US8549949B2 - Backlash adjustment mechanism and industrial robot using the same - Google Patents

Backlash adjustment mechanism and industrial robot using the same Download PDF

Info

Publication number
US8549949B2
US8549949B2 US12/782,825 US78282510A US8549949B2 US 8549949 B2 US8549949 B2 US 8549949B2 US 78282510 A US78282510 A US 78282510A US 8549949 B2 US8549949 B2 US 8549949B2
Authority
US
United States
Prior art keywords
cylindrical gear
gear
cylindrical
arm
addendum modification
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related, expires
Application number
US12/782,825
Other versions
US20110107867A1 (en
Inventor
Bo Long
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hongfujin Precision Industry Shenzhen Co Ltd
Hon Hai Precision Industry Co Ltd
Original Assignee
Hongfujin Precision Industry Shenzhen Co Ltd
Hon Hai Precision Industry Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hongfujin Precision Industry Shenzhen Co Ltd, Hon Hai Precision Industry Co Ltd filed Critical Hongfujin Precision Industry Shenzhen Co Ltd
Assigned to HONG FU JIN PRECISION INDUSTRY (SHENZHEN) CO., LTD., HON HAI PRECISION INDUSTRY CO., LTD. reassignment HONG FU JIN PRECISION INDUSTRY (SHENZHEN) CO., LTD. ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: LONG, Bo
Publication of US20110107867A1 publication Critical patent/US20110107867A1/en
Application granted granted Critical
Publication of US8549949B2 publication Critical patent/US8549949B2/en
Expired - Fee Related legal-status Critical Current
Adjusted expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25JMANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
    • B25J9/00Programme-controlled manipulators
    • B25J9/10Programme-controlled manipulators characterised by positioning means for manipulator elements
    • B25J9/102Gears specially adapted therefor, e.g. reduction gears
    • B25J9/103Gears specially adapted therefor, e.g. reduction gears with backlash-preventing means
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25JMANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
    • B25J17/00Joints
    • B25J17/02Wrist joints
    • B25J17/0283Three-dimensional joints
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T74/00Machine element or mechanism
    • Y10T74/19Gearing
    • Y10T74/1987Rotary bodies
    • Y10T74/19893Sectional
    • Y10T74/19898Backlash take-up
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T74/00Machine element or mechanism
    • Y10T74/20Control lever and linkage systems
    • Y10T74/20207Multiple controlling elements for single controlled element
    • Y10T74/20305Robotic arm
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T74/00Machine element or mechanism
    • Y10T74/20Control lever and linkage systems
    • Y10T74/20207Multiple controlling elements for single controlled element
    • Y10T74/20305Robotic arm
    • Y10T74/20329Joint between elements

