US8577052B2 - Headphone accessory - Google Patents

Headphone accessory Download PDF

Info

Publication number
US8577052B2
US8577052B2 US12/266,228 US26622808A US8577052B2 US 8577052 B2 US8577052 B2 US 8577052B2 US 26622808 A US26622808 A US 26622808A US 8577052 B2 US8577052 B2 US 8577052B2
Authority
US
United States
Prior art keywords
audio
volume
external sound
source
signals
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active, expires
Application number
US12/266,228
Other versions
US20100111337A1 (en
Inventor
Michael W. Silber
Christopher M. Dragon
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Harman International Industries Inc
Original Assignee
Harman International Industries Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Harman International Industries Inc filed Critical Harman International Industries Inc
Priority to US12/266,228 priority Critical patent/US8577052B2/en
Assigned to HARMAN INTERNATIONAL INDUSTRIES, INCORPORATED reassignment HARMAN INTERNATIONAL INDUSTRIES, INCORPORATED ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: SILBER, MICHAEL W., DRAGON, CHRISTOPHER M.
Assigned to JPMORGAN CHASE BANK, N.A. reassignment JPMORGAN CHASE BANK, N.A. SECURITY AGREEMENT Assignors: BECKER SERVICE-UND VERWALTUNG GMBH, CROWN AUDIO, INC., HARMAN BECKER AUTOMOTIVE SYSTEMS (MICHIGAN), INC., HARMAN BECKER AUTOMOTIVE SYSTEMS HOLDING GMBH, HARMAN BECKER AUTOMOTIVE SYSTEMS, INC., HARMAN CONSUMER GROUP, INC., HARMAN DEUTSCHLAND GMBH, HARMAN FINANCIAL GROUP LLC, HARMAN HOLDING GMBH & CO. KG, HARMAN INTERNATIONAL INDUSTRIES, INCORPORATED, Harman Music Group, Incorporated, HARMAN SOFTWARE TECHNOLOGY INTERNATIONAL BETEILIGUNGS GMBH, HARMAN SOFTWARE TECHNOLOGY MANAGEMENT GMBH, HBAS INTERNATIONAL GMBH, HBAS MANUFACTURING, INC., INNOVATIVE SYSTEMS GMBH NAVIGATION-MULTIMEDIA, JBL INCORPORATED, LEXICON, INCORPORATED, MARGI SYSTEMS, INC., QNX SOFTWARE SYSTEMS (WAVEMAKERS), INC., QNX SOFTWARE SYSTEMS CANADA CORPORATION, QNX SOFTWARE SYSTEMS CO., QNX SOFTWARE SYSTEMS GMBH, QNX SOFTWARE SYSTEMS GMBH & CO. KG, QNX SOFTWARE SYSTEMS INTERNATIONAL CORPORATION, QNX SOFTWARE SYSTEMS, INC., XS EMBEDDED GMBH (F/K/A HARMAN BECKER MEDIA DRIVE TECHNOLOGY GMBH)
Publication of US20100111337A1 publication Critical patent/US20100111337A1/en
Assigned to HARMAN BECKER AUTOMOTIVE SYSTEMS GMBH, HARMAN INTERNATIONAL INDUSTRIES, INCORPORATED reassignment HARMAN BECKER AUTOMOTIVE SYSTEMS GMBH RELEASE Assignors: JPMORGAN CHASE BANK, N.A., AS ADMINISTRATIVE AGENT
Assigned to JPMORGAN CHASE BANK, N.A., AS ADMINISTRATIVE AGENT reassignment JPMORGAN CHASE BANK, N.A., AS ADMINISTRATIVE AGENT SECURITY AGREEMENT Assignors: HARMAN BECKER AUTOMOTIVE SYSTEMS GMBH, HARMAN INTERNATIONAL INDUSTRIES, INCORPORATED
Assigned to HARMAN BECKER AUTOMOTIVE SYSTEMS GMBH, HARMAN INTERNATIONAL INDUSTRIES, INCORPORATED reassignment HARMAN BECKER AUTOMOTIVE SYSTEMS GMBH RELEASE Assignors: JPMORGAN CHASE BANK, N.A., AS ADMINISTRATIVE AGENT
Application granted granted Critical
Publication of US8577052B2 publication Critical patent/US8577052B2/en
Active legal-status Critical Current
Adjusted expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04RLOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
    • H04R5/00Stereophonic arrangements
    • H04R5/04Circuit arrangements, e.g. for selective connection of amplifier inputs/outputs to loudspeakers, for loudspeaker detection, or for adaptation of settings to personal preferences or hearing impairments
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03GCONTROL OF AMPLIFICATION
    • H03G3/00Gain control in amplifiers or frequency changers without distortion of the input signal
    • H03G3/20Automatic control
    • H03G3/30Automatic control in amplifiers having semiconductor devices
    • H03G3/32Automatic control in amplifiers having semiconductor devices the control being dependent upon ambient noise level or sound level
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04RLOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
    • H04R1/00Details of transducers, loudspeakers or microphones
    • H04R1/10Earpieces; Attachments therefor ; Earphones; Monophonic headphones
    • H04R1/1041Mechanical or electronic switches, or control elements
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04RLOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
    • H04R2420/00Details of connection covered by H04R, not provided for in its groups
    • H04R2420/01Input selection or mixing for amplifiers or loudspeakers
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04RLOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
    • H04R2430/00Signal processing covered by H04R, not provided for in its groups
    • H04R2430/01Aspects of volume control, not necessarily automatic, in sound systems
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04RLOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
    • H04R2430/00Signal processing covered by H04R, not provided for in its groups
    • H04R2430/20Processing of the output signals of the acoustic transducers of an array for obtaining a desired directivity characteristic
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04RLOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
    • H04R5/00Stereophonic arrangements
    • H04R5/027Spatial or constructional arrangements of microphones, e.g. in dummy heads
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04RLOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
    • H04R5/00Stereophonic arrangements
    • H04R5/033Headphones for stereophonic communication
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04SSTEREOPHONIC SYSTEMS 
    • H04S2400/00Details of stereophonic systems covered by H04S but not provided for in its groups
    • H04S2400/01Multi-channel, i.e. more than two input channels, sound reproduction with two speakers wherein the multi-channel information is substantially preserved

