US8488933B2 - Method and apparatus for mechanically cleaving a stripped end section of an optic fiber core - Google Patents
Method and apparatus for mechanically cleaving a stripped end section of an optic fiber core Download PDFInfo
- Publication number
- US8488933B2 US8488933B2 US13/037,035 US201113037035A US8488933B2 US 8488933 B2 US8488933 B2 US 8488933B2 US 201113037035 A US201113037035 A US 201113037035A US 8488933 B2 US8488933 B2 US 8488933B2
- Authority
- US
- United States
- Prior art keywords
- cleaving
- optic fiber
- section
- fiber core
- guide
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related, expires
Links
Images
Classifications
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B6/00—Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
- G02B6/24—Coupling light guides
- G02B6/25—Preparing the ends of light guides for coupling, e.g. cutting
Definitions
- the present invention relates to a method and apparatus for mechanically cleaving a stripped end section of an optic fiber core.
- An optical connection between optic fibers can be effected by fusion or mechanical splicing.
- fusion splicing involves joining two optic fibers end-to-end and effecting optical connection using heat and mechanical splicing involves holding two optic fibers in alignment so that light can pass from one to the other.
- Mechanical splicing typically involves either passive or active alignment of optic fiber cores. Passive alignment relies on precision reference surfaces, generally grooves or cylindrical holes, to align fiber cores during splicing. Active alignment involves the use of light for accurate fiber alignment, and may consist of either monitoring the loss through the splice during splice alignment or by using a microscope to accurately align the fiber cores for splicing. To monitor loss, either an optical source and optical power meter; or an optical time domain reflectometer (OTDR) is used.
- OTDR optical time domain reflectometer
- a cleave is a deliberate, controlled break, intended to create a perfectly flat end face, perpendicular to the longitudinal axis of the fiber.
- a cleave is typically made by first introducing a microscopic fracture (“nick”) into the fiber with a special tool which has a sharp blade of some hard material, such as diamond, sapphire, or tungsten carbide. If proper tension is applied to the fiber as the nick is made, or immediately afterward, then the fracture will propagate in a controlled fashion, creating the desired end face.
- nick microscopic fracture
- an apparatus for mechanically cleaving a stripped end section of an optic fiber core including:
- the cleaving member includes a cleave button and a reset button separated by one or more one elongate members which are shaped to translate through corresponding pairs of translation slots of the cleaving section as the cleaving member moves between the receiving position and the cleaving position.
- the cleaving section includes a sliding member through which the cleaving member translates between the optic fiber receiving position and the optic fiber cleaving position.
- the sliding member is adapted to move transversely to a direction of movement of the cleaving member as the cleaving member translates through the sliding member towards the cleaving position, the transverse movement effecting said at least partial separation movement between the guide and the clamping section so as to tension and thereby cleave the optic fiber core extending therebetween.
- the sliding member engages the guide of the receiving section during said transverse movement and forces the guide away from the clamping section thereby effecting said at least partial separation movement between the guide and the clamping section.
- the cleaving member includes or more one or more tapered flanges arranged to engage and translate along corresponding tapered sections of the sliding member as the cleaving member moves towards the optic fiber cleaving position to effect the transverse movement.
- the method further includes the step of further moving the cleaving member from the cleaving position towards a further tensioning position to effect further separation movement between the guide and the clamping section so as to further tension and thereby cleave the optic fiber core extending therebetween.