Definitions

  • the present disclosure generally relates to robotic technologies, and particularly, to a backlash adjustment mechanism and an industrial robot utilizing the backlash adjustment mechanism.
  • a commonly used industrial robot includes a plurality of arms connected in series.
  • An actuator such as a welding device, a gripper or a cutting tool, is mounted at a distal arm of the industrial robot to execute specific tasks.
  • Generally six axes are utilized to achieve maximum movement of the actuator.
  • Each arm of the industrial robot rotates around a rotation axis driven by a driving unit.
  • the driving unit includes a motor mounted on one arm and a gear transmission mechanism coupled to the motor to transmit the movement of the motor to another arm.
  • the working range and capacity for movement of an industrial robot depend on, among other things, the gear transmission mechanism included.
  • An additional factor influenced by the gear transmission mechanism is the performance of the industrial robot with respect to precision and/or accuracy.
  • backlash between meshed gears in the gear transmission mechanism is increased, the life and precision of the gear transmission mechanism are deteriorated by aggravated abrasion and oscillation caused by the deteriorated meshing condition.
  • a commonly used method to decrease backlash is the employment of precision manufacturing and assembly, thus increasing cost.
  • FIG. 1 is an isometric view of a joint of one embodiment of an industrial robot.
  • FIG. 2 is a cross section of the joint of FIG. 1 , taken along the line II-II.
  • FIG. 3 is a detailed enlarged view of a circled portion III of FIG. 2 , showing one embodiment of a backlash adjustment mechanism utilized in the industrial robot of FIG. 1 .
  • an industrial robot may be a six-axis robot.
  • the industrial robot includes a fixed base, a bracket rotatably connected to the fixed base, a lower arm rotatably connected to the bracket, an elbow rotatably connected to the lower arm, and a joint 100 , as illustrated in FIG. 2 , connected to the elbow.
  • the fixed base, bracket, lower arm, and elbow are similar to those of a traditional six-axis industrial robot and are not shown in drawings here.
  • the bracket, lower arm, and elbow are capable of rotating about a first, a second and a third rotation axes, respectively.
  • the joint 100 includes a fourth arm 11 rotatably connected to the elbow, a fifth arm 12 rotatably connected to the fourth arm 11 about a fifth rotation axis 41 , and a sixth arm 13 rotatably connected to the fifth arm 12 about a sixth rotation axis 42 .
  • the industrial robot further includes a first motor (not shown) and a first transmission mechanism 14 to drive the fifth arm 12 , a second motor (not shown) and a second transmission mechanism 15 to drive the sixth arm 13 .
  • the fifth rotation axis 41 is substantially perpendicular to the sixth rotation axis 42 .
  • An actuator (not shown), such as a welding device, a gripper or a cutting tool, is mounted at a distal end of the sixth arm 13 of the industrial robot to execute specific tasks.
  • the fourth arm 11 is substantially an outer fork with a first fork branch 112 , a second fork branch 113 , and a connection portion 114 connecting the first and second fork branches 112 , 113 .
  • the connection portion 114 defines a hollow portion 1142 therein along the rotation axis of the fourth arm 11 .
  • the first fork branch 112 defines a first assembly hole 1121 and the second fork branch 113 defines a second assembly hole 1131 .
  • the hollow portion 1142 , the first and second assembly holes 112 , 113 are substantially parallel and extend perpendicular to the fifth rotation axis 41 .
  • the first and second fork branches 112 , 113 further define two third assembly holes 1123 , 1133 , respectively.
  • the fifth arm 12 is substantially cylindrical and is positioned between the first and second fork branches 112 , 113 , with two ends rotatably received in the third assembly holes 1123 , 1133 , respectively.
  • the fifth arm 12 defines a through hole 121 extending substantially along the sixth rotation axis 42 .
  • the sixth arm 13 is rotatably received in the through hole 121 about the sixth rotation axis 42 , and capable of rotating together with the fifth arm 12 .
  • the first transmission mechanism 14 transmits the movement of the first motor to the fifth arm 12 to rotate the fifth arm 12 .
  • the first transmission mechanism 14 includes a first shaft 141 , a first cylindrical gear assembly 142 , and a first beveled gear assembly 143 .
  • the first motor and the first cylindrical gear assembly 142 are mounted on opposite ends of the first shaft 141 .
  • the first cylindrical gear assembly 142 includes a first cylindrical gear 142 a and a second cylindrical gear 142 b meshed with the first cylindrical gear 142 a .
  • the first beveled gear assembly 143 includes a first beveled gear 143 a and a second beveled gear 143 b meshed with the first beveled gear 143 a .
  • the first cylindrical gear 142 a is fixed to the first shaft 141
  • the second cylindrical gear 142 b is connected to the first beveled gear 143 a and movable along an axis of the second cylindrical gear 142 b .
  • the second beveled gear 143 b is fixed to the fifth arm 12 to rotate the fifth arm 12 about the fifth rotation axis 41 .
  • the first shaft 141 defines a second through hole 1412 along the axis thereof.
