US8538357B2 - Switchable VRAMP limiter - Google Patents
Switchable VRAMP limiter Download PDFInfo
- Publication number
- US8538357B2 US8538357B2 US13/360,059 US201213360059A US8538357B2 US 8538357 B2 US8538357 B2 US 8538357B2 US 201213360059 A US201213360059 A US 201213360059A US 8538357 B2 US8538357 B2 US 8538357B2
- Authority
- US
- United States
- Prior art keywords
- voltage
- level
- control signal
- voltage level
- regulated
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active, expires
Links
- 230000005540 biological transmission Effects 0.000 claims abstract description 191
- 230000001105 regulatory effect Effects 0.000 claims abstract description 175
- 230000003321 amplification Effects 0.000 claims abstract description 107
- 238000003199 nucleic acid amplification method Methods 0.000 claims abstract description 107
- 230000033228 biological regulation Effects 0.000 claims abstract description 64
- 238000001514 detection method Methods 0.000 claims description 32
- 230000008859 change Effects 0.000 claims description 26
- 238000010295 mobile communication Methods 0.000 claims description 10
- 238000000034 method Methods 0.000 claims description 8
- 229920006395 saturated elastomer Polymers 0.000 claims description 6
- 230000003247 decreasing effect Effects 0.000 claims description 4
- 238000004891 communication Methods 0.000 claims description 2
- 230000004044 response Effects 0.000 claims description 2
- 238000001228 spectrum Methods 0.000 description 12
- 230000007704 transition Effects 0.000 description 5
- 230000001413 cellular effect Effects 0.000 description 4
- 230000008901 benefit Effects 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 238000012986 modification Methods 0.000 description 2
- 230000004048 modification Effects 0.000 description 2
- 238000012937 correction Methods 0.000 description 1
- 230000007423 decrease Effects 0.000 description 1
- 230000000593 degrading effect Effects 0.000 description 1
- 230000009977 dual effect Effects 0.000 description 1
- 230000007613 environmental effect Effects 0.000 description 1
- 230000005669 field effect Effects 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 238000012544 monitoring process Methods 0.000 description 1
- 230000008569 process Effects 0.000 description 1
- 238000012545 processing Methods 0.000 description 1
- 238000009738 saturating Methods 0.000 description 1
- 230000007480 spreading Effects 0.000 description 1
- 238000012546 transfer Methods 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H03—ELECTRONIC CIRCUITRY
- H03G—CONTROL OF AMPLIFICATION
- H03G3/00—Gain control in amplifiers or frequency changers
- H03G3/004—Control by varying the supply voltage
-
- H—ELECTRICITY
- H03—ELECTRONIC CIRCUITRY
- H03F—AMPLIFIERS
- H03F1/00—Details of amplifiers with only discharge tubes, only semiconductor devices or only unspecified devices as amplifying elements
- H03F1/02—Modifications of amplifiers to raise the efficiency, e.g. gliding Class A stages, use of an auxiliary oscillation
- H03F1/0205—Modifications of amplifiers to raise the efficiency, e.g. gliding Class A stages, use of an auxiliary oscillation in transistor amplifiers
- H03F1/0211—Modifications of amplifiers to raise the efficiency, e.g. gliding Class A stages, use of an auxiliary oscillation in transistor amplifiers with control of the supply voltage or current
- H03F1/0216—Continuous control
- H03F1/0233—Continuous control by using a signal derived from the output signal, e.g. bootstrapping the voltage supply
- H03F1/0238—Continuous control by using a signal derived from the output signal, e.g. bootstrapping the voltage supply using supply converters
-
- H—ELECTRICITY
- H03—ELECTRONIC CIRCUITRY
- H03F—AMPLIFIERS
- H03F3/00—Amplifiers with only discharge tubes or only semiconductor devices as amplifying elements
- H03F3/189—High-frequency amplifiers, e.g. radio frequency amplifiers
- H03F3/19—High-frequency amplifiers, e.g. radio frequency amplifiers with semiconductor devices only
- H03F3/195—High-frequency amplifiers, e.g. radio frequency amplifiers with semiconductor devices only in integrated circuits
-
- H—ELECTRICITY
- H03—ELECTRONIC CIRCUITRY
- H03F—AMPLIFIERS
- H03F3/00—Amplifiers with only discharge tubes or only semiconductor devices as amplifying elements
- H03F3/20—Power amplifiers, e.g. Class B amplifiers, Class C amplifiers
- H03F3/24—Power amplifiers, e.g. Class B amplifiers, Class C amplifiers of transmitter output stages
- H03F3/245—Power amplifiers, e.g. Class B amplifiers, Class C amplifiers of transmitter output stages with semiconductor devices only
-
- H—ELECTRICITY
- H03—ELECTRONIC CIRCUITRY
- H03F—AMPLIFIERS
- H03F3/00—Amplifiers with only discharge tubes or only semiconductor devices as amplifying elements
- H03F3/45—Differential amplifiers
- H03F3/45071—Differential amplifiers with semiconductor devices only
- H03F3/45076—Differential amplifiers with semiconductor devices only characterised by the way of implementation of the active amplifying circuit in the differential amplifier
- H03F3/45179—Differential amplifiers with semiconductor devices only characterised by the way of implementation of the active amplifying circuit in the differential amplifier using MOSFET transistors as the active amplifying circuit
-
- H—ELECTRICITY
- H03—ELECTRONIC CIRCUITRY
- H03F—AMPLIFIERS
- H03F2200/00—Indexing scheme relating to amplifiers
- H03F2200/447—Indexing scheme relating to amplifiers the amplifier being protected to temperature influence
-
- H—ELECTRICITY
- H03—ELECTRONIC CIRCUITRY
- H03F—AMPLIFIERS
- H03F2200/00—Indexing scheme relating to amplifiers
- H03F2200/504—Indexing scheme relating to amplifiers the supply voltage or current being continuously controlled by a controlling signal, e.g. the controlling signal of a transistor implemented as variable resistor in a supply path for, an IC-block showed amplifier
-
- H—ELECTRICITY
- H03—ELECTRONIC CIRCUITRY
- H03F—AMPLIFIERS
- H03F2200/00—Indexing scheme relating to amplifiers
- H03F2200/555—A voltage generating circuit being realised for biasing different circuit elements
Definitions
- This disclosure relates generally to power amplification devices that are configured to amplify radio frequency (RF) transmission signals and method of operating the same.
- RF radio frequency
- GSM Global Systems for Mobile Communications
- PCS Personal Communication Services
- EDGE EDGE
- DCS Digital Cellular System
- a key component common to mobile telecommunications devices is a radio frequency (RF) power amplification device.
- the RF transmission signal Before reaching the power amplification device, the RF transmission signal is too weak for transmission to a cellular base station. Therefore, it is the function of the power amplification device to boost the power of the RF transmission signal.
