US8740468B2 - Apparatus with secondary load path for vehicle wheel bearing assembly and feature to inhibit corrosion - Google Patents
Apparatus with secondary load path for vehicle wheel bearing assembly and feature to inhibit corrosion Download PDFInfo
- Publication number
- US8740468B2 US8740468B2 US13/075,580 US201113075580A US8740468B2 US 8740468 B2 US8740468 B2 US 8740468B2 US 201113075580 A US201113075580 A US 201113075580A US 8740468 B2 US8740468 B2 US 8740468B2
- Authority
- US
- United States
- Prior art keywords
- wheel
- component
- extension
- gap
- rotation
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active, expires
Links
- 230000007797 corrosion Effects 0.000 title abstract description 38
- 238000005260 corrosion Methods 0.000 title abstract description 38
- 238000000576 coating method Methods 0.000 claims abstract description 19
- 239000000314 lubricant Substances 0.000 claims abstract description 8
- 239000011248 coating agent Substances 0.000 claims description 11
- 229910000831 Steel Inorganic materials 0.000 claims description 9
- 239000010959 steel Substances 0.000 claims description 9
- 238000005096 rolling process Methods 0.000 description 33
- 230000002401 inhibitory effect Effects 0.000 description 22
- 239000000725 suspension Substances 0.000 description 14
- 230000000712 assembly Effects 0.000 description 4
- 238000000429 assembly Methods 0.000 description 4
- 230000008901 benefit Effects 0.000 description 3
- 239000000463 material Substances 0.000 description 3
- PXHVJJICTQNCMI-UHFFFAOYSA-N Nickel Chemical compound [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 description 2
- 238000004070 electrodeposition Methods 0.000 description 2
- 239000000843 powder Substances 0.000 description 2
- 230000007423 decrease Effects 0.000 description 1
- 230000003247 decreasing effect Effects 0.000 description 1
- 230000001419 dependent effect Effects 0.000 description 1
- 238000006073 displacement reaction Methods 0.000 description 1
- 239000004519 grease Substances 0.000 description 1
- 238000000465 moulding Methods 0.000 description 1
- 229910052759 nickel Inorganic materials 0.000 description 1
- 229910001220 stainless steel Inorganic materials 0.000 description 1
- 239000010935 stainless steel Substances 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 1
Images
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F16—ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
- F16D—COUPLINGS FOR TRANSMITTING ROTATION; CLUTCHES; BRAKES
- F16D55/00—Brakes with substantially-radial braking surfaces pressed together in axial direction, e.g. disc brakes
- F16D55/02—Brakes with substantially-radial braking surfaces pressed together in axial direction, e.g. disc brakes with axially-movable discs or pads pressed against axially-located rotating members
- F16D55/22—Brakes with substantially-radial braking surfaces pressed together in axial direction, e.g. disc brakes with axially-movable discs or pads pressed against axially-located rotating members by clamping an axially-located rotating disc between movable braking members, e.g. movable brake discs or brake pads
- F16D55/224—Brakes with substantially-radial braking surfaces pressed together in axial direction, e.g. disc brakes with axially-movable discs or pads pressed against axially-located rotating members by clamping an axially-located rotating disc between movable braking members, e.g. movable brake discs or brake pads with a common actuating member for the braking members
- F16D55/225—Brakes with substantially-radial braking surfaces pressed together in axial direction, e.g. disc brakes with axially-movable discs or pads pressed against axially-located rotating members by clamping an axially-located rotating disc between movable braking members, e.g. movable brake discs or brake pads with a common actuating member for the braking members the braking members being brake pads
- F16D55/226—Brakes with substantially-radial braking surfaces pressed together in axial direction, e.g. disc brakes with axially-movable discs or pads pressed against axially-located rotating members by clamping an axially-located rotating disc between movable braking members, e.g. movable brake discs or brake pads with a common actuating member for the braking members the braking members being brake pads in which the common actuating member is moved axially, e.g. floating caliper disc brakes
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F16—ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
- F16C—SHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
- F16C19/00—Bearings with rolling contact, for exclusively rotary movement
- F16C19/02—Bearings with rolling contact, for exclusively rotary movement with bearing balls essentially of the same size in one or more circular rows
- F16C19/14—Bearings with rolling contact, for exclusively rotary movement with bearing balls essentially of the same size in one or more circular rows for both radial and axial load
- F16C19/18—Bearings with rolling contact, for exclusively rotary movement with bearing balls essentially of the same size in one or more circular rows for both radial and axial load with two or more rows of balls
- F16C19/181—Bearings with rolling contact, for exclusively rotary movement with bearing balls essentially of the same size in one or more circular rows for both radial and axial load with two or more rows of balls with angular contact
- F16C19/183—Bearings with rolling contact, for exclusively rotary movement with bearing balls essentially of the same size in one or more circular rows for both radial and axial load with two or more rows of balls with angular contact with two rows at opposite angles
- F16C19/184—Bearings with rolling contact, for exclusively rotary movement with bearing balls essentially of the same size in one or more circular rows for both radial and axial load with two or more rows of balls with angular contact with two rows at opposite angles in O-arrangement
- F16C19/186—Bearings with rolling contact, for exclusively rotary movement with bearing balls essentially of the same size in one or more circular rows for both radial and axial load with two or more rows of balls with angular contact with two rows at opposite angles in O-arrangement with three raceways provided integrally on parts other than race rings, e.g. third generation hubs
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F16—ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
- F16C—SHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
- F16C19/00—Bearings with rolling contact, for exclusively rotary movement
- F16C19/52—Bearings with rolling contact, for exclusively rotary movement with devices affected by abnormal or undesired conditions
- F16C19/522—Bearings with rolling contact, for exclusively rotary movement with devices affected by abnormal or undesired conditions related to load on the bearing, e.g. bearings with load sensors or means to protect the bearing against overload
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F16—ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
- F16C—SHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
- F16C33/00—Parts of bearings; Special methods for making bearings or parts thereof
- F16C33/30—Parts of ball or roller bearings
- F16C33/58—Raceways; Race rings
- F16C33/62—Selection of substances
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F16—ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
- F16C—SHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
- F16C33/00—Parts of bearings; Special methods for making bearings or parts thereof
- F16C33/72—Sealings