Definitions

  • This invention relates generally to audio systems, and more particularly to portable audio speakers.
  • Portable radios have evolved from AM and/or FM radios to more recently available portable satellite radios.
  • Portable audio devices are also available for playing audio tapes, compact discs (CDs), mini-audio discs, and more recently, audio recorded on solid state or magnetic storage devices. Examples of solid state and magnetic storage devices include the iPodTM from Apple.
  • Portable audio devices now offer users a virtually unlimited selection of audio sound and music as well as the ability to listen to such audio and music through high quality sound sources.
  • Portable audio devices have become so advanced and so small that users “wear” their portable audio devices while engaged in a wide variety of activities such as exercising, commuting, working, etc.
  • Users often use their portable audio devices in situations in which the advantages of rich sound that silences external sound from the user may actually be a shortcoming. For example, there may be safety reasons for why a user should be able to hear noise generated in his environment. Such situations may include for example, if a user is running for exercise outdoors, and there may be areas of traffic in which the user may need to hear the sounds generated in the environment to avoid being involved in an accident. It may also be desirable in situations for a user to be able to hear the sounds from the surrounding environment. Such situations may include social situations in which it may appear impolite to have headphones on so that the user can't hear what others are saying. In other situations, it may simply be inconvenient to be completely isolated from external sound. For example, the user may be waiting to hear an announcement from a public address system.
  • a headphone accessory for use with a portable audio device and headphones.
  • the headphone accessory includes an audio source input for receiving audio signals from an audio device.
  • An audio sound transducer receives external sounds and converts the external sound to external sound signals.
  • a signal mixer for continuously varies the balance of a source audio volume to an external sound volume. The signal mixer mixes the volume-adjusted source audio signals with volume-adjusted external sound signals.
  • An audio output outputs the mixed source audio and external sound signals.
  • a portable audio device in another aspect of the invention, includes a player unit having an audio output.
  • the portable audio device connects to a headphone accessory that includes an audio source input for receiving audio signals from the player unit.
  • An audio sound transducer receives external sounds and converts the external sound to external sound signals.
  • a signal mixer for continuously varies the balance of a source audio volume to an external sound volume. The signal mixer mixes the volume-adjusted source audio signals with volume-adjusted external sound signals.
  • An audio output outputs the mixed source audio and external sound signals to headphones connected to the audio output.
  • FIG. 1A is a block diagram of a portable audio device 100 that may be used with an example ambient mixer.
  • FIG. 1B is a block diagram of another portable audio device 100 ′ that may be used with an example ambient mixer.
  • FIG. 2 is a schematic diagram of an example ambient mixer.
  • FIGS. 3A and 3B are schematic diagrams of examples of signal mixers that may be used in the example ambient mixer shown in FIG. 2 .
  • FIG. 1A is a block diagram of a portable audio device 100 that may be used with an example ambient mixer.
  • the portable audio device 100 includes a play unit 102 , an ambient mixer 104 , and headphones 108 .
  • the play unit 102 may be any portable audio player that may generate audio for personal listening using headphones 108 .
  • Examples of play units 102 that may be used in the portable audio device in FIG. 1A include portable radios; portable devices for playing audio tapes (for example, WalkmanTM), compact discs (CDs) (for example, DISCMANTM), and mini-audio discs; and portable devices for playing audio recorded in memory devices including solid state memory devices and magnetic storage devices (for example, iPodTM).
  • Typical audio play units 102 include a stereo audio output having a left and right channel as shown in FIG. 1A .
  • the stereo audio output is typically implemented as a female audio plug for receiving a single plug having connections to both right and left channels along a single line.
  • FIG. 1A illustrates two lines, one each for the right and left channels, for purposes of clarity only. It is to be understood that audio play units 102 having any type of output may be used as well.
  • a multi-channel audio play unit 101 may output in multiple channels 105 , and may include a quadraphonic, or other multi-channel sources, with appropriate changes to the electrical connections.
  • multi-channel sources 101 include portable DVD or Blueray players supporting 5.1 with discrete, non-digital outputs, or sources that synthesize additional surround channels from two-channel programs, using circuits such as Logic7TM, or Dolby's Pro LogicTM.
  • the ambient mixer 104 includes audio source inputs for the right and left channel source signals, at least one sound transducer, and outputs for the left and right channels to the headphones 108 .
  • the ambient mixer 104 receives the source audio signals from the audio play unit 102 over the right and left channel wires.
  • the ambient mixer 104 also receives external sounds from the environment via right and left sound transducers 106 a,b .
  • the ambient mixer 106 a includes a signal mixer that allows a user to control the relative volume of the sound from the right and left source signals, and from the right and left sound transducers 106 a,b .
  • the source and sound transducer signals are combined and coupled right and left channel wires that connect to the headphones 108 .
  • the ambient mixer 104 includes a control mechanism, such as a slide switch, or a dial, or knob, or any other suitable device, which allows the user to adjust the volume of the external sounds relative to the volume of the source audio signals.
  • the user may use the control mechanism to adjust the level of external sound being mixed with the source audio for reproduction by the headphones 108 .
  • the user may adjust the external sound level as desired according to the user's situation. If the user does not wish to hear any external sounds, the user may adjust the control mechanism to silence the external sounds.
  • a passive network is used to balance the volume of the source audio signal with the volume of the external sounds.
  • the network is configured to decrease the volume of the source audio as the volume of the external sound is increased, and vice-versa.
  • the ambient mixer 104 may be configured to increase or decrease only the external sound. In another implementation, the ambient mixer 104 may be configured to decrease the either the external sound or the source volume only when one of the other is at a maximum level. In this implementation, both source volume and external sound volume are at their maximum level at a center point. The source volume decreases in one direction of the control mechanism, and the external sound volume decreases in the other direction away from the center point.
  • FIG. 2 is a schematic diagram of an example ambient mixer 200 .
  • the ambient mixer 200 includes a lightweight housing (indicated by 202 ), a rechargeable battery 204 with a power switch, a charger input 206 , a left microphone 208 a , a right microphone 208 b , a left microphone input amplifier 210 a , a right microphone input amplifier 210 b , a left channel source input 212 a , a right channel source input 212 b , a signal mixer 220 , a left channel output 224 a , and a right channel output 224 b .
  • the ambient mixer 200 in FIG. 2 may be connected to a play unit 102 (in FIG. 1A ) at the left channel source input 212 a and the right channel source input 212 b , and to the headphones 108 (in FIG. 1A ) at the left channel output 224 a and the right channel output 224 b.
  • the battery 204 may be used to power the amplifiers 210 a,b in FIG. 2 .
  • the left and right microphones 208 a,b may contain active elements that may also be powered by the battery 204 .
  • the signal mixer 220 may also include active elements that may be powered by the battery 204 .
  • the ambient mixer 200 may be provided with a battery charger that may be connected at charger input 206 .
  • the sound transducers in the ambient mixer 200 in FIG. 2 are implemented using the left microphone 208 a and right microphone 208 b .
  • the left microphone 208 a and right microphone 208 b are implemented using dynamic, cardioid microphones. Dynamic microphones are inexpensive, robust, and require no external power.
  • the left microphone 208 a may be mounted on one side of the lightweight enclosure 202 and the right microphone 208 b may be mounted on the opposite side of the enclosure 202 .
  • the microphones 208 a,b may be mounted at locations on the enclosure such that in use, the user may feel a sense of direction of the external sounds.