- RF radio frequency
- the power amplification device receives a RF transmission signal that has a constant envelope when the RF transmission signal is being transmitted in accordance with modern Time Division Multiple Access (TDMA) standards, such as GSM standards, and PCS standards.
- TDMA Time Division Multiple Access
- the RF transmission signal must comply with a specification known as a “burst mask.”
- the burst mask specifies how the mean power of the RF transmission signal should be transmitted in a particular timeslot. More specifically, the burst mask specifies the allowable ramp-up period, duration, and ramp-down period, of the mean power of the RF transmission signal during the timeslot.
- a TDMA standard there may be various and multiple timeslots each having a burst mask specification and the RF transmission signal must conform to the various burst masks during each of the timeslots. If the power amplification device ramps up too slowly, data at the beginning of the burst might be lost, degrading link quality. On the other hand, if the power amplification device ramps up power too quickly, this has the effect of spreading the energy of the RF transmission signal across the spectrum and causing spectrum interference. This is particularly the case when the RF amplification device is being utilized to amplify a RF transmission signal that may be transmitted in both a low transmission band, such as a GSM band and a high transmission frequency band such as a PCS band.
- One of the major challenges in designing power amplification devices is to be able to meet the high bandwidth requirements while preserving the efficiency of the power amplification device.
- power amplification devices include voltage regulation circuits, such as low-drop-out (LDO) circuits, to provide a regulated voltage to a power amplification circuit that amplifies the RF transmission signal.
- the LDO circuit generates the regulated voltage from a supply voltage and regulates the regulated voltage level so that fluctuation in the supply voltage level of the supply voltage do not significantly affect the regulated voltage level.
- This regulated voltage determines the amplification gain of the power amplification circuit.
- the power amplification circuit is driven to operate in saturation by the LDO circuit when the RF transmission signal is a TDMA transmission signal with a constant envelope.
- the LDO circuit should not be driven into saturation because saturation results in significant spectrum interference and a degraded switching spectrum. In essence, the power amplification circuit transitions from the linear region to the saturated region or from the saturated region to the linear region too quickly when the LDO circuit is driven into saturation.
- LDO circuits configured to soften the transition of the power amplification circuit to and from the linear region and the saturation region.
- these designs have significant drawbacks when the power amplification device is designed to amplify RF transmission signals either in a low transmission frequency band or a high transmission frequency band.
- Increasing the softness of the transition from the saturated region to the linear region reduces a performance of a total radiated power (TRP) of the RF transmission signal.
- TRP performance is generally of a higher concern during transmission burst within the low transmission frequency band.
- switching spectrum requirements are harder to meet during transmission burst within the high transmission frequency band.
- Previous LDO circuit designs provide the softness of the transition as a comprise between providing good TRP performance for RF transmission signals being transmitted within the low transmission frequency band and meeting switching spectrum requirements for RF transmission signal being transmitted within the high transmission frequency band.
- the power amplification device includes a power amplification circuit operable to amplify the RF transmission signal in accordance with an amplification gain. Also, the power amplification device includes a voltage regulation circuit operable to generate a regulated voltage having a regulated voltage level from a supply voltage.
- the power amplification circuit is operably associated with the voltage regulation circuit such that the amplification gain of the power amplification circuit is adjusted by a regulated voltage level provided by the regulated voltage.
- the voltage regulation circuit receives a voltage control signal that may be configured so that the RF transmission signal is output from the power amplification circuit with an envelope capable of meeting the burst mask specification for the timeslot. To do this, the amplification gain of the power amplification circuit is adjusted as the voltage control signal level of the voltage control signal is adjusted. In this manner, the RF transmission signal has the appropriate output power throughout the transmission burst.
- the voltage regulation circuit operates by being responsive to a change in a voltage control signal level so as to adjust the regulated voltage level of the regulated voltage in accordance with the change in the voltage control signal level and a voltage adjustment gain of the voltage regulation circuit.
- the voltage regulation circuit is operable to lower the voltage adjustment gain when the regulated voltage level of the regulated voltage reaches a threshold voltage level. In this manner, larger changes are required in the voltage control signal level to change the regulated voltage level by a corresponding amount and thus requiring more extreme conditions to drive the voltage regulation circuit into saturation.
- the voltage regulation circuit is responsive to a band-select signal so that the threshold voltage level is higher when the band-select signal indicates a low transmission frequency band.
- the threshold voltage level is lower when the band-select signal indicates the high transmission frequency band. This provides greater softness that allows the power amplification device to meet the stricter switching spectrum requirements of a high transmission frequency band burst mask.
- TRP performance is usually not as much of a concern with the high transmission frequency band. With regards to the low transmission frequency band, it generally is easier to meet the switching spectrum requirement for low transmission frequency bands but TRP performance is of a greater concern. Accordingly, the threshold voltage level is higher when the band-select signal indicates the low transmission frequency band, which provides less softness but better TRP performance.
- FIG. 1 illustrates one embodiment of an power amplification device for an RF transmission signal having a voltage regulation circuit and a power amplification circuit.
- FIG. 2 illustrates a more detailed embodiment of the power amplification device shown in FIG. 1 .
- FIG. 3 illustrates one embodiment of a feedback circuit in the voltage regulation circuit shown in FIG. 1 .
- FIG. 4 illustrates one embodiment of the threshold detection circuit in the feedback circuit shown in FIG. 3 .
- FIG. 5 illustrates one embodiment of the average output power of the RF transmission signal for a single timeslot after amplification by the power amplification device shown in FIG. 1 .
- FIG. 6 illustrates one embodiment of the voltage control signal V RAMP versus time which is utilized to control the average output power during the timeslot.
- FIG. 7 illustrates one embodiment of the regulated voltage V REG versus time for the timeslot which is output from the voltage regulation circuit shown in FIG. 1 .
- FIG. 7A is a graph of one embodiment of the regulated voltage V REG versus the voltage control signal V RAMP when a band-select signal indicates that an RF transmission signal is within a low transmission frequency band.
- FIG. 7B is a close-up of the graph shown in FIG. 7A around a threshold voltage level when the voltage adjustment gain of a voltage regulation circuit is reduced.
- FIG. 7C is a graph of one embodiment of the regulated voltage V REG versus the voltage control signal V RAMP when the band-select signal indicates that the RF transmission signal is within a high transmission frequency band.
- FIG. 7D is a close-up of the graph shown in FIG. 7C around the threshold voltage level when the voltage adjustment gain of the voltage regulation circuit is reduced.
- FIG. 8 illustrates one embodiment of a mobile communication device with the power amplification device shown in FIG. 1 incorporated to provide power amplification for the RF transmission signal.
- FIG. 9 illustrates another embodiment of a voltage regulation circuit that may be coupled to a power amplification circuit.
- FIG. 1 illustrates one embodiment of a power amplification device 10 for an RF transmission signal 12 .
- the power amplification device 10 includes a power amplification circuit 14 that is operable to amplify the RF transmission signal 12 .
- the power amplification circuit 14 amplifies the RF transmission signal 12 in accordance with an amplification gain.
