US8594737B2 - System and method for locating a misplaced mobile device - Google Patents
System and method for locating a misplaced mobile device Download PDFInfo
- Publication number
- US8594737B2 US8594737B2 US13/081,229 US201113081229A US8594737B2 US 8594737 B2 US8594737 B2 US 8594737B2 US 201113081229 A US201113081229 A US 201113081229A US 8594737 B2 US8594737 B2 US 8594737B2
- Authority
- US
- United States
- Prior art keywords
- location
- command
- mobile device
- processor
- feature
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active, expires
Links
- 238000000034 method Methods 0.000 title claims abstract description 46
- 230000004044 response Effects 0.000 claims abstract description 20
- 230000003213 activating effect Effects 0.000 claims abstract description 18
- 238000004891 communication Methods 0.000 claims description 50
- 230000004913 activation Effects 0.000 claims 3
- 230000003287 optical effect Effects 0.000 description 4
- 230000006870 function Effects 0.000 description 3
- 230000005540 biological transmission Effects 0.000 description 2
- 238000010276 construction Methods 0.000 description 2
- 238000010586 diagram Methods 0.000 description 2
- 238000005516 engineering process Methods 0.000 description 2
- 238000012986 modification Methods 0.000 description 2
- 230000004048 modification Effects 0.000 description 2
- 230000008569 process Effects 0.000 description 2
- 238000012546 transfer Methods 0.000 description 2
- 230000009849 deactivation Effects 0.000 description 1
- 230000001419 dependent effect Effects 0.000 description 1
- 230000005670 electromagnetic radiation Effects 0.000 description 1
- 230000005294 ferromagnetic effect Effects 0.000 description 1
- 238000003780 insertion Methods 0.000 description 1
- 230000037431 insertion Effects 0.000 description 1
- 239000004973 liquid crystal related substance Substances 0.000 description 1
- 238000010295 mobile communication Methods 0.000 description 1
- 238000012545 processing Methods 0.000 description 1
- 210000003813 thumb Anatomy 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04W—WIRELESS COMMUNICATION NETWORKS
- H04W4/00—Services specially adapted for wireless communication networks; Facilities therefor
- H04W4/16—Communication-related supplementary services, e.g. call-transfer or call-hold
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04W—WIRELESS COMMUNICATION NETWORKS
- H04W4/00—Services specially adapted for wireless communication networks; Facilities therefor
- H04W4/02—Services making use of location information
- H04W4/029—Location-based management or tracking services
Definitions
- the instant disclosure relates generally to a system and method for locating a misplaced mobile device. More specifically, the instant disclosure relates to a system and method for using a location function to allow a user to locate a misplaced mobile device in response to a voice command received by the misplaced mobile device.
- the mobile devices can be misplaced. For example, a user may place the mobile device down when the user arrives at home. Later on, when the user needs to use the mobile device, the user may have forgotten where the mobile device was placed. As a result, the user can spend time looking for the misplaced mobile device which not only wastes time but can also frustrate the user. In order to find the misplaced mobile device, some users may use another device, such as a landline based telephone or another mobile device, to call the misplaced mobile device and listen for a ring emanating from the misplaced mobile device.
- a landline based telephone or another mobile device to call the misplaced mobile device and listen for a ring emanating from the misplaced mobile device.
- the user may not be able to locate the misplaced mobile device. If the misplaced mobile device is at a different location than the user, the user will not be able to locate the misplaced mobile device. For example, if a mobile device was left in an office, the user may not be able to locate the mobile device if the user is searching in a house. Using a conventional location system, the user may obtain a general location of the misplaced mobile device.
- the user can obtain the global positioning system (GPS) coordinates or a general location of the misplaced mobile device.
- GPS global positioning system
- the general location can be an address associated with the GPS coordinates.
- simply knowing the location of the misplaced mobile device may not be sufficient to locate the misplaced mobile device.
- FIG. 1 is a front view of a mobile device having a physical keyboard in accordance with an exemplary implementation
- FIG. 2 is a front view of a mobile device having a touch-sensitive display in accordance with an exemplary implementation
- FIG. 3 a block diagram representing a mobile device interacting in a communication network in accordance with an exemplary implementation
- FIG. 4 is a flowchart for a method for locating a misplaced mobile device in accordance with an exemplary implementation
- FIG. 5 is a front view of a requesting mobile device displaying a general location of the misplaced mobile device in accordance with an exemplary implementation
- FIG. 6 is front view of a requesting mobile device displaying the geo-location of the misplaced mobile device on a map in accordance with an exemplary implementation.
- Coupled is defined as connected, whether directly or indirectly through intervening components, and is not necessarily limited to physical connections.
