluorobenzonitrile and 4-aminomethyl-1-tert-butoxycarbonylpiperidine were used in Step A, and methyl anthranilate was used in Step D.
Example 160 Preparation of Compound 222
Figure US08765757-20140701-C00616
Compound 222 was prepared using the methods shown in Example 1, wherein 5-chloro-2-fluorobenzonitrile and 3-aminomethyl-1-tert-butoxycarbonylpiperidine were used in Step A, and methyl anthranilate was used in Step D.
Example 161 Preparation of Compound 16
Figure US08765757-20140701-C00617
Compound 16 was prepared using the methods shown in Example 1, wherein 5-chloro-2-fluorobenzonitrile and 3-nitrobenzylamine were used in Step A, and 4-aminothiophene-3-carboxylic acid methyl ester was used in Step D.
Example 162 Preparation of Compound 49
Figure US08765757-20140701-C00618
Compound 49 was prepared using the methods shown in Example 1, wherein 5-bromo-2-fluorobenzonitrile and 3-nitrobenzylamine were used in Step A, and 4-aminothiophene-3-carboxylic acid methyl ester was used in Step D.
Example 163 Preparation of Compound 42
Figure US08765757-20140701-C00619
Compound 42 was prepared using the methods shown in Example 1, wherein 5-bromo-2-fluorobenzonitrile and 3-nitrobenzylamine were used in Step A, and methyl anthranilate was used in Step D.
Example 164 Preparation of Compound 32
Figure US08765757-20140701-C00620
Compound 32 was prepared by first using methods shown in Example 1, wherein 5-bromo-2-fluorobenzonitrile and 3-nitrobenzylamine were used in Step A, Step B, Step C, 5-amino-3-(4-methoxybenzyl)-3H-imidazole-4-carboxylic acid methyl ester was used in Step D and trifluoroacetic acid was used in a microwave reactor at 120° C. for 30 minutes in Step F. This provided an intermediate nitro compound which was subsequently reduced using the method described in Example 4 to provide amino compound 32.
Example 165 Preparation of Compound 223
Figure US08765757-20140701-C00621
Compound 223 was prepared from compound 218 using the method described in Example 3, wherein 5-aminotetrazole was used.
Example 166 Preparation of Compound 92
Figure US08765757-20140701-C00622
Compound 92 was prepared from compound 4 using the method described in Example 2, wherein benzenesulfonamide was used.
Example 167 Preparation of Compound 224
Figure US08765757-20140701-C00623
Compound 224 was prepared by first using the method described in Example 1 and using 5-chloro-2-fluorobenzonitrile and 3-nitrobenzylamine in Step A, and 4-aminothiophene-3-carboxylic acid methyl ester in Step D. This provided an intermediate benzylnitro compound which was subsequently reduced using the method described in Example 4 to provide an intermediate benzylamino. The resulting benzylamino intermediate was then reacted with tert-butoxycarbonylaminoacetic acid according to the method described in Example 3 to provide compound 224.
Example 168 Preparation of Compound 15
Figure US08765757-20140701-C00624
Compound 15 was prepared by first using the method described in Example 1 and using 5-chloro-2-fluorobenzonitrile and 3-nitrobenzylamine in Step A, and 4-aminonicotinic acid methyl ester in Step D. This provided an intermediate benzylnitro compound which was subsequently reduced using the method described in Example 4 to provide benzylamino compound 15.
Example 169 Preparation of Compound 225
Figure US08765757-20140701-C00625
Compound 225 was prepared using the method described in Example 1 and using 5-chloro-2-fluorobenzonitrile and 4-methoxybenzylamine in Step A and methyl anthranilate in Step D.
Example 170 Preparation of Compound 45
Figure US08765757-20140701-C00626
Compound 45 was prepared by first using the method described in Example 1 and using 5-chloro-2-fluorobenzonitrile and 3-nitrobenzylamine in Step A, and 4-aminothiophene-3-carboxylic acid methyl ester in Step D. This provided an intermediate benzylnitro compound which was subsequently reduced using the method described in Example 4 to provide an intermediate benzylamino. The resulting benzylamino intermediate was then reacted with acetic acid according to the method described in Example 3 to provide compound 45.
Example 171 Preparation of Compound 226
Figure US08765757-20140701-C00627
Compound 226 was prepared from 5-chloro-3-(2,4-dioxo-1,4-dihydro-2H-quinazolin-3-yl)-1-(3-nitrobenzyl)-1H-indole-2-carboxylic acid B155 using the method described in Example 3, (wherein methylamine was used) in Example 4.
Example 172 Preparation of Compound 227
Figure US08765757-20140701-C00628
Compound 227 was prepared by first reacting compound 28 with methylamine using the method described in Example 3. This provided an intermediate amido compound which was then reduced using the method described in Example 4 to provide compound 229.
Example 173 Preparation of Compound 228
Figure US08765757-20140701-C00629
Compound 228 was prepared by first reacting compound 28 with cyclopropylmethylamine using the method described in Example 3. This provided an intermediate amido compound which was then reduced using the method described in Example 4 to provide compound 228.
Example 174 Preparation of Compound 229
Figure US08765757-20140701-C00630
Compound 229 was prepared by first reacting compound 28 with cyclopropylamine using the method described in Example 3. This provided an intermediate amido compound which was then reduced using the method described in Example 4 to provide compound 229.
Example 175 Preparation of Compound 230
Figure US08765757-20140701-C00631
Compound 230 was prepared by first reacting compound 28 with isopropylamine using the method described in Example 3. This provided an intermediate amido compound which was then reduced using the method described in Example 4 to provide compound 230.
Example 176 Preparation of Compound 231
Figure US08765757-20140701-C00632
Compound 231 was prepared by first reacting compound 28 with ammonia using the method described in Example 3. This provided an intermediate amido compound which was then reduced using the method described in Example 4 to provide compound 231.
Example 177 Preparation of Compound 115
Figure US08765757-20140701-C00633
Compound 115 was prepared by first using methods shown in Example 1, wherein 5-bromo-2-fluorobenzonitrile and 3-nitrobenzylamine were used in Step A, and methyl anthranilate was used in Step D. This provided an intermediate compound which was then reacted with methanesulfonamide using the method described in Example 2 to provide compound 115.
Example 178 Preparation of Compound 106
Figure US08765757-20140701-C00634
Compound 106 was prepared by reducing compound 115 using the method described in Example 4.
Example 179 Preparation of Compound 123
Figure US08765757-20140701-C00635
Compound 123 was prepared by first using the methods described in Example 1, 5-bromo-2-fluorobenzonitrile and 3-nitrobenzylamine were used in Step A, methyl anthranilate was used in Step D. This provided an intermediate compound which was then reacted with benzenesulfonamide according to the method described in Example 2. The compound such obtained was then reduced according to the method described in Example 4 to provide compound 123.
Example 180 Preparation of Compound 121
Figure US08765757-20140701-C00636
Compound 121 was prepared by first using the method described in Example 1 and using 5-bromo-2-fluorobenzonitrile and 3-nitrobenzylamine in Step A, and methyl anthranilate in Step D. This provided an intermediate an intermediate compound which was then reacted with tert-butanesulfonamide using the method described in Example 2. The resulting tert-butyl acyl sulfonamide compound was subsequently reduced using the method described in Example 4 to provide compound 121.
Example 181 Preparation of Compound 69
Figure US08765757-20140701-C00637
Compound 69 was prepared using the method described in Example 1 and using 2-fluoro-5-trifluoromethylbenzonitrile and 3-nitrobenzylamine in Step A and methyl anthranilate in Step D.
Example 182 Preparation of Compound 31
Figure US08765757-20140701-C00638
Compound 31 was prepared from compound 69 using the method described in Example 4.
Example 183 Preparation of Compound 73
Figure US08765757-20140701-C00639
Compound 73 was prepared using the method described in Example 1 and using 2-fluoro-5-trifluoromethylbenzonitrile and 3-nitrobenzylamine in Step A and 4-aminothiophene-3-carboxylic acid methyl ester in Step D.
Example 184 Preparation of Compound 36
Figure US08765757-20140701-C00640
Compound 36 was prepared from compound 73 using the method described in Example 4.
Example 185 Preparation of Compound 53
Figure US08765757-20140701-C00641
Compound 53 was prepared using the method described in Example 1 and using 2-fluoro-5-trifluoromethylbenzonitrile and 3-nitrobenzylamine in Step A, 4-aminothiophene-3-carboxylic acid methyl ester in Step D, and trifluoroacetic acid in a microwave reactor at 120° C. for 30 minutes in Step F.
Example 186 Preparation of Compound 24
Figure US08765757-20140701-C00642
Compound 24 was prepared from compound 53 using the method described in Example 4.
Example 187 Preparation of Compound 232
Figure US08765757-20140701-C00643
Compound 232 was prepared using the method described in Example 1 and using 5-chloro-2-fluorobenzonitrile and phenethylamine in Step A and 4-aminothiophene-3-carboxylic acid methyl ester in Step D.
Example 188 Preparation of Compound 233
Figure US08765757-20140701-C00644
Compound 233 was prepared using the method described in Example 1 and using 5-chloro-2-fluorobenzonitrile and phenethylamine in Step A and methyl anthranilate in Step D.
Example 189 Preparation of Compound 20
Figure US08765757-20140701-C00645
Compound 20 was prepared using the method described in Example 1 and using 5-chloro-2-fluorobenzonitrile and 3-methoxybenzylamine in Step A and methyl anthranilate in Step D.
Example 190 Preparation of Compound 23
Figure US08765757-20140701-C00646
Compound 23 was prepared using the method described in Example 1 and using 5-chloro-2-fluorobenzonitrile and 3-methoxybenzylamine in Step A and 4-aminothiophene-3-carboxylic acid methyl ester in Step D.
Example 191 Preparation of Compound 234
Figure US08765757-20140701-C00647
Compound 234 was prepared by first using the method described in Example 1 and using 5-bromo-2-fluorobenzonitrile and 3-nitrobenzylamine in Step A, and methyl anthranilate in Step D. This provided an intermediate an intermediate compound which was then reacted with diethylamine using the method described in Example 3. The resulting dimethylamino intermediate was subsequently reduced using the method described in Example 4 to provide compound 234.
Example 192 Preparation of Compound 235
Figure US08765757-20140701-C00648
Compound 235 was prepared by first using the method described in Example 1 and using 5-bromo-2-fluorobenzonitrile and 3-nitrobenzylamine in Step A, and methyl anthranilate in Step D. This provided an intermediate an intermediate compound which was then reacted with 2-(methoxyethyl)amine using the method described in Example 3. The resulting dimethylamino intermediate was subsequently reduced using the method described in Example 4 to provide compound 235.
Example 193 Preparation of Compound 236
Figure US08765757-20140701-C00649
Compound 236 was prepared by first using the method described in Example 1 and using 5-bromo-2-fluorobenzonitrile and 3-nitrobenzylamine in Step A, and methyl anthranilate in Step D. This provided an intermediate an intermediate compound which was then reacted with aniline using the method described in Example 3. The resulting dimethylamino intermediate was subsequently reduced using the method described in Example 4 to provide compound 236.
Example 194 Preparation of Compound 237
Figure US08765757-20140701-C00650
Compound 237 was prepared by first using the method described in Example 1 and using 5-bromo-2-fluorobenzonitrile and 3-nitrobenzylamine in Step A, and methyl anthranilate in Step D. This provided an intermediate an intermediate compound which was then reacted with 2-bromobenzenesulfonamide using the method described in Example 2 to provide compound 237.
Example 195 Preparation of Compound 238
Figure US08765757-20140701-C00651
Compound 238 was prepared by first using the method described in Example 1 and using 5-bromo-2-fluorobenzonitrile and 3-nitrobenzylamine in Step A, and methyl anthranilate in Step D. This provided an intermediate an intermediate compound which was then reacted with 4-methoxybenzenesulfonamide using the method described in Example 2 to provide compound 238.
Example 196 Preparation of Compound 94
Figure US08765757-20140701-C00652
Compound 94 was prepared by reacting compound 23 with methanesulfonimide, using the method described in Example 2.
Example 197 Preparation of Compound 62
Figure US08765757-20140701-C00653
Compound 62 was prepared using the method described in Example 1 and using 5-bromo-2-fluorobenzonitrile and 3-methoxybenzylamine in Step A and methyl anthranilate in Step D.
Example 198 Preparation of Compound 70
Figure US08765757-20140701-C00654
Compound 70 was prepared using the method described in Example 1 and using 5-bromo-2-fluorobenzonitrile and 3-methoxybenzylamine in Step A and 4-aminothiophene-3-carboxylic acid methyl ester was used in Step D.
Example 199 Preparation of Compound 46
Figure US08765757-20140701-C00655
Compound 46 was prepared using the method described in Example 1 and using 2-fluoro-5-trifluoromethylbenzonitrile and 3-methoxybenzylamine in Step A and methyl anthranilate was used in Step D.
Example 200 Preparation of Compound 91
Figure US08765757-20140701-C00656
Compound 91 was prepared by reacting compound 20 with methanesulfonimide, using the method described in Example 2.
Example 201 Preparation of Compound 111
Figure US08765757-20140701-C00657
Compound 111 was prepared by reacting compound 62 with methanesulfonimide, using the method described in Example 2.
Example 202 Preparation of Compound 113
Figure US08765757-20140701-C00658
Compound 111 was prepared by reacting compound 70 with methanesulfonimide, using the method described in Example 2.
Example 203 Preparation of Compound 107
Figure US08765757-20140701-C00659
Compound 107 was prepared by reacting compound 46 with methanesulfonimide, using the method described in Example 2.
Example 204 Preparation of Compound 109
Figure US08765757-20140701-C00660
Compound 109 was prepared by first using the method described in Example 1 and using 2-fluoro-5-trifluoromethylbenzonitrile and 3-methoxybenzylamine in Step A, and 4-aminothiophene-3-carboxylic acid methyl ester in Step D. This provided an intermediate an intermediate compound which was then reacted with methanesulfonamide using the method described in Example 2 to provide compound 109.
Example 205 Preparation of Compound 82
Figure US08765757-20140701-C00661
Compound 82 was prepared from compound 28 using methods shown in Example 2 (wherein methanesulfonamide was used) and Example 4.
Example 206 Preparation of Compound 100
Figure US08765757-20140701-C00662
Compound 100 was prepared from compound 69 using methods shown in Example 2 (wherein methanesulfonamide was used) and Example 4.
Example 207 Preparation of Compound 102
Figure US08765757-20140701-C00663
Compound 102 was prepared from compound 73 using methods shown in Example 2 (wherein methanesulfonamide was used) in Example 4.
Example 208 Preparation of Compound 116
Figure US08765757-20140701-C00664
Compound 116 was prepared using the method described in Example 1 and using 2-fluoro-5-trifluoromethylbenzonitrile and 3-(2-morpholin-4-yl-ethoxy)benzylamine in Step A and 4-aminothiophene-3-carboxylic acid methyl ester was used in Step D.
Example 209 Preparation of Compound 239
Figure US08765757-20140701-C00665
Compound 239 was prepared using the method described in Example 1 and using 2-fluoro-5-trifluoromethylbenzonitrile and 3-trifluoromethoxybenzylamine in Step A and 4-aminothiophene-3-carboxylic acid methyl ester was used in Step D.
Example 210 Preparation of Compound 240
Figure US08765757-20140701-C00666
Compound 240 was prepared by reacting compound 138 with 2-cyanobenzenesulfonamide, using the method described in Example 2.
Example 211 Preparation of Compound 125
Figure US08765757-20140701-C00667
Compound 125 was prepared by reacting compound 116 with methanesulfonamide, using the method described in Example 2.
Example 212 Preparation of Compound 124
Figure US08765757-20140701-C00668
Compound 124 was prepared by reacting compound 241 with methanesulfonamide, using the method described in Example 2.
Example 213 Preparation of Compound 108
Figure US08765757-20140701-C00669
Compound 108 was prepared by first using the method described in Example 1 and using 5-bromo-2-fluorobenzonitrile and 3-nitrobenzylamine in Step A, and 4-aminothiophene-3-carboxylic acid methyl ester in Step D. This provided an intermediate an intermediate compound which was then reacted with methanesulfonamide using the method described in Example 2 to provide and intermediate compound which was subsequently reduced using the method set forth in Example 4 to provide compound 108.
Example 214 Preparation of Compound 86
Figure US08765757-20140701-C00670
Compound 86 was prepared by first using the method described in Example 1 and using 5-chloro-2-fluorobenzonitrile and 3-nitrobenzylamine in Step A, and 4-aminothiophene-3-carboxylic acid methyl ester in Step D. This provided an intermediate an intermediate compound which was then reacted with methanesulfonamide using the method described in Example 2 to provide and intermediate compound which was subsequently reduced using the method set forth in Example 4 to provide compound 86.
Example 215 Preparation of Compound 30
Figure US08765757-20140701-C00671
Compound 30 was prepared using the method described in Example 1 and using 2-fluoro-5-trifluoromethylbenzonitrile and thiophen-2-yl-methylamine in Step A and 4-aminothiophene-3-carboxylic acid methyl ester was used in Step D.
Example 216 Preparation of Compound 99
Figure US08765757-20140701-C00672
Compound 99 was prepared by reacting compound 30 with methanesulfonamide, using the method described in Example 2.
Example 217 Preparation of Compound 268
Figure US08765757-20140701-C00673
Compound 268 was prepared from compound 212 using the method described in Step F wherein trifluoroacetic acid was used in a microwave reactor at 120° C. for 30 minutes.
Example 218 Preparation of Compound 18
Figure US08765757-20140701-C00674
Compound 18 was prepared using the method described in Example 1 and using 2-fluoro-5-trifluoromethylbenzonitrile and furan-2-yl-methylamine in Step A, and 4-aminothiophene-3-carboxylic acid methyl ester in Step D.
Example 219 Preparation of Compound 90
Figure US08765757-20140701-C00675
Compound 90 was prepared by reacting compound 18 with methanesulfonamide, using the method described in Example 2.
Example 220 Preparation of Compound 25
Figure US08765757-20140701-C00676
Compound 25 was prepared using the method described in Example 1 and using 2-fluoro-5-trifluoromethylbenzonitrile and benzylamine in Step A, and 4-aminothiophene-3-carboxylic acid methyl ester in Step D.
Example 221 Preparation of Compound 72
Figure US08765757-20140701-C00677
Compound 72 was prepared using the method described in Example 1 and using 2-fluoro-5-trifluoromethylbenzonitrile and 3,4-methylenedioxybenzylamine in Step A, and 4-aminothiophene-3-carboxylic acid methyl ester in Step D.
Example 222 Preparation of Compound 114
Figure US08765757-20140701-C00678
Compound 124 was prepared by reacting compound 72 with methanesulfonamide, using the method described in Example 2.
Example 223 Preparation of Compound 88
Figure US08765757-20140701-C00679
Compound 88 was prepared using the method described in Example 1 and using 2-fluoro-5-trifluoromethylbenzonitrile and 2,3-dimethoxybenzylamine in Step A, and 4-aminothiophene-3-carboxylic acid methyl ester in Step D.
Example 224 Preparation of Compound 120
Figure US08765757-20140701-C00680
Compound 120 was prepared from compound 88 using the method described in Example 2, wherein methanesulfonamide was used.
Example 225 Preparation of Compound 87
Figure US08765757-20140701-C00681
Compound 87 was prepared using the method described in Example 1 and using 2-fluoro-5-trifluoromethylbenzonitrile and 3,5-dimethoxybenzylamine in Step A, and 4-aminothiophene-3-carboxylic acid methyl ester in Step D.