- F16C33/76—Sealings of ball or roller bearings
- F16C33/78—Sealings of ball or roller bearings with a diaphragm, disc, or ring, with or without resilient members
- F16C33/7869—Sealings of ball or roller bearings with a diaphragm, disc, or ring, with or without resilient members mounted with a cylindrical portion to the inner surface of the outer race and having a radial portion extending inward
- F16C33/7879—Sealings of ball or roller bearings with a diaphragm, disc, or ring, with or without resilient members mounted with a cylindrical portion to the inner surface of the outer race and having a radial portion extending inward with a further sealing ring
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F16—ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
- F16C—SHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
- F16C39/00—Relieving load on bearings
- F16C39/02—Relieving load on bearings using mechanical means
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F16—ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
- F16C—SHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
- F16C2326/00—Articles relating to transporting
- F16C2326/01—Parts of vehicles in general
- F16C2326/02—Wheel hubs or castors
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F16—ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
- F16C—SHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
- F16C33/00—Parts of bearings; Special methods for making bearings or parts thereof
- F16C33/02—Parts of sliding-contact bearings
- F16C33/04—Brasses; Bushes; Linings
- F16C33/06—Sliding surface mainly made of metal
- F16C33/10—Construction relative to lubrication
- F16C33/102—Construction relative to lubrication with grease as lubricant
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F16—ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
- F16C—SHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
- F16C33/00—Parts of bearings; Special methods for making bearings or parts thereof
- F16C33/30—Parts of ball or roller bearings
- F16C33/66—Special parts or details in view of lubrication
- F16C33/6603—Special parts or details in view of lubrication with grease as lubricant
Definitions
- the invention relates to an apparatus that provides a load path for a lateral force applied to a vehicle wheel assembly.
- a lateral load on a vehicle wheel is typically borne along a load path through the rolling elements and bearing races of the wheel bearing assembly.
- the rolling elements and bearing races are designed to handle these lateral forces without causing excessive plastic deformation of the races, referred to as Brinell damage, as excessive plastic deformation can result in bearing vibration and noise.
- Typical solutions implemented to prevent excessive Brinell damage include increasing the size of the bearings and surrounding brake corner components. However, this increases component weight. Tapered bearings are sometimes used as they have a greater contact area with the races and thus can dissipate a greater load. However, tapered bearings have higher drag, reducing vehicle efficiency.
- Some bearings are asymmetrical, having a first row of rolling elements of larger diameter or increased number than a second row of rolling elements.
- the increased number or size of bearing elements reduces the stress on each element and the localized area of the raceway that is in contact with each element. This design option also increases weight and cost, and requires redesign of the bearing races.
- the apparatus includes a first component mounted for rotation with the wheel and a second component spaced from the first component by a predetermined gap and not connected for rotation with the wheel.
- One of the first and the second components is displaced relative to the other upon application of a force to close the gap and contact the other of the first and second components to at least partially form a load path for the force.
- the load path is a secondary load path that bypasses the bearing races, preventing excessive plastic deformation of the races.
- the apparatus is configured with at least one feature to inhibit corrosion of the first and second components at the gap.
- the feature may be an extension of the second component that localizes the gap to just a portion of the second component.
- coatings, shims, lubricants, and seals may be used alone or in combination to prevent corrosion at the gap.
- FIG. 1 is a schematic cross-sectional illustration of a portion of a vehicle having a wheel bearing assembly with wheel races and a first embodiment of an apparatus configured to provide a secondary load path, taken at the lines 1 - 1 of FIG. 3 shown prior to an applied force, and having an extension that provides a portion of the secondary load path and has a corrosion-inhibiting feature;
- FIG. 2 is a schematic cross-sectional illustration of the portion of the vehicle of FIG. 1 after the applied force, showing the secondary load path formed that bypasses the wheel bearing races;
- FIG. 3 is a schematic perspective illustration of a nonrotating component of the wheel bearing assembly of FIGS. 1 and 2 showing the extension;
- FIG. 4 is a schematic perspective illustration in fragmentary view of a a first alternate embodiment of the extension of FIG. 3 ;
- FIG. 5 is a schematic perspective illustration in fragmentary view of a second alternate embodiment of the extension of FIG. 3 ;
- FIG. 6 is a schematic perspective illustration in fragmentary view of a third alternate embodiment of the extension of FIG. 3 ;
- FIG. 7 is a schematic cross-sectional illustration in fragmentary view of a fourth alternate embodiment of the extension of FIG. 3 ;
- FIG. 8 is a schematic cross-sectional illustration in fragmentary view of a fifth alternate embodiment of the extension of FIG. 3 ;
- FIG. 9 is a schematic cross-sectional illustration in fragmentary view of a sixth alternate embodiment of the extension of FIG. 3 ;
- FIG. 10 is a schematic cross-sectional illustration of a portion of the wheel bearing assembly of FIG. 1 having a shim as a corrosion-inhibiting feature;
- FIG. 11 is a schematic cross-sectional illustration of a portion of the wheel bearing assembly of FIG. 1 having two shims as corrosion-inhibiting features;
- FIG. 12 is a schematic cross-sectional illustration of a portion of the wheel bearing assembly of FIG. 1 having a coating as a corrosion-inhibiting feature;
- FIG. 13 is a schematic cross-sectional illustration of a portion of the wheel bearing assembly of FIG. 1 having a lubricant as a corrosion-inhibiting feature;
- FIG. 14 is a schematic cross-sectional illustration of a portion of the wheel bearing assembly of FIG. 1 having a first embodiment of a seal as a corrosion-inhibiting feature;
- FIG. 15 is a portion of the wheel bearing assembly of FIG. 1 having a second embodiment of a seal as a corrosion-inhibiting feature;
- FIG. 16 is a schematic partially cross-sectional illustration of an apparatus to provide a secondary load path through a brake caliper bracket and brake rotor that bypasses the wheel bearing races, shown prior to an applied force;
- FIG. 17 is a schematic partially cross-sectional illustration of another apparatus to provide a secondary load path through a brake caliper bracket and brake rotor that bypasses the wheel bearing races, shown prior to an applied force;
- FIG. 18 is a schematic partially cross-sectional illustration of an apparatus to provide a secondary load path through a steering knuckle and a brake rotor that bypasses the wheel bearing races, shown prior to an applied force and having yet another alternate corrosion-inhibiting feature.