- the power amplification circuit 14 receives a regulated voltage, V REG .
- the power amplification device 10 includes a voltage regulation circuit 16 that is operable to generate the regulated voltage V REG .
- the voltage regulation circuit 16 can provide the regulated voltage V REG so that the regulated voltage V REG has a regulated voltage level.
- the regulated voltage level of the regulated voltage V REG is designed to ramp-up and ramp-down during a RF transmission burst
- the regulated voltage V REG has a regulated voltage level because the voltage regulation circuit 16 can maintain the regulated voltage V REG at a desired regulated voltage level despite changes in load impedance or changes to a supply voltage level of the supply voltage V S .
- the voltage regulation circuit 16 should be maintained so that the regulated voltage level of the regulated voltage V REG is below a saturation voltage level in order for the voltage regulation circuit 16 to appropriately regulate the regulated voltage V REG .
- the power amplification circuit 14 is operably associated with the voltage regulation circuit 16 such that the amplification gain of the power amplification circuit 14 is adjusted by the regulated voltage level of the regulated voltage V REG . Consequently, as the regulated voltage level of the regulated voltage V REG is adjusted so is the amplification gain of the power amplification circuit 14 .
- the voltage regulation circuit 16 is operable to generate the regulated voltage V REG having the regulated voltage level from the supply voltage V.
- the voltage regulation circuit 16 is configured to receive a voltage control signal which in this example is the voltage V RAMP .
- the voltage control signal level of the voltage control signal V RAMP determines a regulated voltage level of the regulated voltage V REG . Consequently, so long as the voltage regulation circuit 16 is not in saturation, the voltage regulation circuit 16 is capable of continuously holding the regulated voltage level of the regulated voltage V REG at a constant value for the particular voltage control signal level of the voltage control signal V RAMP .
- the voltage regulation circuit 16 is thus responsive to a change in the voltage signal level so as to adjust the regulated voltage level of the regulated voltage V REG in accordance with the change in the voltage control signal level and a voltage adjustment gain of the voltage regulation circuit 16 .
- the voltage adjustment gain is a measure of the change in the regulated voltage level of the regulated voltage V REG versus a change in the voltage control signal level of the voltage control signal V RAMP .
- the voltage control signal V RAMP is calibrated so that the regulated voltage level of the regulated voltage V REG does not reach the saturation voltage level of the voltage regulation circuit 16 .
- the voltage regulation circuit 16 operates linearly.
- the voltage regulation circuit 16 is operable to lower the voltage adjustment gain when the regulated level voltage level of the regulated voltage V REG reaches a threshold voltage level. Consequently, once the regulated voltage V REG reaches the threshold voltage level, the voltage control signal level of the voltage control signal V RAMP must change significantly to adjust the regulated voltage level of the regulated voltage V REG . In this manner, the regulated voltage level of the regulated voltage V REG may be prevented or at least is less likely to provide the regulated voltage V REG at the saturation voltage level of the voltage regulation circuit 16 .
- the RF transmission signal 12 may be transmitted within a low transmission frequency band.
- the low transmission frequency band is a GSM transmission frequency band.
- the RF transmission signal 12 can also be transmitted within a high transmission frequency band that is higher than the low transmission frequency band.
- the high transmission frequency band may be a PCS transmission band.
- Alternative embodiments may be configured so that the GMS transmission frequency band is the high transmission frequency band and a different transmission frequency band as the low transmission frequency band.
- other embodiments may be configured so that the PCS transmission frequency band is the low transmission frequency band and a different transmission frequency band as the high transmission frequency band.
- embodiments may be designed so that any transmission frequency band is the high transmission frequency band and any transmission frequency band is the low transmission frequency band. All that is required is for the high transmission frequency band to be higher than the low transmission frequency band.
- the embodiment of the power amplification device 10 shown in FIG. 1 is thus at least a dual mode power amplification device.
- the burst mask specifications are more stringent than for low transmission frequency bands, such as GSM transmission frequency bands.
- the regulated voltage level of the regulated voltage V REG at which the regulated voltage V REG reaches the threshold voltage level should be lower when the RF transmission signal 12 is being transmitted in the high transmission frequency band to help meet stricter switching spectrum requirements.
- TRP performance which may not necessary for low transmission frequency bands since the switching spectrum requirements are easier to meet. Consequently, the threshold voltage level is higher when the RF transmission signal 12 is being transmitted in the low transmission frequency band to improve TRP performance.
- the voltage regulation circuit 16 receives a band-select signal (BSS) 18 .
- the band-select signal 18 indicates whether the RF transmission signal 12 is being transmitted in the low transmission frequency band or when the RF transmission signal 12 is being transmitted in the high transmission frequency band.
- the voltage regulation circuit 16 is responsive to the band-select signal 18 so that the threshold voltage level is higher when the band-select signal 18 indicates the low transmission frequency band.
- the voltage regulation circuit 16 is responsive to the band-select signal 18 so that the threshold voltage level is lower when the band-select signal 18 indicates the high transmission frequency band.
- the voltage difference between the threshold voltage level and the supply voltage level of the supply voltage V S is smaller when the band-select signal 18 indicates the low transmission frequency band.
- the voltage difference between the threshold voltage level and the supply voltage level of the supply V S is greater when the band-select signal 18 indicates the high transmission frequency band.
- a buffer is provided and thus the voltage difference between the saturation voltage level and the supply voltage level is smaller than the voltage difference between the threshold voltage level and the supply voltage level when the band-select signal 18 indicates either the high or low transmission frequency band.
- the voltage difference between the threshold voltage level and the supply voltage level and between the saturation voltage level and the supply voltage level should be relatively small regardless of whether the band-select signal indicates the low transmission frequency band or the band-select signal indicates the high transmission frequency band.
- the difference in magnitude between the threshold voltage level and the saturation voltage level may be equal to or less than 100 millivolts in both modes.
- the threshold voltage level is approximately 100 millivolts from the saturation voltage level in the high transmission frequency band mode and approximately 50 millivolts during the low transmission frequency band mode.
- the voltage regulation circuit 16 is configured to receive a feedback signal, which in this case is the voltage V F .
- the feedback signal V F has a feedback signal level that is related to the regulated voltage level of the regulated voltage V REG .
- the voltage regulation circuit 16 can detect whether the regulated voltage V REG has the appropriate regulated voltage level with respect to the voltage control signal V RAMP . Accordingly, when there is a change in the voltage control signal level of the voltage control signal V REG , the voltage regulation circuit 16 adjusts the regulated voltage level in accordance with the change in the voltage control signal level and the voltage adjustment gain of the voltage regulation circuit 16 .
- FIG. 2 illustrates a more detailed embodiment of the power amplification device 10 .
- the power amplification circuit 14 primarily includes three amplifier stages, a first amplifier stage 20 , a second amplifier stage 22 , and a third amplifier stage 24 .