  • the second transmission mechanism 15 transmits the movement of the second motor to the sixth arm 13 to rotate the sixth arm 13 about the sixth rotation axis 42 .
  • the second transmission mechanism 15 includes a second shaft 151 , a second cylindrical gear assembly 152 , a second beveled gear assembly 153 and a third beveled gear assembly 154 .
  • the second shaft 151 is received in the second through hole 1412 with the two ends of the second shaft 151 extending out of the through hole 1412 .
  • the second motor and the second cylindrical gear assembly 152 are mounted on opposite ends of the second shaft 151 .
  • the first and second motors are mounted on opposite sides of the fourth arm 11 .
  • the second cylindrical gear assembly 152 includes a first cylindrical gear 152 a and a second cylindrical gear 152 b meshed with the first cylindrical gear 152 a .
  • the first cylindrical gears 142 a , 152 a are offset along the axis thereof.
  • the second beveled gear assembly 153 includes a pair of meshed beveled gears 153 a and 153 b .
  • the third beveled gear assembly 154 includes a pair of meshed beveled gears 154 a and 154 b .
  • the first cylindrical gear 152 a is fixed to the second shaft 151 .
  • the second cylindrical gear 152 b is connected to the beveled gear 153 a via a key (not labeled) and movable along the axis of the second cylindrical gear 152 b .
  • the beveled gear 153 b of the second beveled gear assembly 153 is fixed to the beveled gear 154 a of the third beveled gear assembly 154 .
  • the beveled gear 154 b is fixed to the sixth arm 13 to rotate the sixth arm 13 about the sixth rotation axis 42 .
  • Backlash adjustment mechanism 20 adjusts the backlash of the first and second cylindrical gear assemblies 142 , 152 .
  • the backlash adjustment mechanism 20 for adjusting backlash of the first cylindrical gear assembly 142 is used as an example.
  • the backlash adjustment mechanism 20 to adjust backlash in the first cylindrical gear assembly 142 includes the first cylindrical gear 142 a , the second cylindrical gear 142 b , and an elastic member 21 to bias the second cylindrical gear 142 b towards the first cylindrical gear 142 a and eliminate backlash therebetween.
  • the first and second cylindrical gears 142 a , 142 b are meshed straight involute gears.
  • the first cylindrical gear 142 a includes a first end 1421 and a second end 1422 .
  • the addendum modification coefficient in the first cylindrical gear 142 a is linearly increased along the axis from the first end 1421 to the second end 1422 . That is, the outer surface of the first cylindrical gear 142 a is substantially conical with the first end 1421 having a larger diameter than the second end 1422 .
  • the tooth thickness of the first cylindrical gear 142 a is linearly changed corresponding to the addendum modification coefficient.
  • the second cylindrical gear 142 b includes a first end 1423 and a second end 1424 .
  • the addendum modification coefficient in the second cylindrical gear 142 b is linearly decreased along the axis from the first end 1423 to the second end 1424 . That is, the outer surface of the first cylindrical gear 142 b is substantially conical with the first end 1423 having a smaller diameter than the second end 1424 .
  • the tooth thickness of first cylindrical gear 142 a is linearly changed corresponding to the addendum modification coefficient.
  • the first end 1423 of the second cylindrical gear 142 b meshes with the first end 1421 of the first cylindrical gear 142 a
  • the second end 1424 of the second cylindrical gear 142 b meshes with the second end 1422 of the first cylindrical gear 142 a
  • the conical degrees of the first and second cylindrical gears 142 a , 142 b are about 5°, for optimum meshing.
  • the first cylindrical gear 142 a is fixed on the position along the axis direction thereof.
  • the second cylindrical gear 142 b is connected to a gear shaft 146 of the first beveled gear 143 a via a key (not labeled) and movable along the axis direction of the gear shaft 146 .
  • the second end 1424 of the second cylindrical gear 142 b defines a receiving hole 1425 to receive the elastic member 21 .
  • the elastic member 21 may be a helical-coil compression spring sleeved on the gear shaft 146 .
  • the elastic member 21 is received in the receiving hole 1425 and elastically biases the second cylindrical gear 142 b.
  • the elastic member 21 biases the second cylindrical gear 142 b towards the first cylindrical gear 142 a along the axis d-d. Since the first and second cylindrical gears 142 a and 142 b have corresponding addendum modification coefficients and cone shapes, the second cylindrical gear 142 b is capable of moving along the axis d-d to abut the first cylindrical gear 142 a to eliminate backlash therebetween.
  • the adjustment of backlash can be performed automatically by the elastic member 21 when backlash is generated by changes in working condition and/or environment.
  • the first and second cylindrical gear assemblies 142 , 152 can thereby achieve zero backlash meshing conditions to improve upon the transmission stability and precision, and the lifespan of the first and second cylindrical gear assemblies 142 , 152 .
  • the industrial robot described is not limited to a six-axis industrial robot, and can alternatively be industrial robots with fewer axes.
  • the industrial robot may be with only three arms connected in series.