  • the left microphone 208 a may be mounted on the left side of the enclosure and the right microphone 208 b on the right side of the enclosure 202 with the enclosure 202 oriented such that the left microphone 208 a will pick up external sounds originating from the user's left and the right microphone 208 b will pick up sounds originating from the user's right.
  • a cardioid microphone provides a good balance between directivity (for the aforementioned left-right localization) and omni-directionality (to pick up most external sounds.
  • Each microphone 208 a,b is connected to a respective amplifier 210 a,b , which provides a suitable level of signal gain.
  • the amplifier's 210 a,b are connected to left and right microphone inputs of the signal mixer 220 .
  • the signal mixer 220 includes balance control circuits to adjust the balance between the volume of external sounds picked up by the left microphone 208 a and the audio source left channel signal, and the balance between the volume of external sounds picked up by the right microphone 208 b and the audio source right channel signal.
  • the signal mixer 220 includes a slide switch 222 that allows the user to set a balance between the volume of the source audio signal and the external sounds.
  • the user may select to hear only the source audio by sliding the slide switch 222 all the way to the source side.
  • the user may select to hear only the external sounds by sliding the slide switch 222 all the way to the microphone side.
  • the user may also select to hear a mix of both external sounds and source audio in various proportions by sliding the slide switch 222 to a desired level between the source and microphone sides.
  • the output signal includes a desired mix of the external sounds and the source audio at left and right outputs 224 a,b.
  • the example implementation of the ambient mixer 200 in FIG. 2 is one example of an ambient mixer.
  • the ambient mixer 200 may include a single microphone, and accordingly, a single amplifier.
  • Other implementations may also use different types of microphones.
  • the amplifier may be optional in some examples, depending on the signal received from the microphone and on the extent of attenuation as the external sound electrical signal is processed by the ambient mixer 200 , which may depend on the selection of the components used in the signal mixer 220 .
  • FIGS. 3A and 3B are schematic diagrams of examples of signal mixers that may be used in the example ambient mixer shown in FIG. 2 .
  • FIG. 3A shows a left channel signal mixer 300 and a right channel signal mixer 320 .
  • the left channel signal mixer 300 includes a first resistive element 302 , a second resistive element 304 and a variable resistive element 306 .
  • the resistance values of the first and second resistive elements 302 and 304 are equal (R 1 ).
  • the variable resistive element 306 varies according to the position of the control mechanism, which is grounded in the implementation shown in FIG. 3A .
  • the right channel signal mixer 320 includes a first resistive element 322 , a second resistive element 324 and a variable resistive element 326 .
  • the resistance values of the first and second resistive elements 322 and 324 are equal (R 1 ).
  • the variable resistive element 326 varies according to the position of the control mechanism, which is grounded in the implementation shown in FIG. 3A . Operation of the signal mixers in FIG. 3A are described below as implemented in the example ambient mixer 200 in FIG. 2 to illustrate operation of the signal mixers. Signal mixers may be used in other schemes as well.
  • the first resistive element 302 is connected to the left audio source input (see FIG. 2 ) to receive the left audio source input signal.
  • the second resistive element 304 is connected to the output of the left microphone input amplifier 210 a , which receives the electrical signal representing the sound picked up by the left microphone 208 a (in FIG. 2 ).
  • the two resistive elements 302 , 304 are connected to the variable resistive element R V 306 .
  • the control mechanism of the variable resistive element RV 306 is connected to ground. When the user slides the control mechanism towards either the source audio side or the microphone input side, the signal level at LEFT SRC changes linearly in relation to the signal level at LEFT MIC .
  • Moving the control mechanism to reduce the resistance between the node at LEFT SRC and the ground connection at the control mechanism of the variable resistive element 306 lowers the voltage level at the node at LEFT SRC and raises the voltage at the node at LEFT MIC .
  • moving the control mechanism to reduce the resistance between the node at LEFT MIC and the ground connection at the control mechanism of the variable resistive element 306 lowers the voltage level at the node at LEFT MIC and raises the voltage at the node at LEFT SRC .
  • the voltages at the LEFT MIC and LEFT SRC nodes are coupled to a left signal combiner 310 , which combines the signals and outputs the combined signal at the LEFT output.
  • the right channel mixer 320 operates in the same way as the left channel mixer 300 .
  • the control mechanism for the variable resistive element 306 may be mechanically coupled to the control mechanism for the variable resistive element 326 so that a single actuator may be used to adjust signal levels on both the left and right channels.
  • the variable resister elements 306 , 326 may be implemented using a single variable resister with sufficient taps to configure the variable resisters as shown in FIG. 3A .
  • FIG. 3B is another example of signal mixers that may be used in an ambient mixer such as the ambient mixer 200 in FIG. 2 .
  • FIG. 3B shows a left signal mixer 350 and a right signal mixer 380 .
  • the left signal mixer 350 includes a first resistive element 352 , a second resistive element 354 , a first variable resistive element 356 , a third resistive element 358 , a fourth resistive element 360 , and a second variable resistive element 362 .
  • the right signal mixer 380 includes fifth resistive element 382 , a sixth resistive element 384 , a third variable resistive element 386 , a seventh resistive element 388 , an eighth resistive element 390 , and a fourth variable resistive element 392 .
  • the first, second, third and fourth variable resistive elements 356 , 362 , 386 , 392 may operate similar to the variable resistive elements 306 and 326 .
  • the left signal mixer 350 receives the left channel source input signal at the first resistive element 352 and the electrical signal from the sound picked up by the left microphone at the fourth resistive element 345 .
  • the user adjusts the control mechanisms of the first and second variable resister elements 356 , 362 to adjust the signal level at the LEFT SRC node relative to the signal level at the LEFT MIC node.
  • Moving the control mechanism of the first and second variable resistive elements 356 , 362 up increases the resistance between the LEFT SRC node and the ground connection and decreases the resistance between the LEFT MIC node and the ground connection.
  • moving the control mechanism up increases the voltage at the LEFT SRC node and decreases the voltage at the LEFT MIC node.
  • the user increases the volume of the sound from the left channel source audio input and decreases the volume of the external sound picked up by the left microphone by moving the control mechanism of the variable resister elements 356 , 362 up.
  • Moving the control mechanism of the first and second variable resistive elements 356 , 362 down increases the resistance between the LEFT MIC node and the ground connection and decreases the resistance between the LEFT SRC node and the ground connection.
  • moving the control mechanism down increases the voltage at the LEFT MIC node and decreases the voltage at the LEFT SRC node.
  • the user decreases the volume of the sound from the left channel source audio input and increases the volume of the external sound picked up by the left microphone by moving the control mechanism of the variable resister elements 356 , 362 up.
  • the right signal mixer 380 operates in the same manner as the left signal mixer 350 .
  • the control mechanism for the four variable resistive elements 356 , 362 , 386 , 392 in FIG. 3B may be mechanically coupled so that a single actuator may be used to adjust signal levels on both the left and right channels.
  • the four variable resister elements 356 , 362 , 386 , 392 may be implemented using a single variable resister with sufficient taps to configure the variable resisters as shown in FIG. 3B .
  • the voltages at the LEFT MIC and LEFT SRC nodes are coupled to a left signal combiner 370 , which combines the signals and outputs the combined signal at the LEFT output.
  • the voltages at the RIGHT MIC and RIGHT SRC nodes are coupled to a right signal combiner 394 , which combines the signals and outputs the combined signal at the RIGHT output.
  • FIGS. 3A and 3B illustrate example passive signal mixers for use in an ambient mixer such as the ambient mixer 200 in FIG. 2 .
  • the signal mixers 350 , 380 in FIG. 3B result in lower insertion loss.
  • An active approach may be used as well, however, at the cost of reducing battery life.
  • the variable resisters may have a linear or log taper.
  • ambient mixers have been described above as operating with a portable audio device. Use of the ambient mixers need not be limited to audio devices that are portable. For example, one additional use may include connecting an example ambient mixer to an audio outlet on an airplane.