- the useful data is entirely included in the phase of the signal.
- TDMA transmission signals are not as sensitive to amplitude non-linearity caused when the power amplification circuit 14 is driven into saturation.
- the power amplification circuit 14 is most efficient when operating as compressed, non-linear amplification circuit.
- the regulated voltage level of the regulated voltage V REG may be selected so that the power amplification circuit 14 is driven into saturation.
- the regulated voltage level of the regulated voltage V REG should be maintained relatively constant when the power amplification circuit 14 reaches saturation. To do this appropriately, the regulated voltage level of the regulated voltage V REG should be maintained so that the voltage regulation circuit 16 is maintained out of saturation.
- the power amplification circuit 14 receives a transmit enable signal TX_EN which turns on the power amplification circuit 14 so that the power amplification circuit 14 can amplify the RF transmission signal 12 .
- the RF transmission signal 12 may be transmitted in a GSM (low in this embodiment) transmission frequency band which in this embodiment is approximately from 824 MHz to 915 MHz or a PCD (high in this embodiment) frequency band which in this embodiment is approximately from 1.71 GHz to 1.91 GHz.
- GSM low in this embodiment
- PCD high in this embodiment
- different voltage regulation circuits like the voltage regulation circuit 16 , may be utilized to provide a regulated voltage to each or some of the amplifier stages 20 , 22 , and 24 individually.
- the voltage regulation circuit 16 is arranged as a low-dropout (LDO) regulation circuit.
- this embodiment of the voltage regulation circuit includes a P-type field effect transistor (FET) as a voltage regulator 26 .
- FET field effect transistor
- Other embodiments may utilize multiple transistors.
- FET field effect transistor
- a Darlington configuration or a quasi load-dropout configuration may be utilized as the voltage regulator 26 .
- the low-dropout configuration is preferable since generally it results in greater power efficiency.
- the voltage regulator 26 has a first voltage regulator terminal 28 configured to receive the supply voltage V s.
- the first voltage regulator terminal 28 is the source terminal of the PFET.
- the first voltage regulator terminal 28 also has a second voltage regulator terminal 30 , which in this example is the drain terminal of the PFET.
- the voltage regulator 26 also includes a voltage regulator control terminal 32 configured to receive a voltage regulator control signal 34 , which in this example is the gate terminal of the PFET. So long as the regulated voltage level of the regulated voltage is below a saturation voltage level of the voltage regulator 26 , the voltage regulator 26 is operable to generate the regulated voltage such that the regulated voltage level is set in accordance with the voltage regulated control signal level of the voltage regulator control signal 34 . However, if the regulated voltage level is above the saturated voltage level, the voltage regulator 26 operates in saturation and no longer can appropriately regulate the regulated voltage V REG .
- the voltage regulation circuit 16 also includes a differential amplifier 36 .
- the differential amplifier 36 generates the voltage regulator control signal 34 .
- the differential amplifier 36 has a first differential amplifier input terminal 38 configured to receive a feedback signal V F from a feedback circuit 40 and a second differential amplifier input terminal 41 configured to receive the voltage control signal V RAMP .
- the differential amplifier 36 has an output terminal that outputs the voltage regulator control signal 34 to the voltage regulator 26 .
- the first differential amplifier input terminal 38 is the non-inverting input terminal of the differential amplifier 36 while the second differential amplifier input terminal 41 is the inverting input terminal of the differential amplifier 36 .
- the differential amplifier 36 is responsive to the change in the voltage control signal level of the voltage control signal V RAMP .
- This arrangement causes the differential amplifier 36 to shift the voltage regulator control signal level of the voltage regulator control signal 34 until the feedback signal level of the feedback signal V F is approximately equal to the voltage control signal level of the voltage control signal V RAMP .
- the feedback circuit 40 may be coupled between the second voltage regulator terminal 30 of the voltage regulator 26 and the first differential amplifier input terminal 38 of the differential amplifier 36 .
- the differential amplifier 36 drives the voltage regulator 26 so that the regulated voltage level provides the feedback signal with the feedback signal level approximately equal to the voltage control signal level of the voltage control signal V RAMP .
- a feedback impedance of the feedback circuit 40 determines a relationship between the regulated voltage level of the regulated voltage V REG and the feedback signal level of the feedback signal V F .
- the feedback circuit 40 is coupled so that the voltage adjustment gain of the voltage regulation circuit 16 is provided in accordance with the feedback impedance of the feedback circuit 40 . Accordingly, the feedback impedance of the feedback circuit 40 sets a relationship between the change in the regulated voltage level of the regulated voltage V REG and the change in the feedback signal level of the feedback signal V F .
- the voltage adjustment gain of the voltage regulation circuit 16 is provided in accordance with the feedback impedance of the feedback circuit 40 .
- the differential amplifier 36 is responsive to a change in the voltage control signal level of the voltage control signal V RAMP .
- the change in the voltage control signal level of the voltage control signal V RAMP is relative to the feedback signal level of the feedback signal V F .
- the feedback circuit 40 illustrated in FIG. 2 is configured to receive the band-select signal 18 and the supply voltage V S . Since the feedback impedance of the feedback circuit 40 provides the voltage adjustment gain of the voltage regulation circuit 16 , the feedback impedance of the feedback circuit is adjusted in order to lower the voltage adjustment gain when the regulated voltage level of the regulated voltage V REG reaches the threshold voltage level.
- the feedback circuit 40 is responsive to the band-select signal 18 so that the threshold voltage level is higher when the band-select signal indicates the low transmission frequency band and is lower when the band-select signal 18 indicates the high transmission frequency band.
- the feedback circuit 40 is configured to be adjusted from a first impedance value to a second impedance value. In the embodiment illustrated in FIG. 2 , the second impedance value is lower than the first impedance value.
- FIG. 3 illustrates one embodiment of the feedback circuit 40 .
- the feedback circuit 40 shown in FIG. 3 is arranged as a voltage divider that includes resistor R 1 and resistor R 2 . It should be noted that in alternative embodiments, any type of desired impedance circuit may be utilized depending on the desired characteristics of the feedback circuit 40 .
- the feedback signal level of the feedback signal V F is the voltage level across the resistor R 2 .
- the difference between the regulated voltage level and the feedback voltage level is the voltage drop across the resistor R 1 .
- the combination of the resistor R 1 and R 2 in the voltage divider arrangement provides the first impedance value of the feedback circuit 40 .
- the feedback circuit 40 also includes a threshold detection circuit 42 that is operable to detect when the regulated voltage level of the regulated voltage V REG reaches the threshold voltage level. In response to the regulated voltage level of the regulated voltage V REG reaching the threshold voltage level, the threshold detection circuit 42 adjusts the feedback impedance of the feedback circuit 40 to the second impedance value. In the particular configuration illustrated in FIG. 3 , the threshold detection circuit 42 provides a bypass around the resistor R 1 . Accordingly, the regulated voltage level of the regulated voltage V REG and the feedback signal level of the feedback signal V F are nearly equal since there is essentially a nominal voltage drop across the threshold detection circuit 42 . The feedback impedance of the feedback circuit 40 is thus provided by the resistor R 2 once the resistor R 1 has been bypassed.