Example 226 Preparation of Compound 119
Figure US08765757-20140701-C00682
Compound 119 was prepared from compound 87 using the method described in Example 2, wherein methanesulfonamide was used.
Example 227 Preparation of Compound 83
Figure US08765757-20140701-C00683
Compound 83 was prepared from compound 20 using the method described in Example 6.
Example 228 Preparation of Compound 38
Figure US08765757-20140701-C00684
Compound 38 was prepared using the method described in Example 5, wherein 2-fluoro-5-trifluoromethylbenzonitrile was used in Step A, 4-aminothiophene-3-carboxylic acid methyl ester was used in Step D. This provided an intermediate compound which was then reacted with 2-tert-butoxycarbonylaminopyridin-4-yl-methyl bromide using the method described in Example 2. The resulting product of this reaction was subsequently converted to compound 38 using the method described in Example 3.
Example 229 Preparation of Compound 29
Figure US08765757-20140701-C00685
Compound 29 was prepared using the method described in Example 1 and using 2-fluoro-5-trifluoromethylbenzonitrile and thiophen-3-yl-methylamine in Step A, and 4-aminothiophene-3-carboxylic acid methyl ester in Step D.
Example 230 Preparation of Compound 98
Figure US08765757-20140701-C00686
Compound 98 was prepared by reacting compound 29 with methanesulfonamide, using the method described in Example 2.
Example 231 Preparation of Compound 19
Figure US08765757-20140701-C00687
Compound 19 was prepared using the method described in Example 1 and using 2-fluoro-5-trifluoromethylbenzonitrile and furan-3-yl-methylamine in Step A, and 4-aminothiophene-3-carboxylic acid methyl ester in Step D.
Example 232 Preparation of Compound 89
Figure US08765757-20140701-C00688
Compound 89 was prepared by reacting compound 19 with methanesulfonamide, using the method described in Example 2.
Example 233 Preparation of Compound 85
Figure US08765757-20140701-C00689
Compound 85 was prepared using the method described in Example 1 and using 2-fluoro-5-trifluoromethylbenzonitrile and 2,3-ethylenedioxybenzylamine in Step A, and 4-aminothiophene-3-carboxylic acid methyl ester in Step D.
Example 234 Preparation of Compound 118
Figure US08765757-20140701-C00690
Compound 118 was prepared by reacting compound 85 with methanesulfonamide, using the method described in Example 2.
Example 235 Preparation of Compound 242
Figure US08765757-20140701-C00691
Compound 242 was prepared from compound 91 using the method described in Example 6.
Example 236 Preparation of Compound 103
Figure US08765757-20140701-C00692
Compound 103 was prepared from compound 109 using the method described in Example 6.
Example 237 Preparation of Compound 243
Figure US08765757-20140701-C00693
Compound 243 was prepared using the method described in Example 1 and using 5-chloro-2-fluorobenzonitrile and 3-methoxybenzylamine in Step A, and glycine methyl ester in Step D.
Example 238 Preparation of Compound 244
Figure US08765757-20140701-C00694
Compound 244 was prepared using the method described in Example 1 and using 5-chloro-2-fluorobenzonitrile and 3-methoxybenzylamine in Step A, and methyl 3-aminopropionate in Step D.
Example 239 Preparation of Compound 63
Figure US08765757-20140701-C00695
Compound 63 was prepared using the method described in Example 5, wherein 2-fluoro-5-trifluoromethylbenzonitrile was used in Step A, 4-aminothiophene-3-carboxylic acid methyl ester was used in Step D, and 5-nitrofuran-2-yl-methyl bromide was used in Step G.
Example 240 Preparation of Compound 269
Figure US08765757-20140701-C00696
Compound 269 was prepared using methods shown in Example 1, wherein 5-chloro-2-fluorobenzonitrile and 3-nitrobenzylamine were used in Step A, -amino-3-(4-methoxybenzyl)-3H-imidazole-4-carboxylic acid methyl ester was used in Step D, and trifluoroacetic acid was used in a microwave reactor at 120° C. for 30 minutes in Step F. The nitro group of the resulting product was then reduced using the method described in Example 4 to provide compound 269.
Example 241 Preparation of Compound 245
Figure US08765757-20140701-C00697
Compound 245 was prepared using methods shown in Example 1, wherein 2-fluoro-5-nitrobenzonitrile and methylamine were used in Step A and methyl anthranilate was used in Step D. Reduction of the 5-nitro group was carried out using stannous chloride in ethanol to provide the corresponding 5-amino indole intermediate. Dimethylation of the 5-amino group was carried out using aqueous formaldehyde solution (37% w/w, 10 eq.) and MP-cyanoborohydride resion (2.42 mmol/g, 1.5 eq.) in methanol:acetic acid (9:1, v/v) at room temperature for about 15 hours.
Example 242 Preparation of Compound 84
Figure US08765757-20140701-C00698
Compound 84 was prepared using methods shown in Example 1, wherein 2-fluoro-5-nitrobenzonitrile was reacted with 3-nitrobenzyl amine in Step A. Following steps B through E, the 3-nitrobenzyl intermediate was reduced using stannous chloride in ethanol to provide the corresponding 5-amino indole intermediate. Dimethylation of the 5-amino group was carried out using aqueous formaldehyde solution (37% w/w, 10 eq.) and MP-cyanoborohydride resion (2.42 mmol/g, 1.5 eq.) in methanol:acetic acid (9:1, v/v) at room temperature for about 15 hours.
Example 243 Preparation of Compound 246
Figure US08765757-20140701-C00699
Compound 246 was prepared using the method described in Example 1 and using 5-chloro-2-fluorobenzonitrile and methylamine in Step A, and methyl anthranilate in Step D.
Example 244 Preparation of Compound 247
Figure US08765757-20140701-C00700
Compound 247 was prepared by reacting compound 246 with ammonia, using the method described in Example 3.
Example 245 Preparation of Compound 250
Figure US08765757-20140701-C00701
Compound 250 was prepared by reacting compound 246 with morpholine, using the method described in Example 3.
Example 246 Preparation of Compound 249
Figure US08765757-20140701-C00702
Compound 249 was prepared by reacting compound 246 with piperazine, using the method described in Example 3.
Example 247 Preparation of Compound 270
Figure US08765757-20140701-C00703
Compound 270 was prepared by reacting compound 246 with glycine tert-butyl ester, using the method described in Example 3.
Example 248 Preparation of Compound 9
Figure US08765757-20140701-C00704
Compound 98 was prepared by reacting compound 246 with methanesulfonamide, using the method described in Example 2.
Example 249 Preparation of Compound 251
Figure US08765757-20140701-C00705
Compound 251 was prepared using the method described in Example 1 and using 5-chloro-2-fluorobenzonitrile and methylamine in Step A, and 4-amino-thiophene-3-carboxylic acid methyl ester in Step D.
Example 250 HCV NS5B Polymerase Inhibition Assay
An in vitro transcribed heteropolymeric RNA known as D-RNA or DCoH has been shown to be an efficient template for HCV NS5B polymerase (S.-E. Behrens et al., EMBO J. 15: 12-22 (1996); WO 96/37619). A chemically synthesized 75-mer version, designated DCoH75, whose sequence matches the 3′-end of D-RNA, and DCoH75ddC, where the 3′-terminal cytidine of DCoH75 is replaced by dideoxycytidine, were used for assaying the NS5B enzyme activity as described in Ferrari et al., 12th International Symposium on HCV and Related Viruses, P-306 (2005). A soluble C-terminal 21-amino acid truncated NS5B enzyme form (NS5BDeltaCT21) was produced and purified from Escherichia coli as C-terminal polyhistidine-tagged fusion protein as described in Ferrari et al., J. Virol. 73:1649-1654 (1999). A typical assay contained 20 mM Hepes pH 7.3, 10 mM MgCl2, 60 mM NaCl, 100 μg/ml BSA, 20 units/ml RNasin, 7.5 mM DTT, 0.1 μM ATP/GTP/UTP, 0.026 μM CTP, 0.25 mM GAU, 0.03 μM RNA template, 20 μCi/ml [33P]-CTP, 2% DMSO, and 30 or 150 nM NS5B enzyme. Reactions were incubated at 22° C. for 2 hours, then stopped by adding 150 mM EDTA, washed in DE81 filter plate in 0.5M di-basic sodium phosphate buffer, pH 7.0, and counted using Packard TopCount after the addition of scintillation cocktail. Polynucleotide synthesis was monitored by the incorporation of radiolabeled CTP. The effect of the 3-Heterocyclic Substituted Indole Derivatives on the polymerase activity was evaluated by adding various concentrations of a 3-Heterocyclic Substituted Indole Derivative, typically in 10 serial 2-fold dilutions, to the assay mixture. The starting concentrations of the indole derivatives ranged from 200 μM to 1 μM. An IC50 value for the inhibitor, defined as the compound concentration that provides 50% inhibition of polymerase activity, was determined by fitting the cpm data to the Hill equation Y=100/(1+10^((LogIC50−X)*HillSlope)), where X is the logarithm of compound concentration, and Y is the % inhibition. Ferrari et al., 12th International Symposium on HCV and Related Viruses, P-306 (2005) described in detail this assay procedure. It should be noted that such an assay as described is exemplary and not intended to limit the scope of the invention. The skilled practitioner can appreciate that modifications including but not limited to RNA template, primer, nucleotides, NS5B polymerase form, buffer composition, can be made to develop similar assays that yield the same result for the efficacy of the compounds and compositions described in the invention.
NS5B polymerase inhibition data for selected 3-Heterocyclic Substituted Indole Derivatives was obtained using the above method and calculated IC50 values ranged from about 1 μM to about 14000 μM.
Example 251 Cell-Based HCV Replicon Assay
To measure cell-based anti-HCV activity of the a 3-Heterocyclic Substituted Indole Derivative, replicon cells were seeded at 5000 cells/well in 96-well collagen I-coated Nunc plates in the presence of the 3-Heterocyclic Substituted Indole Derivative. Various concentrations of a 3-Heterocyclic Substituted Indole Derivative, typically in 10 serial 2-fold dilutions, were added to the assay mixture, the starting concentration of the compound ranging from 250 uM to 1 uM. The final concentration of DMSO was 0.5%, fetal bovine serum was 5%, in the assay media. Cells were harvested on day 3 by the addition of 1× cell lysis buffer (Ambion cat #8721). The replicon RNA level was measured using real time PCR (Taqman assay). The amplicon was located in 5B. The PCR primers were: 5B.2F, ATGGACAGGCGCCCTGA; 5B.2R, TTGATGGGCAGCTTGGTTTC; the probe sequence was FAM-labeled CACGCCATGCGCTGCGG. GAPDH RNA was used as endogenous control and was amplified in the same reaction as NS5B (multiplex PCR) using primers and VIC-labeled probe recommended by the manufacturer (PE Applied Biosystem). The real-time RT-PCR reactions were run on ABI PRISM 7900HT Sequence Detection System using the following program: 48° C. for 30 min, 95° C. for 10 min, 40 cycles of 95° C. for 15 sec, 60° C. for 1 min. The ΔCT values (CT5B-CTGAPDH) were plotted against the concentration of test compound and fitted to the sigmoid dose-response model using XLfit4 (MDL). EC50 was defined as the concentration of inhibitor necessary to achieve ΔCT=1 over the projected baseline; EC90 the concentration necessary to achieve ΔCT=3.2 over the baseline. Alternatively, to quantitate the absolute amount of replicon RNA, a standard curve was established by including serially diluted T7 transcripts of replicon RNA in the Taqman assay. All Taqman reagents were from PE Applied Biosystems. Such an assay procedure was described in detail in e.g. Malcolm et al., Antimicrobial Agents and Chemotherapy 50: 1013-1020 (2006).
HCV Replicon assay data for selected 3-Heterocyclic Substituted Indole Derivatives was obtained using the above method and calculated EC50 values ranged from about 1 μM to about 14000 μM.
Uses of the 3-Heterocyclic Substituted Indole Derivatives
The 3-Heterocyclic Substituted Indole Derivatives are useful in human and veterinary medicine for treating or preventing a viral infection or a virus-related disorder in a patient. In accordance with the invention, the 3-Heterocyclic Substituted Indole Derivatives can be administered to a patient in need of treatment or prevention of a viral infection or a virus-related disorder.
Accordingly, in one embodiment, the invention provides methods for treating a viral infection in a patient comprising administering to the patient an effective amount of at least one 3-Heterocyclic Substituted Indole Derivative or a pharmaceutically acceptable salt, solvate, ester or prodrug thereof. In another embodiment, the invention provides methods for treating a virus-related disorder in a patient comprising administering to the patient an effective amount of at least one 3-Heterocyclic Substituted Indole Derivative or a pharmaceutically acceptable salt, solvate, ester or prodrug thereof.
Treatment or Prevention of a Viral Infection
The 3-Heterocyclic Substituted Indole Derivatives can be used to treat or prevent a viral infection. In one embodiment, the 3-Heterocyclic Substituted Indole Derivatives can be inhibitors of viral replication. In a specific embodiment, the 3-Heterocyclic Substituted Indole Derivatives can be inhibitors of HCV replication. Accordingly, the 3-Heterocyclic Substituted Indole Derivatives are useful for treating viral diseases and disorders related to the activity of a virus, such as HCV polymerase.
Examples of viral infections that can be treated or prevented using the present methods, include but are not limited to, hepatitis A infection, hepatitis B infection and hepatitis C infection.
In one embodiment, the viral infection is hepatitis C infection.
In one embodiment, the hepatitis C infection is acute hepatitis C. In another embodiment, the hepatitis C infection is chronic hepatitis C.
The compositions and combinations of the present invention can be useful for treating a patient suffering from infection related to any HCV genotype. HCV types and subtypes may differ in their antigenicity, level of viremia, severity of disease produced, and response to interferon therapy as described in Holland et al., Pathology, 30(2):192-195 (1998). The nomenclature set forth in Simmonds et al., J Gen Virol, 74(Pt11):2391-2399 (1993) is widely used and classifies isolates into six major genotypes, 1 through 6, with two or more related subtypes, e.g., 1a, 1b. Additional genotypes 7-10 and 11 have been proposed, however the phylogenetic basis on which this classification is based has been questioned, and thus types 7, 8, 9 and 11 isolates have been reassigned as type 6, and type 10 isolates as type 3 (see Lamballerie et al, J Gen Virol, 78(Pt1):45-51 (1997)). The major genotypes have been defined as having sequence similarities of between 55 and 72% (mean 64.5%), and subtypes within types as having 75%-86% similarity (mean 80%) when sequenced in the NS-5 region (see Simmonds et al., J Gen Virol, 75(Pt 5):1053-1061 (1994)).
Treatment or Prevention of a Virus-Related Disorder
The 3-Heterocyclic Substituted Indole Derivatives can be used to treat or prevent a virus-related disorder. Accordingly, the 3-Heterocyclic Substituted Indole Derivatives are useful for treating disorders related to the activity of a virus, such as liver inflammation or cirrhosis. Virus-related disorders include, but are not limited to, RNA-dependent polymerase-related disorders and disorders related to HCV infection.
Treatment or Prevention of a RNA-Dependent Polymerase-Related Disorder
The 3-Heterocyclic Substituted Indole Derivatives are useful for treating or preventing a RNA dependent polymerase (RdRp) related disorder in a patient. Such disorders include viral infections wherein the infective virus contain a RdRp enzyme.
Accordingly, in one embodiment, the present invention provides a method for treating a RNA dependent polymerase-related disorder in a patient, comprising administering to the patient an effective amount of at least one 3-Heterocyclic Substituted Indole Derivative or a pharmaceutically acceptable salt, solvate, ester or prodrug thereof.
Treatment or Prevention of a Disorder Related to HCV Infection
The 3-Heterocyclic Substituted Indole Derivatives can also be useful for treating or preventing a disorder related to an HCV infection. Examples of such disorders include, but are not limited to, cirrhosis, portal hypertension, ascites, bone pain, varices, jaundice, hepatic encephalopathy, thyroiditis, porphyria cutanea tarda, cryoglobulinemia, glomerulonephritis, sicca syndrome, thrombocytopenia, lichen planus and diabetes mellitus.
Accordingly, in one embodiment, the invention provides methods for treating an HCV-related disorder in a patient, wherein the method comprises administering to the patient a therapeutically effective amount of at least one 3-Heterocyclic Substituted Indole Derivative, or a pharmaceutically acceptable salt, solvate, ester or prodrug thereof.
Combination Therapy
In another embodiment, the present methods for treating or preventing a viral infection can further comprise the administration of one or more additional therapeutic agents which are not 3-Heterocyclic Substituted Indole Derivatives.
In one embodiment, the additional therapeutic agent is an antiviral agent.
In another embodiment, the additional therapeutic agent is an immunomodulatory agent, such as an immunosuppressive agent.
Accordingly, in one embodiment, the present invention provides methods for treating a viral infection in a patient, the method comprising administering to the patient: (i) at least one 3-Heterocyclic Substituted Indole Derivative, or a pharmaceutically acceptable salt, solvate, ester or prodrug thereof, and (ii) at least one other antiviral agent that is other than a 3-Heterocyclic Substituted Indole Derivative, wherein the amounts administered are together effective to treat or prevent a viral infection.
When administering a combination therapy of the invention to a patient, the therapeutic agents in the combination, or a pharmaceutical composition or compositions comprising the therapeutic agents, may be administered in any order such as, for example, sequentially, concurrently, together, simultaneously and the like. The amounts of the various actives in such combination therapy may be different amounts (different dosage amounts) or same amounts (same dosage amounts). Thus, for non-limiting illustration purposes, a 3-Heterocyclic Substituted Indole Derivative and an additional therapeutic agent may be present in fixed amounts (dosage amounts) in a single dosage unit (e.g., a capsule, a tablet and the like). A commercial example of such single dosage unit containing fixed amounts of two different active compounds is VYTORIN® (available from Merck Schering-Plough Pharmaceuticals, Kenilworth, N.J.).
In one embodiment, the at least one 3-Heterocyclic Substituted Indole Derivative is administered during at time when the additional antiviral agent(s) exert their prophylactic or therapeutic effect, or vice versa.
In another embodiment, the at least one 3-Heterocyclic Substituted Indole Derivative and the additional antiviral agent(s) are administered in doses commonly employed when such agents are used as monotherapy for treating a viral infection.
In another embodiment, the at least one 3-Heterocyclic Substituted Indole Derivative and the additional antiviral agent(s) are administered in doses lower than the doses commonly employed when such agents are used as monotherapy for treating a viral infection.
In still another embodiment, the at least one 3-Heterocyclic Substituted Indole Derivative and the additional antiviral agent(s) act synergistically and are administered in doses lower than the doses commonly employed when such agents are used as monotherapy for treating a viral infection.
In one embodiment, the at least one 3-Heterocyclic Substituted Indole Derivative and the additional antiviral agent(s) are present in the same composition. In one embodiment, this composition is suitable for oral administration. In another embodiment, this composition is suitable for intravenous administration.
Viral infections and virus-related disorders that can be treated or prevented using the combination therapy methods of the present invention include, but are not limited to, those listed above.
In one embodiment, the viral infection is HCV infection.