- communicatively coupled is defined as connected, whether directly or indirectly through intervening components, is not necessarily limited to a physical connection, and allows for the transfer of data.
- mobile device is defined as any mobile device that is capable of at least accepting information entries from a user and includes the device's own power source.
- wireless communication means communication that occurs without wires using electromagnetic radiation.
- memory refers to transitory memory and non-transitory memory.
- non-transitory memory can be implemented as Random Access Memory (RAM), Read-Only Memory (ROM), flash, ferromagnetic, phase-change memory, and other non-transitory memory technologies.
- RAM Random Access Memory
- ROM Read-Only Memory
- flash flash
- ferromagnetic phase-change memory
- mobile device refers to a handheld wireless communication device, a handheld wired communication device, a personal digital assistant (PDA) or any other device that is capable of transmitting and receiving information from a communication network.
- PDA personal digital assistant
- FIGS. 1 and 2 front views of a mobile device having a keyboard and a mobile device having a touch-sensitive display in accordance with exemplary implementations are illustrated, respectively.
- the exemplary embodiments depicted in the figures are provided for illustration purposes and those persons skilled in the art will appreciate that the mobile devices 100 can include additional elements and modifications necessary to make the mobile device 100 operable in particular network environments.
- the mobile device 100 can include a body 171 housing a lighted display 322 , a navigational tool (auxiliary input) 328 and a keyboard 332 suitable for accommodating textual input.
- the mobile device 100 of FIG. 1 can be a unibody construction, but common “clamshell” or “flip-phone” constructions are also suitable for the embodiments disclosed herein.
- the display 322 can be located above the keyboard 332 .
- the navigational tool (auxiliary input) 328 such as an optical navigational pad 127 , can be located essentially between the display 322 and the keyboard 332 on a front face 170 .
- the keyboard 332 can comprise a plurality of keys with which alphabetic letters are associated, but at least a portion of the individual keys have multiple letters associated therewith. This type of configuration is referred to as a reduced keyboard (in comparison to the full keyboard described immediately above) and can, among others come in QWERTY, QWERTZ, AZERTY, and Dvorak layouts.
- the mobile device 100 can include a body 171 housing a display 322 , touch location sensor 110 and a transparent cover lens 120 on a front face 170 .
- the touch location sensor 110 can be provided on a portion of the display 322 .
- the touch location sensor 110 can be a separate component that is provided as part of the touch-sensitive display 322 .
- the touch location sensor 110 can be shown as located above the display 322 , but in other embodiments the touch location sensor 110 can be located below the display 322 .
- the touch location sensor 110 can be a capacitive, resistive or other touch sensitive sensor.
- the display 322 can be a liquid crystal display (LCD) or a light emitting diode (LED) display. It is also contemplated within this disclosure that the display 322 can be another type of device which is capable of visually displaying information.
- the mobile device 100 can include a processor or microprocessor 338 (hereinafter a “processor”) that controls the operation of the mobile device 100 .
- a communication subsystem 311 can perform all communication transmission and reception with the wireless network 319 .
- the processor 338 can be communicatively coupled to an auxiliary input/output (I/O) subsystem 328 which can be communicatively coupled to the mobile device 100 .
- the processor 338 can be communicatively coupled to a serial port (for example, a Universal Serial Bus port) 330 that facilitates communication with other devices or systems via the serial port 330 .
- a serial port for example, a Universal Serial Bus port
- a display 322 can be communicatively coupled to processor 338 to display information to an operator of the mobile device 100 .
- the mobile device 100 is equipped with a keyboard 332 , which may be physical or virtual, the keyboard 332 can be communicatively coupled to the processor 338 .
- the mobile device 100 can include a speaker 334 , a microphone 336 , random access memory 326 (RAM), and flash memory 324 , all of which may be communicatively coupled to the processor 338 .
- a vibrator 360 comprising a vibrator motor can be communicatively coupled to the processor 338 .
- the vibrator 360 can generate vibrations in the mobile device 100 .
- the mobile device 100 can include a global positioning system (GPS) module 362 communicatively coupled to the processor 338 .
- the GPS module 362 can acquire the GPS data for a mobile device 100 .
- the GPS data can include, but not limited to, GPS coordinates of the mobile device 100 , geo-location of the mobile device 100 or both.
- the GPS coordinates can include the latitude and longitude coordinates for the mobile device 100 .
- the geo-location can include a street address for the mobile address, e.g., 123 Main Street.
- the GPS module 362 can acquire the GPS data of the mobile device 100 using satellites, determining the closest cell tower, triangulation based on three or more cell towers, or other known methods for determining the location of the mobile device 100 .