- the threshold detection circuit 42 is configured to receive the band-select signal 18 in order to allow the threshold detection circuit 42 to adjust when the regulated voltage level of the regulated voltage V REG reaches the threshold voltage level.
- the threshold detection circuit 42 is responsive to the band-select signal 18 so that the threshold voltage level is higher when the band-select signal 18 indicates the low transmission frequency band and is lower when the band-select signal 18 indicates the high transmission frequency band. Accordingly, since higher threshold voltage levels benefit TRP performance, greater TRP performance is achieved for transmission in the low transmission frequency band because the threshold detection circuit 42 increases the threshold voltage level closer to the saturation voltage level of the voltage regulator 26 .
- FIG. 4 illustrates one embodiment of the threshold detection circuit 42 .
- the threshold detection circuit 42 includes PFET 44 , PFET 46 , PFET 48 , and PFET 50 .
- the PFETs 44 , 46 , 48 , and 50 are configured to have similar characteristics to the PFET that serves as the voltage regulator 26 shown in FIG. 2 .
- the threshold voltage level is set by the PFET 44 or the PFET 48 and variable resistor R 3 .
- the threshold voltage level is provided at terminal 52 based on the threshold voltage V TH .
- the drain and gate of PFET 44 are coupled so that PFET 44 is operating in saturation.
- a current source 53 is coupled to the drain terminal of PFET 44 and thus, the PFET 44 maintains a voltage difference between the supply voltage level of the supply voltage V S and the threshold voltage level V TH the same even if there is a drop in the supply voltage level.
- the threshold detection circuit 42 is configured such that a change in the supply voltage level of the supply voltage V S results in the threshold voltage level shifting by the same change.
- the supply voltage level of the supply voltage V S can thus be held at a set voltage difference with the threshold voltage level of the threshold voltage V TH . If desired, this set voltage difference can be varied by the variable resistance of the variable resistors R 3 .
- the PFET 46 is turned on. This thus provides a bypass around the resistor R 1 shown in FIG. 3 .
- the threshold detection circuit 42 includes a logical buffer gate 54 .
- the logical buffer gate 54 receives the band-select signal 18 as a band-select high signal 18 A and a band-select low signal 18 B.
- the band-select high signal 18 A and the band-select low signal 18 B are always inverted with respect to one another.
- Each band-select signal 18 A and 18 B is received at a terminal 56 A and 56 B, respectively.
- the output voltage from the logical buffer gate 54 is approximately at the supply voltage level of the supply voltage. Therefore, PFET 50 and PFET 48 are off.
- the output voltage of the logical buffer gate 54 is approximately at the threshold voltage level of the threshold voltage V TH .
- the PFET 48 is enabled and the PFET 50 is allowed to be enabled. Enabling the PFET 48 and PFET 50 reduces the voltage drop across PFET 44 and PFET 46 and allows the regulated voltage level of the regulated voltage V REG to go higher before the regulated voltage level reaches the threshold voltage level of the threshold voltage V TH . In other words, the voltage difference between the threshold voltage level and the supply voltage level is reduced when PFET 48 is enabled and when the PFET 50 is allowed to be enabled.
- the threshold detection circuit 42 has been configured so as to operate when the low transmission frequency band is a GSM transmission frequency band from around 824 MHz to 915 MHz and when the high transmission frequency band is a PCD transmission frequency band between around 1.71 GHz to 1.91 GHz. It should be noted that other embodiments of the threshold detection circuit 42 may be designed and/or extended to cover any number of other modes or other interface standards with different system requirements.
- FIG. 5 illustrates one embodiment of an average output power 56 of the RF transmission signal 12 after amplification by the power amplification device 10 shown in FIG. 1 for a single timeslot.
- the voltage control signal V RAMP should be created so that the average output power falls into the burst mask 58 for the timeslot.
- the average output power 56 needs to ramp-up and properly settle at a maximum 59 within the time constraints of the burst mask 58 .
- the average output power 56 must settle to a minimum 60 within the time constraints of the burst mask 58 .
- Time 62 on the graph of FIG. 5 represents the time when the regulated voltage level of the regulated voltage V REG reaches the threshold voltage level.
- time 64 on the graph represents the time that the regulated voltage level of the regulated voltage V REG drops below the threshold voltage level.
- adjusting the voltage adjustment gain provides for a soft transfer function without sudden increases or decreases in the average output power 56 and therefore maintains the switching spectrum requirements for the timeslot.
- FIG. 6 illustrates one embodiment of the voltage control signal V RAMP versus time.
- Time period 66 is the ramp-up period and time period 68 is the ramp-down period. Times 62 and 64 described above for FIG. 5 are shown in FIG. 6 as well.
- the voltage control signal V RAMP is received by the voltage regulation circuit 16 (shown in FIG. 1 ) such that the voltage control signal level is increased from a minimum voltage level 70 to a maximum voltage level 72 . Once the maximum voltage level 72 is reached the voltage control signal V RAMP maintains the envelope of the RF transmission signal 12 constant until reaching the ramp-down period 68 .
- the voltage control signal V RAMP is received such that the voltage control signal level is decreased from the maximum voltage level 72 to the minimum voltage level 70 .
- FIG. 7 illustrates one embodiment of the regulated voltage V REG versus time for the timeslot.
- the regulated voltage level of the regulated voltage V REG is adjusted in accordance with the change in the voltage control signal level and the voltage adjustment gain.
- the voltage adjustment gain is reduced when the regulated voltage level of the regulated voltage V REG reaches the threshold voltage level of the threshold voltage V TH .
- the voltage adjustment gain is increased when the regulated voltage level of the regulated voltage is below the threshold voltage level of the threshold voltage V TH .
- the threshold voltage level of the threshold voltage V TH will be adjusted based on the band-select signal 18 .
- time 62 is earlier and time 64 is later when the high transmission frequency band has been selected to provide for greater softness to transition to and from the maximum voltage level 74 .
- time 64 is earlier, which provides for less softness to transmission to and from the maximum voltage level 74 but increases TRP performance.
- FIG. 7A is a graph of one embodiment of the voltage control signal V RAMP plotted versus the regulated voltage V REG when the band-select signal indicates the low transmission frequency band.
- FIG. 7A illustrates that there is decreased softness as the regulated voltage level is set to a maximum voltage level 74 A.
- FIG. 7B is a close-up of the graph shown in FIG. 7A around a threshold voltage level 75 A when the voltage adjustment gain is reduced.
- the threshold voltage level 75 A is somewhere between 3.375 volts and 3.450 volts.
- the maximum voltage level 74 A is around 3.525 volts.
- FIG. 7C is a graph of one embodiment of the voltage control signal V RAMP plotted versus the regulated voltage V REG when the band-select signal indicates the high transmission frequency band.