The at least one 3-Heterocyclic Substituted Indole Derivative and the additional antiviral agent(s) can act additively or synergistically. A synergistic combination may allow the use of lower dosages of one or more agents and/or less frequent administration of one or more agents of a combination therapy. A lower dosage or less frequent administration of one or more agents may lower toxicity of the therapy without reducing the efficacy of the therapy.
In one embodiment, the administration of at least one 3-Heterocyclic Substituted Indole Derivative and the additional antiviral agent(s) may inhibit the resistance of a viral infection to these agents.
Non-limiting examples of other therapeutic agents useful in the present compositions and methods include an HCV polymerase inhibitor, an interferon, a viral replication inhibitor, an antisense agent, a therapeutic vaccine, a viral protease inhibitor, a virion production inhibitor, an antibody therapy (monoclonal or polyclonal), and any agent useful for treating an RNA-dependent polymerase-related disorder.
In one embodiment, the other antiviral agent is a viral protease inhibitor.
In another embodiment, the other antiviral agent is an HCV protease inhibitor.
In another embodiment, the other antiviral agent is an interferon.
In still another embodiment, the other antiviral agent is a viral replication inhibitor.
In another embodiment, the other antiviral agent is an antisense agent.
In another embodiment, the other antiviral agent is a therapeutic vaccine.
In a further embodiment, the other antiviral agent is an virion production inhibitor.
In another embodiment, the other antiviral agent is antibody therapy.
In another embodiment, the other antiviral agents comprise a protease inhibitor and a polymerase inhibitor.
In still another embodiment, the other antiviral agents comprise a protease inhibitor and an immunosuppressive agent.
In yet another embodiment, the other antiviral agents comprise a polymerase inhibitor and an immunosuppressive agent.
In a further embodiment, the other antiviral agents comprise a protease inhibitor, a polymerase inhibitor and an immunosuppressive agent.
In another embodiment the other agent is ribavirin.
HCV polymerase inhibitors useful in the present methods and compositions include, but are not limited to VP-19744 (Wyeth/ViroPharma), HCV-796 (Wyeth/ViroPharma), NM-283 (Idenix/Novartis), R-1626 (Roche), MK-0608 (Merck), A848837 (Abbott), GSK-71185 (Glaxo SmithKline), XTL-2125 (XTL Biopharmaceuticals), and those disclosed in Ni et al., Current Opinion in Drug Discovery and Development, 7(4):446 (2004); Tan et al., Nature Reviews, 1:867 (2002); and Beaulieu et al., Current Opinion in Investigational Drugs, 5:838 (2004).
Interferons useful in the present methods and compositions include, but are not limited to, interferon alfa-2a, interferon alfa-2b, interferon alfacon-1 and PEG-interferon alpha conjugates. “PEG-interferon alpha conjugates” are interferon alpha molecules covalently attached to a PEG molecule. Illustrative PEG-interferon alpha conjugates include interferon alpha-2a (Roferon™, Hoffman La-Roche, Nutley, N.J.) in the form of pegylated interferon alpha-2a (e.g., as sold under the trade name Pegasys™), interferon alpha-2b (Intron™, from Schering-Plough Corporation) in the form of pegylated interferon alpha-2b (e.g., as sold under the trade name PEG-Intron™), interferon alpha-2c (Berofor Alpha™, Boehringer Ingelheim, Ingelheim, Germany), interferon alpha fusion polypeptides, or consensus interferon as defined by determination of a consensus sequence of naturally occurring interferon alphas (Infergen™, Amgen, Thousand Oaks, Calif.).
Antibody therapy agents useful in the present methods and compositions include, but are not limited to, antibodies specific to IL-10 (such as those disclosed in US Patent Publication No. US2005/0101770, humanized 12G8, a humanized monoclonal antibody against human IL-10, plasmids containing the nucleic acids encoding the humanized 12G8 light and heavy chains were deposited with the American Type Culture Collection (ATCC) as deposit numbers PTA-5923 and PTA-5922, respectively), and the like). Viral protease inhibitors useful in the present methods and compositions include, but are not limited to, NS3 serine protease inhibitors (including, but are not limited to, those disclosed in U.S. Pat. Nos. 7,012,066, 6,914,122, 6,911,428, 6,846,802, 6,838,475, 6,800,434, 5,017,380, 4,933,443, 4,812,561 and 4,634,697; and U.S. Patent Publication Nos. US20020160962, US20050176648 and US20050249702), HCV protease inhibitors (e.g., SCH503034 (Schering-Plough), VX-950 (Vertex), GS-9132 (Gilead/Achillion), ITMN-191 (InterMune/Roche)), amprenavir, atazanavir, fosemprenavir, indinavir, lopinavir, ritonavir, nelfinavir, saquinavir, tipranavir and TMC114.
Viral replication inhibitors useful in the present methods and compositions include, but are not limited to, NS3 helicase inhibitors, NS5A inhibitors, ribavirin, viramidine, A-831 (Arrow Therapeutics); an antisense agent or a therapeutic vaccine.
In one embodiment, viral replication inhibitors useful in the present methods and compositions include, but are not limited to, NS3 helicase inhibitors or NS5A inhibitors.
Examples of protease inhibitors useful in the present methods include, but are not limited to, an HCV protease inhibitor and a NS-3 serine protease inhibitor.
Examples of HCV protease inhibitors useful in the present methods include, but are not limited to, those disclosed in Landro et al., Biochemistry, 36(31):9340-9348 (1997); Ingallinella et al., Biochemistry, 37(25):8906-8914 (1998); Llinàs-Brunet et al., Bioorg Med Chem Lett, 8(13):1713-1718 (1998); Martin et al., Biochemistry, 37(33):11459-11468 (1998); Dimasi et al., J Virol, 71(10):7461-7469 (1997); Martin et al., Protein Eng, 10(5):607-614 (1997); Elzouki et al., J Hepat, 27(1):42-48 (1997); BioWorld Today, 9(217):4 (Nov. 10, 1998); and International Publication Nos. WO 98/14181; WO 98/17679, WO 98/17679, WO 98/22496 and WO 99/07734.
Further examples of protease inhibitors useful in the present methods include, but are not limited to,
Additional examples of other therapeutic agents useful in the present methods include, but are not limited to, Levovirin™ (ICN Pharmaceuticals, Costa Mesa, Calif.), VP 50406™ (Viropharma, Incorporated, Exton, Pa.), ISIS 14803™ (ISIS Pharmaceuticals, Carlsbad, Calif.), Heptazyme™ (Ribozyme Pharmaceuticals, Boulder, Colo.), VX-950™ (Vertex Pharmaceuticals, Cambridge, Mass.), Thymosin™ (SciClone Pharmaceuticals, San Mateo, Calif.), Maxamine™ (Maxim Pharmaceuticals, San Diego, Calif.), NKB-122 (JenKen Bioscience Inc., North Carolina), mycophenolate mofetil (Hoffman-LaRoche, Nutley, N.J.).
The doses and dosage regimen of the other agents used in the combination therapies of the present invention for the treatment or prevention of a viral infection can be determined by the attending clinician, taking into consideration the approved doses and dosage regimen in the package insert; the age, sex and general health of the patient; and the type and severity of the viral infection or related disease or disorder. When administered in combination, the 3-Heterocyclic Substituted Indole Derivative(s) and the other agent(s) for treating diseases or conditions listed above can be administered simultaneously (i.e., in the same composition or in separate compositions one right after the other) or sequentially. This is particularly useful when the components of the combination are given on different dosing schedules, e.g., one component is administered once daily and another every six hours, or when the preferred pharmaceutical compositions are different, e.g. one is a tablet and one is a capsule. A kit comprising the separate dosage forms is therefore advantageous.
Generally, a total daily dosage of the at least one 3-Heterocyclic Substituted Indole Derivative and the additional antiviral agent(s), when administered as combination therapy, can range from about 0.1 to about 2000 mg per day, although variations will necessarily occur depending on the target of the therapy, the patient and the route of administration. In one embodiment, the dosage is from about 10 to about 500 mg/day, administered in a single dose or in 2-4 divided doses. In another embodiment, the dosage is from about 1 to about 200 mg/day, administered in a single dose or in 2-4 divided doses. In still another embodiment, the dosage is from about 1 to about 100 mg/day, administered in a single dose or in 2-4 divided doses. In yet another embodiment, the dosage is from about 1 to about 50 mg/day, administered in a single dose or in 2-4 divided doses. In a further embodiment, the dosage is from about 1 to about 20 mg/day, administered in a single dose or in 2-4 divided doses. In another embodiment, the dosage is from about 500 to about 1500 mg/day, administered in a single dose or in 2-4 divided doses. In still another embodiment, the dosage is from about 500 to about 1000 mg/day, administered in a single dose or in 2-4 divided doses. In yet another embodiment, the dosage is from about 100 to about 500 mg/day, administered in a single dose or in 2-4 divided doses.
In one embodiment, when the other therapeutic agent is INTRON-A interferon alpha 2b (commercially available from Schering-Plough Corp.), this agent is administered by subcutaneous injection at 3MIU(12 mcg)/0.5 mL/TIW is for 24 weeks or 48 weeks for first time treatment.
In another embodiment, when the other therapeutic agent is PEG-INTRON interferon alpha 2b pegylated (commercially available from Schering-Plough Corp.), this agent is administered by subcutaneous injection at 1.5 mcg/kg/week, within a range of 40 to 150 mcg/week, for at least 24 weeks.
In another embodiment, when the other therapeutic agent is ROFERON A interferon alpha 2a (commercially available from Hoffmann-La Roche), this agent is administered by subcutaneous or intramuscular injection at 3MIU(11.1 mcg/mL)/TIW for at least 48 to 52 weeks, or alternatively 6MIU/TIW for 12 weeks followed by 3MIU/TIW for 36 weeks.
In still another embodiment, when the other therapeutic agent is PEGASUS interferon alpha 2a pegylated (commercially available from Hoffmann-La Roche), this agent is administered by subcutaneous injection at 180 mcg/1 mL or 180 mcg/0.5 mL, once a week for at least 24 weeks.
In yet another embodiment, when the other therapeutic agent is INFERGEN interferon alphacon-1 (commercially available from Amgen), this agent is administered by subcutaneous injection at 9 mcg/TIW is 24 weeks for first time treatment and up to 15 mcg/TIW for 24 weeks for non-responsive or relapse treatment.
In a further embodiment, when the other therapeutic agent is Ribavirin (commercially available as REBETOL ribavirin from Schering-Plough or COPEGUS ribavirin from Hoffmann-La Roche), this agent is administered at a daily dosage of from about 600 to about 1400 mg/day for at least 24 weeks.
Compositions and Administration
Due to their activity, the 3-Heterocyclic Substituted Indole Derivatives are useful in veterinary and human medicine. As described above, the 3-Heterocyclic Substituted Indole Derivatives are useful for treating or preventing a viral infection or a virus-related disorder in a patient in need thereof.
When administered to a patient, the IDs can be administered as a component of a composition that comprises a pharmaceutically acceptable carrier or vehicle. The present invention provides pharmaceutical compositions comprising an effective amount of at least one 3-Heterocyclic Substituted Indole Derivative and a pharmaceutically acceptable carrier. In the pharmaceutical compositions and methods of the present invention, the active ingredients will typically be administered in admixture with suitable carrier materials suitably selected with respect to the intended form of administration, i.e. oral tablets, capsules (either solid-filled, semi-solid filled or liquid filled), powders for constitution, oral gels, elixirs, dispersible granules, syrups, suspensions, and the like, and consistent with conventional pharmaceutical practices. For example, for oral administration in the form of tablets or capsules, the active drug component may be combined with any oral non-toxic pharmaceutically acceptable inert carrier, such as lactose, starch, sucrose, cellulose, magnesium stearate, dicalcium phosphate, calcium sulfate, talc, mannitol, ethyl alcohol (liquid forms) and the like. Solid form preparations include powders, tablets, dispersible granules, capsules, cachets and suppositories. Powders and tablets may be comprised of from about 5 to about 95 percent inventive composition. Tablets, powders, cachets and capsules can be used as solid dosage forms suitable for oral administration.
Moreover, when desired or needed, suitable binders, lubricants, disintegrating agents and coloring agents may also be incorporated in the mixture. Suitable binders include starch, gelatin, natural sugars, corn sweeteners, natural and synthetic gums such as acacia, sodium alginate, carboxymethylcellulose, polyethylene glycol and waxes. Among the lubricants there may be mentioned for use in these dosage forms, boric acid, sodium benzoate, sodium acetate, sodium chloride, and the like. Disintegrants include starch, methylcellulose, guar gum and the like. Sweetening and flavoring agents and preservatives may also be included where appropriate.
Liquid form preparations include solutions, suspensions and emulsions and may include water or water-propylene glycol solutions for parenteral injection.
Liquid form preparations may also include solutions for intranasal administration.
Aerosol preparations suitable for inhalation may include solutions and solids in powder form, which may be in combination with a pharmaceutically acceptable carrier, such as an inert compressed gas.
Also included are solid form preparations which are intended to be converted, shortly before use, to liquid form preparations for either oral or parenteral administration. Such liquid forms include solutions, suspensions and emulsions.
For preparing suppositories, a low melting wax such as a mixture of fatty acid glycerides or cocoa butter is first melted, and the active ingredient is dispersed homogeneously therein as by stirring. The molten homogeneous mixture is then poured into convenient sized molds, allowed to cool and thereby solidify.
The 3-Heterocyclic Substituted Indole Derivatives of the present invention may also be deliverable transdermally. The transdermal compositions can take the form of creams, lotions, aerosols and/or emulsions and can be included in a transdermal patch of the matrix or reservoir type as are conventional in the art for this purpose.
Additionally, the compositions of the present invention may be formulated in sustained release form to provide the rate controlled release of any one or more of the components or active ingredients to optimize the therapeutic effects, i.e. anti-inflammatory activity and the like. Suitable dosage forms for sustained release include layered tablets containing layers of varying disintegration rates or controlled release polymeric matrices impregnated with the active components and shaped in tablet form or capsules containing such impregnated or encapsulated porous polymeric matrices.
In one embodiment, the one or more 3-Heterocyclic Substituted Indole Derivatives are administered orally.
In another embodiment, the one or more 3-Heterocyclic Substituted Indole Derivatives are administered intravenously.
In another embodiment, the one or more 3-Heterocyclic Substituted Indole Derivatives are administered topically.
In still another embodiment, the one or more 3-Heterocyclic Substituted Indole Derivatives are administered sublingually.
In one embodiment, a pharmaceutical preparation comprising at least one 3-Heterocyclic Substituted Indole Derivative is in unit dosage form. In such form, the preparation is subdivided into unit doses containing appropriate quantities of the active component, e.g., an effective amount to achieve the desired purpose.
Compositions can be prepared according to conventional mixing, granulating or coating methods, respectively, and the present compositions can contain, in one embodiment, from about 0.1% to about 99% of the 3-Heterocyclic Substituted Indole Derivative(s) by weight or volume. In various embodiments, the present compositions can contain, in one embodiment, from about 1% to about 70% or from about 5% to about 60% of the 3-Heterocyclic Substituted Indole Derivative(s) by weight or volume.
The quantity of 3-Heterocyclic Substituted Indole Derivative in a unit dose of preparation may be varied or adjusted from about 0.1 mg to about 2000 mg. In various embodiment, the quantity is from about 1 mg to about 2000 mg, 100 mg to about 200 mg, 500 mg to about 2000 mg, 100 mg to about 1000 mg, and 1 mg to about 500 mg.
For convenience, the total daily dosage may be divided and administered in portions during the day if desired. In one embodiment, the daily dosage is administered in one portion. In another embodiment, the total daily dosage is administered in two divided doses over a 24 hour period. In another embodiment, the total daily dosage is administered in three divided doses over a 24 hour period. In still another embodiment, the total daily dosage is administered in four divided doses over a 24 hour period.
The amount and frequency of administration of the 3-Heterocyclic Substituted Indole Derivatives will be regulated according to the judgment of the attending clinician considering such factors as age, condition and size of the patient as well as severity of the symptoms being treated. Generally, a total daily dosage of the 3-Heterocyclic Substituted Indole Derivatives range from about 0.1 to about 2000 mg per day, although variations will necessarily occur depending on the target of the therapy, the patient and the route of administration. In one embodiment, the dosage is from about 1 to about 200 mg/day, administered in a single dose or in 2-4 divided doses. In another embodiment, the dosage is from about 10 to about 2000 mg/day, administered in a single dose or in 2-4 divided doses. In another embodiment, the dosage is from about 100 to about 2000 mg/day, administered in a single dose or in 2-4 divided doses. In still another embodiment, the dosage is from about 500 to about 2000 mg/day, administered in a single dose or in 2-4 divided doses.
The compositions of the invention can further comprise one or more additional therapeutic agents, selected from those listed above herein. Accordingly, in one embodiment, the present invention provides compositions comprising: (i) at least one 3-Heterocyclic Substituted Indole Derivative or a pharmaceutically acceptable salt, solvate, ester or prodrug thereof; (ii) one or more additional therapeutic agents that are not a 3-Heterocyclic Substituted Indole Derivative; and (iii) a pharmaceutically acceptable carrier, wherein the amounts in the composition are together effective to treat a viral infection or a virus-related disorder.
Kits
In one aspect, the present invention provides a kit comprising a therapeutically effective amount of at least one 3-Heterocyclic Substituted Indole Derivative, or a pharmaceutically acceptable salt, solvate, ester or prodrug of said compound and a pharmaceutically acceptable carrier, vehicle or diluent.
In another aspect the present invention provides a kit comprising an amount of at least one 3-Heterocyclic Substituted Indole Derivative, or a pharmaceutically acceptable salt, solvate, ester or prodrug of said compound and an amount of at least one additional therapeutic agent listed above, wherein the amounts of the two or more ingredients result in a desired therapeutic effect.
The present invention is not to be limited by the specific embodiments disclosed in the examples that are intended as illustrations of a few aspects of the invention and any embodiments that are functionally equivalent are within the scope of this invention. Indeed, various modifications of the invention in addition to those shown and described herein will become apparent to those skilled in the art and are intended to fall within the scope of the appended claims.
A number of references have been cited herein, the entire disclosures of which are incorporated herein by reference.