- FIG. 1 shows a portion of a vehicle 10 with a wheel bearing assembly 12 for supporting a wheel (not shown).
- An apparatus 14 is provided that forms a secondary load path during an applied force, such as a force resulting from a curb impact, a pothole, or off-road use, to reduce the load borne by the wheel bearing assembly 12 , thereby improving the Brinell performance of the bearing assembly 12 , as further described below.
- the apparatus 14 creates a gap 40 that is closed upon an application of a sufficient force F to provide a secondary load path. Because the gap 40 is of a relatively small size, one or more corrosion-inhibiting features are provided at the gap 40 to ensure that any corrosion of components at the gap 40 does not fill or partially fill the gap.
- the bearing assembly 12 includes a rotatable wheel hub 16 , also referred to herein as a first component, having a flange 18 to which a wheel is mounted by fasteners 20 (one shown). Wheel hub 16 is also referred to as a wheel mounting component. The wheel hub 16 rotates about axis A.
- the bearing assembly 12 also includes a bearing outer ring 22 , also referred to herein as a second component, adapted to be fastened or otherwise secured to vehicle suspension structure 24 such that it is substantially nonrotatable about axis A.
- the bearing assembly 12 has an annular inner bearing ring 26 secured for rotation with the wheel hub 16 and defining an inner bearing race 27 .
- An outer bearing race 28 is defined by the bearing outer ring 22 .
- the bearing races 27 , 28 support a first set of rolling elements 30 that aid in rotation of the wheel hub 16 relative to the bearing outer ring 22 .
- the wheel hub 16 defines another inner bearing race 32 and the outer ring 22 defines another outer bearing race 34 .
- a second set of rolling elements 36 are supported between the races 32 , 34 .
- the bearing races 27 , 28 and rolling elements 30 are relatively inboard on the vehicle 10 and the bearing races 32 , 34 and rolling elements 36 are relatively outboard on the vehicle 10 .
- the rolling elements 30 , 36 of this embodiment are balls.
- the bearing races 27 , 28 , 32 and 34 have generally arcuate profiles to allow low friction rotation of the rolling elements 30 , 36 .
- the outer races 28 and 34 have arcuate profiles with a base and a shoulder.
- the base is the portion of the arcuate profile furthest from the axis of rotation for the outer bearing races 28 , 34 and closest to the axis of rotation for the inner bearing races 27 , 32 .
- base B 1 and shoulder S 4 are shown on race 34 .
- Base B 2 and shoulder S 1 are shown on race 28 .
- any of the bearing assemblies described herein may have tapered bearings, a combination of a row of tapered bearings and a row of ball bearings, rows with differently-sized tapered or ball bearings, several rows of bearings, or any other bearing configuration.
- Other types of bearing assemblies are within the scope of the claimed invention, such as those in which the inner race is not integrally formed with the wheel hub and the outer race is not integrally formed with vehicle suspension structure.
- the diameters D 1 , D 2 of the respective rolling elements 30 , 36 and the shoulder heights H 1 , H 2 , H 3 , H 4 of the respective raceways 27 , 28 , 32 , 34 are generally equal.
- the inboard rolling elements 30 and the outboard rolling elements 36 may be of different sizes.
- the shoulder heights H 1 , H 2 , H 3 and H 4 may be different.
- the shoulder heights H 1 , H 2 , H 3 and H 4 are 30 to 50 percent of the respective diameters D 1 , D 2 in order to prevent excessive stress concentrations in the hub 16 or outer ring 22 , as can occur with low shoulder heights.
- a force shown in FIG. 1 as an inboard-directed force F, will be transmitted to the wheel hub 16 .
- the force F is represented by an arrow acting directly on the wheel hub 16 , although the force may occur below the level shown.
- the force may be in any direction that includes a laterally inboard or laterally outboard component.
- the energy of the force will be absorbed along a first load path P 1 represented by the phantom arrow shown in FIG. 1 .
- the load is transmitted via the rolling elements 36 and the races 32 , 34 from the wheel hub flange 18 to the outer bearing ring 22 and the suspension member 24 .
- the representative force F causes a counterclockwise moment on the flange 18 , displacing the hub 16 and raceways 32 , 27 slightly inward relative to their position prior to application of the force. This can cause the points of contact of rolling elements 30 , 36 to shift with respect to the races 27 , 28 , 32 , 34 , potentially all the way to the edges of the shoulders S 1 , S 2 , S 3 , S 4 , resulting in stress concentrations at the edges of the shoulders S 1 , S 2 , S 3 , S 4 .