Landscapes

  • Engineering & Computer Science (AREA)
  • Robotics (AREA)
  • Mechanical Engineering (AREA)
  • Manipulator (AREA)
  • Gears, Cams (AREA)

Abstract

A backlash adjustment mechanism includes a first cylindrical gear fixed in an axial position, a second cylindrical gear moveable along the axis and meshed with the first cylindrical gear, and an elastic member biasing the second cylindrical gear towards the first cylindrical gear. The addendum modification coefficients in the first and second cylindrical gears are linearly changed along their axes, respectively, an end of the first cylindrical gear with higher addendum modification coefficient meshes with an end of the second cylindrical gear with correspondingly lower addendum modification coefficient, and an end of the first cylindrical gear with lower addendum modification coefficient meshes with an end of the second cylindrical gear with correspondingly higher addendum modification coefficient.

Description

CROSS-REFERENCE TO RELATED APPLICATION
This application is related to a co-pending U.S. patent application, Ser. No. 12/632,955, filed on Dec. 8, 2009, and entitled “ROBOT ARM ASSEMBLY AND INDUSTRIAL ROBOT USING THE SAME”. The inventor of the co-pending application is Bo Long. The co-pending application has the same assignee as the present application. The Specification and Drawings of the co-pending application are incorporated herein by reference.
BACKGROUND
1. Technical Field
The present disclosure generally relates to robotic technologies, and particularly, to a backlash adjustment mechanism and an industrial robot utilizing the backlash adjustment mechanism.
2. Description of Related Art
A commonly used industrial robot includes a plurality of arms connected in series. An actuator, such as a welding device, a gripper or a cutting tool, is mounted at a distal arm of the industrial robot to execute specific tasks. Generally six axes are utilized to achieve maximum movement of the actuator. Each arm of the industrial robot rotates around a rotation axis driven by a driving unit. Typically, the driving unit includes a motor mounted on one arm and a gear transmission mechanism coupled to the motor to transmit the movement of the motor to another arm.
The working range and capacity for movement of an industrial robot depend on, among other things, the gear transmission mechanism included. An additional factor influenced by the gear transmission mechanism is the performance of the industrial robot with respect to precision and/or accuracy. As backlash between meshed gears in the gear transmission mechanism is increased, the life and precision of the gear transmission mechanism are deteriorated by aggravated abrasion and oscillation caused by the deteriorated meshing condition. A commonly used method to decrease backlash is the employment of precision manufacturing and assembly, thus increasing cost.
Therefore, there is room for improvement within the art.
BRIEF DESCRIPTION OF THE DRAWINGS
The components in the drawings are not necessarily drawn to scale, the emphasis instead being placed upon clearly illustrating the principles of the present disclosure. Moreover, in the drawings, like reference numerals designate corresponding parts throughout the several views.
FIG. 1 is an isometric view of a joint of one embodiment of an industrial robot.
FIG. 2 is a cross section of the joint of FIG. 1, taken along the line II-II.
FIG. 3 is a detailed enlarged view of a circled portion III of FIG. 2, showing one embodiment of a backlash adjustment mechanism utilized in the industrial robot of FIG. 1.
DETAILED DESCRIPTION
One embodiment of an industrial robot according to the present disclosure may be a six-axis robot. The industrial robot includes a fixed base, a bracket rotatably connected to the fixed base, a lower arm rotatably connected to the bracket, an elbow rotatably connected to the lower arm, and a joint 100, as illustrated in FIG. 2, connected to the elbow. The fixed base, bracket, lower arm, and elbow are similar to those of a traditional six-axis industrial robot and are not shown in drawings here. The bracket, lower arm, and elbow are capable of rotating about a first, a second and a third rotation axes, respectively.
Referring to FIGS. 1 and 2, the joint 100 includes a fourth arm 11 rotatably connected to the elbow, a fifth arm 12 rotatably connected to the fourth arm 11 about a fifth rotation axis 41, and a sixth arm 13 rotatably connected to the fifth arm 12 about a sixth rotation axis 42.
The industrial robot further includes a first motor (not shown) and a first transmission mechanism 14 to drive the fifth arm 12, a second motor (not shown) and a second transmission mechanism 15 to drive the sixth arm 13. The fifth rotation axis 41 is substantially perpendicular to the sixth rotation axis 42. An actuator (not shown), such as a welding device, a gripper or a cutting tool, is mounted at a distal end of the sixth arm 13 of the industrial robot to execute specific tasks.
The fourth arm 11 is substantially an outer fork with a first fork branch 112, a second fork branch 113, and a connection portion 114 connecting the first and second fork branches 112, 113. The connection portion 114 defines a hollow portion 1142 therein along the rotation axis of the fourth arm 11. The first fork branch 112 defines a first assembly hole 1121 and the second fork branch 113 defines a second assembly hole 1131. The hollow portion 1142, the first and second assembly holes 112, 113 are substantially parallel and extend perpendicular to the fifth rotation axis 41. The first and second fork branches 112, 113 further define two third assembly holes 1123, 1133, respectively.
The fifth arm 12 is substantially cylindrical and is positioned between the first and second fork branches 112, 113, with two ends rotatably received in the third assembly holes 1123, 1133, respectively. The fifth arm 12 defines a through hole 121 extending substantially along the sixth rotation axis 42. The sixth arm 13 is rotatably received in the through hole 121 about the sixth rotation axis 42, and capable of rotating together with the fifth arm 12.
The first transmission mechanism 14 transmits the movement of the first motor to the fifth arm 12 to rotate the fifth arm 12. The first transmission mechanism 14 includes a first shaft 141, a first cylindrical gear assembly 142, and a first beveled gear assembly 143. The first motor and the first cylindrical gear assembly 142 are mounted on opposite ends of the first shaft 141.