Claims (20)

What is claimed is:
1. A compound having the formula:
Figure US08765757-20140701-C00706
or a pharmaceutically acceptable salt thereof,
wherein:
R1 is a bond, —[C(R12)2]r—, —[C(R12)2]r—O—[C(R12)2]q—, —[C(R12)2]r—N(R9)—[C(R12)2]q—, —[C(R12)2]q—CH═CH—[C(R12)2]q—, —[C(R12)2]q—C≡C—[C(R12)2]q—, or —[C(R12)2]q—SO2—[C(R12)2]q—;
R2 is —[C(R12)2]q—C(O)N(R9)SOR11, —[C(R12)2]q—C(O)N(R9)SO2R11, —[C(R12)2]q—C(O)N(R9)SO2N(R11)2,
Figure US08765757-20140701-C00707
R3 is:
Figure US08765757-20140701-C00708
wherein the dotted line indicates an optional and additional bond such that when the optional and additional bond is absent, a hydrogen atom is understood to be present on the two ring atoms connected by the dotted line;
R4, R5, R6 and R7 are each, independently, H, alkyl, alkenyl, alkynyl, aryl, —[C(R12)2]q-cycloalkyl, —[C(R12)2]q-cycloalkenyl, —[C(R12)2]q-heterocycloalkyl, —[C(R12)2]q-heterocycloalkenyl, —[C(R12)2]q-heteroaryl, —[C(R12)2]q-haloalkyl, —[C(R12)2]q-hydroxyalkyl, halo, hydroxy, —OR9, —CN, —[C(R12)2]q—C(O)R8, —[C(R12)2]q—C(O)OR9, —[C(R12)2]q—C(O)N(R9)2, —[C(R12)2]q—OR9, —[C(R12)2]q—N(R9)2, —[C(R12)2]q—NHC(O)R8, —[C(R12)2]q—NR8C(O)N(R9)2, —[C(R12)2]q—NHSO2R11, —[C(R12)2]q—S(O)pR11, —[C(R12)2]q—SO2N(R9)2 or —SO2N(R9)C(O)N(R9)2;
each occurrence of R8 is independently H, alkyl, alkenyl, alkynyl, —[C(R12)2]q-aryl, —[C(R12)2]q-cycloalkyl, —[C(R12)2]q-cycloalkenyl, —[C(R12)2]q-heterocycloalkyl, —[C(R12)2]q-heterocycloalkenyl, —[C(R12)2]q-heteroaryl, haloalkyl or hydroxyalkyl;
each occurrence of R9 is independently H, alkyl, alkenyl, alkynyl, —[C(R12)2]q-aryl, —[C(R12)2]q-cycloalkyl, —[C(R12)2]q-cycloalkenyl, —[C(R12)2]q-heterocycloalkyl, —[C(R12)2]q-heterocycloalkenyl, —[C(R12)2]q-heteroaryl, haloalkyl or hydroxyalkyl;
R10 is H, cycloalkyl, cycloalkenyl, heterocycloalkyl, heterocycloalkenyl, aryl, or heteroaryl, wherein a cycloalkyl, cycloalkenyl, heterocycloalkyl, heterocycloalkenyl, aryl or heteroaryl group can be optionally substituted with up to 4 substituents, which are each independently selected from H, alkyl, alkenyl, alkynyl, aryl, —[C(R12)2]q-cycloalkyl, —O—[C(R12)2]q-cycloalkyl, —[C(R12)2]q-cycloalkenyl, —[C(R12)2]q-heterocycloalkyl, —[C(R12)2]q-heterocycloalkenyl, —[C(R12)2]q-heteroaryl, —[C(R12)2]q-haloalkyl, —[C(R12)2]q-hydroxyalkyl, halo, hydroxy, —NO2, —OR9, —CN, —[C(R12)2]q—C(O)R8, —[C(R12)2]q—C(O)OR9, —[C(R12)2]q—C(O)N(R9)2, —[C(R12)2]q—OR9, —[C(R12)2]q—N(R9)2, —[C(R12)2]q—NHC(O)R8, —[C(R12)2]q—NR8C(O)N(R9)2, —[C(R12)2]q—NHSO2R11, —[C(R12)2]q—S(O)pR11, —[C(R12)2]q—SO2N(R9)2 and —SO2N(R9)C(O)N(R9)2, such that when R1 is a bond, R10 is not H;
each occurrence of R11 is independently alkyl, aryl, cycloalkyl, cycloalkenyl, heterocycloalkyl, heterocycloalkenyl, heteroaryl, haloalkyl, hydroxy or hydroxyalkyl, wherein a cycloalkyl, cycloalkenyl, heterocycloalkyl, heterocycloalkenyl, aryl or heteroaryl group can be optionally substituted with up to 4 substituents, which are each independently selected from H, alkyl, alkenyl, alkynyl, aryl, —[C(R12)2]q-cycloalkyl, —[C(R12)2]q-cycloalkenyl, —[C(R12)2]q-heterocycloalkyl, —[C(R12)2]q-heterocycloalkenyl, —[C(R12)2]q-heteroaryl, —[C(R12)2]q-haloalkyl, —[C(R12)2]q-hydroxyalkyl, halo, hydroxy, —OR9, —CN, —[C(R12)2]q—C(O)R8, —[C(R12)2]q—C(O)OR9, —[C(R12)2]q—C(O)N(R9)2, —[C(R12)2]q—OR9, —[C(R12)2]q—N(R9)2, —[C(R12)2]q—NHC(O)R8, —[C(R12)2]q—NR8C(O)N(R9)2, —[C(R12)2]q—NHSO2alkyl, —[C(R12)2]q—NHSO2cycloalkyl, —[C(R12)2]q—NHSO2aryl, —[C(R12)2]q—SO2N(R9)2 and —SO2N(R9)C(O)N(R9)2;
each occurrence of R12 is independently H, halo, —N(R9)2, —OR9, alkyl, cycloalkyl, cycloalkenyl, heterocycloalkyl or heterocycloalkenyl, wherein a cycloalkyl, cycloalkenyl, heterocycloalkyl or heterocycloalkenyl group can be optionally substituted with up to 4 substituents, which are each independently selected from alkyl, halo, haloalkyl, hydroxyalkyl, hydroxy, —CN, —C(O)alkyl, —C(O)Oalkyl, —C(O)NHalkyl, —C(O)N(alkyl)2, —O-alkyl, —NH2, —NH(alkyl), —N(alkyl)2, —NHC(O)alkyl, —NHSO2alkyl, —SO2alkyl or —SO2NH-alkyl, or two R12 groups, together with the carbon atoms to which they are attached, join to form a cycloalkyl, heterocycloalkyl or C═O group;
each occurrence of R20 is independently alkyl, aryl, cycloalkyl, heterocycloalkyl or heteroaryl, or both R20 groups and the carbon atoms to which they are attached, join to form a cycloalkyl, cycloheteroalkyl, aryl or heteroaryl group wherein a cycloalkyl, cycloheteroalkyl, aryl or heteroaryl group can be optionally substituted with up to 4 groups, which are each independently selected from alkyl, alkenyl, alkynyl, halo, hydroxy, —OR9, —CN, —[C(R12)2]q-cycloalkyl, —[C(R12)2]q-cycloalkenyl, —[C(R12)2]q-heterocycloalkyl, —[C(R12)2]q-heterocycloalkenyl, —[C(R12)2]q-haloalkyl, —[C(R12)2]q-hydroxyalkyl, —[C(R12)2]q—C(O)R8, —[C(R12)2]q—C(O)OR9, —[C(R12)2]q—C(O)N(R9)2, —[C(R12)2]q—OR9, —[C(R12)2]q—N(R9)2, —[C(R12)2]q—NHC(O)R8, —[C(R12)2]q—NR8C(O)N(R9)2, —[C(R12)2]q—NHSO2R11, —[C(R12)2]q—S(O)pR11, —[C(R12)2]q—SO2N(R9)2 and —SO2N(R9)C(O)N(R9)2;
each occurrence of R30 is independently, H, alkyl, alkenyl, alkynyl, aryl, —[C(R12)2]q-cycloalkyl, —[C(R12)2]q-cycloalkenyl, —[C(R12)2]q-heterocycloalkyl, —[C(R12)2]q-heterocycloalkenyl, —[C(R12)2]q-heteroaryl, —[C(R12)2]q-haloalkyl, —[C(R12)2]q-hydroxyalkyl, halo, hydroxy, —OR9, —CN, —[C(R12)2]q—C(O)R8, —[C(R12)2]q—C(O)OR9, —[C(R12)2]q—C(O)N(R9)2, —[C(R12)2]q—OR9, —[C(R12)2]q—N(R9)2, —[C(R12)2]q—NHC(O)R8, —[C(R12)2]q—NR8C(O)N(R9)2, —[C(R12)2]q—NHSO2R11, —[C(R12)2]q—S(O)pR11, —[C(R12)2]q—SO2N(R9)2 or —SO2N(R9)C(O)N(R9)2, or two adjacent R30 groups, together with the carbon atoms to which they are attached, join to form a cycloalkyl, heterocycloalkyl, aryl or heteroaryl group;
each occurrence of p is independently 0, 1 or 2;
each occurrence of q is independently an integer ranging from 0 to 4; and
each occurrence of r is independently an integer ranging from 1 to 4.
2. The compound of claim 1, wherein R2 is —C(O)NHSO2R11 and R11 is alkyl, aryl, cycloalkyl, haloalkyl, heteroaryl, heterocycloalkyl or hydroxyalkyl.
3. The compound of claim 1, wherein R2 is —C(O)NHSO2N(R11)2.
4. The compound of claim 1, wherein R3 is:
Figure US08765757-20140701-C00709
5. The compound of claim 1, wherein R1 is —[C(R12)2]r— and R10 is:
Figure US08765757-20140701-C00710
wherein R13 is H, F, Br or Cl; R14 represents up to 4 optional and additional substituents, each independently selected from alkyl, cycloalkyl, CF3, —CN, halo, —O-alkyl, —O-haloalkyl, —NHSO2-alkyl, —NO2, —C(O)NH2, —C(O)NH-alkyl, —C(O)OH, hydroxy, —NH2, —SO2alkyl, —SO2NHalkyl, —S-alkyl, —CH2NH2, —CH2OH, —SO2NH2, —NHC(O)-alkyl, —C(O)O-alkyl, —C(O)-heterocycloalkyl and heteroaryl; and
Figure US08765757-20140701-C00711
represents a pyridyl group, wherein the ring nitrogen atom can be at any of the five unsubstituted ring atom positions.
6. The compound of claim 1, wherein R4, R6 and R7 are each H, and R5 is H, halo or haloalkyl.
7. The compound of claim 1 having the formula:
Figure US08765757-20140701-C00712
or a pharmaceutically acceptable salt thereof,
wherein:
R1 is —CH2—;
R2 is —C(O)NHSO2R11;
R3 is:
Figure US08765757-20140701-C00713
R4, R6 and R7 are each H;
R5 is H, alkyl, —O-alkyl, halo or haloalkyl;
R10 is H, aryl, cycloalkyl or heteroaryl, wherein a cycloalkyl, aryl or heteroaryl group can be optionally substituted with up to 4 substituents, which are each independently selected from alkyl, —O-alkyl, halo, —O-haloalkyl, —OH, —NH2, —NH(alkyl), —N(alkyl)2, —NO2, —CN, —NHC(O)-alkyl, —O-alkylene-heterocycloalkyl —C(O)O-alkyl and —O-haloalkyl;
R11 is alkyl, aryl or cycloalkyl;
each occurrence of R12 is H, alkyl or halo, or two geminal R12 groups, together with the common carbon atom to which they are attached, join to form a 3- to 6-membered cycloalkyl group; and
r is an integer ranging from 1 to 4.
8. A compound having the formula:
Figure US08765757-20140701-C00714
or a pharmaceutically acceptable salt thereof,
wherein:
R1 is a bond, —[C(R12)2]r—, —[C(R12)2]r—O—[C(R12)2]q—, —[C(R12)2]r—N(R9)—[C(R12)2]q—, —[C(R12)2]q—CH═CH—[C(R12)2]q—, —[C(R12)2]q—C≡C—[C(R12)2]4—, or —[C(R12)2]q—SO2—[C(R12)2]q—;
R2 is —C(O)R9, —C(O)OR9, —C(O)OCH2OR9, —C(O)N(R9)2, —[C(R12)2]—C(O)OR9, —[C(R12)2]q—C(O)N(R9)2, -alkyl, —[C(R12)2]q-aryl, —[C(R12)2]q-cycloalkyl, —[C(R12)2]q-cycloalkenyl, —[C(R12)2]q-heterocycloalkyl, —[C(R12)2]q-heteroaryl or —[C(R12)2]q-heterocycloalkenyl, wherein an aryl, cycloalkyl, cycloalkenyl, heterocycloalkyl, heterocycloalkenyl or heteroaryl, group can be optionally substituted with up to 4 substituents, which are each independently selected from alkyl, alkenyl, alkynyl, aryl, —[C(R12)2]q-cycloalkyl, —[C(R12)2]q-cycloalkenyl, —[C(R12)2]q-heterocycloalkyl, —[C(R12)2]q-heterocycloalkenyl, —[C(R12)2]q-heteroaryl, —[C(R12)2]q-haloalkyl, —[C(R12)2]q-hydroxyalkyl, halo, hydroxy, —OR9, —CN, —[C(R12)2]q—C(O)R8, —[C(R12)2]q—C(O)OR9, —[C(R12)2]q-C(O)N(R9)2, —[C(R12)2]q—OR9, —[C(R12)2]q—N(R9)2, —[C(R12)2]q—NHC(O)R8, —[C(R12)2]q-NR8C(O)N(R9)2, —[C(R12)2]q—NHSO2R11, —[C(R12)2]q—S(O)pR11, —[C(R12)2]q—SO2N(R9)2 and —SO2N(R9)C(O)N(R9)2;
R3 is:
Figure US08765757-20140701-C00715
wherein the dotted line indicates an optional and additional bond such that when the optional and additional bond is absent, a hydrogen atom is understood to be present on the two ring atoms connected by the dotted line;
R4, R5, R6 and R7 are each, independently, H, alkyl, alkenyl, alkynyl, aryl, —[C(R12)2]q-cycloalkyl, —[C(R12)2]q-cycloalkenyl, —[C(R12)2]q-heterocycloalkyl, —[C(R12)2]q-heterocycloalkenyl, —[C(R12)2]q-heteroaryl, —[C(R12)2]q-haloalkyl, —[C(R12)2]q-hydroxyalkyl, halo, hydroxy, —OR9, —CN, —[C(R12)2]q—C(O)R8, —[C(R12)2]q—C(O)OR9, —[C(R12)2]q—C(O)N(R9)2, —[C(R12)2]q—OR9, —[C(R12)2]q—N(R9)2, —[C(R12)2]q—NHC(O)R8, —[C(R12)2]q—NR8C(O)N(R9)2, —[C(R12)2]q—NHSO2R11, —[C(R12)2]q—S(O)pR11, —[C(R12)2]q—SO2N(R9)2 or —SO2N(R9)C(O)N(R9)2;
