US8756297B2 - Energy-efficient content caching with custodian-based routing in content-centric networks - Google Patents
Energy-efficient content caching with custodian-based routing in content-centric networks Download PDFInfo
- Publication number
- US8756297B2 US8756297B2 US12/970,776 US97077610A US8756297B2 US 8756297 B2 US8756297 B2 US 8756297B2 US 97077610 A US97077610 A US 97077610A US 8756297 B2 US8756297 B2 US 8756297B2
- Authority
- US
- United States
- Prior art keywords
- content
- custodian
- mobile device
- computing device
- lookup
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active, expires
Links
- 230000004044 response Effects 0.000 claims abstract description 11
- 238000004891 communication Methods 0.000 claims description 31
- 238000013507 mapping Methods 0.000 claims description 30
- 238000000034 method Methods 0.000 claims description 20
- 230000001413 cellular effect Effects 0.000 claims description 6
- 230000000977 initiatory effect Effects 0.000 claims description 5
- 230000005540 biological transmission Effects 0.000 claims description 4
- 238000012795 verification Methods 0.000 claims 1
- 230000007246 mechanism Effects 0.000 description 8
- 238000010586 diagram Methods 0.000 description 6
- 239000003795 chemical substances by application Substances 0.000 description 3
- 230000008520 organization Effects 0.000 description 3
- 230000008569 process Effects 0.000 description 3
- PCTMTFRHKVHKIS-BMFZQQSSSA-N (1s,3r,4e,6e,8e,10e,12e,14e,16e,18s,19r,20r,21s,25r,27r,30r,31r,33s,35r,37s,38r)-3-[(2r,3s,4s,5s,6r)-4-amino-3,5-dihydroxy-6-methyloxan-2-yl]oxy-19,25,27,30,31,33,35,37-octahydroxy-18,20,21-trimethyl-23-oxo-22,39-dioxabicyclo[33.3.1]nonatriaconta-4,6,8,10 Chemical compound C1C=C2C[C@@H](OS(O)(=O)=O)CC[C@]2(C)[C@@H]2[C@@H]1[C@@H]1CC[C@H]([C@H](C)CCCC(C)C)[C@@]1(C)CC2.O[C@H]1[C@@H](N)[C@H](O)[C@@H](C)O[C@H]1O[C@H]1/C=C/C=C/C=C/C=C/C=C/C=C/C=C/[C@H](C)[C@@H](O)[C@@H](C)[C@H](C)OC(=O)C[C@H](O)C[C@H](O)CC[C@@H](O)[C@H](O)C[C@H](O)C[C@](O)(C[C@H](O)[C@H]2C(O)=O)O[C@H]2C1 PCTMTFRHKVHKIS-BMFZQQSSSA-N 0.000 description 2
- 238000012986 modification Methods 0.000 description 2
- 230000004048 modification Effects 0.000 description 2
- 230000003044 adaptive effect Effects 0.000 description 1
- 230000002730 additional effect Effects 0.000 description 1
- 238000013459 approach Methods 0.000 description 1
- 238000003491 array Methods 0.000 description 1
- 238000005265 energy consumption Methods 0.000 description 1
- 239000000446 fuel Substances 0.000 description 1
- 230000006870 function Effects 0.000 description 1
- 230000005012 migration Effects 0.000 description 1
- 238000013508 migration Methods 0.000 description 1
- 230000006855 networking Effects 0.000 description 1
- 230000003287 optical effect Effects 0.000 description 1
- 230000002085 persistent effect Effects 0.000 description 1
- 230000035755 proliferation Effects 0.000 description 1
- 230000001902 propagating effect Effects 0.000 description 1
- 238000000926 separation method Methods 0.000 description 1
- 239000010454 slate Substances 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L65/00—Network arrangements, protocols or services for supporting real-time applications in data packet communication
- H04L65/1066—Session management
- H04L65/1069—Session establishment or de-establishment
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06Q—INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
- G06Q50/00—Information and communication technology [ICT] specially adapted for implementation of business processes of specific business sectors, e.g. utilities or tourism
- G06Q50/10—Services
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L61/00—Network arrangements, protocols or services for addressing or naming
- H04L61/45—Network directories; Name-to-address mapping
- H04L61/457—Network directories; Name-to-address mapping containing identifiers of data entities on a computer, e.g. file names
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L67/00—Network arrangements or protocols for supporting network services or applications
- H04L67/50—Network services
- H04L67/56—Provisioning of proxy services
- H04L67/568—Storing data temporarily at an intermediate stage, e.g. caching
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L45/00—Routing or path finding of packets in data switching networks
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02D—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN INFORMATION AND COMMUNICATION TECHNOLOGIES [ICT], I.E. INFORMATION AND COMMUNICATION TECHNOLOGIES AIMING AT THE REDUCTION OF THEIR OWN ENERGY USE
- Y02D30/00—Reducing energy consumption in communication networks
Definitions
- the present disclosure relates generally to content routing in content-centric networks. More specifically, the present disclosure relates to energy-efficient content caching with custodian routing in content-centric networks (CCNs).
- CCNs content-centric networks
- the current architecture of the Internet revolves around a conversation model, which was created in the 1970s for the ARPAnet to allow geographically distributed users to use a few big, immobile computers.
- This architecture was designed under the influence of the telephone network, where a telephone number is essentially a program that configures the switches along a path from the source to the destination.