The first cylindrical gear assembly 142 includes a first cylindrical gear 142 a and a second cylindrical gear 142 b meshed with the first cylindrical gear 142 a. The first beveled gear assembly 143 includes a first beveled gear 143 a and a second beveled gear 143 b meshed with the first beveled gear 143 a. The first cylindrical gear 142 a is fixed to the first shaft 141, and the second cylindrical gear 142 b is connected to the first beveled gear 143 a and movable along an axis of the second cylindrical gear 142 b. The second beveled gear 143 b is fixed to the fifth arm 12 to rotate the fifth arm 12 about the fifth rotation axis 41. The first shaft 141 defines a second through hole 1412 along the axis thereof.
The second transmission mechanism 15 transmits the movement of the second motor to the sixth arm 13 to rotate the sixth arm 13 about the sixth rotation axis 42. The second transmission mechanism 15 includes a second shaft 151, a second cylindrical gear assembly 152, a second beveled gear assembly 153 and a third beveled gear assembly 154.
The second shaft 151 is received in the second through hole 1412 with the two ends of the second shaft 151 extending out of the through hole 1412. The second motor and the second cylindrical gear assembly 152 are mounted on opposite ends of the second shaft 151. The first and second motors are mounted on opposite sides of the fourth arm 11. The second cylindrical gear assembly 152 includes a first cylindrical gear 152 a and a second cylindrical gear 152 b meshed with the first cylindrical gear 152 a. The first cylindrical gears 142 a, 152 a are offset along the axis thereof. The second beveled gear assembly 153 includes a pair of meshed beveled gears 153 a and 153 b. The third beveled gear assembly 154 includes a pair of meshed beveled gears 154 a and 154 b. The first cylindrical gear 152 a is fixed to the second shaft 151. The second cylindrical gear 152 b is connected to the beveled gear 153 a via a key (not labeled) and movable along the axis of the second cylindrical gear 152 b. The beveled gear 153 b of the second beveled gear assembly 153 is fixed to the beveled gear 154 a of the third beveled gear assembly 154. The beveled gear 154 b is fixed to the sixth arm 13 to rotate the sixth arm 13 about the sixth rotation axis 42.
Referring to FIG. 3, one embodiment of a backlash adjustment mechanism 20 utilized in the industrial robot as disclosed is shown. Backlash adjustment mechanism 20 adjusts the backlash of the first and second cylindrical gear assemblies 142, 152. In the following, the backlash adjustment mechanism 20 for adjusting backlash of the first cylindrical gear assembly 142 is used as an example.
The backlash adjustment mechanism 20 to adjust backlash in the first cylindrical gear assembly 142 includes the first cylindrical gear 142 a, the second cylindrical gear 142 b, and an elastic member 21 to bias the second cylindrical gear 142 b towards the first cylindrical gear 142 a and eliminate backlash therebetween. In the illustrated embodiment, the first and second cylindrical gears 142 a, 142 b are meshed straight involute gears.
The first cylindrical gear 142 a includes a first end 1421 and a second end 1422. The addendum modification coefficient in the first cylindrical gear 142 a is linearly increased along the axis from the first end 1421 to the second end 1422. That is, the outer surface of the first cylindrical gear 142 a is substantially conical with the first end 1421 having a larger diameter than the second end 1422. The tooth thickness of the first cylindrical gear 142 a is linearly changed corresponding to the addendum modification coefficient.
The second cylindrical gear 142 b includes a first end 1423 and a second end 1424. The addendum modification coefficient in the second cylindrical gear 142 b is linearly decreased along the axis from the first end 1423 to the second end 1424. That is, the outer surface of the first cylindrical gear 142 b is substantially conical with the first end 1423 having a smaller diameter than the second end 1424. The tooth thickness of first cylindrical gear 142 a is linearly changed corresponding to the addendum modification coefficient. The first end 1423 of the second cylindrical gear 142 b meshes with the first end 1421 of the first cylindrical gear 142 a, and the second end 1424 of the second cylindrical gear 142 b meshes with the second end 1422 of the first cylindrical gear 142 a. The conical degrees of the first and second cylindrical gears 142 a, 142 b are about 5°, for optimum meshing.
In the illustrated embodiment, the first cylindrical gear 142 a is fixed on the position along the axis direction thereof. The second cylindrical gear 142 b is connected to a gear shaft 146 of the first beveled gear 143 a via a key (not labeled) and movable along the axis direction of the gear shaft 146. The second end 1424 of the second cylindrical gear 142 b defines a receiving hole 1425 to receive the elastic member 21. The elastic member 21 may be a helical-coil compression spring sleeved on the gear shaft 146. The elastic member 21 is received in the receiving hole 1425 and elastically biases the second cylindrical gear 142 b.
When backlash between the first cylindrical gear 142 a and the second cylindrical gear 142 b is generated, the elastic member 21 biases the second cylindrical gear 142 b towards the first cylindrical gear 142 a along the axis d-d. Since the first and second cylindrical gears 142 a and 142 b have corresponding addendum modification coefficients and cone shapes, the second cylindrical gear 142 b is capable of moving along the axis d-d to abut the first cylindrical gear 142 a to eliminate backlash therebetween. The adjustment of backlash can be performed automatically by the elastic member 21 when backlash is generated by changes in working condition and/or environment. Accordingly, during the operation of the industrial robot 100, the first and second cylindrical gear assemblies 142, 152 can thereby achieve zero backlash meshing conditions to improve upon the transmission stability and precision, and the lifespan of the first and second cylindrical gear assemblies 142, 152.
It should also be understood that the industrial robot described is not limited to a six-axis industrial robot, and can alternatively be industrial robots with fewer axes. For instance, the industrial robot may be with only three arms connected in series.
It is believed that the present embodiments and their advantages will be understood from the foregoing description, and it will be apparent that various changes may be made thereto without departing from the spirit and scope of the disclosure or sacrificing all of its material advantages.