each occurrence of R8 is independently H, alkyl, alkenyl, alkynyl, —[C(R12)2]q-aryl, —[C(R12)2]q-cycloalkyl, —[C(R12)2]q-cycloalkenyl, —[C(R12)2]q-heterocycloalkyl, —[C(R12)2]q-heterocycloalkenyl, —[C(R12)2]q-heteroaryl, haloalkyl or hydroxyalkyl;
each occurrence of R9 is independently H, alkyl, alkenyl, alkynyl, —[C(R12)2]q-aryl, —[C(R12)2]q-cycloalkyl, —[C(R12)2]q-cycloalkenyl, —[C(R12)2]q-heterocycloalkyl, —[C(R12)2]q-heterocycloalkenyl, —[C(R12)2]q-heteroaryl, haloalkyl or hydroxyalkyl;
R10 is H, cycloalkyl, cycloalkenyl, heterocycloalkyl, heterocycloalkenyl, aryl, or heteroaryl, wherein a cycloalkyl, cycloalkenyl, heterocycloalkyl, heterocycloalkenyl, aryl or heteroaryl group can be optionally substituted with up to 4 substituents, which are each independently selected from H, alkyl, alkenyl, alkynyl, aryl, NO2 , —[C(R12)2]q-cycloalkyl, —[C(R12)2]q-cycloalkenyl, —[C(R12)2]q-heterocycloalkyl, —[C(R12)2]q-heterocycloalkenyl, —[C(R12)2]q-heteroaryl, —[C(R12)2]q-haloalkyl, —[C(R12)2]q-hydroxyalkyl, halo, hydroxy, —OR9, —CN, —[C(R12)2]q—C(O)R8, —[C(R12)2]q—C(O)OR9, —[C(R12)2]q—C(O)N(R9)2, —[C(R12)2]q—OR9, —[C(R12)2]q—N(R9)2, —[C(R12)2]q—NHC(O)R8, —[C(R12)2]q—NR8C(O)N(R9)2, —[C(R12)2]q—NHSO2R11, —[C(R12)2]q—S(O)pR11, —[C(R12)2]q—SO2N(R9)2 and —SO2N(R9)C(O)N(R9)2, such that when R1 is a bond, R10 is not H;
each occurrence of R11 is independently alkyl, aryl, cycloalkyl, cycloalkenyl, heterocycloalkyl, heterocycloalkenyl, heteroaryl, haloalkyl, hydroxy or hydroxyalkyl, wherein a cycloalkyl, cycloalkenyl, heterocycloalkyl, heterocycloalkenyl, aryl or heteroaryl group can be optionally substituted with up to 4 substituents, which are each independently selected from H, alkyl, alkenyl, alkynyl, aryl, —[C(R12)2]q-cycloalkyl, —[C(R12)2]q-cycloalkenyl, —[C(R12)2]q-heterocycloalkyl, —[C(R12)2]q-heterocycloalkenyl, —[C(R12)2]q-heteroaryl, —[C(R12)2]q-haloalkyl, —[C(R12)2]q-hydroxyalkyl, halo, hydroxy, —OR9, —CN, —[C(R12)2]q—C(O)R8, —[C(R12)2]q—C(O)OR9, —[C(R12)2]q—C(O)N(R9)2, —[C(R12)2]q—OR9, —[C(R12)2]q—N(R9)2, —[C(R12)2]q—NHC(O)R8, —[C(R12)2]q—NR8C(O)N(R9)2, —[C(R12)2]q—NHSO2alkyl, —[C(R12)2]q—NHSO2cycloalkyl, —[C(R12)2]q—NHSO2aryl, —[C(R12)2]q—SO2N(R9)2 and —SO2N(R9)C(O)N(R9)2;
each occurrence of R12 is independently H, halo, —N(R9)2, —OR9, alkyl, cycloalkyl, cycloalkenyl, heterocycloalkyl or heterocycloalkenyl, wherein a cycloalkyl, cycloalkenyl, heterocycloalkyl or heterocycloalkenyl group can be optionally substituted with up to 4 substituents, which are each independently selected from alkyl, halo, haloalkyl, hydroxyalkyl, hydroxy, —CN, —C(O)alkyl, —C(O)Oalkyl, —C(O)NHalkyl, —C(O)N(alkyl)2, —O-alkyl, —NH2, —NH(alkyl), —N(alkyl)2, —NHC(O)alkyl, —NHSO2alkyl, —SO2alkyl or —SO2NH-alkyl, or two R12 groups, together with the carbon atoms to which they are attached, join to form a cycloalkyl, heterocycloalkyl or C═O group;
each occurrence of R30 is independently, H, alkyl, alkenyl, alkynyl, aryl, —[C(R12)2]q-cycloalkyl, —[C(R12)2]q-cycloalkenyl, —[C(R12)2]q-heterocycloalkyl, —[C(R12)2]q-heterocycloalkenyl, —[C(R12)2]q-heteroaryl, —[C(R12)2]q-haloalkyl, —[C(R12)2]q-hydroxyalkyl, halo, hydroxy, —OR9, —CN, —[C(R12)2]q—C(O)R8, —[C(R12)2]q—C(O)OR9, —[C(R12)2]q-C(O)N(R9)2, —[C(R12)2]q—OR9, —[C(R12)2]q—N(R9)2, —[C(R12)2]q—NHC(O)R8, —[C(R12)2]q—NR8C(O)N(R9)2, —[C(R12)2]q—NHSO2R11, —[C(R12)2]q—S(O)pR11, —[C(R12)2]q—SO2N(R9)2 or —SO2N(R9)C(O)N(R9)2, or two adjacent R30 groups, together with the carbon atoms to which they are attached, join to form a cycloalkyl, heterocycloalkyl, aryl or heteroaryl group;
each occurrence of p is independently 0, 1 or 2;
each occurrence of q is independently an integer ranging from 0 to 4; and
each occurrence of r is independently an integer ranging from 1 to 4.
9. The compound of claim 8, wherein R2 is —C(O)OR9 or —C(O)N(R9)2.
10. The compound of claim 8, wherein R3 is:
Figure US08765757-20140701-C00716
11. The compound of claim 8, wherein R1 is —[C(R12)2]r— and R10 is:
Figure US08765757-20140701-C00717
wherein R13 is H, F, Br or Cl; R14 represents up to 4 optional and additional substituents, each independently selected from alkyl, cycloalkyl, CF3, —CN, halo, —O-alkyl, —O-haloalkyl, —NHSO2-alkyl, —NO2, —C(O)NH2, —C(O)NH-alkyl, —C(O)OH, hydroxy, —NH2, —SO2alkyl, —SO2NHalkyl, —S-alkyl, —CH2NH2, —CH2OH, —SO2NH2, —NHC(O)-alkyl, —C(O)O-alkyl, —C(O)-heterocycloalkyl and heteroaryl; and
Figure US08765757-20140701-C00718
represents a pyridyl group, wherein the ring nitrogen atom can be at any of the five unsubstituted ring atom positions.
12. The compound of claim 8, wherein R4, R6 and R7 are each H, and R5 is H, halo or haloalkyl.
13. The compound of claim 8 having the formula:
Figure US08765757-20140701-C00719
or a pharmaceutically acceptable salt thereof,
wherein:
R1 is —CH2—;
R2 is —C(O)OH or —C(O)NH2;
R3 is:
Figure US08765757-20140701-C00720
R4, R6 and R7 are each H;
R5 is H, halo or haloalkyl;
R10 is H aryl, cycloalkyl or heteroaryl, wherein a cycloalkyl, aryl or heteroaryl group can be optionally substituted with one or more substituents, which are each independently selected from alkyl, —O-alkyl, halo, —O-haloalkyl, —OH, —NH2, —NH(alkyl), —N(alkyl)2, —NO2, —CN, —NHC(O)-alkyl, —O-alkylene-heterocycloalkyl —C(O)O-alkyl and —O-haloalkyl; and
r is an integer ranging from 1 to 4.
14. A compound having the structure
Figure US08765757-20140701-C00721
Figure US08765757-20140701-C00722
Figure US08765757-20140701-C00723
Figure US08765757-20140701-C00724
Figure US08765757-20140701-C00725
Figure US08765757-20140701-C00726
Figure US08765757-20140701-C00727
Figure US08765757-20140701-C00728
Figure US08765757-20140701-C00729
Figure US08765757-20140701-C00730
Figure US08765757-20140701-C00731
Figure US08765757-20140701-C00732
Figure US08765757-20140701-C00733
Figure US08765757-20140701-C00734
Figure US08765757-20140701-C00735
Figure US08765757-20140701-C00736
Figure US08765757-20140701-C00737
Figure US08765757-20140701-C00738
Figure US08765757-20140701-C00739
Figure US08765757-20140701-C00740
Figure US08765757-20140701-C00741
Figure US08765757-20140701-C00742
Figure US08765757-20140701-C00743
Figure US08765757-20140701-C00744
Figure US08765757-20140701-C00745
Figure US08765757-20140701-C00746
Figure US08765757-20140701-C00747
Figure US08765757-20140701-C00748
Figure US08765757-20140701-C00749
Figure US08765757-20140701-C00750
Figure US08765757-20140701-C00751
Figure US08765757-20140701-C00752
Figure US08765757-20140701-C00753
Figure US08765757-20140701-C00754
Figure US08765757-20140701-C00755
Figure US08765757-20140701-C00756
Figure US08765757-20140701-C00757
Figure US08765757-20140701-C00758
Figure US08765757-20140701-C00759
Figure US08765757-20140701-C00760
Figure US08765757-20140701-C00761
Figure US08765757-20140701-C00762
Figure US08765757-20140701-C00763
Figure US08765757-20140701-C00764
Figure US08765757-20140701-C00765
Figure US08765757-20140701-C00766
Figure US08765757-20140701-C00767
Figure US08765757-20140701-C00768
Figure US08765757-20140701-C00769
Figure US08765757-20140701-C00770
Figure US08765757-20140701-C00771
Figure US08765757-20140701-C00772
Figure US08765757-20140701-C00773
Figure US08765757-20140701-C00774
Figure US08765757-20140701-C00775
Figure US08765757-20140701-C00776
Figure US08765757-20140701-C00777
Figure US08765757-20140701-C00778
Figure US08765757-20140701-C00779
Figure US08765757-20140701-C00780
Figure US08765757-20140701-C00781
Figure US08765757-20140701-C00782
Figure US08765757-20140701-C00783
Figure US08765757-20140701-C00784
Figure US08765757-20140701-C00785
Figure US08765757-20140701-C00786
Figure US08765757-20140701-C00787
Figure US08765757-20140701-C00788
Figure US08765757-20140701-C00789
Figure US08765757-20140701-C00790
Figure US08765757-20140701-C00791
or a pharmaceutically acceptable salt thereof.
15. A composition comprising at least one compound of claim 1 or a pharmaceutically acceptable salt thereof, and at least one pharmaceutically acceptable carrier.
16. A composition comprising at least one compound of claim 8 or a pharmaceutically acceptable salt thereof, and at least one pharmaceutically acceptable carrier.
17. A method for treating Hepatitis C Virus (HCV) infection in a patient, the method comprising administering to the patient an effective amount of at least one compound of claim 1 or a pharmaceutically acceptable salt thereof.
18. A method for treating Hepatitis B Virus (HBV) infection in a patient, the method comprising administering to the patient an effective amount of at least one compound of claim 8 or a pharmaceutically acceptable salt thereof.
19. The method of claim 17, further comprising administering to the patient at least one additional antiviral agent, wherein the additional agent is selected from an HCV polymerase inhibitor, an interferon, a viral replication inhibitor, an antisense agent, a therapeutic vaccine, a viral protease inhibitor, a virion production inhibitor, an antibody therapy (monoclonal or polyclonal), and any agent useful for treating HCV infection.
20. The method of claim 18, further comprising administering to the patient at least one additional antiviral agent, wherein the additional agent is selected from an HCV polymerase inhibitor, an interferon, a viral replication inhibitor, an antisense agent, a therapeutic vaccine, a viral protease inhibitor, a virion production inhibitor, an antibody therapy (monoclonal or polyclonal), and any agent useful for treating HBV infection.
US12/743,016 2007-11-16 2008-11-13 3-heterocyclic substituted indole derivatives and methods of use thereof Active 2031-08-05 US8765757B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US12/743,016 US8765757B2 (en) 2007-11-16 2008-11-13 3-heterocyclic substituted indole derivatives and methods of use thereof