- FIG. 1 is a front perspective view of an apparatus for mechanically cleaving a stripped end section of an optic fiber core
- FIG. 2 is a front view of the apparatus shown in FIG. 1 ;
- FIG. 3 is an end view of the apparatus shown in FIG. 1 coupled to an optic fiber;
- FIG. 4 is a section view of the apparatus shown in FIG. 3 through the line A-A;
- FIG. 5 is a rear perspective view of the apparatus shown in FIG. 1 with a part of the clamping section removed;
- FIG. 6 is a front perspective view of a sliding member of the apparatus shown in FIG. 1 ;
- FIG. 7 is a front perspective view of a cleaving member of the apparatus shown in FIG. 1 ;
- FIG. 8 is another end view of the apparatus shown in FIG. 1 ;
- FIG. 9 is a section view of the apparatus shown in FIG. 8 through the line B-B;
- FIG. 10 is a plan view of the apparatus shown in FIG. 1 with the clamping member laid open;
- FIG. 11 is a rear perspective view of the apparatus shown in FIG. 1 arranged in a cleaving position with a part of the clamping section removed;
- FIG. 12 is a front perspective view of the apparatus shown in FIG. 1 arranged in the further tensioning position;
- FIG. 13 is a rear perspective view of the apparatus shown in FIG. 12 arranged in the cleaving position with a part of the clamping section removed;
- FIG. 14 is a side view of the apparatus shown in FIG. 12 ;
- FIG. 15 is a section view of the apparatus shown in FIG. 14 through the line C-C;
- FIG. 16 is a side view of the apparatus shown in FIG. 12 coupled to an optic fiber
- FIG. 17 is a section view of the apparatus shown in FIG. 16 through the line D-D.
- the apparatus 10 shown in FIGS. 1 to 5 and 8 to 15 is a hand operated tool for mechanically cleaving a stripped end section 12 of an optic fiber 14 in preparation for fusion or mechanical splicing.
- the apparatus 10 is preferably relatively inexpensive and is readily portable so that a technician can perform cleaving at a location where splicing is to be effected.
- the apparatus 10 includes generally rectangular housing 16 that is of suitable size and shape to fit in the hand of a person.
- the apparatus 10 includes a receiving section 18 coupled to the housing 16 which includes an optic fiber guide 20 for receiving the stripped end section 12 of the optic fiber core 14 and directing it into the housing 16 .
- the stripped end section is approximately 30 mm long and is preferably prepared by stripping off the primary buffer using standard industry hand tools. Otherwise, any suitable tools can be used to strip the end section of the optic fiber core 12 .
- the apparatus also includes a clamping section 22 for receiving a terminal end section 24 of the optic fiber core 12 from the receiving section 18 and securing the terminal end section 24 in a fixed position.
- the apparatus 10 further includes a cleaving section 26 including a cleaving member 28 and cleaving blade 30 .
- the cleaving member 28 is operable to move between the optic fiber receiving position shown in FIG. 1 and the optic fiber cleaving position shown in FIG. 11 where the blade 30 is positioned to at least partially fracture the optic fiber core extending between the receiving section 18 and the clamping section 22 .
- Movement of the cleaving member 28 towards the cleaving position effects at least partial separation movement between the guide 20 and the clamping section 22 so as to increase distance “U” and thereby tension the optic fiber core 12 extending therebetween.
- the receiving section 18 includes a guide support 32 that extends outwardly from a front side of the housing 16 .
- the guide support 32 includes an inner cylindrical section 34 and an outer cylindrical section 36 which are respectively shaped to receive inner 38 and outer 40 sections of the optic fiber guide 20 .
- the inner cylindrical section 34 of the guide support 32 is of slightly larger diameter than the cylindrical inner section 38 of the guide 20 so that the guide 20 can translate back and forth along the guide support 32 .
- the diameter of the inner section 38 of the guide 20 is preferably 1.15 mm.
- the outer cylindrical section 36 of the guide support 32 is of greater diameter than the inner cylindrical section 34 of the guide support 32 and is of suitable size to receive and support therein the conical outer section 40 of the guide 20 .
- the outer peripheral edge 42 of the conical outer section 40 of the guide 20 preferably sits just inside the outer peripheral edge 44 of the outer cylindrical section 34 of the guide support 32 .
- the conical outer section 40 of the guide 20 is shaped to receive the terminal end section 24 of the optic fiber core 12 and channel it into the inner section 38 of the guide 20 .