Claims (12)

What is claimed is:
1. A backlash adjustment mechanism comprising:
a first cylindrical gear fixed in an axial position;
a second cylindrical gear moveable along an axis thereof and meshed with the first cylindrical gear, and the second cylindrical gear defining a receiving hole extending substantially along the axis of the second cylindrical gear; and
a helical-coil compression spring received in the receiving hole, abutting the second cylindrical gear, and biasing the second cylindrical gear towards the first cylindrical gear, wherein the helical-coil compression spring contacts with inner sidewalls of the receiving hole for limiting a radial movement of the helical-coil compression spring, addendum modification coefficients in the first and second cylindrical gears are linearly changed along their axes, respectively, an end of the first cylindrical gear with higher addendum modification coefficient meshes with an end of the second cylindrical gear with correspondingly lower addendum modification coefficient, and an end of the first cylindrical gear with lower addendum modification coefficient meshes with an end of the second cylindrical gear with correspondingly higher addendum modification coefficient.
2. The backlash adjustment mechanism of claim 1, wherein the first and second cylindrical gears are straight involute gears.
3. An industrial robot comprising:
at least one arm;
a motor and a transmission mechanism coupled to the motor to rotate the at least one arm;
the transmission mechanism comprising:
a first beveled gear comprising a gear shaft;
a second beveled gear meshed with the first beveled gear;
a first cylindrical gear fixed in an axial position;
a second cylindrical gear moveable along an axis thereof and meshed with the first cylindrical gear, and the second cylindrical gear defining a receiving hole extending substantially along the axis of the second cylindrical gear thereof; and
an elastic member sleeved on the gear shaft, wherein the second cylindrical gear is sleeved on the elastic member via the receiving hole, such that the elastic member is positioned in the receiving hole between the second cylindrical gear and the gear shaft, abutting the second cylindrical gear and biasing the second cylindrical gear towards the first cylindrical gear; addendum modification coefficients in the first and second cylindrical gears are linearly changed along their axes, respectively, an end of the first cylindrical gear with higher addendum modification coefficient meshes with an end of the second cylindrical gear with correspondingly lower addendum modification coefficient, and an end of the first cylindrical gear with lower addendum modification coefficient meshes with an end of the second cylindrical gear with correspondingly higher addendum modification coefficient.
4. The industrial robot of claim 3, wherein the first and second cylindrical gears are straight involute gears.
5. The industrial robot of claim 3, wherein the elastic member is a helical-coil compression spring.
6. A six-axis industrial robot comprising:
a fixed base;
a bracket rotatably connected to the fixed base;
a lower arm rotatably connected to the bracket;
an elbow rotatably connected to the lower arm;
a joint connected to the elbow, the joint comprising:
a fourth arm rotatably connected to the elbow;
a fifth arm rotatably connected to the fourth arm;
a sixth arm rotatably connected to the fifth arm;
a first motor and a first transmission mechanism to drive the fifth arm;
a second motor and a second transmission mechanism to drive the sixth arm; wherein at least one of the first and second transmission mechanisms comprises:
a first beveled gear comprising a gear shaft;
a second beveled gear meshed with the first beveled gear;
a first cylindrical gear fixed in an axial position;
a second cylindrical gear moveable along an axis thereof and meshed with the first cylindrical gear, and the second cylindrical gear defining a receiving hole extending substantially along the axis of the second cylindrical gear; and
an elastic member sleeved on the gear shaft, wherein the second cylindrical gear is sleeved on the elastic member via the receiving hole, such that the elastic member is positioned in the receiving hole between the second cylindrical gear and the gear shaft, abutting the second cylindrical gear and biasing the second cylindrical gear towards the first cylindrical gear; addendum modification coefficients in the first and second cylindrical gears are linearly changed along their axes, respectively, an end of the first cylindrical gear with higher addendum modification coefficient meshes with an end of the second cylindrical gear with correspondingly lower addendum modification coefficient, and an end of the first cylindrical gear with lower addendum modification coefficient meshes with an end of the second cylindrical gear with correspondingly higher addendum modification coefficient.
7. The six-axis industrial robot of claim 6, wherein the first and second cylindrical gears are straight involute gears.
8. The six-axis industrial robot of claim 6, wherein the elastic member is a helical-coil compression spring.
9. The six-axis industrial robot of claim 6, wherein both the first and second transmission mechanisms comprises the first cylindrical gear fixed in an axial position; the second cylindrical gear moveable along the axis and meshed with the first cylindrical gear; and the elastic member biasing the second cylindrical gear towards the first cylindrical gear.
10. The six-axis industrial robot of claim 9, wherein the first transmission mechanism further comprises a first shaft, the second beveled gear is coupled to the fifth arm, the first motor and the first cylindrical gear are mounted on opposite ends of the first shaft.
11. The six-axis industrial robot of claim 10, wherein the second transmission mechanism further comprises a second shaft, a second beveled gear assembly and a third beveled gear assembly, wherein the second motor and the second cylindrical gear assembly are mounted on opposite ends of the second shaft, the third beveled gear assembly is coupled to the sixth arm, and the second beveled gear assembly is positioned between the second cylindrical gear assembly and the third beveled gear assembly.
12. The six-axis industrial robot of claim 11, wherein the first cylindrical gears of the first and second transmission mechanisms are offset along the axis thereof.
US12/782,825 2009-11-06 2010-05-19 Backlash adjustment mechanism and industrial robot using the same Expired - Fee Related US8549949B2 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
CN200910309394.8 2009-11-06
CN200910309394.8A CN102049787B (en) 2009-11-06 2009-11-06 Industrial robot using gear backlash adjusting device
CN200910309394 2009-11-06