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US98852807P 2007-11-16 2007-11-16
US12/743,016 US8765757B2 (en) 2007-11-16 2008-11-13 3-heterocyclic substituted indole derivatives and methods of use thereof
PCT/US2008/083351 WO2009064848A1 (en) 2007-11-16 2008-11-13 3-heterocyclic substituted indole derivatives and methods of use thereof

Publications (2)

Publication Number Publication Date
US20110165118A1 US20110165118A1 (en) 2011-07-07
US8765757B2 true US8765757B2 (en) 2014-07-01

Family

ID=40344906

Family Applications (1)

Application Number Title Priority Date Filing Date
US12/743,016 Active 2031-08-05 US8765757B2 (en) 2007-11-16 2008-11-13 3-heterocyclic substituted indole derivatives and methods of use thereof

Country Status (7)

Country Link
US (1) US8765757B2 (en)
EP (1) EP2222660B1 (en)
JP (1) JP5249344B2 (en)
CN (1) CN102099351A (en)
CA (1) CA2705586A1 (en)
MX (1) MX2010005356A (en)
WO (1) WO2009064848A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9708272B2 (en) 2014-08-29 2017-07-18 Tes Pharma S.R.L. Inhibitors of α-amino-β-carboxymuconic acid semialdehyde decarboxylase
US12194023B2 (en) 2018-11-29 2025-01-14 The Research Foundation For The State University Of New York Compositions and methods for modular control of bioorthogonal ligation

Families Citing this family (52)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20110104109A1 (en) * 2005-07-13 2011-05-05 Frank Bennett Tetracyclic indole derivatives and their use for treating or preventing viral infections
AU2007339382B2 (en) 2006-12-22 2013-05-02 Merck Sharp & Dohme Llc 4,5-ring annulated indole derivatives for treating or preventing of HCV and related viral infections
WO2008136815A2 (en) 2006-12-22 2008-11-13 Schering Corporation 5, 6-ring annulated indole derivatives and use thereof
CN101611002A (en) 2006-12-22 2009-12-23 先灵公司 4, 5-cyclized indole derivatives for the treatment or prevention of HCV and related viral infections
CN101842374A (en) * 2007-08-29 2010-09-22 先灵公司 2, 3-substituted azaindole derivatives for the treatment of viral infections
AU2008295484B2 (en) * 2007-08-29 2013-09-26 Merck Sharp & Dohme Llc Substituted indole derivatives and methods of use thereof
CN102099351A (en) 2007-11-16 2011-06-15 先灵公司 3-heterocyclic substituted indole derivatives and methods of use thereof
US8377928B2 (en) * 2007-11-16 2013-02-19 Merck Sharp & Dohme Corp. 3-aminosulfonyl substituted indole derivatives and methods of use thereof
WO2009152200A1 (en) * 2008-06-13 2009-12-17 Schering Corporation Tricyclic indole derivatives and methods of use thereof
BRPI0916233A2 (en) 2008-07-23 2018-03-13 F.Hoffman-La Roche Ag antiviral heterocyclic compounds
MX2011002846A (en) 2008-09-26 2011-04-07 Hoffmann La Roche Pyrine or pyrazine derivatives for treating hcv.
BRPI1016167A2 (en) 2009-04-25 2019-07-16 Hoffmann La Roche antiviral heterocyclic compounds.
TWI428332B (en) 2009-06-09 2014-03-01 Hoffmann La Roche Heterocyclic antiviral compounds
EP2445875A2 (en) 2009-06-24 2012-05-02 F. Hoffmann-La Roche AG Heterocyclic antiviral compound
WO2011033045A1 (en) 2009-09-21 2011-03-24 F. Hoffmann-La Roche Ag Heterocyclic antiviral compounds
ES2701020T3 (en) 2010-09-22 2019-02-20 Alios Biopharma Inc Azido nucleosides and nucleotide analogs
NZ768373A (en) * 2014-10-06 2024-03-22 Vertex Pharma Modulators of cystic fibrosis transmembrane conductance regulator
WO2016161268A1 (en) * 2015-04-01 2016-10-06 Enanta Pharmaceuticals, Inc. Hepatitis b antviral agents
US10738035B2 (en) 2015-05-13 2020-08-11 Enanta Pharmaceuticals, Inc. Hepatitis B antiviral agents
TW201710255A (en) 2015-06-26 2017-03-16 武田藥品工業股份有限公司 Heterocyclic compound
US10179131B2 (en) 2015-07-13 2019-01-15 Enanta Pharmaceuticals, Inc. Hepatitis B antiviral agents
US10301255B2 (en) 2015-07-22 2019-05-28 Enanta Pharmaceuticals, Inc. Hepatitis B antiviral agents
WO2017069173A1 (en) 2015-10-20 2017-04-27 武田薬品工業株式会社 Heterocyclic compound
US10280175B2 (en) 2016-02-02 2019-05-07 Enanta Pharmaceuticals, Inc. Hepatitis B antiviral agents
MX384836B (en) 2016-03-07 2025-03-14 Enanta Pharm Inc ANTIVIRAL AGENTS AGAINST HEPATITIS B
AU2017240685B2 (en) 2016-03-31 2021-08-12 Vertex Pharmaceuticals Incorporated Modulators of cystic fibrosis transmembrane conductance regulator
WO2017214395A1 (en) 2016-06-10 2017-12-14 Enanta Pharmaceuticals, Inc. Hepatitis b antiviral agents
HUE056716T2 (en) 2016-09-30 2022-03-28 Vertex Pharma Modulator of cystic fibrosis transmembrane conductance regulator, pharmaceutical compositions, methods of treatment, and process for making the modulator
LT3551622T (en) 2016-12-09 2021-02-25 Vertex Pharmaceuticals Incorporated Modulator of cystic fibrosis transmembrane conductance regulator, pharmaceutical compositions, methods of treatment, and process for making the modulator
WO2018227049A1 (en) 2017-06-08 2018-12-13 Vertex Pharmaceuticals Incorporated Methods of treatment for cystic fibrosis
WO2019018395A1 (en) 2017-07-17 2019-01-24 Vertex Pharmaceuticals Incorporated Methods of treatment for cystic fibrosis
TWI799435B (en) 2017-08-02 2023-04-21 美商維泰克斯製藥公司 Processes for preparing compounds
CN111263586B (en) 2017-08-28 2021-12-03 英安塔制药有限公司 Hepatitis B antiviral agent
US10988454B2 (en) * 2017-09-14 2021-04-27 Abbvie Overseas S.À.R.L. Modulators of the cystic fibrosis transmembrane conductance regulator protein and methods of use
EP3697774B1 (en) 2017-10-19 2025-09-24 Vertex Pharmaceuticals Incorporated Crystalline forms and compositions of cftr modulators
TW201927789A (en) 2017-12-06 2019-07-16 美商因那塔製藥公司 Hepatitis B antiviral agents
TW201936192A (en) 2017-12-06 2019-09-16 美商因那塔製藥公司 Hepatitis B antiviral agents
CN111757874B (en) 2017-12-08 2024-03-08 弗特克斯药品有限公司 Methods for preparing modulators of cystic fibrosis transmembrane conductance regulator
WO2019143902A2 (en) 2018-01-22 2019-07-25 Enanta Pharmaceuticals, Inc. Substituted heterocycles as antiviral agents
TWI810243B (en) 2018-02-05 2023-08-01 美商維泰克斯製藥公司 Pharmaceutical compositions for treating cystic fibrosis
WO2019191166A1 (en) 2018-03-29 2019-10-03 Enanta Pharmaceuticals, Inc. Hepatitis b antiviral agents
EP3774825A1 (en) 2018-04-13 2021-02-17 Vertex Pharmaceuticals Incorporated Modulators of cystic fibrosis transmembrane conductance regulator, pharmaceutical compositions, methods of treatment, and process for making the modulator
TWI748194B (en) 2018-06-28 2021-12-01 德商菲尼克斯 Fxr有限責任公司 Novel lxr modulators with bicyclic core moiety
AU2019342750A1 (en) 2018-09-21 2021-04-08 Enanta Pharmaceuticals, Inc. Functionalized heterocycles as antiviral agents
CN113271946A (en) 2018-11-21 2021-08-17 英安塔制药有限公司 Functionalized heterocyclic compounds as antiviral agents
CN112028815A (en) * 2019-06-03 2020-12-04 中国药科大学 Indole derivatives and their medicinal uses
WO2020247444A1 (en) 2019-06-03 2020-12-10 Enanta Pharmaceuticals, Inc, Hepatitis b antiviral agents
WO2020247561A1 (en) 2019-06-04 2020-12-10 Enanta Pharmaceuticals, Inc, Hepatitis b antiviral agents
WO2020247575A1 (en) 2019-06-04 2020-12-10 Enanta Pharmaceuticals, Inc. Hepatitis b antiviral agents
WO2021007488A1 (en) 2019-07-11 2021-01-14 Enanta Pharmaceuticals, Inc. Substituted heterocycles as antiviral agents
WO2021055425A2 (en) 2019-09-17 2021-03-25 Enanta Pharmaceuticals, Inc. Functionalized heterocycles as antiviral agents
WO2021188414A1 (en) 2020-03-16 2021-09-23 Enanta Pharmaceuticals, Inc. Functionalized heterocyclic compounds as antiviral agents