- a typical bearing assembly is usually designed with large ball rolling elements or tapered rolling elements to prevent Brinell damage.
- a gap 40 also referred to as a clearance
- an annular surface 42 of the flange 18 facing the outer ring 22 and an annular surface 44 of an extension 41 of the outer ring 22 facing the flange 18 is controlled to a predetermined width to ensure that the surface 42 will contact the surface 44 at a predetermined level of force F, as shown in FIG. 2 .
- Contact between the surfaces 42 , 44 creates an alternative load path P 2 shown in FIG. 2 from the flange 18 to the outer ring 22 to the suspension structure 24 .
- Some of the load is carried along the secondary load path P 2 that bypasses the rolling elements 30 , 36 and races 27 , 28 , 32 , 34 , reducing the load that must be carried along the initial load path, preventing Brinell damage without requiring a larger bearing assembly or larger rolling elements.
- the size of the gap 40 is partially dependent upon the distance of the intended area of contact (between surfaces 42 , 44 ) from the axis A, as movement of the flange 18 in a lateral direction increases as distance from axis A increases. Testing has shown that for a bearing assembly 12 having an outer ring 22 with an effective diameter of 80 mm, a gap 40 of 0.4 mm provides some improvement in Brinell performance and a gap of 0.3 mm provides substantial improvement in preventing Brinell damage to the races 27 , 28 , 32 , 34 .
- the gap 40 must be large enough to avoid unintended contact between the surfaces 42 , 44 during high speed turns of the wheel, or during high G turns below a certain magnitude.
- the radial width W (see FIG. 2 ) of the area of contact between the surfaces 42 , 44 should be wide enough to avoid creating excessive stress in the extended portion 41 .
- the shoulder heights H 1 , H 2 , H 3 , H 4 of the races 27 , 28 , 32 , 34 may be greater than about 30% and less than about 50% of the diameters D 1 , D 2 of the rolling elements 30 , 36 .
- the slight shift of the point of contact of the rolling elements 30 , 36 along the races 27 , 28 , 32 , 34 may be limited to a change in height of the points of contact above the base of the races along the race profiles of not more than about 35% of the diameter of the rolling elements 30 , 36 .
- the rolling elements 30 , 36 are shown having the same diameter D 1 , D 2 , they could have different diameters.
- the diameter of the outboard rolling elements 36 may be larger than the diameter of the inboard rolling elements 30 .
- the rolling elements 30 , 36 may be different types.
- the outboard rolling elements 36 could be tapered bearings while the inboard rolling elements 30 are ball-type bearings. Tapered bearings generally disperse force over a wider area of contact with the bearing races, allowing greater loading without excessive stress concentration.
- a similar extension 45 is at circumferentially-spaced from extension 41 , and is at the 12-o'clock position in this embodiment.
- the gap 40 is created by extending a portion 41 of the outer ring 22 toward the flange 18 .
- the extension 41 is only a segment of an annulus 43 of the outer ring 22 so that the gap 40 is defined only at the extension 41 , with a similar gap at the similar extension 45 . This minimizes the area of contact of the nonrotating surface 42 to the surface 44 of the extension 41 in comparison to, for example, a gap created between the entire circumference of annulus 43 and the flange 18 .
- any material that corrodes at the extension 41 may be more easily broken off during contact with the hub 16 than if the hub 16 interfaced with the entire annulus 43 .
- the extension 41 is offset from axis A at a predetermined location, specifically to interface at the lowest, centered position of the wheel hub 16 , referred to as “the six o'clock position”, where over-stress from a curb impact is most likely to direct a force inboard toward the bearing assembly 12 . In other embodiments, only extension 41 may be provided.
- the extension could include the entire circumference of the annulus 43 , if the annulus 43 was modified to have an angled or rounded profile to reduce the surface area at the gap 40 , similar to the profiles of the extensions of FIGS. 7-9 , described below.
- FIGS. 4-9 illustrate alternate ways of configuring the extension 41 to localize the contact area at the gap 40 even more.
- an extension 41 A is shown formed with a notch 70 that decreases the surface area of extension 41 A to areas 44 A and 44 B. By minimizing the surface area 44 A, 44 B, less noise and drag will be created from any corrosion at the surface areas 44 A, 44 B.
- an alternate extension 41 B has rounded edges 72 A, 72 B that slightly reduce the surface area 44 C of extension 41 B that will interface with surface area 42 of flange 18 .
- an alternate extension 41 C has a corrosion-inhibiting coating 74 added to the surface facing the surface 42 of the wheel flange 18 of FIGS. 1 and 2 .
- the coating 74 will be located at and partially form the gap 40 of FIGS. 1 and 2 .
- the coating 74 could be an electrocoating, a powder coating, an ultraviolet coating, or any other suitable coating that will reduce the likelihood of corrosion of the extension 41 C.
- FIGS. 7-9 show still alternate extensions that minimize surface area of the portion of the extension that will form the gap 40 of FIGS. 1 and 2 .
- FIGS. 7-9 are views of alternate extensions taken at the same location as the cross-sectional views of FIGS. 1 and 2 .
- FIG. 7 shows an extension 41 D having a profile with a minimal surface area 44 E sufficient to form a portion of the secondary load path P 2 shown in FIG. 2 without breaking, but with a smaller contact area that the extension 41 of FIGS. 1 and 2 .
- the profile is defined by surface 44 E in combination with another angled surface 76 A that tapers to surface 44 E.
- FIG. 8 has a similarly reduced surface area 44 F that will define the gap 40 with flange 18 , and is sufficient to form a portion of secondary load path P 2 without breaking
- the angled surface 76 B tapers to surface 44 F (the contact surface) to define the profile of extension 41 E.