- the mobile device 100 can include other similar components that are optionally communicatively coupled to the processor 338 .
- Other communication subsystems 340 and other device subsystems 342 can be generally indicated as being communicatively coupled to the processor 338 .
- An example of a communication subsystem 340 is a short range communication system such as BLUETOOTH® communication module or a WI-FI® communication module (a communication module in compliance with IEEE 802.11b).
- these subsystems 340 , 342 and their associated circuits and components can be communicatively coupled to the processor 338 . Additionally, the processor 338 can perform operating system functions and can enable execution of programs on the mobile device 100 . In some embodiments the mobile device 100 does not include all of the above components.
- the keyboard 332 is not provided as a separate component and can be integrated with a touch-sensitive display 322 as described below.
- the mobile device 100 can be equipped with components to enable operation of various programs.
- the flash memory 324 can be enabled to provide a storage location for the operating system 357 , device programs 358 , and data.
- the operating system 357 can be generally configured to manage other programs 358 that are also stored in memory 324 and executable on the processor 338 .
- the operating system 357 can honor requests for services made by programs 358 through predefined program interfaces. More specifically, the operating system 357 can determine the order in which multiple programs 358 are executed on the processor 338 and the execution time allotted for each program 358 , manages the sharing of memory 324 among multiple programs 358 , handles input and output to and from other device subsystems 342 , and so on.
- the operating system 357 can be stored in flash memory 324
- the operating system 357 in other embodiments is stored in read-only memory (ROM) or similar storage element (not shown).
- ROM read-only memory
- the operating system 357 , device program 358 or parts thereof can be loaded in RAM 326 or other volatile memory.
- the flash memory 324 can contain programs 358 for execution on the mobile device 100 including an address book 352 , a personal information manager (PIM) 354 , and the device state 350 .
- programs 358 and other information 356 including data can be segregated upon storage in the flash memory 324 of the mobile device 100 .
- the mobile device 100 can send and receives signal from a mobile communication service.
- Examples of communication systems enabled for two-way communication can include, but are not limited to, the General Packet Radio Service (GPRS) network, the Universal Mobile Telecommunication Service (UMTS) network, the Enhanced Data for Global Evolution (EDGE) network, the Code Division Multiple Access (CDMA) network, High-Speed Packet Access (HSPA) networks, Universal Mobile Telecommunication Service Time Division Duplexing (UMTS-TDD), Ultra Mobile Broadband (UMB) networks, Worldwide Interoperability for Microwave Access (WiMAX), and other networks that can be used for data and voice, or just data or voice.
- GPRS General Packet Radio Service
- UMTS Universal Mobile Telecommunication Service
- EDGE Enhanced Data for Global Evolution
- CDMA Code Division Multiple Access
- UMTS-TDD Universal Mobile Telecommunication Service Time Division Duplexing
- UMB Ultra Mobile Broadband
- WiMAX Worldwide Interoperability for Microwave Access
- the mobile device 100 can require a unique identifier to enable the mobile device 100 to transmit and receive signals from the communication network 319 .
- Other systems may not require such identifying information.
- GPRS, UMTS, and EDGE use a Subscriber Identity Module (SIM) in order to allow communication with the communication network 319 .
- SIM Subscriber Identity Module
- RUIM Removable User Identity Module
- the RUIM and SIM card can be used in a multitude of different mobile devices 100 .
- the mobile device 100 can operate some features without a SIM/RUIM card, but a SIM/RUIM card is necessary for communication with the network 319 .
- a SIM/RUIM interface 344 located within the mobile device 100 can allow for removal or insertion of a SIM/RUIM card (not shown).
- the SIM/RUIM card can feature memory and holds key configurations 351 , and other information 353 such as identification and subscriber related information. With a properly enabled mobile device 100 , two-way communication between the mobile device 100 and communication network 319 can be possible.
- the two-way communication enabled mobile device 100 is able to both transmit and receive information from the communication network 319 .
- the transfer of communication can be from the mobile device 100 or to the mobile device 100 .
- the mobile device 100 in the presently described exemplary embodiment can be equipped with an integral or internal antenna 318 for transmitting signals to the communication network 319 .
- the mobile device 100 in the presently described exemplary embodiment can be equipped with another antenna 316 for receiving communication from the communication network 319 .
- These antennae ( 316 , 318 ) in another exemplary embodiment can be combined into a single antenna (not shown).
- the antenna or antennae ( 316 , 318 ) in another embodiment can be externally mounted on the mobile device 100 .
- the mobile device 100 can include a communication subsystem 311 .
- this communication subsystem 311 can support the operational needs of the mobile device 100 .