Abstract

A headphone accessory for use with a portable audio device and headphones. The headphone accessory includes an audio source input for receiving audio signals from an audio device. An audio sound transducer receives external sounds and converts the external sound to external sound signals. A signal mixer for continuously varies the balance of a source audio volume to an external sound volume. The signal mixer mixes the volume-adjusted source audio signals with volume-adjusted external sound signals. An audio output outputs the mixed source audio and external sound signals.

Description

BACKGROUND OF THE INVENTION
1. Field of the Invention
This invention relates generally to audio systems, and more particularly to portable audio speakers.
2. Related Art
The continuing miniaturization of electronic devices has led to a variety of portable audio devices that deliver audio to a listener via headphones. Portable radios have evolved from AM and/or FM radios to more recently available portable satellite radios. Portable audio devices are also available for playing audio tapes, compact discs (CDs), mini-audio discs, and more recently, audio recorded on solid state or magnetic storage devices. Examples of solid state and magnetic storage devices include the iPod™ from Apple.
The miniaturization of electronics has also led to smaller and smaller headphones that produce high quality sound. Even earphones, or headphones that plug directly into the user's ears, are now capable of delivering rich, high quality sound that silences external sounds generated in the user's environment.
Portable audio devices now offer users a virtually unlimited selection of audio sound and music as well as the ability to listen to such audio and music through high quality sound sources. Portable audio devices have become so advanced and so small that users “wear” their portable audio devices while engaged in a wide variety of activities such as exercising, commuting, working, etc.
Users often use their portable audio devices in situations in which the advantages of rich sound that silences external sound from the user may actually be a shortcoming. For example, there may be safety reasons for why a user should be able to hear noise generated in his environment. Such situations may include for example, if a user is running for exercise outdoors, and there may be areas of traffic in which the user may need to hear the sounds generated in the environment to avoid being involved in an accident. It may also be desirable in situations for a user to be able to hear the sounds from the surrounding environment. Such situations may include social situations in which it may appear impolite to have headphones on so that the user can't hear what others are saying. In other situations, it may simply be inconvenient to be completely isolated from external sound. For example, the user may be waiting to hear an announcement from a public address system.
It would be desirable to allow a user to adjust the extent to which the user may hear external sounds while wearing a portable audio device.
SUMMARY
In view of the above, a headphone accessory is provided for use with a portable audio device and headphones. The headphone accessory includes an audio source input for receiving audio signals from an audio device. An audio sound transducer receives external sounds and converts the external sound to external sound signals. A signal mixer for continuously varies the balance of a source audio volume to an external sound volume. The signal mixer mixes the volume-adjusted source audio signals with volume-adjusted external sound signals. An audio output outputs the mixed source audio and external sound signals.
In another aspect of the invention, a portable audio device is provided. The portable audio device includes a player unit having an audio output. The portable audio device connects to a headphone accessory that includes an audio source input for receiving audio signals from the player unit. An audio sound transducer receives external sounds and converts the external sound to external sound signals. A signal mixer for continuously varies the balance of a source audio volume to an external sound volume. The signal mixer mixes the volume-adjusted source audio signals with volume-adjusted external sound signals. An audio output outputs the mixed source audio and external sound signals to headphones connected to the audio output.
Other systems, methods and features of the invention will be or will become apparent to one with skill in the art upon examination of the following figures and detailed description. It is intended that all such additional systems, methods, features and advantages be included within this description, be within the scope of the invention, and be protected by the accompanying claims.
BRIEF DESCRIPTION OF THE DRAWINGS
The examples of the invention described below can be better understood with reference to the following figures. The components in the figures are not necessarily to scale, emphasis instead being placed upon illustrating the principles of the invention. In the figures, like reference numerals designate corresponding parts throughout the different views.
FIG. 1A is a block diagram of a portable audio device 100 that may be used with an example ambient mixer.
FIG. 1B is a block diagram of another portable audio device 100′ that may be used with an example ambient mixer.
FIG. 2 is a schematic diagram of an example ambient mixer.
FIGS. 3A and 3B are schematic diagrams of examples of signal mixers that may be used in the example ambient mixer shown in FIG. 2.
DETAILED DESCRIPTION
In the following description of example embodiments, reference is made to the accompanying drawings that form a part of the description, and which show, by way of illustration, specific example embodiments in which the invention may be practiced. Other embodiments may be utilized and structural changes may be made without departing from the scope of the invention.
FIG. 1A is a block diagram of a portable audio device 100 that may be used with an example ambient mixer. The portable audio device 100 includes a play unit 102, an ambient mixer 104, and headphones 108. The play unit 102 may be any portable audio player that may generate audio for personal listening using headphones 108. Examples of play units 102 that may be used in the portable audio device in FIG. 1A include portable radios; portable devices for playing audio tapes (for example, Walkman™), compact discs (CDs) (for example, DISCMAN™), and mini-audio discs; and portable devices for playing audio recorded in memory devices including solid state memory devices and magnetic storage devices (for example, iPod™).
Typical audio play units 102 include a stereo audio output having a left and right channel as shown in FIG. 1A. The stereo audio output is typically implemented as a female audio plug for receiving a single plug having connections to both right and left channels along a single line. FIG. 1A illustrates two lines, one each for the right and left channels, for purposes of clarity only. It is to be understood that audio play units 102 having any type of output may be used as well. For example, referring to FIG. 1B, a multi-channel audio play unit 101 may output in multiple channels 105, and may include a quadraphonic, or other multi-channel sources, with appropriate changes to the electrical connections. Examples of multi-channel sources 101 include portable DVD or Blueray players supporting 5.1 with discrete, non-digital outputs, or sources that synthesize additional surround channels from two-channel programs, using circuits such as Logic7™, or Dolby's Pro Logic™.
The ambient mixer 104 includes audio source inputs for the right and left channel source signals, at least one sound transducer, and outputs for the left and right channels to the headphones 108. The ambient mixer 104 receives the source audio signals from the audio play unit 102 over the right and left channel wires. The ambient mixer 104 also receives external sounds from the environment via right and left sound transducers 106 a,b. The ambient mixer 106 a includes a signal mixer that allows a user to control the relative volume of the sound from the right and left source signals, and from the right and left sound transducers 106 a,b. The source and sound transducer signals are combined and coupled right and left channel wires that connect to the headphones 108.
The ambient mixer 104 includes a control mechanism, such as a slide switch, or a dial, or knob, or any other suitable device, which allows the user to adjust the volume of the external sounds relative to the volume of the source audio signals. The user may use the control mechanism to adjust the level of external sound being mixed with the source audio for reproduction by the headphones 108. The user may adjust the external sound level as desired according to the user's situation. If the user does not wish to hear any external sounds, the user may adjust the control mechanism to silence the external sounds. In one example implementation, a passive network is used to balance the volume of the source audio signal with the volume of the external sounds. The network is configured to decrease the volume of the source audio as the volume of the external sound is increased, and vice-versa. In another implementation, the ambient mixer 104 may be configured to increase or decrease only the external sound. In another implementation, the ambient mixer 104 may be configured to decrease the either the external sound or the source volume only when one of the other is at a maximum level. In this implementation, both source volume and external sound volume are at their maximum level at a center point. The source volume decreases in one direction of the control mechanism, and the external sound volume decreases in the other direction away from the center point.
FIG. 2 is a schematic diagram of an example ambient mixer 200. The ambient mixer 200 includes a lightweight housing (indicated by 202), a rechargeable battery 204 with a power switch, a charger input 206, a left microphone 208 a, a right microphone 208 b, a left microphone input amplifier 210 a, a right microphone input amplifier 210 b, a left channel source input 212 a, a right channel source input 212 b, a signal mixer 220, a left channel output 224 a, and a right channel output 224 b. In operation, the ambient mixer 200 in FIG. 2 may be connected to a play unit 102 (in FIG. 1A) at the left channel source input 212 a and the right channel source input 212 b, and to the headphones 108 (in FIG. 1A) at the left channel output 224 a and the right channel output 224 b.
The battery 204 may be used to power the amplifiers 210 a,b in FIG. 2. The left and right microphones 208 a,b may contain active elements that may also be powered by the battery 204. The signal mixer 220 may also include active elements that may be powered by the battery 204. The ambient mixer 200 may be provided with a battery charger that may be connected at charger input 206.