- the designers of the ARPAnet never expected it to evolve into today's ubiquitous, relentlessly growing Internet. People now expect a lot more from the Internet than the ARPAnet was designed to provide.
- an Internet user should have access to any content, anywhere, at any time—access that is difficult to facilitate with the current location/device-binding TCP/IP (transmission control protocol/Internet protocol) networks.
- TCP/IP transmission control protocol/Internet protocol
- Content-centric networks also referred to as “content-based networks,” bring a new approach to data transport in a network. Instead of having network traffic viewed at the application level as end-to-end conversations over which content travels, content is requested or returned based on the name given to it, and the network is responsible for routing data, or “content,” from the provider to the consumer.
- One embodiment of the present invention provides a system for facilitating custodian-based routing.
- the system receives, at a computing device serving as a backup custodian to one or more mobile devices, a request for a piece of content from a requesting device, which has mapped the content to the computing device based on the content's name without using the computing device's physical address.
- the system determines whether the content is available on the computing device.
- the system identifies a mobile device that stores the content, and obtains the content from the identified mobile device.
- the system then caches the content on the computing device, thereby enabling the computing device to provide the content in response to subsequent requests without connecting to the identified mobile device, and provides the content to the requesting device.
- the computing device, the requesting device, and the mobile devices are coupled to a content-centric network (CCN).
- CCN content-centric network
- identifying the mobile device that stores the content involves performing a lookup based on the content's name, and the content name comprises a number of components of variable lengths.
- the content stored on the mobile device is mapped to the backup custodian, regardless of whether the backup custodian stores the content or not.
- connections from devices other than the backup custodian to the identified mobile device are prohibited.
- the computing device receives the request for the content based on a preference level of the computing device being higher than a preference level of the mobile device storing the content.
- obtaining the content from the identified mobile device includes identifying a communication endpoint located on the mobile device and establishing a connection to the identified communication endpoint.
- the communication endpoint includes one of: a WiFi interface, a cellular interface, and a Bluetooth interface.
- establishing a connection to the identified communication endpoint involves using session initiation protocol (SIP).
- SIP session initiation protocol
- FIG. 1 presents a diagram illustrating the exemplary architecture of a CCN-based content-delivery network (CDN) with a mobile device and its backup custodian in accordance with an embodiment of the present invention.
- CDN CCN-based content-delivery network
- FIG. 2 presents a diagram illustrating the architecture of an exemplary backup custodian device in accordance with an embodiment of the present invention.
- FIG. 3 presents a time-space diagram illustrating the process of a remote device obtaining content stored on a mobile device in accordance with an embodiment of the present invention.
- FIG. 4 presents an exemplary computer system for facilitating energy-efficient content caching with custodian-based routing over a CCN in accordance with an embodiment of the present invention.
- the data structures and code described in this detailed description are typically stored on a computer-readable storage medium, which may be any device or medium that can store code and/or data for use by a computer system.
- the computer-readable storage medium includes, but is not limited to, volatile memory, non-volatile memory, magnetic and optical storage devices such as disk drives, magnetic tape, CDs (compact discs), DVDs (digital versatile discs or digital video discs), or other media capable of storing computer-readable media now known or later developed.
- Embodiments of the present invention provide a solution for energy-efficient content caching with custodian-based routing in CCNs.
- content is associated with a custodian, and requests for contents are routed to the custodian of the content.
- requests for contents are routed to the custodian of the content.
- an assigned backup custodian which can be a stationary device with little or no power constraints. All content stored on the mobile device can be mapped to the backup custodian during the content-prefix-to-custodian mapping even though the backup custodian does not contain all the content.
- a remote device When a remote device requests a piece of content stored on the mobile device, that request is directed to the backup custodian based on the content-prefix-to-custodian mapping. If the backup custodian does not have a copy of the requested content, it will request a copy from the mobile device and cache that copy in order to fulfill future requests from other remote devices.
- custodian refers to a device that stores the content corresponding to interest.
- a custodian can be any type of device that is capable of storing data in volatile or non-volatile storage.
- a custodian can be a mobile computing device, such as a laptop computer, a tablet or slate computer, a smartphone, or a personal digital assistant (PDA), or a stationary computing device, such as a desktop computer or a home media server.
- PDA personal digital assistant
- the term “communication endpoint” refers to a communication interface located on a computing device, through which a remote device can communicate with the computing device.
- a “communication endpoint” can be any type of communication interface, including, but not limited to: a WiFiTM (trademark of the Wi-Fi Alliance) interface, a 3G cellular interface, and a BluetoothTM (trademark of the Bluetooth Special Interest Group of Kirkland, Wash.) interface.
- CCN names can include an explicitly specified number of components.
- CCN names are persistent and content-specific. That is, if a user changes the content of a file or data object, the modified content is effectively associated with a new name.
- This persistency can be achieved with an explicit versioning mechanism, where, for example, the new content can be “version 4” of a given name. The version is often a timestamp.
- the persistency can also be achieved implicitly. For example, contents can be associated with not only their human-established names, but also with authentication metadata (e.g., a digital signature by the publisher of the content). As a result, the complete content name changes when the data associated with a given name changes.
- a CCN In a content-centric network (CCN), communication is driven by the consumers of data.
- CCN there are two packet types, interest and data.