- the subsystem 311 can include a transmitter 314 and receiver 312 including the associated antenna or antennae ( 316 , 318 ) as described above, local oscillators (LOs) 313 , and a processing module 320 which in the presently described exemplary embodiment can be a digital signal processor (DSP) 320 .
- DSP digital signal processor
- Communication by the mobile device 100 with the wireless network 319 can be any type of communication that both the wireless network 319 and mobile device 100 are enabled to transmit, receive and process. In general, these can be classified as voice and data.
- Voice communication generally refers to communication in which signals for audible sounds are transmitted by the mobile device 100 through the communication network 319 .
- Data generally refers to all other types of communication that the mobile device 100 is capable of performing within the constraints of the wireless network 319 .
- the mobile device 100 can be another communication device such as a PDA, a laptop computer, desktop computer, a server, or other communication device.
- a PDA personal digital assistant
- a laptop computer a laptop computer
- desktop computer a server
- different components of the above system might be omitted in order provide the desired mobile device 100 .
- other components not described above may be required to allow the mobile device 100 to function in a desired fashion.
- the above description provides only general components and additional components can be required to enable system functionality. These systems and components would be appreciated by those of ordinary skill in the art.
- Auxiliary I/O subsystem 328 comes in a variety of different forms including a navigational tool 328 .
- Navigational tools can include one or more optical navigational pads, rotatable thumb wheels, joysticks, touchpads, four-way cursors, trackball based devices and the like.
- the preferred embodiment of the navigational tool 328 is an optical navigational based device.
- Other auxiliary I/O subsystems capable of providing input or receiving output from the handheld mobile device 100 such as external display devices and externally connected keyboards (not shown) can be considered within the scope of this disclosure.
- FIG. 4 a flowchart for a method for locating a misplaced mobile device in accordance with an exemplary implementation is illustrated.
- the exemplary method 400 is provided by way of example, as there are a variety of ways to carry out the method.
- the method 400 described below can be carried out using the mobile devices and communication network shown in FIG. 3 by way of example, and various elements of these figures are referenced in explaining exemplary method 400 .
- Each block shown in FIG. 4 represents one or more processes, methods or subroutines, carried out in exemplary method 400 .
- the exemplary method 400 may begin at block 402 .
- a location request command can be received.
- the processor 338 of the mobile device 100 can receive a location request command from a requesting device.
- the requesting device can be another mobile device, a telephone, such as a landline based telephone, a computer or any other device that can transmit a location request command to the mobile device 100 .
- the format of the location request command can be a call, email, personal identification number (PIN), short message service (SMS), multimedia message (MMS), an instant message, or any other signal requesting the location of the mobile device 100 .
- the caller can enter a code such as a location request code or can provide an audio command for the location request.
- a user can access a website with the website causing the transmission of the location request command to the mobile device 100 .
- the method 400 can proceed to block 404 .
- the global position system (GPS) data for the mobile device can be acquired.
- the processor 338 or GPS module 362 can acquire the GPS coordinates or geo-location of the mobile device 100 .
- the GPS coordinates can include the latitude and longitude coordinates.
- the geo-location can be a more meaningful location compared to GPS coordinates.
- the geo-location can be a street address identifying the location of the mobile device 100 .
- the processor 338 can communicate with one or more servers to obtain a street address based on the GPS coordinates. After acquiring the GPS data of the mobile device 100 , the method 400 can proceed to block 406 .
- the acquired GPS data can be compared to stored GPS data.
- the processor 338 can compare the acquired GPS data with stored GPS data.
- the GPS data can be stored in the memory 324 of the mobile device 100 .
- the GPS coordinates can be compared with stored GPS coordinates or the geo-location can be compared with stored geo-location.
- the stored GPS coordinates or stored geo-locations can include associated general geo-locations, such as “home” or “work”.
- the comparison of the GPS coordinates with stored GPS coordinates can include a deviation factor, for example, within 25 meters. In other words, there does not have to be an exact match, but rather a close match (for example, with a deviation factor) can result in a match.
- the comparison can identify the associated geo-location, e.g., “work”.
- the general location can be “car”.
- the method 400 can proceed to block 408 .
- the method 400 can proceed to block 410 .
- a general location of the mobile device can be sent to the requesting device.
- the processor 338 can transmit a general location message to the requesting device.
- the general location message can be the same type of message as the location request message.
- the location request message was an email
- the general location message can be an email.
- FIG. 5 illustrates a front view of a requesting mobile device displaying a general location of the misplaced mobile device in accordance with an exemplary implementation.
- the requesting device e.g., another mobile device 500 , displays the exemplary general location of the misplaced mobile device 100 as being “home” 502 .
- the method 400 can proceed to block 412 .