- the inner section 38 of the guide 20 includes a necked barrier 46 for limiting movement of the optic fiber 14 through the guide 20 in direction D IOF .
- the diameter of the opening of the necked barrier 46 is preferably 0.5 mm which allows the optic fiber core 12 having a diameter of 0.125 mm, for example, to pass there through and blocks passage of the casing of the optic fiber 14 which has a diameter of 0.9 mm, for example.
- the casing preferably includes cladding, buffer and/or jacket of the optic fiber 14 .
- Alternative dimensions for the inner section 38 of the guide 20 and the necked barrier 46 can be used to suit the optic fiber 14 being used.
- the clamping section 22 mechanically clamps the terminal end section 24 of the optic fiber core 12 .
- the clamping section 22 includes a lid 48 and a base 50 coupled together by a hinge 52 .
- the hinge is preferably formed in three parts 52 a , 52 b , 52 c , one part 52 a being coupled to the lid 48 which is arranged for location between the two parts 52 b , 52 c coupled to the base 50 .
- the parts are coupled together by an axle 53 extending through the parts 52 a , 52 b , 52 c when so arranged.
- the parts 52 a , 52 b , 52 c can be hinged together using any other suitable means.
- the terminal end section 24 of the optic fiber core 12 is clamped between clamping platforms 54 a , 54 b of the lid 48 and base 50 respectfully which overlie and engage each other when the clamping section 22 is hinged closed.
- the terminal end section 24 of the optic fiber core 12 is thereby held in a fixed position under pressure applied to the clamping section 22 by the technician to close the lid 48 against the base 50 .
- the base 50 of the clamping section 22 includes a storage compartment 56 for temporarily storing cleaved end sections 24 of optic fiber cores 12 . Once cleaving has been effected, the cleaved fiber core is removed from the housing 16 for use in a mechanical splice connection, for example. The technician can then open the clamping lid 48 to reveal the unwanted fiber stub. The unwanted stub can either be temporarily brushed aside into the fiber storage compartment 56 of the apparatus 10 or removed permanently and disposed in a sharps bin.
- the lid 48 of the clamping section 22 also includes a lever 58 to assist in opening and closing the lid 48 .
- the cleaving member 28 includes cleaving button 62 and a reset button 64 separated by four elongate members 66 a , 66 b , 66 c , 66 d which are shaped to translate through corresponding pairs of translation slots 68 a , 68 b , 68 c , 68 d of the cleaving section 26 as the cleaving member moves from the receiving position towards the cleaving position in direction D CMC .
- the cleaving section 28 also includes a recess button access point 70 through which the reset button 64 can be accessed by a technician to force the reset button 64 to move, in the opposite direction to D CMC , back into the housing 16 and drive the cleaving member 28 back through the slots 68 a , 68 b , 68 c , 68 d towards the receiving position.
- the blade 30 of the cleaving is seated in cleaving arm 69 mounted on elongate member 66 d .
- the cleaving are 69 is adapted to translate through cleaving arm slot 71 as the cleaving member moves between the receiving position and the cleaving position.
- the cleaving section 26 also includes a sliding member 72 through which the cleaving member 28 translates between the optic fiber receiving position and the optic fiber cleaving position.
- the sliding member 72 is adapted to move transversely in direction D SLC to a direction of movement D CMC of the cleaving member 28 as the cleaving member 28 translates through the translation slots 68 a , 68 b , 68 c , 68 d towards the cleaving position.
- the transverse movement of the sliding member 72 effects the aforementioned at least partial separation movement between the guide 20 and the clamping section 22 so as to tension and thereby cleave the optic fiber core 12 extending therebetween.
- the cleaving member 28 is adapted to travel beyond the cleaving position in direction D CMC to the further tensioning position shown in FIGS. 12 to 17 to effect further separation movement between the guide 20 and the clamping section 22 .