- An interest packet also called a query
- An interest packet encodes a special form of query that indicates the desired content.
- a data packet (also called a content packet) is a unit of content. Data packets are self-identifying by carrying within them their full name. A consumer can ask for content by broadcasting its interest over all available connectivity. Any node hearing the interest and having data that satisfies it can respond with one or more data packets. Data is transmitted only in response to an interest and consumes that interest. Both interest and data identify the content being exchanged by the content name (or CCN name).
- data can “satisfy” an interest if the CCN name in the interest packet is a prefix of the CCN name in the data packet.
- An interest may specify the exact version to retrieve or may specify any version greater than a specified version, known as a “get-the-latest-version interest.”
- a CCN can retain associations between various names and the content which they represent.
- the names are hierarchically structured, have variable length, and in many situations can be understood by a user.
- “/abcd/bob/papers/ccn/news” could be the name of an article, i.e., the “news” article from the “ccn” collection of papers for a user named “Bob” at the organization named “ABCD.”
- a CCN from an application's perspective, there is no need for a content consumer to determine how to find the “ABCD” organization, or to find which host there holds Bob's CCN publications.
- a device in the CCN registers with the network that it is interested in that content by its name, and the content, if available in the local network, is routed back to it.
- the routing infrastructure takes care of intelligently propagating the interest to the prospective publishers, and then carrying any available content back along the path which the interest traversed.
- CCNs have additional properties which make them especially appealing. All content can be cryptographically authenticated, meaning that some subset of nodes on the network (e.g., a legitimate querier of the content) can verify the authenticity of a piece of content. CCNs also allow data to be accessed by name, independent of publisher. At the same time, one can tailor a specialized request for data by a certain publisher. For example, one can ask for “foo.txt,” or “foo.txt signed by Bob.” Any form of self-verifying name can be used as a contract between producer and consumer. It is also possible to use hybrid self-verifying names, where the former components of the name are for organization and efficient routing, and the latter components of the name are self-verifying.
- CCNs allow the separation of content and trust, enabling different data consumers to use different mechanisms for establishing trust in the same piece of content.
- content might have been signed by a single publisher, it can be trusted for different reasons. For example, one user might trust a given piece of content because of a direct personal connection with its signer, whereas another user might trust the same content because of the content signer's participation in a Public Key Infrastructure (PKI) which that user has chosen to trust.
- PKI Public Key Infrastructure
- custodian-based routing can be implemented over a CCN-based content delivery network (CDN) that includes various user devices.
- CDN content delivery network
- content is associated with devices storing it, called custodians.
- a request for a particular piece of content can always be routed to its custodian, regardless of the physical location of the custodian.
- the CCN-based CDN maintains three different types of mapping, including content-prefix-to-custodian mapping, custodian-to-communication-endpoint mapping, and communication-endpoint-to-physical-address mapping.
- mapping information can be stored at a third-party service, such as a public session initiation protocol (SIP) server which provides rendezvous service between the requesting party and the custodian.
- SIP public session initiation protocol
- a content custodian is responsible for providing content to other requesting devices.
- an energy-constrained mobile device such as a battery-powered mobile phone
- answering frequent requests for its stored content may result in rapid draining of its battery power.
- a user takes a video with his mobile phone and notifies all his family members that he would like to share the video with them. Consequently, all his family members will try to connect to his phone and download the video file. Because a significant amount of power can be consumed each time the file is downloaded, the multiple downloading attempts can cause the user's mobile phone to run out of power quickly.
- embodiments of the present invention allow a mobile device to delegate the task of content distribution to a stationary device that is not power constrained as its backup custodian.
- Content stored on the mobile device is mapped to both the mobile device and the backup custodian with different preference settings in the content-prefix-to-custodian mapping table, regardless of whether such content is physically stored on the backup custodian.
- FIG. 1 presents a diagram illustrating the exemplary architecture of a CCN-based CDN with a mobile device and its backup custodian in accordance with an embodiment of the present invention.
- CDN 100 includes a number of devices, such as a laptop computer 102 , a media server 104 , and smartphones 106 - 110 , coupled to each other via a CCN 112 .
- smartphone 106 designates media server 104 , which is coupled to an alternating current (AC) power source, as its backup custodian by mapping its stored content to media server 104 , in addition to smartphone 106 .
- AC alternating current
- smartphone 106 first notifies media server 104 the namespace prefixes for which media server 104 needs to provide backup service.
- smartphone 106 may wish media server 104 to be the backup for all its videos, but not photos. Accordingly, smartphone 106 sends namespace prefix “/Bob cell/video” to media server 104 .
- Such a notification can be sent to media server 104 over CCN or other communication channels.
- smartphone 104 notifies media server 104 the preference of the prefix-to-custodian entries (PCEs) that map the namespace prefixes to smartphone 106 .
- PCEs prefix-to-custodian entries
- media server 104 Upon receiving the namespace prefixes, media server 104 generates PCEs that map the namespace prefixes to media server 104 .
- the PCEs mapped to media server 104 are configured to have a higher preference than the PCEs mapped to smartphone 106 . Note that the device with the higher preference has a higher connection priority.
- any request for content under these namespace is directed first to media server 104 , which is not power constrained and thus able to handle frequent content requests.
- smartphone 106 can specify that media server 104 is the only device that is allowed to connect to smartphone 106 .