Publications (2)

Publication Number Publication Date
US20110107867A1 US20110107867A1 (en) 2011-05-12
US8549949B2 true US8549949B2 (en) 2013-10-08

Family

ID=43954749

Family Applications (1)

Application Number Title Priority Date Filing Date
US12/782,825 Expired - Fee Related US8549949B2 (en) 2009-11-06 2010-05-19 Backlash adjustment mechanism and industrial robot using the same

Country Status (2)

Country Link
US (1) US8549949B2 (en)
CN (1) CN102049787B (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10414044B2 (en) * 2014-11-26 2019-09-17 Kabushiki Kaisha Yaskawa Denki Robot arm and robot system

Families Citing this family (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102072279A (en) * 2009-11-20 2011-05-25 鸿富锦精密工业(深圳)有限公司 Gear transmission device
CN102259337B (en) * 2010-05-28 2013-11-06 鸿富锦精密工业(深圳)有限公司 Robot arm component
CN102430908B (en) * 2011-09-20 2013-10-30 太原重工股份有限公司 Planetary gear tooth aligning device
CN103128747B (en) * 2011-11-30 2015-12-16 鸿富锦精密工业(深圳)有限公司 The gear clearance guiding mechanism of robot arm and use thereof
CN103542082B (en) * 2012-07-16 2016-04-27 鸿富锦精密工业(深圳)有限公司 Gear drive and mechanical arm linkage structure
CN102966701A (en) * 2012-11-21 2013-03-13 中国船舶重工集团公司第七一六研究所 Hypoid bevel gear transmission device
CN104070533B (en) * 2013-03-28 2016-12-28 鸿富锦精密工业(深圳)有限公司 Robot arm
CN103895031B (en) * 2014-04-04 2015-12-02 浙江钱江摩托股份有限公司 A kind of robot wrist with Three Degree Of Freedom
CN103878786B (en) * 2014-04-04 2015-12-02 浙江钱江摩托股份有限公司 A kind of wrist with Three Degree Of Freedom of robot
JP1545077S (en) * 2015-07-09 2016-03-07
JP1545076S (en) * 2015-07-09 2016-03-07
JP1545078S (en) * 2015-07-09 2016-03-07
CN107234630B (en) * 2017-05-18 2019-07-23 杭州新松机器人自动化有限公司 A kind of the adjustment structure and its application method of industrial robot wrist gear backlash
USD867415S1 (en) * 2017-08-08 2019-11-19 Brainlab Ag Robotic motor unit
CN107498550B (en) * 2017-08-30 2023-12-22 歌尔科技有限公司 Transmission mechanism capable of automatically making close contact and robot
CN108638047B (en) * 2018-06-21 2023-06-02 广州启帆工业机器人有限公司 Manipulator with precision transmission device
CN111283725A (en) * 2018-12-10 2020-06-16 沈阳新松机器人自动化股份有限公司 Symmetrical robot joint
CN112228527B (en) * 2020-10-15 2022-05-17 重庆大学 Gear assembly with variable tooth thickness

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4524643A (en) * 1982-01-18 1985-06-25 Mavilor Systemes S.A. Epicyclic gear
US4671732A (en) * 1982-11-19 1987-06-09 American Cimflex Corporation Industrial robot
US4787262A (en) * 1986-06-13 1988-11-29 Hitachi, Ltd. Wrist device of robot
EP0805738B1 (en) 1995-01-27 1998-12-23 Asea Brown Boveri Ab An industrial robot wrist unit
US6832661B2 (en) * 2003-02-21 2004-12-21 Delphi Technologies, Inc. Delashing mechanism for fixed parallel based gear pairs
CN201042895Y (en) 2007-01-26 2008-04-02 顺德工业股份有限公司 Improved structure of pencil cutter capable of arbitrarily adjusting lead
CN101285520A (en) 2008-05-30 2008-10-15 重庆大学 Tooth thickness variable cylinder profile modified gear and gearing device using same
US7673534B2 (en) * 2005-02-23 2010-03-09 Interpump Hydraulics S.P.A. Power take-off for industrial vehicles
US20110120245A1 (en) * 2009-11-23 2011-05-26 Hong Fu Jin Precision Industry (Shenzhen) Co., Ltd. Robot arm assembly
US20110290060A1 (en) * 2010-05-28 2011-12-01 Hon Hai Precision Industry Co., Ltd. Robot arm assembly