- FIG. 7C illustrates that there is increased softness as the regulated voltage level is set to a maximum voltage level 74 B.
- FIG. 7D is a close-up of the graph shown in FIG. 7C around a threshold voltage level 75 B when the voltage adjustment gain is reduced.
- the threshold voltage level 75 B is below 3.375 volts.
- the maximum voltage level 74 A is somewhere between 3.525 volts and 3.600 volts.
- an embodiment of the power amplification device 10 may be incorporated in a mobile communication device 76 , such as a mobile cellular telephone, personal digital assistant (PDA), and/or the like.
- the basic architecture of the mobile communication device 76 may include a receiver front-end 78 , an RF transmitter section 80 , an antenna 82 , a duplexer or switch 84 , a baseband processor 86 , a control system 88 , a frequency synthesizer 90 , and an interface 92 .
- the receiver front-end 78 receives information bearing RF receive signals from one or more remote transmitters provided by a base station.
- a low noise amplifier (LNA) 94 amplifies the RF receive signal.
- LNA low noise amplifier
- a filter circuit 96 minimizes broadband interference in the received signal, while a down converter 98 down converts the filtered received signal to an intermediate or base band frequency signal, which is digitizing to one or more digital streams.
- the receiver front-end 78 typically uses one or more mixing frequencies generated by the frequency synthesizer 90 .
- the baseband processor 86 processes the digitized receive signal to extract the information or data bits conveyed in the receive signal. This processing typically comprises demodulation, decoding, and error correction operations. As such, the baseband processor 86 is generally implemented in one or more digital signal processors (DSPs).
- DSPs digital signal processors
- the baseband processor 86 receives digitized data from the control system 88 , which it encodes for transmission.
- the encoded data is output to the RF transmitter section 80 , where it used by a modulator 100 to modulate a carrier signal at a desired transmit frequency and thereby generate the RF transmission signal 12 .
- the power amplification device 10 amplifies the RF transmission signal 12 to a signal level appropriate for transmission from the antenna 82 .
- the power amplification device 10 receives and amplifies the RF transmission signal 12 from the modulator 100 to provide the RF transmission signal 12 after amplification to the antenna 82 .
- the power amplification device 10 provides the amplification for the RF transmission signal 12 under the control of the voltage control signal V RAMP generated by the control system 88 .
- the supply voltage V S is received from a power source 102 such as a battery or an AC-to-DC converter.
- the control system 88 provides the band-select signal 18 to indicate when the RF transmission signal 12 is within the high transmission frequency band and when the RF transmission signal 12 is in the low transmission frequency band.
- a transmit enable signal TX_EN Also received from the control system 88 is also received from the control system 88 .
- a user may interact with the mobile communication device 76 via the interface 92 , which may include interface circuitry 104 associated with a microphone 106 , a speaker 108 , a keypad 110 , and a display 112 . Additionally or alternatively, the mobile communication device 76 may include a touch screen for interface with the user.
- the interface circuitry 104 typically includes analog-to-digital converters, digital-to-analog converters, amplifiers, and/or the like. Additionally, it may include a voice encoder/decoder, which may communicate directly with the baseband processor 86 .
- the microphone 106 will typically convert audio input, such as the user's voice, into an electrical signal, which is then digitized and passed directly or indirectly to the baseband processor 86 . Audio information encoded in the received signal is recovered by the baseband processor 86 and is converted into an analog signal by the interface circuitry 104 suitable for driving the speaker 108 .
- the keypad 110 and the display 112 enable the user to interact with the mobile communication device 76 by inputting numbers to be dialed, retrieving address book information, monitoring call progress information, and/or the like.
- FIG. 9 illustrates another embodiment of a voltage regulation circuit 114 that may be utilized to provide a regulated voltage V REG to a power amplification circuit (not shown) that amplifies an RF transmission signal (not shown).
- a differential amplifier 116 and a voltage regulator 118 operate similarly to the differential amplifier 36 and the voltage regulator 26 described above in FIG. 2 .
- a feedback circuit 120 operates in a manner similar to the feedback circuit 40 shown in FIG. 2 when the regulated voltage level of the regulated voltage V REG has not reached a threshold voltage level.
- the feedback circuit 120 is coupled so as to set the voltage adjustment gain of the voltage regulation circuit 114 .
- the feedback circuit 120 is also coupled so as to generate the feedback signal V F from the regulated voltage V REG and provide the feedback signal V F to the differential amplifier 116 .
- the resistor R 1 and the resistor R 2 are configured as a voltage divider to provide the feedback impedance that sets the voltage adjustment gain of the voltage regulation circuit 114 when the regulated voltage level of the regulated voltage V REG has not reached the threshold voltage level.
- the voltage divider provides a first feedback path that sets the feedback impedance in accordance with the resistance presented by the voltage divider.
- the feedback circuit 120 has another embodiment of a threshold detection circuit 122 .
- the threshold detection circuit 122 provides a second feedback path for the feedback circuit 120 having a second feedback path resistance.
- the threshold detection circuit 122 is configured to activate when the regulated voltage level reaches the threshold voltage level so as to adjust the feedback impedance in accordance with the second feedback path resistance so as to reduce the voltage adjustment gain.
- the threshold voltage level is determined relative to a voltage regulator control signal level of a voltage regulator control signal 123 . This allows for greater predictability across temperature variations and lowers drop-out voltage level of the voltage regulator 118 .
- the threshold detection circuit 122 is activated by enabling a first PFET 124 or by enabling the first PFET 124 and a second PFET 125 .
- the first PFET 124 and the second PFET 125 each have a source terminal 126 , 128 , a drain terminal 130 , 132 , and a gate terminal 134 , 136 , respectively.
- the first PFET 124 and the second PFET 125 may be relatively large so that there is only a nominal voltage drop across the first PFET 124 and the second PFET 125 when the devices are enabled.
- the threshold detection circuit 122 is responsive to a voltage difference between the voltage regulator control signal level and the regulated voltage level such that the voltage adjustment gain is reduced once the second voltage difference reaches a threshold voltage level.
- the first PFET 124 has the gate terminal 134 coupled to receive the voltage regulator control signal 123 , and the source terminal 126 coupled to receive the regulated voltage V REG .
- the threshold detection circuit 122 is activated once the voltage difference reaches the threshold voltage level.
- the threshold voltage level is a threshold voltage level of the first PFET 124 .
- the threshold voltage level of the first PFET 124 is the voltage level required between the source terminal 126 and the gate terminal 134 so as to enable the first PFET 124 .
- a resistor R A provides a resistance that reduces the feedback impedance of the feedback circuit 120 and therefore the voltage adjustment gain of the voltage regulation circuit 114 .
- the second feedback path impedance is provided mostly by the resistance of R A when the first PFET 124 is enabled.