- the entry in the custodian-to-endpoint mapping table corresponding to smartphone 106 includes restriction entries that specify which device is allowed to connect. These restrictions are included in the EndpointAttribute entry (EAE), for all endpoints associated with smartphone 106 .
- the restriction entries specify that no device is allowed to connect to smartphone 106 other than media server 104 .
- smartphone 108 When smartphone 108 tries to obtain a piece of content stored on smartphone 106 , it performs a lookup in the content-prefix-to-custodian mapping information. The lookup result identifies that the backup custodian for smartphone 106 , i.e., media server 104 , is the custodian for the requested content. Note that when performing the lookup, smartphone 108 does not need to know the physical address of media server 104 . Accordingly, smartphone 108 establishes a connection to media server 104 instead of to smartphone 106 to request the content. When media server 104 receives the content request, it determines whether it has a copy of such content. If so, media server 104 provides the requested content to smartphone 108 .
- media server 104 determines which device actually stores the requested content. Aware of itself as the backup custodian of smartphone 106 , media server 104 can assume that the absent content is stored on smartphone 106 . Alternatively, media server 104 can perform a lookup on its content-prefix-to-custodian mapping information to locate the actual content custodian.
- media server 104 connects to smartphone 106 to obtain the requested content. Because custodian-based routing maintains custodian-to-communication-endpoint mapping as well as custodian-endpoint-to-physical-address mapping, media server 104 is able to establish a connection with smartphone 106 regardless of the physical location of smartphone 106 . Note that, if media server 104 and smartphone 106 are both connected to the same WiFi network, media server 104 can connect to smartphone 106 directly via the WiFi network. Otherwise, other types of communication channels, such as a peer-to-peer tunnel negotiated by session initiation protocol (SIP), may be needed to connect media server 104 with smartphone 106 .
- SIP session initiation protocol
- media server 104 Upon receiving the content from smartphone 106 , media server 104 stores a copy of the content in its local cache, and then passes the content to smartphone 108 . Later on, when other remote devices, such as smartphone 110 , request the same content, media server 104 can provide them with the cached content instead of having to connect to smartphone 106 again. In this way, multiple remote devices are able to obtain content stored on smartphone 106 without multiple connections to smartphone 106 , thus avoiding battery drainage of smartphone 106 .
- FIG. 2 presents a diagram illustrating the architecture of an exemplary backup custodian device in accordance with an embodiment of the present invention.
- Backup custodian device 200 includes receiving mechanism 202 , a CCN daemon module 204 , a routing agent 206 , a routing table 208 , a local cache 210 , and a transmission mechanism 212 .
- receiving mechanism 202 receives a request from a remote device for certain content. Note that the remote device has identified backup custodian device 200 as the custodian of the content. Receiving mechanism 202 passes the received request to CCN daemon module 204 which is configured to run a background process for the CCN. CCN daemon module 204 checks local cache 210 to determine whether the content is available locally. If so, transmitting mechanism 212 transmits the requested content to the requesting remote device. If not, CCN daemon module 204 contacts routing agent 206 to obtain routing information in order to determine the actual custodian storing the requested content.
- routing agent 206 obtains the routing information, which includes the content-prefix-to-custodian mapping, from routing table 208 .
- routing table 208 stored on backup custodian device 200 is different from the routing table distributed among other CCN devices. In the routing table distributed among other CCN devices, backup custodian device 200 is specified as the custodian for all content stored in a mobile device backed up by backup custodian device 200 , regardless of whether that contents is physically located on backup custodian device 200 or not. In contrast, routing table 208 stored on backup custodian device 200 maps the mobile device as the actual custodian of that content.
- backup custodian device 200 can establish a connection with the actual custodian and obtain the requested content.
- Backup custodian device 200 makes a copy of the requested content and stores this copy in local cache 210 .
- transmission mechanism 212 transmits the requested content to the remote device.
- FIG. 3 presents a time-space diagram illustrating the process of a remote device obtaining content stored on a mobile device in accordance with an embodiment of the present invention.
- a requesting device 302 receives a request from its user for a piece of content that is not available locally (operation 308 ).
- requesting device 302 Upon receiving the request, requesting device 302 performs a content-prefix-to-custodian lookup to determine the custodian of the content (operation 310 ).
- the lookup result indicates that the custodian with the highest preference for the requested content is a media server 304 , which is the backup custodian for mobile device 306 .
- the lookup result indicates that the only content custodian that allows requesting device 302 to establish a connection is media server 304 . Based on the lookup result, requesting device 302 connects to media server 304 to request the content (operation 312 ).
- media server 304 Upon receiving the content request, media server 304 determines whether it actually has a copy of such content (operation 314 ). If so, media server 304 provides the requested content to requesting device 302 (operation 316 ). Otherwise, media server 304 identifies the actual custodian of the requested content (operation 318 ). In one embodiment, media server 304 performs a content-prefix-to-custodian lookup to identify the actual custodian. Note that media server 304 can serve as a backup custodian for multiple mobile devices. By performing the content-prefix-to-custodian lookup, media server 304 can find out which mobile device actually stores the requested content. In one embodiment, media server 304 maintains a content-prefix-to-custodian mapping table which maps the content-prefix to the actual custodian of the content.
- media server 304 identifies that mobile device 306 stores the requested content, it establishes a connection with mobile device 306 to request the content (operation 320 ).