- the method 400 can proceed to block 408 where one or more general locations can be sent to the requesting device, with the general locations providing an indication where the mobile device is NOT located. The method could then proceed to block 412 .
- GPS data for the misplaced mobile device can be transmitted to the requesting device.
- the processor 338 can transmit the GPS data to the requesting device.
- the GPS data can include the GPS coordinates, geo-location, or a combination of both.
- the GPS data can include a map.
- the requesting device can display the location of the misplaced mobile device using the GPS data.
- FIG. 6 illustrates a front view of a requesting mobile device displaying GPS data of the misplaced mobile device on a map in accordance with an exemplary implementation.
- the requesting device e.g., another mobile device 600
- the method 400 can proceed to block 412 .
- a voice recognition feature can be activated in response to receiving an activate voice recognition command.
- the processor 338 can active a voice recognition feature in response to receiving an activate voice recognition command.
- the activate voice recognition command can be in one or more formats, such as an email, text message, SMS message, voice command, or any command that can activate the voice recognition feature.
- the mobile device 100 is in a sleep mode, the mobile device 100 can be switched to an active mode to monitor audio commands.
- the method 400 can proceed to block 414 .
- an audio command can be received.
- the processor 338 can receive an audio command via the microphone 136 .
- the method 400 can proceed to block 416 .
- the audio command can be compared with one or more stored location commands.
- the processor 338 can compare the received audio command with one or more stored location commands.
- the stored location commands can be stored in the memory 124 of the mobile device 100 .
- the stored audio location command can be “locate my BlackBerry®”.
- the processor 338 can also compare the voice print of the audio command. The voice print can be used to identify the speaker and compare that to a list of people who are authorized by the device to initiate a search command. Thus, if a non-authorized user says the stored audio command, using the voice print, the processor 338 will not act in response to the audio command because the processor 338 recognizes that the user is not an authorized user.
- a match can be based on voice recognition, voice print or both.
- the method 400 can proceed to block 414 .
- the method 400 can proceed to block 418 .
- the location feature can be activated.
- the processor 338 in response to the matching of the received audio command to the one or more stored location commands, can cause the mobile device 100 to emit one or more location signals.
- the location signal can be at least one of emitting a noise, causing vibrations, activating one or more lights such as the lighted display 322 , or any combination thereof.
- Emitting a noise can include causing the mobile device 100 to produce a ring or a ring tone via the speaker 334 .
- the ring tone can be a locate mobile device ring tone, for example, a special ring tone to locate the misplaced mobile device 100 .
- the processor 338 can override the ring volume setting and cause a maximum volume ring or ring tone.
- the ring or ring tone can be an increasing ring or ring tone which can continue to ring at the maximum volume or can repeat an increasing ring volume which resets to an increasing ring tone once the maximum volume is reached.
- the location signal can cause the vibrator 360 to vibrate.
- the location signal can cause one or more lights, for example, the lighted display 322 , to flash.
- the location signal can continue for a fixed amount of time or can have a preset duration, e.g., thirty seconds.
- a user can set the desired location signal. After activating the location feature, the method 400 can proceed to block 420 .
- a termination command can be received.
- the processor 338 can receive the termination command or deactivation command.
- the deactivate command can occur after a preset duration lapses or a termination command is received.
- the termination command can be a specific code that is entered or any input that deactivates the location feature, for example, touching the optical navigation pad.
- the location feature can be deactivated.
- the processor 338 in response to receiving a deactivate command, can deactivate or terminate the location feature.
- the method 400 can proceed to block 424 .
- the method 400 can end.
- method 400 has specific steps, the method 400 is not required to execute each of the steps.
- the user does not have to use the location feature of the mobile device 100 .
- the voice recognition feature can be active without requiring receiving an activate voice recognition command. In such an embodiment, having to activate the location feature can reduce battery consumption.
- the audio command can be factory set, e.g., set prior to the selling of the mobile phone 100 , or can be set by the user.
- the user can provide the audio command so that the processor 338 is programmed to only recognize the voice print of the user.
- the system and method described above can provide several benefits to a user of a mobile device 100 .
- using the voice recognition feature can allow a user to locate a misplaced mobile device 100 .
- the user can use the location feature to determine the location of the misplaced mobile device.
- Using the general location feature allows a user to obtain a general location of the misplaced mobile device 100 . After obtaining the general location of the misplaced device 100 , the user is able to use the voice recognition feature to locate the misplaced mobile device 100 .
- Example embodiments have been described hereinabove regarding the implementation of a method and system for adjusting notification settings within a notification module 400 on network operable mobile devices 100 .
- Various modifications to and departures from the disclosed example embodiments will occur to those having skill in the art.
- the subject matter that is intended to be within the spirit of this disclosure is set forth in the following claims.