- the second PFET 125 Assuming that the gate terminal 136 of the second PFET 125 receives a voltage such that the second PFET 125 is allowed to be enabled, the second PFET 125 has the effect of increasing the threshold voltage level needed to activate the threshold detection circuit 122 . Nevertheless, once a voltage difference between the regulated voltage level at the source terminals 126 , 128 and the voltage regulator control signal level at the gate terminal 134 , 136 reaches the threshold voltage level, the first PFET 124 and the second PFET 125 are enabled. In this example, the source terminal 128 is connected through a resistor, R B . As a result, the threshold detection circuit 122 is activated and the feedback impedance is reduced by the second feedback path impedance provided mostly by the resistance of R A ⁇ R B .
- the threshold detection circuit 122 thus sets a minimum voltage adjustment gain of the feedback circuit 120 .
- the threshold detection circuit 122 is coupled in parallel with the resistor R 1 .
- the resistance of the resistor R A is selected to substantially match the resistance of the resistor R 1 . Since the resistance of resistor R A or the resistance R A ⁇ R B sets the minimum voltage adjustment gain, the minimum voltage adjustment gain is predictable over variations in environmental conditions, such as temperature, supply variations, and/or variations in fabrication. To help ensure that the resistors R 1 , R 2 , R A , and R B have the appropriate resistances, the resistors R 1 , R 2 , and R A may be created from identical segments.
- the drop out voltage level of the voltage regulator 118 is reduced as an output load impedance presented by a power amplification circuit (not shown) increases.
- the threshold detection circuit 122 shown in FIG. 9 includes a logical buffer gate 138 .
- the logical buffer gate 138 receives a band-select signal 140 as a band-select high signal 140 A and a band-select low signal 140 B.
- the band-select high signal 140 A and the band-select low signal 140 B are always inverted with respect to one another, as described above with regards to the band-select signal 18 of FIG. 4 .
- the output voltage from the logical buffer gate 138 is approximately at the supply voltage level of the supply voltage. Therefore, the second PFET 125 is not allowed to be enabled.
- the output voltage of the logical buffer gate 138 is approximately at the voltage regulator control signal level of the voltage regulator control signal 123 .
- the second PFET 125 is allowed to be enabled. Allowing the second PFET 125 allows the regulated voltage level of the regulated voltage V REG to go higher before the regulated voltage level reaches the threshold voltage level to activate the threshold detection circuit 122 .
- the threshold voltage level is lower and when the band-select signal 140 indicates the low transmission frequency band, the threshold voltage level is higher.
Landscapes
- Engineering & Computer Science (AREA)
- Power Engineering (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Amplifiers (AREA)
- Transmitters (AREA)
Abstract
Description
G=1/[R 1/(R 1 +R 2)]
G=1/[(R 1 ∥R A)/((R 1 ∥R A)+R 2)] or
G=1/[(R 1∥(R A ∥R B))/((R 1∥(R A ∥R B))+R 2)]
Claims (20)
Priority Applications (2)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| US13/360,059 US8538357B2 (en) | 2011-01-27 | 2012-01-27 | Switchable VRAMP limiter |
| US13/961,088 US8750812B2 (en) | 2011-01-27 | 2013-08-07 | Switchable vramp limiter |
Applications Claiming Priority (2)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| US201161436765P | 2011-01-27 | 2011-01-27 | |
| US13/360,059 US8538357B2 (en) | 2011-01-27 | 2012-01-27 | Switchable VRAMP limiter |
Related Child Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| US13/961,088 Continuation US8750812B2 (en) | 2011-01-27 | 2013-08-07 | Switchable vramp limiter |
Publications (2)
| Publication Number | Publication Date |
|---|---|
| US20130029618A1 US20130029618A1 (en) | 2013-01-31 |
| US8538357B2 true US8538357B2 (en) | 2013-09-17 |
Family
ID=47555371
Family Applications (4)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| US13/360,059 Active 2032-02-16 US8538357B2 (en) | 2011-01-27 | 2012-01-27 | Switchable VRAMP limiter |
| US13/360,094 Expired - Fee Related US8525595B2 (en) | 2011-01-27 | 2012-01-27 | Vramp limiting using resistors |
| US13/950,768 Active US8884703B2 (en) | 2011-01-27 | 2013-07-25 | VRAMP limiting using resistors |
| US13/961,088 Active US8750812B2 (en) | 2011-01-27 | 2013-08-07 | Switchable vramp limiter |
Family Applications After (3)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| US13/360,094 Expired - Fee Related US8525595B2 (en) | 2011-01-27 | 2012-01-27 | Vramp limiting using resistors |
| US13/950,768 Active US8884703B2 (en) | 2011-01-27 | 2013-07-25 | VRAMP limiting using resistors |
| US13/961,088 Active US8750812B2 (en) | 2011-01-27 | 2013-08-07 | Switchable vramp limiter |
Country Status (1)
| Country | Link |
|---|---|
| US (4) | US8538357B2 (en) |
Cited By (2)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US20140079096A1 (en) * | 2012-09-14 | 2014-03-20 | Broadcom Corporation | Power amplifier with supply switching |
| US8750812B2 (en) * | 2011-01-27 | 2014-06-10 | Rf Micro Devices, Inc. | Switchable vramp limiter |
Families Citing this family (7)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US9806405B2 (en) * | 2013-01-31 | 2017-10-31 | Atmel Corporation | Integrated circuit for remote keyless entry system |
| US9820229B2 (en) | 2013-04-05 | 2017-11-14 | Qualcomm Incorporated | Dynamic voltage and frequency scaling in wireless modems |
| US9285814B1 (en) * | 2014-08-28 | 2016-03-15 | Cirrus Logic, Inc. | Feedback path for fast response to transients in voltage regulators |
| KR102029490B1 (en) * | 2014-09-01 | 2019-10-07 | 삼성전기주식회사 | Voltage regulator of low-drop-output and rf switch controll device having the same |
| TWI631820B (en) * | 2015-02-15 | 2018-08-01 | 西凱渥資訊處理科技公司 | Unpowered switch module |
| TWI654871B (en) | 2017-04-05 | 2019-03-21 | 立積電子股份有限公司 | Power control circuit and method thereof |
| CN114397937A (en) * | 2021-12-31 | 2022-04-26 | 深圳飞骧科技股份有限公司 | LDO power supply circuit and power amplifier |