- media server 304 establishes a connection to mobile device 306 by performing a custodian-to-communication-endpoint lookup and a communication-endpoint-to-physical-address lookup.
- the custodian-to-communication-endpoint mapping information provides a mapping between a custodian and the endpoint that enables potential paths to the given custodian.
- the custodian-to-communication-endpoint mapping information is included in a custodian-to-communication-endpoint mapping table that is exchanged between devices within the CCN.
- each device within the CCN has a corresponding entry, which includes an array of Custodian Endpoint Entries (CEEs) corresponding to all the endpoints belonging to the device.
- CEEs Custodian Endpoint Entries
- the entry corresponding to mobile device 306 may include a WiFi interface, a cellular 3 G interface, and a Bluetooth interface.
- a CEE corresponding to an endpoint can also include an EndpointAttribute (EAE) component, which can be used to specify which devices are allowed to obtain a piece of content from the endpoint.
- EAE EndpointAttribute
- Mobile device 306 can use the EAE component to specify that media server 304 is the only device allowed to connect to any of its endpoints.
- the communication-endpoint-to-physical-address mapping provides information needed for the rendezvous between devices.
- Such mapping information can be stored within the custodian-to-communication-endpoint mapping table, or it can be stored in a third-party service, such as a public SIP server, which provides the rendezvous service.
- a third-party service such as a public SIP server, which provides the rendezvous service.
- mobile device 306 can register its SIP address with a public SIP server.
- mobile device 306 After establishment of the connection, mobile device 306 provides the requested content to media server 304 (operation 322 ). Upon receiving the content, media server 304 caches a copy of the content (operation 324 ), and provides the content to requesting device 302 (operation 326 ).
- media server 304 can serve subsequent requests for the same content from other remote devices.
- mobile device 306 only needs to distribute the desired content once, thus providing an energy-efficient way of content sharing.
- FIG. 4 presents an exemplary computer system for facilitating energy-efficient content caching with custodian-based routing over a CCN in accordance with an embodiment of the present invention.
- a computer and communication system 400 includes a processor 402 , a memory 404 , and a storage device 406 .
- Storage device 406 stores programs to be executed by processor 402 .
- storage device 406 stores a content-caching application 408 , as well as other applications, such as applications 410 and 412 .
- content-caching application 408 is loaded from storage device 406 into memory 404 and then executed by processor 402 .
- processor 402 While executing the program, processor 402 performs the aforementioned functions.
- Computer and communication system 400 is coupled to an optional display 414 , keyboard 416 , and pointing device 418 .
- the methods and processes described in the detailed description section can be embodied as code and/or data, which can be stored in a computer-readable storage medium as described above.
- a computer system reads and executes the code and/or data stored on the computer-readable storage medium, the computer system performs the methods and processes embodied as data structures and code and stored within the computer-readable storage medium.
- the methods and processes described below can be included in hardware modules.
- the hardware modules can include, but are not limited to, application-specific integrated circuit (ASIC) chips, field-programmable gate arrays (FPGAs), and other programmable-logic devices now known or later developed.
- ASIC application-specific integrated circuit
- FPGA field-programmable gate arrays
- the hardware modules When the hardware modules are activated, the hardware modules perform the methods and processes included within the hardware modules.
Landscapes
- Engineering & Computer Science (AREA)
- Computer Networks & Wireless Communication (AREA)
- Signal Processing (AREA)
- Business, Economics & Management (AREA)
- General Business, Economics & Management (AREA)
- Computer Hardware Design (AREA)
- Tourism & Hospitality (AREA)
- Multimedia (AREA)
- Marketing (AREA)
- Human Resources & Organizations (AREA)
- General Health & Medical Sciences (AREA)
- Primary Health Care (AREA)
- Strategic Management (AREA)
- Physics & Mathematics (AREA)
- Economics (AREA)
- General Physics & Mathematics (AREA)
- Theoretical Computer Science (AREA)
- Health & Medical Sciences (AREA)
- Information Transfer Between Computers (AREA)
- Mobile Radio Communication Systems (AREA)
- Data Exchanges In Wide-Area Networks (AREA)
Abstract
Description
-
- U.S. patent application Ser. No. 12/123,344, entitled “VOICE OVER CONTENT-CENTRIC NETWORKS,” by inventors Paul J. Stewart, Van L. Jacobson, Michael F. Plass, and Diana K. Smetters, filed 19 May 2008;
- U.S. patent application Ser. No. 12/332,560, entitled “METHOD AND APPARATUS FOR FACILITATING COMMUNICATION IN A CONTENT-CENTRIC NETWORK,” by inventor Van L. Jacobson, filed 11 Dec. 2008;
- U.S. patent application Ser. No. 12/565,005, entitled “SYSTEM FOR FORWARDING A PACKET WITH A HIERARCHICALLY STRUCTURED VARIABLE-LENGTH IDENTIFIER,” by inventors Van L. Jacobson and James D. Thornton, filed 23 Sep. 2009;
- U.S. patent application Ser. No. 12/603,336, entitled “ADAPTIVE MULTI-INTERFACE USE FOR CONTENT NETWORKING,” by inventors Van L. Jacobson and James D. Thornton, filed 21 Oct. 2009;
- U.S. patent application Ser. No. 12/638,478 entitled “SYSTEM FOR FORWARDING PACKETS WITH HIERARCHICALLY STRUCTURED VARIABLE-LENGTH IDENTIFIERS USING AN EXACT-MATCH LOOKUP ENGINE,” by inventors Van L. Jacobson and James D. Thornton, filed 15 Dec. 2009;
- U.S. patent application Ser. No. 12/640,968, entitled “METHOD AND SYSTEM FOR FACILITATING FORWARDING A PACKET IN A CONTENT-CENTRIC NETWORK,” by inventors Van L. Jacobson and James D. Thornton, filed 17 Dec. 2009;
- U.S. patent application Ser. No. 12/765,645, entitled “SESSION MIGRATION OVER CONTENT-CENTRIC NETWORKS,” by inventors James D. Thornton, Van L. Jacobson, and Diana K. Smetters, filed 22 Apr. 2010;
- U.S. patent application Ser. No. 12/852,302, entitled “SERVICE VIRTUALIZATION OVER CONTENT-CENTRIC NETWORKS,” by inventors James D. Thornton, Van L. Jacobson, and Diana K. Smetters, filed 6 Aug. 2010; and
- U.S. patent application Ser. No. 12/970,740, entitled “CUSTODIAN-BASED ROUTING IN CONTENT-CENTRIC NETWORKS,” by inventors Van L. Jacobson and Marc Mosko, filed 16 Dec. 2010;
the disclosures of which are incorporated by reference in their entirety herein.