- FIG. 9 shows another alternate extension 41 F shaped similarly to extension 41 of FIG. 3 except with smoothed edges to create a smoothed contact surface area 44 G.
- FIGS. 10 and 11 demonstrate the use of one or more shims as corrosion-inhibiting features at the aforementioned predetermined gap in an apparatus forming a secondary load path.
- FIG. 10 shows a wheel bearing assembly 112 with an apparatus 114 including a rotatable wheel hub 116 , also referred to as a first component, and a bearing outer ring 122 , also referred to as a second component, functioning in all respects the same as described with respect to wheel bearing assembly 12 .
- a shim 141 is secured to the bearing outer ring 122 .
- the shim 141 is shown on a similar extension of the bearing outer ring 122 opposite the location of the extension 41 of bearing ring 12 in FIG. 1 .
- the shim 141 may be annular, surrounding the perimeter of the bearing outer ring annulus.
- the shim 141 partially defines a gap 140 of predetermined width between the flange 118 and the bearing outer ring 122 .
- the gap 140 is of a predetermined size that will close, allowing a secondary load path to be formed from the wheel hub 116 to the bearing outer ring 122 , bypassing the bearing races, as described with respect to the wheel bearing assembly 12 of FIGS. 1-3 .
- the shim 141 is a stainless or coated steel or other material selected for its corrosion resistance.
- the shim 141 helps to prevent corrosion of the wheel hub 116 and bearing outer ring 122 from causing noise, drag, or even wheel lock-up.
- FIG. 11 shows the wheel bearing assembly 112 with an apparatus 114 A that includes the wheel hub 116 and bearing outer ring 122 to partially define a secondary load path that bypasses the bearing races, as discussed with respect to FIGS. 1-3 .
- the apparatus 114 A further includes not only a shim 141 AA arranged like shim 141 of FIG. 10 and referred to as a second shim, but also shim 143 , referred to as a first shim. Shim 143 is connected for rotation with the wheel hub 116 . Surfaces of the shims 141 AA, 143 face one another and define a gap 140 A of predetermined width therebetween.
- Shim 143 may also be a stainless steel, coated steel, or other suitable corrosion-inhibiting material. In another embodiment, only shim 143 may be used as the corrosion-inhibiting feature.
- the extension 41 of FIG. 1 may have a shim connected to cover surface 44 .
- the use of the shims 141 or 141 AA and 143 may allow existing wheel bearing assemblies to be retrofitted to provide a secondary load path as described, because the thickness of the shims 141 or 141 AA and 143 can be adjusted to control the width of the gap 140 , rather than modifying either the wheel hub 116 or the bearing outer ring 122 .
- FIG. 12 shows yet another corrosion-inhibiting feature at the aforementioned predetermined gap of a wheel bearing assembly 112 .
- an apparatus 114 B includes a coating 141 A applied to the bearing outer ring 122 , and a coating 141 B applied to the wheel hub 116 .
- the coatings 141 A and 141 B are applied to the bearing outer ring 122 and wheel hub 116 at surfaces of the components that define the predetermined gap 140 .
- the coatings 141 A and 141 B may be electrocoatings, powder coatings, ultraviolet coatings, or other suitable coatings.
- FIG. 13 another apparatus 114 C with a corrosion-inhibiting feature at a gap 140 is illustrated.
- the corrosion-inhibiting feature is a lubricant 141 C inserted into the gap 140 .
- An outboard bearing seal 180 held by a steel stamping 181 protects the races 32 , 34 from dirt and debris, and helps to hold the lubricant 141 C at the gap 40 .
- Suitable lubricants include grease and nickel anti-seize, and may perform best if water resistant.
- FIGS. 14 and 15 show different embodiments of seals positioned radially-outward of the gap 140 and configured to span the gap 140 between the wheel hub 116 and bearing outer ring 122 to prevent moisture and debris from corroding the wheel hub 116 and bearing outer ring 122 at the gap 140 .
- the corrosion-inhibiting feature of apparatus 114 D is an additional lip 141 D of an extended molded seal continuous with the outboard bearing seal 180 molded to steel stamping 181 A.
- the corrosion-inhibiting feature of apparatus 114 E is an additional lip 141 E molded to a radially-outer surface of steel stamping 181 B of an outboard bearing seal 180 .
- the steel stamping 181 B extends around the annulus of bearing outer ring 122 to a radially-outer surface to provide an additional molding surface for the lip 141 E.
- the lip 141 D or 141 E spans between the wheel hub 116 and the bearing outer ring 122 to protect debris from entering the gap 140 , and thus inhibiting corrosion at the surfaces of the wheel hub 116 , and bearing outer ring 122 defining the gap 140 .
- the use of the steel stampings 181 A or 181 B may allow existing wheel bearing assemblies to be retrofitted to provide a secondary load path as described, because the thickness of the steel stamping 181 A or 181 B can be adjusted to control the width of the gap 140 , rather than modifying either the wheel hub 116 or the bearing outer ring 122 .
- FIG. 16 a corner assembly portion of another vehicle 210 is shown from above, with the vehicle suspension structure 24 of FIGS. 1-3 shown in greater detail.
- the bearing assembly 212 includes rotatable hub 16 and outer ring 22 (not visible) as described with respect to FIG. 1-2 .
- a brake assembly is shown with brake rotor 254 connected for rotation with the hub 16 , a brake caliper 256 secured to the vehicle suspension structure 24 , and a floating-type brake caliper bracket 258 .
- An apparatus 214 is provided that creates a secondary load path upon application of a sufficient force.
- the secondary load path bypasses the races of the bearing assembly 212 .