Landscapes
- Engineering & Computer Science (AREA)
- Computer Networks & Wireless Communication (AREA)
- Signal Processing (AREA)
- Telephone Function (AREA)
Abstract
Description
Claims (15)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US13/081,229 US8594737B2 (en) | 2011-04-06 | 2011-04-06 | System and method for locating a misplaced mobile device |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US13/081,229 US8594737B2 (en) | 2011-04-06 | 2011-04-06 | System and method for locating a misplaced mobile device |
Publications (2)
Publication Number | Publication Date |
---|---|
US20120258701A1 US20120258701A1 (en) | 2012-10-11 |
US8594737B2 true US8594737B2 (en) | 2013-11-26 |
Family
ID=46966475
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US13/081,229 Active 2031-11-17 US8594737B2 (en) | 2011-04-06 | 2011-04-06 | System and method for locating a misplaced mobile device |
Country Status (1)
Country | Link |
---|---|
US (1) | US8594737B2 (en) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN106878535A (en) * | 2015-12-14 | 2017-06-20 | 北京奇虎科技有限公司 | Method and device for reminding mobile terminal location |
US9997051B2 (en) | 2015-07-19 | 2018-06-12 | Angelia Hillard | Dual mode item locating system |
US11974206B2 (en) | 2022-04-20 | 2024-04-30 | Bank Of America Corporation | Short-range wireless-enabled mobile communication device leash for controlling device and application access |
Families Citing this family (19)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US9194937B2 (en) | 2011-12-23 | 2015-11-24 | Elwha Llc | Computational systems and methods for locating a mobile device |
US9179327B2 (en) | 2011-12-23 | 2015-11-03 | Elwha Llc | Computational systems and methods for locating a mobile device |
US9482737B2 (en) * | 2011-12-30 | 2016-11-01 | Elwha Llc | Computational systems and methods for locating a mobile device |
US9031584B2 (en) * | 2011-12-23 | 2015-05-12 | Elwha, Llc | Computational systems and methods for locating a mobile device |
US9332393B2 (en) | 2011-12-23 | 2016-05-03 | Elwha Llc | Computational systems and methods for locating a mobile device |
US9087222B2 (en) * | 2011-12-23 | 2015-07-21 | Elwha Llc | Computational systems and methods for locating a mobile device |
US9161310B2 (en) | 2011-12-23 | 2015-10-13 | Elwha Llc | Computational systems and methods for locating a mobile device |
US9591437B2 (en) | 2011-12-23 | 2017-03-07 | Elwha Llc | Computational systems and methods for locating a mobile device |
US9154908B2 (en) | 2011-12-23 | 2015-10-06 | Elwha Llc | Computational systems and methods for locating a mobile device |
US9357496B2 (en) * | 2011-12-23 | 2016-05-31 | Elwha Llc | Computational systems and methods for locating a mobile device |
US9767672B2 (en) * | 2013-06-14 | 2017-09-19 | Ebay Inc. | Mobile device self-identification system |
US20150002295A1 (en) * | 2013-06-27 | 2015-01-01 | Brian J. Thurmon | Locatable remote control and associated content consumption devices |
US9582983B2 (en) * | 2013-09-11 | 2017-02-28 | Intel Corporation | Low power voice trigger for finding mobile devices |
US9881480B2 (en) | 2013-12-20 | 2018-01-30 | International Business Machines Corporation | Mobile device loss prevention |
US9946862B2 (en) | 2015-12-01 | 2018-04-17 | Qualcomm Incorporated | Electronic device generating notification based on context data in response to speech phrase from user |
US10028087B2 (en) * | 2016-04-04 | 2018-07-17 | Ricoh Company, Ltd. | Locating and tracking missing or relocated devices |
US11043086B1 (en) * | 2017-10-19 | 2021-06-22 | Pb Inc. | Voice-coded finder and radiotag tracker |
CN108833688B (en) * | 2018-05-30 | 2020-03-10 | Oppo广东移动通信有限公司 | Position reminding method and device, storage medium and electronic equipment |
CN110297669B (en) * | 2019-06-28 | 2021-05-25 | 北京金山安全软件有限公司 | Method and device for online activation of equipment, electronic equipment and storage medium |
Citations (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20050159959A1 (en) * | 2004-01-20 | 2005-07-21 | Lucent Technologies Inc. | Network support for voice-to-text memo service |
US20050256720A1 (en) * | 2004-05-12 | 2005-11-17 | Iorio Laura M | Voice-activated audio/visual locator with voice recognition |
US20070254697A1 (en) * | 2004-09-06 | 2007-11-01 | Matsushita Eleactric Industrial Co., Ltd. | Mobile Terminal Device |