Claims (23)
Priority Applications (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US12/970,776 US8756297B2 (en) | 2010-12-16 | 2010-12-16 | Energy-efficient content caching with custodian-based routing in content-centric networks |
JP2011264027A JP5907709B2 (en) | 2010-12-16 | 2011-12-01 | Energy efficient content caching with custodian-based routing in content-centric networks |
EP11193403.0A EP2466845B1 (en) | 2010-12-16 | 2011-12-14 | Energy-efficient content caching with custodian-based routing in content-centric networks |
KR1020110135439A KR101725306B1 (en) | 2010-12-16 | 2011-12-15 | Energy-efficient content caching with custodian-based routing in content-centric networks |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US12/970,776 US8756297B2 (en) | 2010-12-16 | 2010-12-16 | Energy-efficient content caching with custodian-based routing in content-centric networks |
Publications (2)
Publication Number | Publication Date |
---|---|
US20120158912A1 US20120158912A1 (en) | 2012-06-21 |
US8756297B2 true US8756297B2 (en) | 2014-06-17 |
Family
ID=45372225
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US12/970,776 Active 2031-10-05 US8756297B2 (en) | 2010-12-16 | 2010-12-16 | Energy-efficient content caching with custodian-based routing in content-centric networks |
Country Status (4)
Country | Link |
---|---|
US (1) | US8756297B2 (en) |
EP (1) | EP2466845B1 (en) |
JP (1) | JP5907709B2 (en) |
KR (1) | KR101725306B1 (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20140129736A1 (en) * | 2011-06-30 | 2014-05-08 | Orange | Data Routing |
US20150281083A1 (en) * | 2014-03-28 | 2015-10-01 | Research & Business Foundation Sungkyunkwan University | Content centric networking system providing differentiated service and method of controlling data traffic in content centric networking providing differentiated service |
Families Citing this family (17)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US9729669B2 (en) * | 2012-03-15 | 2017-08-08 | Alcatel Lucent | Method and system for fast and large-scale longest prefix matching |
US9326042B2 (en) | 2012-06-11 | 2016-04-26 | Samsung Electronics Co., Ltd. | Routing method for inter/intra-domain in content centric network |
KR102100710B1 (en) | 2012-11-26 | 2020-04-16 | 삼성전자주식회사 | Method for transmitting packet of node and content owner in content centric network |
KR101965794B1 (en) | 2012-11-26 | 2019-04-04 | 삼성전자주식회사 | Packet format and communication method of network node for compatibility of ip routing, and the network node |
CN103874157B (en) | 2012-12-12 | 2017-07-07 | 华为技术有限公司 | Routing forwarding, the method and its device of setting up routing table and acquisition content |
KR102134454B1 (en) | 2013-06-11 | 2020-07-15 | 삼성전자주식회사 | Communication method of node overhearing contents in a content centric network and the node |
US20150058441A1 (en) * | 2013-08-20 | 2015-02-26 | Samsung Electronics Co., Ltd. | Efficient content caching management method for wireless networks |
US10523777B2 (en) | 2013-09-30 | 2019-12-31 | Northeastern University | System and method for joint dynamic forwarding and caching in content distribution networks |
US9992281B2 (en) * | 2014-05-01 | 2018-06-05 | Cisco Technology, Inc. | Accountable content stores for information centric networks |
US10313227B2 (en) | 2015-09-24 | 2019-06-04 | Cisco Technology, Inc. | System and method for eliminating undetected interest looping in information-centric networks |
US10051071B2 (en) | 2016-03-04 | 2018-08-14 | Cisco Technology, Inc. | Method and system for collecting historical network information in a content centric network |
US10742596B2 (en) | 2016-03-04 | 2020-08-11 | Cisco Technology, Inc. | Method and system for reducing a collision probability of hash-based names using a publisher identifier |
US10264099B2 (en) | 2016-03-07 | 2019-04-16 | Cisco Technology, Inc. | Method and system for content closures in a content centric network |
US10067948B2 (en) | 2016-03-18 | 2018-09-04 | Cisco Technology, Inc. | Data deduping in content centric networking manifests |
US10091330B2 (en) | 2016-03-23 | 2018-10-02 | Cisco Technology, Inc. | Interest scheduling by an information and data framework in a content centric network |
US10320760B2 (en) | 2016-04-01 | 2019-06-11 | Cisco Technology, Inc. | Method and system for mutating and caching content in a content centric network |
US11677625B2 (en) * | 2019-07-02 | 2023-06-13 | Northeastern University | Network and method for servicing a computation request |