- Much of the bearing assembly 212 is not visible in the plan view of FIG. 4 ; however, bearing assembly 212 is substantially identical to bearing assembly 12 of FIGS. 1-2 .
- the apparatus 214 includes an extension 250 , which may be a shim or nub, at a lower portion (below the axis of rotation) of the inboard side of the caliper bracket 258 , extending outboard toward the rotor 254 .
- the apparatus 214 further includes an extension 260 , which may be a shim or nub, placed relatively high (above the axis of rotation) on an outboard side of the caliper bracket 258 and extending inboard toward an upper portion of the rotor 254 .
- extension 260 may be a shim or nub, placed relatively high (above the axis of rotation) on an outboard side of the caliper bracket 258 and extending inboard toward an upper portion of the rotor 254 .
- both extensions 250 , 260 appear to be at the same level; however, extension 260 is higher than extension 250 .
- a moment is created on the wheel hub 16 that causes movement of the wheel hub 16 and the rotor 254 to close a predetermined gap 240 normally existing between the extension 250 and the rotor 254 , with the extension 250 contacting the rotor 254 .
- the force F is shown in phantom, applied to a lower portion of the rotor 254 below the hub 16 that is not visible in FIG. 4 .
- a gap 242 is closed between the extension 260 and the rotor 254 .
- a secondary load path is created from the rotor through the extensions 250 , 260 to the brake caliper bracket 258 , to the attached suspension structure 24 .
- the gaps 240 , 242 are of predetermined sizes based on their relative distances from the axis of rotation of the bearing assembly 212 so that they will be closed by displacement of the rotor 254 and establish the secondary load path upon a sufficient force F, thus preventing excessive Brinell damage to the races of the bearing assembly 212 .
- an applied force is less than a predetermined amount, the gaps 240 , 242 do not close, and the entire load is carried through the load path that passes through the bearing assembly 212 .
- Any of the corrosion-inhibiting features of FIGS. 1-15 may be used to inhibit corrosion of the components forming the gaps 240 and 242 .
- extensions 250 , 260 may be coated, may have a surface area-minimizing profile, lubricants may be inserted in the gap, etc.
- a bearing assembly 312 has a rotatable hub 316 to which the wheel (not shown) is connected for rotation, as is known.
- the bearing assembly 312 also has an outer ring 322 fixed to the suspension structure 24 .
- Rolling elements 330 , 336 roll along races visible in FIG. 17 formed by the outer ring 322 , the hub 316 and an inner ring 326 .
- a brake assembly is shown with brake rotor 354 connected for rotation with the hub 316 , a brake caliper 356 secured to the vehicle suspension structure 24 , and a brake caliper bracket 358 .
- An apparatus 314 is provided that creates a secondary load path upon application of sufficient force F. The secondary load path bypasses the races of the bearing assembly 312 .
- the apparatus 314 includes an extension 360 , which may be a shim or nub, placed relatively high (above the axis of rotation) on the brake caliper bracket 358 outboard of the brake rotor 354 and extending inward toward the brake rotor 354 .
- the extension 360 is configured to form a predetermined gap 340 between the extension 360 and the brake rotor 354 .
- Another extension, shim or nub is placed relatively low on the brake caliper bracket 358 , inboard of the brake rotor 354 and extends outward toward the brake rotor 354 to form another predetermined gap between the caliper 358 and the rotor 354 .
- This extension is not visible in FIG. 17 , as it is behind the hub 316 on the inboard portion of the caliper 358 .
- Any of the corrosion-inhibiting features of FIGS. 1-15 may be used to inhibit corrosion of the components (e.g., extension 360 ) forming the gap 340 .
- a corner assembly portion of another vehicle 410 is shown in a cross-sectional side view.
- a bearing assembly 412 is provided that is substantially identical to bearing assembly 312 as described with respect to FIG. 5 .
- a brake rotor 454 , brake caliper 456 and brake caliper bracket 458 are as described with respect to like components of FIG. 17 , except that the brake caliper bracket 458 is not configured with extensions, shims or nubs to create a secondary load path.
- the bearing outer ring 422 and caliper bracket 456 are secured to suspension structure 424 .
- Rolling elements 430 , 436 roll along races visible in FIG. 18 formed by the outer ring 422 , the hub 416 and an inner ring 426 .
- An apparatus 414 creating a secondary load path as discussed below is provided by an extension 462 of a steering knuckle 460 or other portion of the suspension structure 424 that is sized to create a predetermined gap 440 between an inboard facing surface 442 of the brake rotor 454 and an outboard facing surface 444 of the extension 462 .
- the gap 440 is at least partly maintained and the surfaces 442 , 444 do not contact one another.
- a load path for such low level curb events is carried from the rotor 454 through the hub 416 , rolling elements 430 , 436 , and bearing races to the outer ring 422 and suspension structure 424 .
- the apparatus When an applied force F reaches a predetermined level, the apparatus is configured so that inboard movement of the rotor 454 caused by a clockwise moment on the rotor 454 due to the force F will cause surface 442 to contact surface 444 .
- the secondary load path is thus created from the rotor 454 to the extension 462 and suspension structure 424 that bypasses the bearing 412 , carrying some of the load in parallel with a portion of the load carried along the initial load path through the races, thus preventing Brinell damage to the bearing races.
- Any of the corrosion-inhibiting features of FIGS. 1-15 may be used to inhibit corrosion of the components (rotor 454 and extension 462 ) forming the gap 440 .