The sound transducers in the ambient mixer 200 in FIG. 2 are implemented using the left microphone 208 a and right microphone 208 b. In one example implementation, the left microphone 208 a and right microphone 208 b are implemented using dynamic, cardioid microphones. Dynamic microphones are inexpensive, robust, and require no external power. The left microphone 208 a may be mounted on one side of the lightweight enclosure 202 and the right microphone 208 b may be mounted on the opposite side of the enclosure 202. The microphones 208 a,b may be mounted at locations on the enclosure such that in use, the user may feel a sense of direction of the external sounds. For example, the left microphone 208 a may be mounted on the left side of the enclosure and the right microphone 208 b on the right side of the enclosure 202 with the enclosure 202 oriented such that the left microphone 208 a will pick up external sounds originating from the user's left and the right microphone 208 b will pick up sounds originating from the user's right. In such an implementation, a cardioid microphone provides a good balance between directivity (for the aforementioned left-right localization) and omni-directionality (to pick up most external sounds.
Each microphone 208 a,b is connected to a respective amplifier 210 a,b, which provides a suitable level of signal gain. The amplifier's 210 a,b are connected to left and right microphone inputs of the signal mixer 220. The signal mixer 220 includes balance control circuits to adjust the balance between the volume of external sounds picked up by the left microphone 208 a and the audio source left channel signal, and the balance between the volume of external sounds picked up by the right microphone 208 b and the audio source right channel signal. The signal mixer 220 includes a slide switch 222 that allows the user to set a balance between the volume of the source audio signal and the external sounds. Using the slide switch 222, the user may select to hear only the source audio by sliding the slide switch 222 all the way to the source side. The user may select to hear only the external sounds by sliding the slide switch 222 all the way to the microphone side. The user may also select to hear a mix of both external sounds and source audio in various proportions by sliding the slide switch 222 to a desired level between the source and microphone sides. The output signal includes a desired mix of the external sounds and the source audio at left and right outputs 224 a,b.
The example implementation of the ambient mixer 200 in FIG. 2 is one example of an ambient mixer. Other implementations may also be used. For example, the ambient mixer 200 may include a single microphone, and accordingly, a single amplifier. Other implementations may also use different types of microphones. The amplifier may be optional in some examples, depending on the signal received from the microphone and on the extent of attenuation as the external sound electrical signal is processed by the ambient mixer 200, which may depend on the selection of the components used in the signal mixer 220.
FIGS. 3A and 3B are schematic diagrams of examples of signal mixers that may be used in the example ambient mixer shown in FIG. 2. FIG. 3A shows a left channel signal mixer 300 and a right channel signal mixer 320. The left channel signal mixer 300 includes a first resistive element 302, a second resistive element 304 and a variable resistive element 306. The resistance values of the first and second resistive elements 302 and 304 are equal (R1). The variable resistive element 306 varies according to the position of the control mechanism, which is grounded in the implementation shown in FIG. 3A. The right channel signal mixer 320 includes a first resistive element 322, a second resistive element 324 and a variable resistive element 326. The resistance values of the first and second resistive elements 322 and 324 are equal (R1). The variable resistive element 326 varies according to the position of the control mechanism, which is grounded in the implementation shown in FIG. 3A. Operation of the signal mixers in FIG. 3A are described below as implemented in the example ambient mixer 200 in FIG. 2 to illustrate operation of the signal mixers. Signal mixers may be used in other schemes as well.
The first resistive element 302 is connected to the left audio source input (see FIG. 2) to receive the left audio source input signal. The second resistive element 304 is connected to the output of the left microphone input amplifier 210 a, which receives the electrical signal representing the sound picked up by the left microphone 208 a (in FIG. 2). The two resistive elements 302, 304 are connected to the variable resistive element R V 306. The control mechanism of the variable resistive element RV 306 is connected to ground. When the user slides the control mechanism towards either the source audio side or the microphone input side, the signal level at LEFTSRC changes linearly in relation to the signal level at LEFTMIC. Moving the control mechanism to reduce the resistance between the node at LEFTSRC and the ground connection at the control mechanism of the variable resistive element 306 lowers the voltage level at the node at LEFTSRC and raises the voltage at the node at LEFTMIC. Similarly, moving the control mechanism to reduce the resistance between the node at LEFTMIC and the ground connection at the control mechanism of the variable resistive element 306 lowers the voltage level at the node at LEFTMIC and raises the voltage at the node at LEFTSRC. The voltages at the LEFTMIC and LEFTSRC nodes are coupled to a left signal combiner 310, which combines the signals and outputs the combined signal at the LEFT output.
The right channel mixer 320 operates in the same way as the left channel mixer 300. The control mechanism for the variable resistive element 306 may be mechanically coupled to the control mechanism for the variable resistive element 326 so that a single actuator may be used to adjust signal levels on both the left and right channels. Alternatively, the variable resister elements 306, 326 may be implemented using a single variable resister with sufficient taps to configure the variable resisters as shown in FIG. 3A.
FIG. 3B is another example of signal mixers that may be used in an ambient mixer such as the ambient mixer 200 in FIG. 2. FIG. 3B shows a left signal mixer 350 and a right signal mixer 380. The left signal mixer 350 includes a first resistive element 352, a second resistive element 354, a first variable resistive element 356, a third resistive element 358, a fourth resistive element 360, and a second variable resistive element 362. The right signal mixer 380 includes fifth resistive element 382, a sixth resistive element 384, a third variable resistive element 386, a seventh resistive element 388, an eighth resistive element 390, and a fourth variable resistive element 392. The first, second, third and fourth variable resistive elements 356, 362, 386, 392 may operate similar to the variable resistive elements 306 and 326.
The left signal mixer 350 receives the left channel source input signal at the first resistive element 352 and the electrical signal from the sound picked up by the left microphone at the fourth resistive element 345. The user adjusts the control mechanisms of the first and second variable resister elements 356, 362 to adjust the signal level at the LEFTSRC node relative to the signal level at the LEFTMIC node. Moving the control mechanism of the first and second variable resistive elements 356, 362 up increases the resistance between the LEFTSRC node and the ground connection and decreases the resistance between the LEFTMIC node and the ground connection. Thus, moving the control mechanism up increases the voltage at the LEFTSRC node and decreases the voltage at the LEFTMIC node. The user increases the volume of the sound from the left channel source audio input and decreases the volume of the external sound picked up by the left microphone by moving the control mechanism of the variable resister elements 356, 362 up.
Moving the control mechanism of the first and second variable resistive elements 356, 362 down increases the resistance between the LEFTMIC node and the ground connection and decreases the resistance between the LEFTSRC node and the ground connection. Thus, moving the control mechanism down increases the voltage at the LEFTMIC node and decreases the voltage at the LEFTSRC node. The user decreases the volume of the sound from the left channel source audio input and increases the volume of the external sound picked up by the left microphone by moving the control mechanism of the variable resister elements 356, 362 up.
The right signal mixer 380 operates in the same manner as the left signal mixer 350. The control mechanism for the four variable resistive elements 356, 362, 386, 392 in FIG. 3B may be mechanically coupled so that a single actuator may be used to adjust signal levels on both the left and right channels. Alternatively, the four variable resister elements 356, 362, 386, 392 may be implemented using a single variable resister with sufficient taps to configure the variable resisters as shown in FIG. 3B. The voltages at the LEFTMIC and LEFTSRC nodes are coupled to a left signal combiner 370, which combines the signals and outputs the combined signal at the LEFT output. The voltages at the RIGHTMIC and RIGHTSRC nodes are coupled to a right signal combiner 394, which combines the signals and outputs the combined signal at the RIGHT output.
FIGS. 3A and 3B illustrate example passive signal mixers for use in an ambient mixer such as the ambient mixer 200 in FIG. 2. The signal mixers 350, 380 in FIG. 3B result in lower insertion loss. An active approach may be used as well, however, at the cost of reducing battery life. The variable resisters may have a linear or log taper.
It is noted that examples of ambient mixers have been described above as operating with a portable audio device. Use of the ambient mixers need not be limited to audio devices that are portable. For example, one additional use may include connecting an example ambient mixer to an audio outlet on an airplane.
The foregoing description of an implementation has been presented for purposes of illustration and description. It is not exhaustive and does not limit the claimed inventions to the precise form disclosed. Modifications and variations are possible in light of the above description or may be acquired from practicing the invention. Note also that the implementation may vary between systems. The claims and their equivalents define the scope of the invention.