Citations (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20020078066A1 (en) * | 2000-12-18 | 2002-06-20 | David Robinson | Data storage system including a file system for managing multiple volumes |
US20030074472A1 (en) * | 2001-10-16 | 2003-04-17 | Lucco Steven E. | Relsolving virtual network names |
US20070204011A1 (en) * | 2006-02-28 | 2007-08-30 | Maven Networks, Inc. | Systems and methods for offline access to video content of a web-site |
US20090287835A1 (en) * | 2008-05-16 | 2009-11-19 | Palo Alto Research Center Incorporated | Method and apparatus for facilitating communication in a content centric network |
US20090307333A1 (en) * | 2008-06-05 | 2009-12-10 | Palm, Inc. | Restoring of data to mobile computing device |
US20100088370A1 (en) * | 2003-08-12 | 2010-04-08 | Riverbed Technology, Inc. | Content delivery for client server protocols with user affinities using connection end-point proxies |
EP2214357A1 (en) | 2009-01-30 | 2010-08-04 | Palo Alto Research Center Incorporated | Method and System for Facilitating Forwarding a Packet in a Content-Centric Network |
US20100250939A1 (en) * | 2009-02-26 | 2010-09-30 | Research In Motion Limited | System and method of handling encrypted backup data |
US20110106755A1 (en) * | 2009-10-30 | 2011-05-05 | Verizon Patent And Licensing, Inc. | Network architecture for content backup, restoring, and sharing |
US20110286459A1 (en) * | 2008-10-20 | 2011-11-24 | Telefonaktiebolaget Lm Ericsson (Publ) | Methods and Devices for a Client Node to Access an Information Object Located at a Node of a Secured Network via a Network of Information |
US20120136936A1 (en) * | 2010-11-30 | 2012-05-31 | France Telecom | System and method for implementing dynamic access control rules to personal cloud information |
US20120290919A1 (en) * | 2006-12-08 | 2012-11-15 | Miguel Melnyk | Content Adaptation |
Family Cites Families (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20070112938A1 (en) * | 2005-11-17 | 2007-05-17 | Nokia Corporation | Intermediary, source and methods for sharing content |
JP2008078996A (en) * | 2006-09-21 | 2008-04-03 | Brother Ind Ltd | Tree type content distribution system, content distribution method, node device, and node processing program |
US8352580B2 (en) * | 2008-11-21 | 2013-01-08 | Samsung Electronics Co., Ltd. | Server and method for providing mobile web service |
-
2010
- 2010-12-16 US US12/970,776 patent/US8756297B2/en active Active
-
2011
- 2011-12-01 JP JP2011264027A patent/JP5907709B2/en active Active
- 2011-12-14 EP EP11193403.0A patent/EP2466845B1/en active Active
- 2011-12-15 KR KR1020110135439A patent/KR101725306B1/en active IP Right Grant
Patent Citations (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20020078066A1 (en) * | 2000-12-18 | 2002-06-20 | David Robinson | Data storage system including a file system for managing multiple volumes |
US20030074472A1 (en) * | 2001-10-16 | 2003-04-17 | Lucco Steven E. | Relsolving virtual network names |
US20100088370A1 (en) * | 2003-08-12 | 2010-04-08 | Riverbed Technology, Inc. | Content delivery for client server protocols with user affinities using connection end-point proxies |
US20070204011A1 (en) * | 2006-02-28 | 2007-08-30 | Maven Networks, Inc. | Systems and methods for offline access to video content of a web-site |
US20120290919A1 (en) * | 2006-12-08 | 2012-11-15 | Miguel Melnyk | Content Adaptation |
US20090287835A1 (en) * | 2008-05-16 | 2009-11-19 | Palo Alto Research Center Incorporated | Method and apparatus for facilitating communication in a content centric network |
US20090307333A1 (en) * | 2008-06-05 | 2009-12-10 | Palm, Inc. | Restoring of data to mobile computing device |
US20110286459A1 (en) * | 2008-10-20 | 2011-11-24 | Telefonaktiebolaget Lm Ericsson (Publ) | Methods and Devices for a Client Node to Access an Information Object Located at a Node of a Secured Network via a Network of Information |
EP2214357A1 (en) | 2009-01-30 | 2010-08-04 | Palo Alto Research Center Incorporated | Method and System for Facilitating Forwarding a Packet in a Content-Centric Network |
US20100250939A1 (en) * | 2009-02-26 | 2010-09-30 | Research In Motion Limited | System and method of handling encrypted backup data |
US20110106755A1 (en) * | 2009-10-30 | 2011-05-05 | Verizon Patent And Licensing, Inc. | Network architecture for content backup, restoring, and sharing |
US20120136936A1 (en) * | 2010-11-30 | 2012-05-31 | France Telecom | System and method for implementing dynamic access control rules to personal cloud information |
Non-Patent Citations (5)
Title |
---|
Jacobson, Van et al. "Networking Named Content." Dec. 1-4, 2009. CoNEXT'09. * |