WO2009018125A1 (en) | 2007-08-02 | 2009-02-05 | Applied Minds, Inc. | Method and apparatus for protecting data in a portable electronic device |
US20090280789A1 (en) * | 2005-06-01 | 2009-11-12 | Sanyo Electric Co., Ltd. | Telephone and method of controlling telephone |
US20100216446A1 (en) | 2009-02-23 | 2010-08-26 | Chi Mei Communication Systems, Inc. | Mobile electronic device and method for locating the mobile electronic device |
US20100291976A1 (en) * | 2009-05-15 | 2010-11-18 | Novatel Wireless | Method and apparatus for power conservation for an electronic device |
US20110045836A1 (en) * | 2007-12-19 | 2011-02-24 | Jyri Kalervo Hamalainen | Radio System Configuration |
US20110159845A1 (en) * | 2009-12-29 | 2011-06-30 | Cellco Partnership D/B/A Verizon Wireless | Automated locating of a mobile station without an alert at the mobile station |
US20110207439A1 (en) * | 2010-02-24 | 2011-08-25 | General Motors Llc | Notification method and system |
-
2011
- 2011-04-06 US US13/081,229 patent/US8594737B2/en active Active
Patent Citations (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20050159959A1 (en) * | 2004-01-20 | 2005-07-21 | Lucent Technologies Inc. | Network support for voice-to-text memo service |
US20050256720A1 (en) * | 2004-05-12 | 2005-11-17 | Iorio Laura M | Voice-activated audio/visual locator with voice recognition |
US20070254697A1 (en) * | 2004-09-06 | 2007-11-01 | Matsushita Eleactric Industrial Co., Ltd. | Mobile Terminal Device |
US20090280789A1 (en) * | 2005-06-01 | 2009-11-12 | Sanyo Electric Co., Ltd. | Telephone and method of controlling telephone |
WO2009018125A1 (en) | 2007-08-02 | 2009-02-05 | Applied Minds, Inc. | Method and apparatus for protecting data in a portable electronic device |
US20110045836A1 (en) * | 2007-12-19 | 2011-02-24 | Jyri Kalervo Hamalainen | Radio System Configuration |
US20100216446A1 (en) | 2009-02-23 | 2010-08-26 | Chi Mei Communication Systems, Inc. | Mobile electronic device and method for locating the mobile electronic device |
US20100291976A1 (en) * | 2009-05-15 | 2010-11-18 | Novatel Wireless | Method and apparatus for power conservation for an electronic device |
US20110159845A1 (en) * | 2009-12-29 | 2011-06-30 | Cellco Partnership D/B/A Verizon Wireless | Automated locating of a mobile station without an alert at the mobile station |
US20110207439A1 (en) * | 2010-02-24 | 2011-08-25 | General Motors Llc | Notification method and system |
Non-Patent Citations (10)
Title |
---|
Alrady, "How to Locate a Lost Cell Phone-FREE spring advice", online: eHow.com ,pp. 1-5 ; accessed Jun. 29, 2010. |
Antonio Wells Phone Halo Protect (Jun. 15, 2010), online: Android Tapp , accessed Jun. 29, 2010. |
Antonio Wells Phone Halo Protect (Jun. 15, 2010), online: Android Tapp <http://www.androidtapp.com/phone-halo-protect/>, accessed Jun. 29, 2010. |
Berry locator-Retrieve your losr BlackBerry by just sending an e-mail. http://web.archive.org/web/20100703224357/http://www.mobireport.com/apps/b1., accessed Jun. 29, 2010. |
Examination Report mailed May 15, 2013, in corresponding European patent application No. 11161388.1. |
Extended European Search Report dated Oct. 5, 2011 from corresponding application No. 11161388.1. |
Nathesh, "Zenprise Device Manager Can Help Users Locate Lost BlackBerries" (May 5, 2009), online: TMCnet <http://fixed-mobile-convergence.tmcnet.com/topics/mobile-communications/articles/55558-zenprise-device-manager-help-users-locate-lost-blackberries.htm>, accessed Jun. 29, 2010. |
Phone Halo-How to find a Lost Phone-http://www.web.archive.org/web/2010072612/http://www.phonehalo.com/products/. accessed Jun. 29, 2010. |
Tricia Goss, "Guide to Finding a GPS Cell Phone Location Using the Internet for Free or Cheap" (Mar. 31, 2009), online: Bright Hub , accessed Jun. 29, 2010. |
Tricia Goss, "Guide to Finding a GPS Cell Phone Location Using the Internet for Free or Cheap" (Mar. 31, 2009), online: Bright Hub <http://www.brighthub.com/electronics/gps/articles/40464.aspx#ixzz0sHQB11OD>, accessed Jun. 29, 2010. |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US9997051B2 (en) | 2015-07-19 | 2018-06-12 | Angelia Hillard | Dual mode item locating system |
CN106878535A (en) * | 2015-12-14 | 2017-06-20 | 北京奇虎科技有限公司 | Method and device for reminding mobile terminal location |