Citations (53)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE648639C (en) 1935-05-19 1937-08-05 I G Farbenindustrie Akt Ges Process for the preparation of dipyrroles
US3632805A (en) 1967-12-08 1972-01-04 Sumitomo Chemical Co Process for producing 1-aminoalkyl-benzodiazepine derivatives
US4634697A (en) 1983-10-04 1987-01-06 Shionogi & Co., Ltd. Carboxyalkenamidocephalosporins
US4812561A (en) 1986-07-02 1989-03-14 Shionogi & Co., Ltd. Crystalline hydrate of oral cephalosporin and its composition
US5017380A (en) 1986-07-02 1991-05-21 Shionogi & Co., Ltd. Gelatin hard capsule containing crystalline hydrate of oral cephalosporin
EP0449196A2 (en) 1990-03-26 1991-10-02 Takeda Chemical Industries, Ltd. Indole derivatives, their production and use
JPH04149429A (en) 1990-10-12 1992-05-22 Fuji Photo Film Co Ltd Silver halide color reversal photosensitive material and image formation thereof.
WO1996037619A1 (en) 1995-05-25 1996-11-28 Istituto Di Ricerche Di Biologia Molecolare P. Angeletti S.P.A. Method for reproducing in vitro the rna-dependent rna polymerase and terminal nucleotidyl transferase activities encoded by hepatitis c virus (hcv)
WO1998014181A1 (en) 1996-09-30 1998-04-09 Regents Of The University Of California Treatment and prevention of hepatic disorders
WO1998017679A1 (en) 1996-10-18 1998-04-30 Vertex Pharmaceuticals Incorporated Inhibitors of serine proteases, particularly hepatitis c virus ns3 protease
WO1998022496A2 (en) 1996-11-18 1998-05-28 F. Hoffmann-La Roche Ag Antiviral peptide derivatives
WO1999007734A2 (en) 1997-08-11 1999-02-18 Boehringer Ingelheim (Canada) Ltd. Hepatitis c inhibitor peptide analogues
FR2768146A1 (en) 1997-09-05 1999-03-12 Oreal NOVEL COMPOUNDS OF THE INDOLE-CARBOXYLIC FAMILY AND THEIR USE
WO2002030895A1 (en) 2000-10-10 2002-04-18 Smithkline Beecham Corporation SUBSTITUTED INDOLES, PHARMACEUTICAL COMPOSITIONS CONTAINING SUCH INDOLES AND THEIR USE AS PPAR-η BINDING AGENTS
WO2002068412A1 (en) 2001-02-22 2002-09-06 School Of Pharmacy, University Of London Pyrrolo-indole and pyrrolo-quinoline derivatives as prodrugs for tumour treatment
US20020160962A1 (en) 2000-07-21 2002-10-31 Saksena Anil K. Novel peptides as NS3-serine protease inhibitors of hepatitis C virus
US20040077704A1 (en) 2000-12-18 2004-04-22 Beight Douglas Wade Novel spla2 inhibitors
WO2004035571A1 (en) 2002-10-15 2004-04-29 Rigel Pharmaceuticals, Inc. Substituted indoles and their use as hcv inhibitors
US6800434B2 (en) 2000-07-21 2004-10-05 Schering Corporation Peptides as NS3-serine protease inhibitors of hepatitis C virus
WO2004106328A1 (en) 2003-05-30 2004-12-09 Gemin X Biotechnologies Inc. Triheterocyclic compounds, compositions, and methods for treating cancer or viral diseases
US6838475B2 (en) 2000-07-21 2005-01-04 Schering Corporation Imidazolidinones as NS3-serine protease inhibitors of hepatitis C virus
US6846802B2 (en) 2000-04-05 2005-01-25 Schering Corporation Macrocyclic NS3-serine protease inhibitors of hepatitis C virus comprising N-cyclic P2 moieties
US20050075331A1 (en) 2003-10-06 2005-04-07 Pratt John K. Anti-infective agents
WO2005034941A1 (en) 2003-10-10 2005-04-21 Istituto Di Ricerche Di Biologia Molecolare P Angeletti Spa Indoles and azaindoles as antiviral agents
US20050101770A1 (en) 2003-11-10 2005-05-12 Presta Leonard G. Interleukin-10 antibodies
US6911428B2 (en) 2000-12-12 2005-06-28 Schering Corporation Diaryl peptides as NS3-serine protease inhibitors of hepatitis C virus
US6914122B2 (en) 2000-04-19 2005-07-05 Schering Corporation Macrocyclic NS-3 serine protease inhibitors of hepatitis C virus comprising alkyl and aryl alanine P2 moieties
WO2005084315A2 (en) 2004-03-01 2005-09-15 Viropharma Incorporated Pyranoindole derivatives and the use thereof for the treatment of hepatitis c virus infection or disease
WO2005087731A1 (en) 2004-02-27 2005-09-22 Schering Corporation Sulfur compounds as inhibitors of hepatitis c virus ns3 serine protease
US20050249702A1 (en) 2004-05-06 2005-11-10 Schering Corporation (1R,2S,5S)-N-[(1S)-3-amino-1-(cyclobutylmethyl)-2,3-dioxopropyl]-3-[(2S)-2-[[[(1,1-dimethylethyl)amino]carbonyl]amino]-3,3-dimethyl-1-oxobutyl]-6,6-dimethyl-3-azabicyclo[3.1.0]hexane-2-carboxamide as inhibitor of hepatitis C virus NS3/NS4a serine protease
WO2005111018A1 (en) 2004-05-18 2005-11-24 Sanofi-Aventis Deutschland Gmbh Pyridazinone derivatives, methods for producing them and their use as pharmaceuticals
WO2006020082A1 (en) 2004-08-09 2006-02-23 Bristol-Myers Squibb Company Inhibitors of hcv replication
US7012066B2 (en) 2000-07-21 2006-03-14 Schering Corporation Peptides as NS3-serine protease inhibitors of hepatitis C virus
WO2006034337A2 (en) 2004-09-23 2006-03-30 Wyeth Carbazole and cyclopentaindole derivatives to treat infection with hepatitis c virus
WO2006032541A1 (en) 2004-09-24 2006-03-30 Bayer Schering Pharma Aktiengesellschaft Indol derivatives as inhibitors of soluble adenylyl cyclase
WO2006046030A2 (en) 2004-10-26 2006-05-04 Istituto Di Ricerche Di Biologia Molecolare P Angeletti Spa Tetracyclic indole derivatives as antiviral agents
WO2006076529A1 (en) 2005-01-14 2006-07-20 Genelabs Technologies, Inc. Indole derivatives for treating viral infections
WO2007029029A2 (en) 2005-09-09 2007-03-15 Istituto Di Ricerche Di Biologia Molecolare P. Angeletti Spa Tetracyclic indole derivatives as antiviral agents
WO2007038209A2 (en) 2005-09-23 2007-04-05 Schering Corporation Fused tetracyclic mglur1 antagonists as therapeutic agents
WO2007084413A2 (en) 2004-07-14 2007-07-26 Ptc Therapeutics, Inc. Methods for treating hepatitis c
WO2007084435A2 (en) 2006-01-13 2007-07-26 Ptc Therapeutics, Inc. Methods for treating hepatitis c
US20070274951A1 (en) 2006-02-09 2007-11-29 Xiao Tong Combinations comprising HCV protease inhibitor(s) and HCV polymerase inhibitor(s), and methods of treatment related thereto
WO2008082484A1 (en) 2006-12-22 2008-07-10 Schering Corporation 4,5-ring annulated indole derivatives for treating or preventing of hcv and related viral infections
JP4149429B2 (en) 2004-10-26 2008-09-10 本田技研工業株式会社 Vehicle travel safety device
AU2002313410B2 (en) 2001-07-25 2008-09-11 Boehringer Ingelheim (Canada) Ltd. Hepatitis C virus polymerase inhibitors with a heterobicyclic structure
US20100196319A1 (en) 2006-12-22 2010-08-05 Schering Corporation 4, 5-ring annulated indole derivatives for treating or preventing of hcv and related viral infections
US20100239527A1 (en) 2007-08-29 2010-09-23 Schering Corporation 2,3-substituted azaindole derivatives for treating viral infections
US20100260711A1 (en) 2007-11-16 2010-10-14 Schering Corporation 3-aminosulfonyl substituted indole derivatives and methods of use thereof
US20100322901A1 (en) 2006-12-22 2010-12-23 Schering Corporation 5, 6-ring annulated indole derivatives and use thereof
US20110033417A1 (en) 2007-08-29 2011-02-10 Anilkumar Gopinadhan N 2,3-substituted indole derivatives for treating viral infections
US20110104109A1 (en) 2005-07-13 2011-05-05 Frank Bennett Tetracyclic indole derivatives and their use for treating or preventing viral infections
US20110104110A1 (en) 2007-08-29 2011-05-05 Shering Corporation Substituted indole derivatives and methods of use thereof
US20110165118A1 (en) 2007-11-16 2011-07-07 Schering Corporation 3-heterocyclic substituted indole derivatives and methods of use thereof

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB0307891D0 (en) * 2003-04-04 2003-05-14 Angeletti P Ist Richerche Bio Chemical compounds,compositions and uses
US20090047246A1 (en) * 2007-02-12 2009-02-19 Intermune, Inc. Novel inhibitors of hepatitis c virus replication
AU2008302448B2 (en) * 2007-09-17 2014-11-06 Abbvie Ireland Unlimited Company Uracil or thymine derivative for treating hepatitis C

Patent Citations (57)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE648639C (en) 1935-05-19 1937-08-05 I G Farbenindustrie Akt Ges Process for the preparation of dipyrroles
US3632805A (en) 1967-12-08 1972-01-04 Sumitomo Chemical Co Process for producing 1-aminoalkyl-benzodiazepine derivatives
US4634697A (en) 1983-10-04 1987-01-06 Shionogi & Co., Ltd. Carboxyalkenamidocephalosporins
US4812561A (en) 1986-07-02 1989-03-14 Shionogi & Co., Ltd. Crystalline hydrate of oral cephalosporin and its composition
US4933443A (en) 1986-07-02 1990-06-12 Shionogi & Co., Ltd. Method for preparing crystalline hydrate of oral celphalosporin and its composition
US5017380A (en) 1986-07-02 1991-05-21 Shionogi & Co., Ltd. Gelatin hard capsule containing crystalline hydrate of oral cephalosporin
EP0449196A2 (en) 1990-03-26 1991-10-02 Takeda Chemical Industries, Ltd. Indole derivatives, their production and use
JPH04149429A (en) 1990-10-12 1992-05-22 Fuji Photo Film Co Ltd Silver halide color reversal photosensitive material and image formation thereof.
WO1996037619A1 (en) 1995-05-25 1996-11-28 Istituto Di Ricerche Di Biologia Molecolare P. Angeletti S.P.A. Method for reproducing in vitro the rna-dependent rna polymerase and terminal nucleotidyl transferase activities encoded by hepatitis c virus (hcv)
WO1998014181A1 (en) 1996-09-30 1998-04-09 Regents Of The University Of California Treatment and prevention of hepatic disorders
WO1998017679A1 (en) 1996-10-18 1998-04-30 Vertex Pharmaceuticals Incorporated Inhibitors of serine proteases, particularly hepatitis c virus ns3 protease
WO1998022496A2 (en) 1996-11-18 1998-05-28 F. Hoffmann-La Roche Ag Antiviral peptide derivatives
WO1999007734A2 (en) 1997-08-11 1999-02-18 Boehringer Ingelheim (Canada) Ltd. Hepatitis c inhibitor peptide analogues
FR2768146A1 (en) 1997-09-05 1999-03-12 Oreal NOVEL COMPOUNDS OF THE INDOLE-CARBOXYLIC FAMILY AND THEIR USE
US6846802B2 (en) 2000-04-05 2005-01-25 Schering Corporation Macrocyclic NS3-serine protease inhibitors of hepatitis C virus comprising N-cyclic P2 moieties
US6914122B2 (en) 2000-04-19 2005-07-05 Schering Corporation Macrocyclic NS-3 serine protease inhibitors of hepatitis C virus comprising alkyl and aryl alanine P2 moieties
US6838475B2 (en) 2000-07-21 2005-01-04 Schering Corporation Imidazolidinones as NS3-serine protease inhibitors of hepatitis C virus
US7012066B2 (en) 2000-07-21 2006-03-14 Schering Corporation Peptides as NS3-serine protease inhibitors of hepatitis C virus
US20020160962A1 (en) 2000-07-21 2002-10-31 Saksena Anil K. Novel peptides as NS3-serine protease inhibitors of hepatitis C virus
US20050176648A1 (en) 2000-07-21 2005-08-11 Schering-Plough Corporation Novel peptides as NS3-serine protease inhibitors of hepatitis C virus
US6800434B2 (en) 2000-07-21 2004-10-05 Schering Corporation Peptides as NS3-serine protease inhibitors of hepatitis C virus
WO2002030895A1 (en) 2000-10-10 2002-04-18 Smithkline Beecham Corporation SUBSTITUTED INDOLES, PHARMACEUTICAL COMPOSITIONS CONTAINING SUCH INDOLES AND THEIR USE AS PPAR-η BINDING AGENTS
US6911428B2 (en) 2000-12-12 2005-06-28 Schering Corporation Diaryl peptides as NS3-serine protease inhibitors of hepatitis C virus
US20040077704A1 (en) 2000-12-18 2004-04-22 Beight Douglas Wade Novel spla2 inhibitors
WO2002068412A1 (en) 2001-02-22 2002-09-06 School Of Pharmacy, University Of London Pyrrolo-indole and pyrrolo-quinoline derivatives as prodrugs for tumour treatment
AU2002313410B2 (en) 2001-07-25 2008-09-11 Boehringer Ingelheim (Canada) Ltd. Hepatitis C virus polymerase inhibitors with a heterobicyclic structure
WO2004035571A1 (en) 2002-10-15 2004-04-29 Rigel Pharmaceuticals, Inc. Substituted indoles and their use as hcv inhibitors
WO2004106328A1 (en) 2003-05-30 2004-12-09 Gemin X Biotechnologies Inc. Triheterocyclic compounds, compositions, and methods for treating cancer or viral diseases
US20050075331A1 (en) 2003-10-06 2005-04-07 Pratt John K. Anti-infective agents
WO2005034941A1 (en) 2003-10-10 2005-04-21 Istituto Di Ricerche Di Biologia Molecolare P Angeletti Spa Indoles and azaindoles as antiviral agents
US20050101770A1 (en) 2003-11-10 2005-05-12 Presta Leonard G. Interleukin-10 antibodies
WO2005087731A1 (en) 2004-02-27 2005-09-22 Schering Corporation Sulfur compounds as inhibitors of hepatitis c virus ns3 serine protease
WO2005084315A2 (en) 2004-03-01 2005-09-15 Viropharma Incorporated Pyranoindole derivatives and the use thereof for the treatment of hepatitis c virus infection or disease
US20050249702A1 (en) 2004-05-06 2005-11-10 Schering Corporation (1R,2S,5S)-N-[(1S)-3-amino-1-(cyclobutylmethyl)-2,3-dioxopropyl]-3-[(2S)-2-[[[(1,1-dimethylethyl)amino]carbonyl]amino]-3,3-dimethyl-1-oxobutyl]-6,6-dimethyl-3-azabicyclo[3.1.0]hexane-2-carboxamide as inhibitor of hepatitis C virus NS3/NS4a serine protease
WO2005111018A1 (en) 2004-05-18 2005-11-24 Sanofi-Aventis Deutschland Gmbh Pyridazinone derivatives, methods for producing them and their use as pharmaceuticals
WO2007084413A2 (en) 2004-07-14 2007-07-26 Ptc Therapeutics, Inc. Methods for treating hepatitis c
WO2006020082A1 (en) 2004-08-09 2006-02-23 Bristol-Myers Squibb Company Inhibitors of hcv replication
WO2006034337A2 (en) 2004-09-23 2006-03-30 Wyeth Carbazole and cyclopentaindole derivatives to treat infection with hepatitis c virus
WO2006032541A1 (en) 2004-09-24 2006-03-30 Bayer Schering Pharma Aktiengesellschaft Indol derivatives as inhibitors of soluble adenylyl cyclase
WO2006046030A2 (en) 2004-10-26 2006-05-04 Istituto Di Ricerche Di Biologia Molecolare P Angeletti Spa Tetracyclic indole derivatives as antiviral agents
JP4149429B2 (en) 2004-10-26 2008-09-10 本田技研工業株式会社 Vehicle travel safety device
WO2006076529A1 (en) 2005-01-14 2006-07-20 Genelabs Technologies, Inc. Indole derivatives for treating viral infections
US20110104109A1 (en) 2005-07-13 2011-05-05 Frank Bennett Tetracyclic indole derivatives and their use for treating or preventing viral infections
WO2007029029A2 (en) 2005-09-09 2007-03-15 Istituto Di Ricerche Di Biologia Molecolare P. Angeletti Spa Tetracyclic indole derivatives as antiviral agents
WO2007038209A2 (en) 2005-09-23 2007-04-05 Schering Corporation Fused tetracyclic mglur1 antagonists as therapeutic agents
WO2007084435A2 (en) 2006-01-13 2007-07-26 Ptc Therapeutics, Inc. Methods for treating hepatitis c
US20070274951A1 (en) 2006-02-09 2007-11-29 Xiao Tong Combinations comprising HCV protease inhibitor(s) and HCV polymerase inhibitor(s), and methods of treatment related thereto
WO2008082484A1 (en) 2006-12-22 2008-07-10 Schering Corporation 4,5-ring annulated indole derivatives for treating or preventing of hcv and related viral infections
US20100196319A1 (en) 2006-12-22 2010-08-05 Schering Corporation 4, 5-ring annulated indole derivatives for treating or preventing of hcv and related viral infections
US20100322901A1 (en) 2006-12-22 2010-12-23 Schering Corporation 5, 6-ring annulated indole derivatives and use thereof
US20100098661A1 (en) 2006-12-22 2010-04-22 Schering Corporation 4,5-ring annulated indole derivatives for treating or preventing of hcv and related viral infections
US20100239527A1 (en) 2007-08-29 2010-09-23 Schering Corporation 2,3-substituted azaindole derivatives for treating viral infections
US20110033417A1 (en) 2007-08-29 2011-02-10 Anilkumar Gopinadhan N 2,3-substituted indole derivatives for treating viral infections
US20110104110A1 (en) 2007-08-29 2011-05-05 Shering Corporation Substituted indole derivatives and methods of use thereof
US8143305B2 (en) * 2007-08-29 2012-03-27 Schering Corporation 2,3-substituted indole derivatives for treating viral infections
US20100260711A1 (en) 2007-11-16 2010-10-14 Schering Corporation 3-aminosulfonyl substituted indole derivatives and methods of use thereof
US20110165118A1 (en) 2007-11-16 2011-07-07 Schering Corporation 3-heterocyclic substituted indole derivatives and methods of use thereof