Landscapes
- Engineering & Computer Science (AREA)
- General Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- Rolling Contact Bearings (AREA)
Abstract
Description
Claims (13)
Priority Applications (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| US13/075,580 US8740468B2 (en) | 2010-04-05 | 2011-03-30 | Apparatus with secondary load path for vehicle wheel bearing assembly and feature to inhibit corrosion |
Applications Claiming Priority (2)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| US32094710P | 2010-04-05 | 2010-04-05 | |
| US13/075,580 US8740468B2 (en) | 2010-04-05 | 2011-03-30 | Apparatus with secondary load path for vehicle wheel bearing assembly and feature to inhibit corrosion |
Publications (2)
| Publication Number | Publication Date |
|---|---|
| US20110243487A1 US20110243487A1 (en) | 2011-10-06 |
| US8740468B2 true US8740468B2 (en) | 2014-06-03 |
Family
ID=44709773
Family Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| US13/075,580 Active 2032-06-23 US8740468B2 (en) | 2010-04-05 | 2011-03-30 | Apparatus with secondary load path for vehicle wheel bearing assembly and feature to inhibit corrosion |
Country Status (1)
| Country | Link |
|---|---|
| US (1) | US8740468B2 (en) |
Cited By (4)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US20110135233A1 (en) * | 2009-12-04 | 2011-06-09 | Gm Global Technology Operations, Inc. | Apparatus with secondary load path for vehicle wheel bearing assembly |
| US20140331790A1 (en) * | 2013-05-08 | 2014-11-13 | Fuji Jukogyo Kabushiki Kaisha | Wheel reaction force detecting apparatus |
| US20180363500A1 (en) * | 2015-12-04 | 2018-12-20 | Borgwarner Inc. | Non-symmetric ball bearing system for a turbocharger |
| US20180361786A1 (en) * | 2015-11-02 | 2018-12-20 | Schaeffler Technologies AG & Co. KG | Wheel bearing unit |
Families Citing this family (4)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| JP6009149B2 (en) * | 2011-06-14 | 2016-10-19 | Ntn株式会社 | Manufacturing method of wheel bearing device |
| US10464370B2 (en) | 2015-11-02 | 2019-11-05 | Schaeffler Technologies AG & Co. KG | Wheel bearing unit |
| KR20180075529A (en) * | 2015-11-02 | 2018-07-04 | 섀플러 테크놀로지스 아게 운트 코. 카게 | Wheel bearing unit |
| US11600224B2 (en) * | 2020-03-27 | 2023-03-07 | Boe Technology Group Co., Ltd. | Gate driving circuit and driving method thereof, display panel |
Citations (13)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US3583511A (en) | 1968-04-10 | 1971-06-08 | Skf Ind Inc | Rolling bearing |
| GB1319680A (en) | 1970-11-11 | 1973-06-06 | Rubber Plastics Ltd | Ball bearings |
| DE2707352A1 (en) | 1977-02-19 | 1978-08-24 | Kugelfischer G Schaefer & Co | Antifriction bearing with overload protection - has races radially extended to form gap smaller than admissible incidental deformation |
| US4269460A (en) | 1977-11-14 | 1981-05-26 | Glaenzer Spicer | Ball bearing and applications thereof |
| US4618159A (en) * | 1984-11-13 | 1986-10-21 | The Budd Company | Steering knuckle assembly |
| JP2005291485A (en) * | 2004-03-10 | 2005-10-20 | Nsk Ltd | Bearing device |
| US20070076994A1 (en) * | 2005-10-04 | 2007-04-05 | Takayuki Norimatsu | Wheel bearing apparatus |
| JP2007271055A (en) * | 2006-03-31 | 2007-10-18 | Jtekt Corp | Hub unit |
| EP1950435A1 (en) | 2005-11-07 | 2008-07-30 | Ntn Corporation | Wheel bearing device |
| US7524115B2 (en) * | 2003-12-16 | 2009-04-28 | Ntn Corporation | Rolling bearing |
| US20090220183A1 (en) * | 2008-11-06 | 2009-09-03 | Meeker Steven E | Wheel bearing assembly |
| US20110135233A1 (en) * | 2009-12-04 | 2011-06-09 | Gm Global Technology Operations, Inc. | Apparatus with secondary load path for vehicle wheel bearing assembly |
| US8303190B2 (en) * | 2007-05-29 | 2012-11-06 | Ntn Corporation | Wheel bearing apparatus for a vehicle |
-
2011
- 2011-03-30 US US13/075,580 patent/US8740468B2/en active Active
Patent Citations (14)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US3583511A (en) | 1968-04-10 | 1971-06-08 | Skf Ind Inc | Rolling bearing |
| GB1319680A (en) | 1970-11-11 | 1973-06-06 | Rubber Plastics Ltd | Ball bearings |
| DE2707352A1 (en) | 1977-02-19 | 1978-08-24 | Kugelfischer G Schaefer & Co | Antifriction bearing with overload protection - has races radially extended to form gap smaller than admissible incidental deformation |
| US4269460A (en) | 1977-11-14 | 1981-05-26 | Glaenzer Spicer | Ball bearing and applications thereof |
| US4618159A (en) * | 1984-11-13 | 1986-10-21 | The Budd Company | Steering knuckle assembly |
| US7524115B2 (en) * | 2003-12-16 | 2009-04-28 | Ntn Corporation | Rolling bearing |
| JP2005291485A (en) * | 2004-03-10 | 2005-10-20 | Nsk Ltd | Bearing device |
| US20070076994A1 (en) * | 2005-10-04 | 2007-04-05 | Takayuki Norimatsu | Wheel bearing apparatus |
| EP1950435A1 (en) | 2005-11-07 | 2008-07-30 | Ntn Corporation | Wheel bearing device |