Claims (20)

What is claimed:
1. A headphone accessory comprising:
an audio source input for receiving audio signals from an audio device;
an audio sound transducer for receiving external sounds and converting the external sound to external sound signals;
a signal mixer for varying the balance of a source audio volume to an external sound volume by increasing one of the source audio volume and the external sound volume while decreasing the other of the source audio volume and the external sound volume in response to a user control, and for mixing volume-adjusted source audio signals with volume-adjusted external sound signals; and
an audio output for outputting the mixed source audio and external sound signals.
2. The headphone accessory of claim 1 where the audio source input includes a right audio input and a left audio input.
3. The headphone accessory of claim 2 wherein the audio sound transducer includes a first audio sound transducer and a second audio sound transducer, wherein the first audio sound transducer is configured as a right external sound pickup and the second audio sound transducer is configured as a left external sound pickup.
4. The headphone accessory of claim 3 where:
the signal mixer varies the balance of a right source audio volume to a right external sound volume under user control,
the signal varies the balance of a left source audio volume to a left external sound volume under user control, and
the signal mixer mixes volume-adjusted right source audio with volume-adjusted right external sound to output to a right channel audio output, and volume-adjusted left source audio with volume-adjusted left external sound to output to a left channel audio output.
5. The headphone accessory of claim 1 where the audio source input is configured to receive audio signals from the audio device, where the audio device includes a multi-channel source selected from a group consisting of quadraphonic source, a DVD player with 5.1 audio outputs, a Blueray™ player with 5.1 audio outputs, and sources that synthesize additional surround channels from two-channel programs using circuits such as Logic7™, or Dolby's Pro Logic™.
6. The headphone accessory of claim 1 where the signal mixer uses a passive resistive network that includes a potentiometer for varying the balance of the volumes.
7. A portable audio device comprising:
a player unit having an audio output;
a headphone accessory having:
an audio source input for receiving audio signals from the player unit;
an audio sound transducer for receiving external sounds and converting the external sound to external sound signals;
a signal mixer for varying the balance of a source audio volume to an external sound volume by increasing one of the source audio volume and the external sound volume while decreasing the other of the source audio volume and the external sound volume in response to a user control, and for mixing volume-adjusted source audio signals with volume-adjusted external sound signals; and
an audio output for outputting the mixed source audio and external sound signals; and
headphones connected to the audio output.
8. The portable audio device of claim 7 where the audio output of the player unit includes a right channel and a left channel, and the audio source input of the headphone accessory includes a right audio input to connect to the right channel, and a left audio input to connect to the left channel.
9. The portable audio device of claim 8 wherein the audio sound transducer includes a first audio sound transducer and a second audio sound transducer, wherein the first audio sound transducer is configured as a right external sound pickup and the second audio sound transducer is configured as a left external sound pickup.
10. The portable audio device of claim 9 where in the headphone accessory:
the signal mixer varies the balance of a right source audio volume to a right external sound volume under user control,
the signal mixer varies the balance of a left source audio volume to a left external sound volume under user control, and
the signal mixer mixes volume-adjusted right source audio with volume-adjusted right external sound to output to a right channel audio output, and volume-adjusted left source audio with volume-adjusted left external sound to output to a left channel audio output.
11. The portable audio device of claim 7 where the player unit is a multi-channel source selected from a group consisting of a quadraphonic source, a DVD player with 5.1 audio outputs, a Blueray™, player with 5.1 audio outputs, and sources that synthesize additional surround channels from two-channel programs, using circuits such as Logic7™, or Dolby's Pro Logic™.
12. The portable audio device of claim 7 where the signal mixer in the headphone accessory uses a passive resistive network that includes a potentiometer for varying the balance of the volumes.
13. The headphone accessory of claim 1 wherein the signal mixer is configured for varying the balance of the source audio volume to the external sound volume such that the source audio volume is linearly related to the external sound volume.
14. The headphone accessory of claim 1 further comprising a control mechanism coupled to the signal mixer and adapted to receive the user control.
15. The headphone accessory of claim 14 wherein the signal mixer comprises:
a first circuit coupled to the audio source input for receiving the audio signals and having a first resistance corresponding to the source audio volume;
a second circuit coupled to the audio sound transducer for receiving the external sound signals and having a second resistance corresponding to the external sound volume; and
a variable resistor coupled to the control mechanism and connected to the first circuit and to the second circuit for adjusting the first resistance and the second resistance in response to the user control.
16. The headphone accessory of claim 15 wherein the signal mixer further comprises a signal combiner, and wherein the signal combiner is configured to:
receive the volume adjusted source audio signals from the first circuit;
receive the volume-adjusted external sound signals from the second circuit;
mix the volume adjusted source audio signals and the volume-adjusted external sound signals; and
output the mixed source audio and external sound signals.
17. The portable audio device of claim 7 wherein the headphone accessory further comprises a control mechanism coupled to the signal mixer and adapted to receive the user control.
18. The portable audio device of claim 17 wherein the signal mixer comprises:
a first circuit coupled to the audio source input for receiving the audio signals and having a first resistance corresponding to the source audio volume;
a second circuit coupled to the audio sound transducer for receiving the external sound signals and having a second resistance corresponding to the external sound volume; and
a variable resistor coupled to the control mechanism and connected to the first circuit and to the second circuit for adjusting the first resistance and the second resistance in response to the user control.
19. The portable audio device of claim 18 wherein the signal mixer further comprises a signal combiner, and wherein the signal combiner is configured to:
receive the volume adjusted source audio signals from the first circuit;
receive the volume-adjusted external sound signals from the second circuit;
mix the volume adjusted source audio signals and the volume-adjusted external sound signals; and
output the mixed source audio and external sound signals.
20. A portable audio device comprising:
a headphone accessory having:
an audio source input for receiving audio signals from a player unit;
an audio sound transducer for receiving external sounds and converting the external sound to external sound signals;
a signal mixer for varying the balance of a source audio volume to an external sound volume by increasing one of the source audio volume and the external sound volume while decreasing the other of the source audio volume and the external sound volume in response to a user control, and for mixing volume-adjusted source audio signals with volume-adjusted external sound signals; and
an audio output for outputting the mixed source audio and external sound signals; and
at least one headphone for connecting to the audio output.
US12/266,228 2008-11-06 2008-11-06 Headphone accessory Active 2032-04-28 US8577052B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US12/266,228 US8577052B2 (en) 2008-11-06 2008-11-06 Headphone accessory