Non-Patent Citations (52)

* Cited by examiner, † Cited by third party
Title
Beaulieu et al., "Inhibitors of the HCV NS5B polymerase: New hope for the treatment of hepatitis C infections", Current Opinion in Investigational Drugs, 2004, vol. 5, pp. 838-850, No. 8.
Behrens et al., "Identification and properties of the RNA-dependent RNA polymerase of hepatitis C virus", The EMBO Journal, 1996, vol. 15, pp. 12-22, No. 1.
Bioworld Today, 9 (217):4 Nov. 10, 1998, pp. 1-5.
Birnbock et al., "Sulfate Derivatives of 2-Phenylindols as Novel Steroid Sulfatase Inhibitors", Biochemical Pharmacology, 1990, vol. 39, pp. 1709-1713, No. 11.
Bunker et al., "1,3-Diaryl-2-Carboxyindoles as Potent Non-Peptide Endothelin Antagonists", Bioorganic & Medicinal Chemistry Letters, 1996, vol. 6, pp. 1061-1066, No. 9.
Chemical and Pharmaceutical Bulletin, vol. 19, 1971, p. 263-270.
Denmark et al., "Palladium-Catalyzed Cross-Coupling Reactions of Silanolates: A Paradigm Shift in Silicon-Based Cross-Coupling Reactions", Chem. Eur. J., 2006, vol. 12, pp. 4954-4963.
Dimasi et al., "Characterization of Engineered Hepatitis C Virus NS3 Protease Inhibitors Affinity Selected from Human Pancreatic Secretory Trypsin Inhibitor and Minibody Repertoires", Journal of Virology, 1997, vol. 71, pp. 7461-7469, No. 10.
Elzouki et al., "Serine protease inhibitors in patients with chronic viral hepatitis", Journal of Hepatology, 1997, vol. 27, pp. 42-48.
Ferrari et al., "Characterization of Soluble Hepatitis C Virus RNA-Dependent RNA Polymerase Expressed in Escherichia coli", Journal of Virology, 1999, vol. 73, pp. 1649-1654, No. 2.
Fonseca et al., "Synthesis and antiviral evaluation of benzimidazoles, quinoxalines and indoles from dehydroabietic acid", Bioorganic & Medicinal Chemistry, 2004, vol. 12, pp. 103-112.
Forbes et al., "Synthesis, Biological Activity, and Molecular Modeling Studies of Selective 5-HT2C/2B Receptor Antagonists", J. Med. Chem., 1996, vol. 39, pp. 4966-4977, No. 25.
Goldsmith et al., "Studies in the Benzindole Series", J. Org. Chem, 1952, vol. 18, pp. 507-514.
Gopalsamy et al., "Design and synthesis of 2,3,4,9-tetrahydro-1H-carbazole and 1,2,3,4-tetrahydro-cyclopenta[b] indole derivatives as non-nucleoside inhibitors of hepatitis C virus NS5B RNA-dependent RNA polymerase", Bioorganic & Medicinal Chemistry Letters, 2006, vol. 16, pp. 2532-2534.
Humphrey et al., "Practical Methodologies for the Synthesis of Indoles", Chem. Rev., 2006, vol. 106, pp. 2875-2911.
Ingallinella et al., "Potent Peptide Inhibitors of Human Hepatitis C Virus NS3 Protease are Obtained by Optimizing the Cleavage Products", Biochemistry, 1998, vol. 37, pp. 8906-8914.
International Search Report for International Application No. PCT/US2007/025754, mailed May 13, 2008, (4 pages).
International Search Report for International Application No. PCT/US2007/025757, mailed Mar. 6, 2009, (8 pages).
International Search Report for International Application No. PCT/US2007/025765, mailed May 13, 2008, (6 pages).
International Search Report for International Application No. PCT/US2008/010130, mailed Jan. 22, 2009, (5 pages).
International Search Report for International Application No. PCT/US2008/010147, mailed May 4, 2009, (3 pages).
International Search Report for International Application No. PCT/US2008/010148, mailed Dec. 9, 2008, (3 pages).
International Search Report for International Application No. PCT/US2008/010149, mailed Feb. 2, 2009, (5 pages).
International Search Report for International Application No. PCT/US2008/083351, mailed Feb. 27, 2009, (3 pages).
International Search Report for International Application No. PCT/US2008/083358, mailed Mar. 6, 2009, (2 pages).
International Search Report for International Application No. PCT/US2009/046822, mailed Oct. 7, 2009, (5 pages).
Journal of Heterocyclic Chemistry, vol. 12, 1975, pp. 351-358.
Journal of Medicinal Chemistry, vol. 23, No. 7, 1980, pp. 764-773.
Journal of Organic Chemistry, vol. 27, 1962, pp. 3782-3786.
Landro et al., "Mechanistic Role of an NS4A Peptide Cofactor with the Truncated NS3 Protease of Hepatitis C Virus: Elucidation of the NS4A Stimulatory Effect via Kinetic Analysis and Inhibitor Mapping", Biochemistry, 1997, vol. 36, pp. 9340-9348.
Lindsay et al., "Sml2-Promoted Radical Addition Reactions with N-(2-Indolylacyl)oxazolidinones: Synthesis of Bisindole Compounds", Journal of Organic Chemistry, 2007, vol. 72, pp. 4181-4188, No. 11.
Llinas-Brunet et al., "Peptide-Based Inhibitors of the Hepatitis C Virus Serine Protease", Bioorganic & Medicinal Chemistry Letters, 1998, vol. 8, pp. 1713-1718.
Malcolm et al., "SCH 503034, a Mechanism-Based Inhibitor of Hepatitis C Virus NS3 Protease, Suppresses Polyprotein Maturation and Enhances the Antiviral Activity of Alpha Interferon in Replicon Cells", Antimicrobial Agents and Chemotherapy, 2006, vol. 50, pp. 1013-1020, No. 3.
Martin et al., "Design of Selective Eglin Inhibitors of HCV NS3 Proteinase", Biochemistry, 1998, vol. 37, pp. 11459-11468.
Martin, et al., "Affinity selection of a camelized VH domain antibody inhibitor of hepatitis C virus NS3 protease", Protein Engineering, 1997, vol. 10, pp. 607-614, No. 5.
Muratake et al., "Synthesis of Duocarmycin SA by Way of Methyl 4-(Methoxycarbonyl)oxy-3H-pyrrolo[3,2-f] quinoline-2-carboxylate as a Tricyclic Heteroaromatic Intermediate", Chem. Pharm. Bulletin, 1998, vol. 46, pp. 400-412, No. 3.
Ni et al., "Progress and development of small molecule HCV antivirals", Current Opinion in Drug Discovery & Development, 2004, vol. 7, pp. 446-459, No. 4.
Rawal et al., "Photocyclization of Pyrrole Analogues of Stilbene: an Expedient Approach to Anti-tumour Agent CC-1065", Journal Chem. Soc., Chem. Commun., 1984, pp. 1526-1527.
Sechi et al., "Design and Synthesis of Novel Indole beta-Diketo Acid Derivatives as HIV-1 Integrase Inhibitors", J. Med. Chem., 2004, vol. 47, pp. 5298-5310, No. 21.
Sechi et al., "Design and Synthesis of Novel Indole β-Diketo Acid Derivatives as HIV-1 Integrase Inhibitors", J. Med. Chem., 2004, vol. 47, pp. 5298-5310, No. 21.
Silvestri et al., "Synthesis and biological evaluation of 5H-indolo [3,2-b][1,5]benzothiazepine derivatives, designed as conformationally constrained analogues of the human immunodeficiency virus type 1 reverse transcriptase inhibitor L-737,126", Antiviral Chemistry & Chemotherapy, 1998, vol. 9, pp. 139-148.
Tan et al., "Hepatitis C Therapeutics: Current Status and Emerging Strategies", Nature Reviews, 2002, vol. 1, pp. 867-881.
Written Opinion for PCT/US2007/025754, filed Dec. 17, 2007, (7 pages).
Written Opinion for PCT/US2007/025757, filed Dec. 17, 2007 (12 pages).
Written Opinion for PCT/US2007/025765, filed Dec. 17, 2007, (8 pages).
Written Opinion for PCT/US2008/010130, filed Aug. 27, 2008 (9 pages).
Written Opinion for PCT/US2008/010147, filed Aug. 27, 2008 (6 pages).
Written Opinion for PCT/US2008/010148, filed Aug. 27, 2008 (7 pages).
Written Opinion for PCT/US2008/010149, filed Aug. 27, 2008 (6 pages).
Written Opinion for PCT/US2008/083351, filed Nov. 13, 2008 (5 pages).
Written Opinion for PCT/US2008/083358, filed Nov. 13, 2008 (5 pages).
Written Opinion for PCT/US2009/046822, filed Jun. 10, 2009 (8 pages).

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9708272B2 (en) 2014-08-29 2017-07-18 Tes Pharma S.R.L. Inhibitors of α-amino-β-carboxymuconic acid semialdehyde decarboxylase
US10513499B2 (en) 2014-08-29 2019-12-24 Tes Pharma S.R.L. Inhibitors of alpha-amino-beta-carboxymuconic acid semialdehyde decarboxylase
US11254644B2 (en) 2014-08-29 2022-02-22 Tes Pharma S.R.L. Inhibitors of alpha-amino-beta-carboxymuconic acid semialdehyde decarboxylase
US12194023B2 (en) 2018-11-29 2025-01-14 The Research Foundation For The State University Of New York Compositions and methods for modular control of bioorthogonal ligation

Also Published As

Publication number Publication date
EP2222660B1 (en) 2014-03-26
CA2705586A1 (en) 2009-05-22
MX2010005356A (en) 2010-05-27
EP2222660A1 (en) 2010-09-01
WO2009064848A1 (en) 2009-05-22
JP5249344B2 (en) 2013-07-31
US20110165118A1 (en) 2011-07-07
CN102099351A (en) 2011-06-15
JP2011503195A (en) 2011-01-27

Similar Documents

Publication Publication Date Title
US8765757B2 (en) 3-heterocyclic substituted indole derivatives and methods of use thereof
US8404845B2 (en) 2,3-substituted azaindole derivatives for treating viral infections
US8546420B2 (en) 4, 5-ring annulated indole derivatives for treating or preventing of HCV and related viral infections
US8268803B2 (en) 5, 6-ring annulated indole derivatives and use thereof
US8614229B2 (en) Substituted indole derivatives and methods of use thereof
US8377928B2 (en) 3-aminosulfonyl substituted indole derivatives and methods of use thereof
EP2064180B1 (en) 4,5-ring annulated indole derivatives for treating or preventing of hcv and related viral infections
US8143305B2 (en) 2,3-substituted indole derivatives for treating viral infections
US20110104109A1 (en) Tetracyclic indole derivatives and their use for treating or preventing viral infections
US20110189127A1 (en) Tricyclic indole derivatives and methods of use thereof

Legal Events

Date Code Title Description
AS Assignment

Owner name: SCHERING CORPORATION, NEW JERSEY

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:CHAN, TIN-YAU;DUCA, JOSE S.;HONG, LIWU;AND OTHERS;SIGNING DATES FROM 20081118 TO 20081119;REEL/FRAME:021957/0157

AS Assignment

Owner name: SCHERING CORPORATION, NEW JERSEY

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:CHAN, TIN-YAU;DUCA, JOSE S.;HONG, LIWU;AND OTHERS;SIGNING DATES FROM 20081118 TO 20081119;REEL/FRAME:024786/0439

AS Assignment

Owner name: MERCK SHARP & DOHME CORP., NEW JERSEY

Free format text: CHANGE OF NAME;ASSIGNOR:SCHERING CORPORATION;REEL/FRAME:028884/0151

Effective date: 20120502

STCF Information on status: patent grant

Free format text: PATENTED CASE

MAFP Maintenance fee payment

Free format text: PAYMENT OF MAINTENANCE FEE, 4TH YEAR, LARGE ENTITY (ORIGINAL EVENT CODE: M1551)

Year of fee payment: 4

MAFP Maintenance fee payment

Free format text: PAYMENT OF MAINTENANCE FEE, 8TH YEAR, LARGE ENTITY (ORIGINAL EVENT CODE: M1552); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY

Year of fee payment: 8

AS Assignment

Owner name: MERCK SHARP & DOHME LLC, NEW JERSEY

Free format text: MERGER;ASSIGNOR:MERCK SHARP & DOHME CORP.;REEL/FRAME:061102/0145

Effective date: 20220407