| JP2007271055A (en) * | 2006-03-31 | 2007-10-18 | Jtekt Corp | Hub unit |
| US8303190B2 (en) * | 2007-05-29 | 2012-11-06 | Ntn Corporation | Wheel bearing apparatus for a vehicle |
| US20090220183A1 (en) * | 2008-11-06 | 2009-09-03 | Meeker Steven E | Wheel bearing assembly |
| EP2184181A1 (en) | 2008-11-06 | 2010-05-12 | Kyklos Bearing International, Inc. | Wheel bearing assembly |
| US20110135233A1 (en) * | 2009-12-04 | 2011-06-09 | Gm Global Technology Operations, Inc. | Apparatus with secondary load path for vehicle wheel bearing assembly |
Non-Patent Citations (3)
| Title |
|---|
| Anonymous, Design options to improve Brinnell performance for wheel bearings, Research Disclosure Journal, 1121, 536048, Published on Dec. 10, 2008, emailed to Research Disclosure on Nov. 20, 2008 for publication. |
| European Search Report for EP1950435A1, Jan. 22, 2010, Munich Germany. |
| Translation of JP2007-271055 (May 14, 2013). * |
Cited By (5)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US20110135233A1 (en) * | 2009-12-04 | 2011-06-09 | Gm Global Technology Operations, Inc. | Apparatus with secondary load path for vehicle wheel bearing assembly |
| US20140331790A1 (en) * | 2013-05-08 | 2014-11-13 | Fuji Jukogyo Kabushiki Kaisha | Wheel reaction force detecting apparatus |
| US9370967B2 (en) * | 2013-05-08 | 2016-06-21 | Fuji Jukogyo Kabushiki Kaisha | Wheel reaction force detecting apparatus |
| US20180361786A1 (en) * | 2015-11-02 | 2018-12-20 | Schaeffler Technologies AG & Co. KG | Wheel bearing unit |
| US20180363500A1 (en) * | 2015-12-04 | 2018-12-20 | Borgwarner Inc. | Non-symmetric ball bearing system for a turbocharger |
Also Published As
| Publication number | Publication date |
|---|---|
| US20110243487A1 (en) | 2011-10-06 |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| US8740468B2 (en) | Apparatus with secondary load path for vehicle wheel bearing assembly and feature to inhibit corrosion | |
| EP1770296B1 (en) | Vehicle bearing device | |
| EP2962018B1 (en) | Main seal for a heavy-duty vehicle wheel-end assembly | |
| EP2636915B1 (en) | Vehicle wheel bearing device | |
| US9283808B2 (en) | Wheel bearing assembly | |
| US20110135233A1 (en) | Apparatus with secondary load path for vehicle wheel bearing assembly | |
| WO2015005195A1 (en) | Roller bearing unit for supporting wheel having seal ring | |
| KR20100051030A (en) | Wheel bearing assembly | |
| JP2012131452A (en) | Wheel supporting rolling bearing unit with sealing ring | |
| US7267486B2 (en) | Protective cap for wheel support bearing assembly | |
| JP2013032823A (en) | Bearing device for wheel | |
| US9051964B2 (en) | Tapered roller bearing apparatus and hub unit | |
| JP2007271055A (en) | Hub unit | |
| JP4229335B2 (en) | Wheel bearing device | |
| JP7649667B2 (en) | Sealing device for wheel bearing device and wheel bearing device equipped with same | |
| JP2013217419A (en) | Roller bearing device for wheel | |
| JP7663384B2 (en) | Wheel bearing device | |
| US9724963B2 (en) | Hub unit | |
| KR20230149834A (en) | Bearing device for wheels | |
| US20210215201A1 (en) | Hub bearing unit with combination displacement limiter and seal | |
| WO2003074890A1 (en) | Rolling bearing unit for supporting wheel | |
| CN214450011U (en) | Wheel end assembly and vehicle | |
| US20050105837A1 (en) | Rolling bearing unit for supporting vehicle wheel | |
| JP2005299684A (en) | Rolling bearing unit for wheel support | |
| JP4571467B2 (en) | Vehicle bearing device |
Legal Events
| Date | Code | Title | Description |
|---|---|---|---|
| AS | Assignment |
Owner name: GM GLOBAL TECHNOLOGY OPERATIONS LLC, MICHIGAN Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:SUTHERLIN, ROBERT G.;REED, DOUGLAS N.;SIGNING DATES FROM 20110320 TO 20110325;REEL/FRAME:026048/0427 |
|
| AS | Assignment |
Owner name: WILMINGTON TRUST COMPANY, DELAWARE Free format text: SECURITY AGREEMENT;ASSIGNOR:GM GLOBAL TECHNOLOGY OPERATIONS LLC;REEL/FRAME:028466/0870 Effective date: 20101027 |
|
| FEPP | Fee payment procedure |
Free format text: PAYOR NUMBER ASSIGNED (ORIGINAL EVENT CODE: ASPN); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY |
|
| STCF | Information on status: patent grant |
Free format text: PATENTED CASE |
|
| AS | Assignment |
Owner name: GM GLOBAL TECHNOLOGY OPERATIONS LLC, MICHIGAN Free format text: RELEASE BY SECURED PARTY;ASSIGNOR:WILMINGTON TRUST COMPANY;REEL/FRAME:034186/0776 Effective date: 20141017 |
|
| MAFP | Maintenance fee payment |
Free format text: PAYMENT OF MAINTENANCE FEE, 4TH YEAR, LARGE ENTITY (ORIGINAL EVENT CODE: M1551) Year of fee payment: 4 |
|
| MAFP | Maintenance fee payment |
Free format text: PAYMENT OF MAINTENANCE FEE, 8TH YEAR, LARGE ENTITY (ORIGINAL EVENT CODE: M1552); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY Year of fee payment: 8 |