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US12/266,228 US8577052B2 (en) 2008-11-06 2008-11-06 Headphone accessory

Publications (2)

Publication Number Publication Date
US20100111337A1 US20100111337A1 (en) 2010-05-06
US8577052B2 true US8577052B2 (en) 2013-11-05

Family

ID=42131433

Family Applications (1)

Application Number Title Priority Date Filing Date
US12/266,228 Active 2032-04-28 US8577052B2 (en) 2008-11-06 2008-11-06 Headphone accessory

Country Status (1)

Country Link
US (1) US8577052B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11244666B2 (en) 2007-01-22 2022-02-08 Staton Techiya, Llc Method and device for acute sound detection and reproduction

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5299030B2 (en) * 2009-03-31 2013-09-25 ソニー株式会社 Headphone device
US8831255B2 (en) 2012-03-08 2014-09-09 Disney Enterprises, Inc. Augmented reality (AR) audio with position and action triggered virtual sound effects
WO2015065496A1 (en) * 2013-11-04 2015-05-07 Healthy Hearing, Llc Method and apparatus for providing a headphone sound-level attenuator
EP3108646B1 (en) * 2014-02-20 2019-05-08 Harman International Industries, Incorporated Environment sensing intelligent apparatus
US10148240B2 (en) 2014-03-26 2018-12-04 Nokia Technologies Oy Method and apparatus for sound playback control
CN104616665B (en) * 2015-01-30 2018-04-24 深圳市云之讯网络技术有限公司 Sound mixing method based on voice similar degree
WO2016209295A1 (en) * 2015-06-26 2016-12-29 Harman International Industries, Incorporated Sports headphone with situational awareness
US11016721B2 (en) 2016-06-14 2021-05-25 Dolby Laboratories Licensing Corporation Media-compensated pass-through and mode-switching
US10356517B2 (en) * 2016-08-08 2019-07-16 Marshall Electronics, Inc. Blended passive microphone

Citations (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4817149A (en) * 1987-01-22 1989-03-28 American Natural Sound Company Three-dimensional auditory display apparatus and method utilizing enhanced bionic emulation of human binaural sound localization
US5694467A (en) * 1996-05-10 1997-12-02 Hewlett Packard Company Integrated sound/telephone headset system
US5887066A (en) * 1997-01-20 1999-03-23 Sony Corporation Headphone apparatus
US6311155B1 (en) * 2000-02-04 2001-10-30 Hearing Enhancement Company Llc Use of voice-to-remaining audio (VRA) in consumer applications
US6381333B1 (en) * 1997-01-20 2002-04-30 Matsushita Electric Industrial Co., Ltd. Sound processing circuit
US20030016830A1 (en) * 2001-07-23 2003-01-23 Niro Nakamichi Speaker system
US20030035551A1 (en) * 2001-08-20 2003-02-20 Light John J. Ambient-aware headset
US6650755B2 (en) * 1999-06-15 2003-11-18 Hearing Enhancement Company, Llc Voice-to-remaining audio (VRA) interactive center channel downmix
US6782106B1 (en) * 1999-11-12 2004-08-24 Samsung Electronics Co., Ltd. Apparatus and method for transmitting sound
US20050207597A1 (en) * 2004-03-22 2005-09-22 Yamaha Corporation Mixing apparatus, mixing method, and mixing program
US20060050890A1 (en) * 2004-09-03 2006-03-09 Parker Tsuhako Method and apparatus for producing a phantom three-dimensional sound space with recorded sound
US20060233394A1 (en) * 2003-02-04 2006-10-19 Lehmkuhl John E Audio interface device for public address systems
US20070162169A1 (en) * 2000-10-02 2007-07-12 Kabushiki Kaisha Toshiba Music reproduction apparatus, audio player, and headphone
US20090046868A1 (en) * 2004-09-23 2009-02-19 Thomson Licensing Method and apparatus for controlling a headphone
US8041057B2 (en) * 2006-06-07 2011-10-18 Qualcomm Incorporated Mixing techniques for mixing audio