Citations (6)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US6646511B2 (en) * | 2000-02-24 | 2003-11-11 | Skyworks Solutions, Inc. | Power amplifier with provisions for varying operating voltage based upon power amplifier output power |
| US6757526B1 (en) * | 1997-04-25 | 2004-06-29 | Steven J. Sharp | Battery life extending technique for mobile wireless applications using bias level control |
| US6917243B2 (en) | 2003-06-27 | 2005-07-12 | Sige Semiconductor Inc. | Integrated power amplifier circuit |
| US7973521B2 (en) | 2008-08-08 | 2011-07-05 | Mediatek Inc. | Voltage regulators |
| US8362649B2 (en) * | 2010-06-18 | 2013-01-29 | R2 Semiconductor, Inc. | Multi-use voltage regulator |
| US20130029618A1 (en) | 2011-01-27 | 2013-01-31 | Rf Micro Devices, Inc. | Switchable vramp limiter |
-
2012
- 2012-01-27 US US13/360,059 patent/US8538357B2/en active Active
- 2012-01-27 US US13/360,094 patent/US8525595B2/en not_active Expired - Fee Related
-
2013
- 2013-07-25 US US13/950,768 patent/US8884703B2/en active Active
- 2013-08-07 US US13/961,088 patent/US8750812B2/en active Active
Patent Citations (6)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US6757526B1 (en) * | 1997-04-25 | 2004-06-29 | Steven J. Sharp | Battery life extending technique for mobile wireless applications using bias level control |
| US6646511B2 (en) * | 2000-02-24 | 2003-11-11 | Skyworks Solutions, Inc. | Power amplifier with provisions for varying operating voltage based upon power amplifier output power |
| US6917243B2 (en) | 2003-06-27 | 2005-07-12 | Sige Semiconductor Inc. | Integrated power amplifier circuit |
| US7973521B2 (en) | 2008-08-08 | 2011-07-05 | Mediatek Inc. | Voltage regulators |
| US8362649B2 (en) * | 2010-06-18 | 2013-01-29 | R2 Semiconductor, Inc. | Multi-use voltage regulator |
| US20130029618A1 (en) | 2011-01-27 | 2013-01-31 | Rf Micro Devices, Inc. | Switchable vramp limiter |
Non-Patent Citations (2)
| Title |
|---|
| Madsen, U., "3G GMSK/EDGE power control with enhanced switching transient performance," rfdesign.com, Jan. 2006, pp. 22-30. |
| Notice of Allowance for U.S. Appl. No. 13/360,094, mailed Apr. 25, 2013, 7 pages. |
Cited By (4)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US8750812B2 (en) * | 2011-01-27 | 2014-06-10 | Rf Micro Devices, Inc. | Switchable vramp limiter |
| US8884703B2 (en) | 2011-01-27 | 2014-11-11 | Rf Micro Devices, Inc. | VRAMP limiting using resistors |
| US20140079096A1 (en) * | 2012-09-14 | 2014-03-20 | Broadcom Corporation | Power amplifier with supply switching |
| US8884702B2 (en) * | 2012-09-14 | 2014-11-11 | Broadcom Corporation | Power amplifier with supply switching |
Also Published As
| Publication number | Publication date |
|---|---|
| US20130321077A1 (en) | 2013-12-05 |
| US20130029618A1 (en) | 2013-01-31 |
| US8884703B2 (en) | 2014-11-11 |
| US8750812B2 (en) | 2014-06-10 |
| US20130307621A1 (en) | 2013-11-21 |
| US8525595B2 (en) | 2013-09-03 |
| US20130021099A1 (en) | 2013-01-24 |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| US8538357B2 (en) | Switchable VRAMP limiter | |
| US11658615B2 (en) | Multi-level envelope tracking with analog interface | |
| US7193459B1 (en) | Power amplifier control technique for enhanced efficiency | |
| US7368985B2 (en) | High frequency power amplifier and transmitter | |
| US6701138B2 (en) | Power amplifier control | |
| KR101688515B1 (en) | Compression control through power amplifier voltage adjustment | |
| US9246454B2 (en) | Low power consumption adaptive power amplifier | |
| US8531240B2 (en) | Collector boost | |
| EP1058405A2 (en) | Cellular mobile telephone terminal | |
| US6049704A (en) | Apparatus for amplifying an RF signal | |
| US20130059546A1 (en) | Radio-Frequency Power Amplifier Circuitry with Power Supply Voltage Optimization Capabilities | |
| US8791760B2 (en) | Closed loop bias control | |
| EP3134966B1 (en) | Differential cascode amplifier with selectively coupled gate terminals | |
| US9641128B2 (en) | High linearity structure for amplifier | |
| US8351880B1 (en) | Saturation corrected power amplifier integration loop | |
| US8817852B2 (en) | Communication apparatuses and radio frequency equalizers | |
| JP2004242082A (en) | Attenuator switch and mobile phone terminal using the same | |
| US7164319B2 (en) | Power amplifier with multi mode gain circuit | |
| KR101081267B1 (en) | Power amplifier circuit | |
| KR101081242B1 (en) | Power amplifier circuit |
Legal Events
| Date | Code | Title | Description |
|---|---|---|---|
| AS | Assignment |
Owner name: RF MICRO DEVICES, INC., NORTH CAROLINA Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:PEDERSEN, ERIK;LAURSEN, SOREN DELEURAN;BERCHTOLD, JEAN-CHRISTOPHE;SIGNING DATES FROM 20120313 TO 20120319;REEL/FRAME:027893/0466 |
|
| AS | Assignment |
Owner name: BANK OF AMERICA, N.A., AS ADMINISTRATIVE AGENT, TE Free format text: NOTICE OF GRANT OF SECURITY INTEREST IN PATENTS;ASSIGNOR:RF MICRO DEVICES, INC.;REEL/FRAME:030045/0831 Effective date: 20130319 |
|
| STCF | Information on status: patent grant |
Free format text: PATENTED CASE |
|
| AS | Assignment |
Owner name: RF MICRO DEVICES, INC., NORTH CAROLINA Free format text: TERMINATION AND RELEASE OF SECURITY INTEREST IN PATENTS (RECORDED 3/19/13 AT REEL/FRAME 030045/0831);ASSIGNOR:BANK OF AMERICA, N.A., AS ADMINISTRATIVE AGENT;REEL/FRAME:035334/0363 Effective date: 20150326 |
|
| AS | Assignment |
Owner name: QORVO US, INC., NORTH CAROLINA Free format text: MERGER;ASSIGNOR:RF MICRO DEVICES, INC.;REEL/FRAME:039196/0941 Effective date: 20160330 |
|
| REMI | Maintenance fee reminder mailed | ||
| FEPP | Fee payment procedure |
Free format text: SURCHARGE FOR LATE PAYMENT, LARGE ENTITY (ORIGINAL EVENT CODE: M1554) |
|
| MAFP | Maintenance fee payment |
Free format text: PAYMENT OF MAINTENANCE FEE, 4TH YEAR, LARGE ENTITY (ORIGINAL EVENT CODE: M1551) Year of fee payment: 4 |
|
| MAFP | Maintenance fee payment |
Free format text: PAYMENT OF MAINTENANCE FEE, 8TH YEAR, LARGE ENTITY (ORIGINAL EVENT CODE: M1552); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY Year of fee payment: 8 |
|
| MAFP | Maintenance fee payment |
Free format text: PAYMENT OF MAINTENANCE FEE, 12TH YEAR, LARGE ENTITY (ORIGINAL EVENT CODE: M1553); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY Year of fee payment: 12 |