US11974206B2 (en) | 2022-04-20 | 2024-04-30 | Bank Of America Corporation | Short-range wireless-enabled mobile communication device leash for controlling device and application access |
Also Published As
Publication number | Publication date |
---|---|
US20120258701A1 (en) | 2012-10-11 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US8594737B2 (en) | System and method for locating a misplaced mobile device | |
US10528012B2 (en) | Method and device for sending communication message | |
US9869769B2 (en) | GPS positioning method for mobile terminal, and mobile terminal | |
KR101715385B1 (en) | Mobile Terminal And Method Of Controlling The Same | |
US20110053506A1 (en) | Methods and Devices for Controlling Particular User Interface Functions of a Mobile Communication Device in a Vehicle | |
RU2667795C2 (en) | Server access method and apparatus | |
US8804680B2 (en) | System and method for managing wireless connections and radio resources | |
CA2773506C (en) | System and method for locating a misplaced mobile device | |
CN107277752A (en) | Bluetooth connection method, device, computer equipment and computer-readable storage medium | |
CN108112028B (en) | A kind of network search method and device for international roaming | |
CN102857627A (en) | Mobile device and related control method thereof | |
CN106028289A (en) | Method and device for network search after roaming | |
CN106131930A (en) | A WiFi network access control method, device and terminal | |
US10334097B2 (en) | Method and apparatus for disabling alarm in device, and storage medium | |
CN111698100A (en) | Data processing method, system and related equipment | |
KR20090100194A (en) | User interface of mobile terminal and its control method | |
US7962151B2 (en) | System and method for obtaining location of wireless telephone from internet server | |
US11483677B2 (en) | Information pushing method and terminal device | |
CN106454728B (en) | A network control method, device and terminal for terminal application | |
WO2019218787A1 (en) | Network marking method and device, readable storage medium, and mobile terminal | |
TW201717101A (en) | Electronic device, electronic device search system and method | |
CN113079248A (en) | Electronic device and positioning information sending method | |
KR20100043372A (en) | Apparatus and method for serving a location information when power off of portable terminal | |
CN106776764A (en) | The storage method and terminal of song data | |
KR20150073360A (en) | Device For Providing Contact Informaion, Method thereof, Recording Medium thereof And Terminal thereof |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
AS | Assignment |
Owner name: RESEARCH IN MOTION LIMITED, ONTARIO Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:WALKER, DAVID RYAN;REEL/FRAME:026473/0994 Effective date: 20110614 Owner name: RESEARCH IN MOTION CORPORATION, DELAWARE Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:FENSOM, ERICA MAUREEN;REEL/FRAME:026473/0926 Effective date: 20110621 |
|
AS | Assignment |
Owner name: RESEARCH IN MOTION LIMITED, ONTARIO Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:RESEARCH IN MOTION CORPORATION;REEL/FRAME:027694/0129 Effective date: 20120207 |
|
STCF | Information on status: patent grant |
Free format text: PATENTED CASE |
|
AS | Assignment |
Owner name: BLACKBERRY LIMITED, ONTARIO Free format text: CHANGE OF NAME;ASSIGNOR:RESEARCH IN MOTION LIMITED;REEL/FRAME:034143/0567 Effective date: 20130709 |
|
FPAY | Fee payment |
Year of fee payment: 4 |
|
MAFP | Maintenance fee payment |
Free format text: PAYMENT OF MAINTENANCE FEE, 8TH YEAR, LARGE ENTITY (ORIGINAL EVENT CODE: M1552); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY Year of fee payment: 8 |
|
AS | Assignment |
Owner name: MALIKIE INNOVATIONS LIMITED, IRELAND Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:BLACKBERRY LIMITED;REEL/FRAME:064104/0103 Effective date: 20230511 |
|
AS | Assignment |
Owner name: MALIKIE INNOVATIONS LIMITED, IRELAND Free format text: NUNC PRO TUNC ASSIGNMENT;ASSIGNOR:BLACKBERRY LIMITED;REEL/FRAME:064270/0001 Effective date: 20230511 |
|
MAFP | Maintenance fee payment |
Free format text: PAYMENT OF MAINTENANCE FEE, 12TH YEAR, LARGE ENTITY (ORIGINAL EVENT CODE: M1553); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY Year of fee payment: 12 |