Jacobson, Van et al. "VoCCN: Voice Over Content-Centric Networks." Dec. 1, 2009. ACM ReArch'09. * |
Jacobson, Van et al., "Networking Named Context", Dec. 2009, pp. 1-13, Retrieved from the internet: URL:http://conferences.sigcomm.org/co-next/2009/papers/jacobson.pdf (Retrieved on Mar. 6, 2012). |
Jacobson, Van et al., "VoCCN: Voice-over Content-Centric Networks", Dec. 2009, pp. 1-6, Retrieved from the internet: URL:http://conferences.sigcomm.org/co-next/2009/workshops/rearch/papers/jacobson.pdf (Retrieved on Mar. 7, 2012). |
Wang, Jiangzhe et al., "DMND: Collecting Data from Mobiles Using Named Data", Vehicular Networking Conference, 2010 IEEE, pp. 49-56. |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20140129736A1 (en) * | 2011-06-30 | 2014-05-08 | Orange | Data Routing |
US9461907B2 (en) * | 2011-06-30 | 2016-10-04 | Orange | Data routing |
US20150281083A1 (en) * | 2014-03-28 | 2015-10-01 | Research & Business Foundation Sungkyunkwan University | Content centric networking system providing differentiated service and method of controlling data traffic in content centric networking providing differentiated service |
US10063476B2 (en) * | 2014-03-28 | 2018-08-28 | Research & Business Foundation Sungkyunkwan University | Content centric networking system providing differentiated service and method of controlling data traffic in content centric networking providing differentiated service |
Also Published As
Publication number | Publication date |
---|---|
KR101725306B1 (en) | 2017-05-02 |
EP2466845A1 (en) | 2012-06-20 |
KR20120087789A (en) | 2012-08-07 |
JP5907709B2 (en) | 2016-04-26 |
EP2466845B1 (en) | 2016-05-18 |
JP2012128847A (en) | 2012-07-05 |
US20120158912A1 (en) | 2012-06-21 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US8756297B2 (en) | Energy-efficient content caching with custodian-based routing in content-centric networks | |
US8644211B2 (en) | Energy-efficient content retrieval in content-centric networks | |
US8751664B2 (en) | Custodian-based routing in content-centric networks | |
US8375436B2 (en) | Session migration over content-centric networks | |
US9178917B2 (en) | Custodian routing with network address translation in content-centric networks | |
US8386622B2 (en) | Method and apparatus for facilitating communication in a content centric network | |
US20120036180A1 (en) | Service virtualization over content-centric networks | |
US9264459B2 (en) | SIP-based custodian routing in content-centric networks | |
EP2668740A2 (en) | Site-aware distributed file system access from outside enterprise network | |
JP2015197920A (en) | System and method for device registration and discovery in content-centric network | |
JP2015197919A (en) | System and method for dynamic name configuration in content-centric network | |
TWI393406B (en) | Integrating mobile content sharing and delivery system and its method in integrated network environment | |
Hu et al. | PASS: Content Pre-Staging through Provider Accessible Storage Service |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
AS | Assignment |
Owner name: PALO ALTO RESEARCH CENTER INCORPORATED, CALIFORNIA Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:JACOBSON, VAN L.;REEL/FRAME:025518/0672 Effective date: 20101216 |
|
FEPP | Fee payment procedure |
Free format text: PAYOR NUMBER ASSIGNED (ORIGINAL EVENT CODE: ASPN); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY |
|
STCF | Information on status: patent grant |
Free format text: PATENTED CASE |
|
AS | Assignment |
Owner name: PALO ALTO RESEARCH CENTER INCORPORATED, CALIFORNIA Free format text: ASSIGNMENT (IN PART);ASSIGNOR:PALO ALTO RESEARCH CENTER INCORPORATED;REEL/FRAME:040818/0419 Effective date: 20161202 Owner name: SAMSUNG ELECTRONICS CO., LTD, KOREA, REPUBLIC OF Free format text: ASSIGNMENT (IN PART);ASSIGNOR:PALO ALTO RESEARCH CENTER INCORPORATED;REEL/FRAME:040818/0419 Effective date: 20161202 |
|
AS | Assignment |
Owner name: CISCO SYSTEMS, INC., CALIFORNIA Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:PALO ALTO RESEARCH CENTER INCORPORATED;REEL/FRAME:041714/0373 Effective date: 20170110 Owner name: CISCO TECHNOLOGY, INC., CALIFORNIA Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:CISCO SYSTEMS, INC.;REEL/FRAME:041715/0001 Effective date: 20170210 |
|
MAFP | Maintenance fee payment |
Free format text: PAYMENT OF MAINTENANCE FEE, 4TH YEAR, LARGE ENTITY (ORIGINAL EVENT CODE: M1551) Year of fee payment: 4 |
|
MAFP | Maintenance fee payment |
Free format text: PAYMENT OF MAINTENANCE FEE, 8TH YEAR, LARGE ENTITY (ORIGINAL EVENT CODE: M1552); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY Year of fee payment: 8 |