Patent Citations (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4817149A (en) * 1987-01-22 1989-03-28 American Natural Sound Company Three-dimensional auditory display apparatus and method utilizing enhanced bionic emulation of human binaural sound localization
US5694467A (en) * 1996-05-10 1997-12-02 Hewlett Packard Company Integrated sound/telephone headset system
US5887066A (en) * 1997-01-20 1999-03-23 Sony Corporation Headphone apparatus
US6381333B1 (en) * 1997-01-20 2002-04-30 Matsushita Electric Industrial Co., Ltd. Sound processing circuit
US6650755B2 (en) * 1999-06-15 2003-11-18 Hearing Enhancement Company, Llc Voice-to-remaining audio (VRA) interactive center channel downmix
US6782106B1 (en) * 1999-11-12 2004-08-24 Samsung Electronics Co., Ltd. Apparatus and method for transmitting sound
US6311155B1 (en) * 2000-02-04 2001-10-30 Hearing Enhancement Company Llc Use of voice-to-remaining audio (VRA) in consumer applications
US20070162169A1 (en) * 2000-10-02 2007-07-12 Kabushiki Kaisha Toshiba Music reproduction apparatus, audio player, and headphone
US20030016830A1 (en) * 2001-07-23 2003-01-23 Niro Nakamichi Speaker system
US20030035551A1 (en) * 2001-08-20 2003-02-20 Light John J. Ambient-aware headset
US20060233394A1 (en) * 2003-02-04 2006-10-19 Lehmkuhl John E Audio interface device for public address systems
US20050207597A1 (en) * 2004-03-22 2005-09-22 Yamaha Corporation Mixing apparatus, mixing method, and mixing program
US20060050890A1 (en) * 2004-09-03 2006-03-09 Parker Tsuhako Method and apparatus for producing a phantom three-dimensional sound space with recorded sound
US20090046868A1 (en) * 2004-09-23 2009-02-19 Thomson Licensing Method and apparatus for controlling a headphone
US8041057B2 (en) * 2006-06-07 2011-10-18 Qualcomm Incorporated Mixing techniques for mixing audio

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11244666B2 (en) 2007-01-22 2022-02-08 Staton Techiya, Llc Method and device for acute sound detection and reproduction
US11710473B2 (en) 2007-01-22 2023-07-25 Staton Techiya Llc Method and device for acute sound detection and reproduction

Also Published As

Publication number Publication date
US20100111337A1 (en) 2010-05-06

Similar Documents

Publication Publication Date Title
US8577052B2 (en) Headphone accessory
US6311155B1 (en) Use of voice-to-remaining audio (VRA) in consumer applications
US7876921B2 (en) Active crossover and wireless interface for use with multi-driver headphones
US4633498A (en) Infrared headphones for the hearing impaired
US20050281421A1 (en) First person acoustic environment system and method
US20070098202A1 (en) Variable output earphone system
EP2410762B1 (en) Headphone
AU2001231228A1 (en) Use of voice-to-remaining audio (VRA) in consumer applications
US7864975B2 (en) Active crossover for use with multi-driver in-ear monitors
US8666098B2 (en) Single earphone for stereo and monaural audio devices
US7869616B2 (en) Active crossover and wireless interface for use with multi-driver in-ear monitors
US7876920B2 (en) Active crossover for use with multi-driver headphones
KR20090001928A (en) Apparatus for sounder for multimedia lecture
JP2004511927A (en) Power amplifier for parametric speakers
US20140301576A1 (en) Adjustable audio splitter
JP2004513583A (en) Portable multi-channel amplifier
CN212034321U (en) Earphone control module and earphone system
CN211702375U (en) Sound playing device and equipment
JP2011087335A (en) Headphone device
GB2463924A (en) Wireless table-top conference system uses Balanced Mode loudspeaker
KR20020064118A (en) Ear phone capable of hearing at the same time
GB2447634A (en) Sound output device with earphone mode and speaker mode

Legal Events

Date Code Title Description
AS Assignment

Owner name: HARMAN INTERNATIONAL INDUSTRIES, INCORPORATED,CALI

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:SILBER, MICHAEL W.;DRAGON, CHRISTOPHER M.;SIGNING DATES FROM 20090121 TO 20090203;REEL/FRAME:022358/0949

Owner name: HARMAN INTERNATIONAL INDUSTRIES, INCORPORATED, CAL

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:SILBER, MICHAEL W.;DRAGON, CHRISTOPHER M.;SIGNING DATES FROM 20090121 TO 20090203;REEL/FRAME:022358/0949

AS Assignment

Owner name: JPMORGAN CHASE BANK, N.A.,NEW YORK

Free format text: SECURITY AGREEMENT;ASSIGNORS:HARMAN INTERNATIONAL INDUSTRIES, INCORPORATED;BECKER SERVICE-UND VERWALTUNG GMBH;CROWN AUDIO, INC.;AND OTHERS;REEL/FRAME:022659/0743

Effective date: 20090331

Owner name: JPMORGAN CHASE BANK, N.A., NEW YORK

Free format text: SECURITY AGREEMENT;ASSIGNORS:HARMAN INTERNATIONAL INDUSTRIES, INCORPORATED;BECKER SERVICE-UND VERWALTUNG GMBH;CROWN AUDIO, INC.;AND OTHERS;REEL/FRAME:022659/0743

Effective date: 20090331

AS Assignment

Owner name: HARMAN INTERNATIONAL INDUSTRIES, INCORPORATED, CON

Free format text: RELEASE;ASSIGNOR:JPMORGAN CHASE BANK, N.A., AS ADMINISTRATIVE AGENT;REEL/FRAME:025795/0143

Effective date: 20101201

Owner name: HARMAN BECKER AUTOMOTIVE SYSTEMS GMBH, CONNECTICUT

Free format text: RELEASE;ASSIGNOR:JPMORGAN CHASE BANK, N.A., AS ADMINISTRATIVE AGENT;REEL/FRAME:025795/0143

Effective date: 20101201

AS Assignment

Owner name: JPMORGAN CHASE BANK, N.A., AS ADMINISTRATIVE AGENT

Free format text: SECURITY AGREEMENT;ASSIGNORS:HARMAN INTERNATIONAL INDUSTRIES, INCORPORATED;HARMAN BECKER AUTOMOTIVE SYSTEMS GMBH;REEL/FRAME:025823/0354

Effective date: 20101201

AS Assignment

Owner name: HARMAN BECKER AUTOMOTIVE SYSTEMS GMBH, CONNECTICUT

Free format text: RELEASE;ASSIGNOR:JPMORGAN CHASE BANK, N.A., AS ADMINISTRATIVE AGENT;REEL/FRAME:029294/0254

Effective date: 20121010

Owner name: HARMAN INTERNATIONAL INDUSTRIES, INCORPORATED, CON

Free format text: RELEASE;ASSIGNOR:JPMORGAN CHASE BANK, N.A., AS ADMINISTRATIVE AGENT;REEL/FRAME:029294/0254

Effective date: 20121010

STCF Information on status: patent grant

Free format text: PATENTED CASE

FPAY Fee payment

Year of fee payment: 4

MAFP Maintenance fee payment

Free format text: PAYMENT OF MAINTENANCE FEE, 8TH YEAR, LARGE ENTITY (ORIGINAL EVENT CODE: M1552); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY

Year of fee payment: 8