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5400672A (en) * 1993-07-09 1995-03-28 Bunch, Jr.; Earnest B. Gear with inset O-ring for setting backlash

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4524643A (en) * 1982-01-18 1985-06-25 Mavilor Systemes S.A. Epicyclic gear
US4671732A (en) * 1982-11-19 1987-06-09 American Cimflex Corporation Industrial robot
US4787262A (en) * 1986-06-13 1988-11-29 Hitachi, Ltd. Wrist device of robot
EP0805738B1 (en) 1995-01-27 1998-12-23 Asea Brown Boveri Ab An industrial robot wrist unit
US6832661B2 (en) * 2003-02-21 2004-12-21 Delphi Technologies, Inc. Delashing mechanism for fixed parallel based gear pairs
US7673534B2 (en) * 2005-02-23 2010-03-09 Interpump Hydraulics S.P.A. Power take-off for industrial vehicles
CN201042895Y (en) 2007-01-26 2008-04-02 顺德工业股份有限公司 Improved structure of pencil cutter capable of arbitrarily adjusting lead
CN101285520A (en) 2008-05-30 2008-10-15 重庆大学 Tooth thickness variable cylinder profile modified gear and gearing device using same
US20110120245A1 (en) * 2009-11-23 2011-05-26 Hong Fu Jin Precision Industry (Shenzhen) Co., Ltd. Robot arm assembly
US20110290060A1 (en) * 2010-05-28 2011-12-01 Hon Hai Precision Industry Co., Ltd. Robot arm assembly

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10414044B2 (en) * 2014-11-26 2019-09-17 Kabushiki Kaisha Yaskawa Denki Robot arm and robot system

Also Published As

Publication number Publication date
CN102049787A (en) 2011-05-11
CN102049787B (en) 2014-02-19
US20110107867A1 (en) 2011-05-12

Similar Documents

Publication Publication Date Title
US8549949B2 (en) Backlash adjustment mechanism and industrial robot using the same
US8516920B2 (en) Robot arm assembly
US8534155B2 (en) Robot arm assembly
CN102059697B (en) Translating branch chain and parallel robot using same
US8291789B2 (en) Robot arm assembly and robot using the same
US8429996B2 (en) Robot arm assembly
US8109173B2 (en) Parallel robot provided with wrist section having three degrees of freedom
US8910539B2 (en) Robot with reducer
US8210068B2 (en) Rotation mechanism and robot using the same
US8960042B2 (en) Robot arm assembly
US4807486A (en) Three-axes wrist mechanism
JP2010076024A (en) Wrist shaft rotating and driving mechanism for scara robot
US20110120245A1 (en) Robot arm assembly
JP2020116677A (en) Robot joint structure including backlash reduction mechanism and robot
TWI426012B (en) Gear backlash adjusting mechanism and industrial robot using same
CN108638047B (en) Manipulator with precision transmission device
US8833195B2 (en) Gear backlash adjusting mechanism and robot arm assembly having the same
US20130125690A1 (en) Robot arm assembly
TWI428218B (en) Parallel robot
JP4730670B2 (en) Robot with backlash adjustment mechanism
CN111868412B (en) Planetary gearbox and related robot joint and robot
JP2015161382A (en) Gear mechanism, speed change gear and multi-joint robot arm
TWI426011B (en) Robot arm assembly
CN109048869B (en) Wrist body transmission structure and six-axis robot
TWI428216B (en) Rotation mechanism and robot using the same

Legal Events

Date Code Title Description
AS Assignment

Owner name: HON HAI PRECISION INDUSTRY CO., LTD., TAIWAN

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:LONG, BO;REEL/FRAME:024407/0164

Effective date: 20100504

Owner name: HONG FU JIN PRECISION INDUSTRY (SHENZHEN) CO., LTD

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:LONG, BO;REEL/FRAME:024407/0164

Effective date: 20100504

REMI Maintenance fee reminder mailed
LAPS Lapse for failure to pay maintenance fees

Free format text: PATENT EXPIRED FOR FAILURE TO PAY MAINTENANCE FEES (ORIGINAL EVENT CODE: EXP.)

STCH Information on status: patent discontinuation

Free format text: PATENT EXPIRED DUE TO NONPAYMENT OF MAINTENANCE FEES UNDER 37 CFR 1.362

FP Lapsed due to failure to pay maintenance fee

Effective date: 20171008