- the further separation movement further tensions and thereby assists in cleaving the optic fiber core 12 extending between the necked barrier 46 of the guide 20 and the clamping section 22 .
- the cleaving member 28 includes two tapered flanges 74 a , 74 b arranged to engage and translate along corresponding tapered sections 76 a , 76 b of the sliding member 72 as the cleaving member 28 moves from the receiving position towards the cleaving position and beyond to the further tensioning position shown in FIGS. 12 to 17 .
- the cleaving member 28 also includes two tapered flanges 78 a , 78 b arranged to engage and translate along corresponding tapered sections 80 a , 80 b of the sliding member 72 as the cleaving member 28 moves from the further tensioning position back towards the receiving position. This facilitates transverse movement of the sliding member 72 in a direction opposite to direction D SLC to restore the sliding member 72 back to its previous position.
- the sliding member 72 includes a cylindrical guide recess 82 shaped to receive, and seat therein, a terminal end section 86 of the guide 20 .
- the diameter of the cylindrical guide recess 82 is preferably 1.0 mm.
- the cylindrical guide recess 82 allows the passage of the optic fiber core 12 therethrough so that it can pass from the receiving section 18 to the clamping section 22 in the manner shown.
- transverse movement of the sliding member 72 in direction D SLC as a result of the cleaving member 28 moving towards the cleaving position and beyond to the further tensioning position in direction D CMC , forces the guide 20 coupled thereto to move away from the clamping section 22 . At least partial separation movement between the guide 20 and the clamping section 22 is thereby effected.
- the terminal end section 86 of the guide 20 is distance “U” from the clamping section 22 when the cleaving member 28 is arranged in the receiving position.
- the tapered flanges 74 a , 74 b of the cleaving member 28 engage respective tapered sections 76 a , 76 b of the sliding member 72 forcing transverse movement of the sliding member 72 in direction D SLC resulting in separation movement between the guide 20 and the clamping section 22 by distance “W”.
- an inner edge of the flange 78 a of the cleaving member 28 is a distance “V” from an opposing edge of the sliding member 72 when the cleaving member is in the receiving position. As shown in FIG. 15 , this same edge of the sliding member 72 moves closer to the same edge of the cleaving member 28 to a distance “V-W” when the cleaving member 28 has moved to the further tensioning position.
- the receiving section 18 includes resilient means 84 for acting against movement of the guide 20 away from the clamping section 22 in direction D SLC so as to act to return the guide 20 to its original position when the cleaving member 28 moves from the cleaving position back towards the receiving position.
- a technician can thereby use the apparatus 10 to quickly and easily cleave an optic fiber core 12 in preparation of either fusion or mechanical fiber splicing by performing the steps of:
- the act of stripping the optic fiber 14 can preferably be done using standard industry hand tools.
- the above-described steps performed to cleave the optic fiber core 12 generate an audible click when the core is fractured and cleaved.
- the guide 20 visibly projects from the guide support 32 when the cleave button 62 is fully inserted into the housing 16 .
- the lid 48 of the clamping section 22 is opened to reveal the unwanted fiber stub.
- the unwanted stub can either be temporarily brushed aside into the fiber storage compartment 56 of the apparatus 10 or removed permanently and disposed in a sharps bin.
Landscapes
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Optics & Photonics (AREA)
- Light Guides In General And Applications Therefor (AREA)
- Mechanical Coupling Of Light Guides (AREA)
Abstract
Description
- (a) a receiving section including an optic fiber guide for receiving the stripped end section of the optic fiber core;
- (b) a clamping section for receiving a terminal end section of the optic fiber core from the receiving section and securing said terminal end section in a fixed position; and
- (c) a cleaving section including a cleaving member and cleaving blade, said member being operable to move between an optic fiber receiving position and an optic fiber cleaving position where the blade is positioned to at least partially fracture the optic fiber core extending between the receiving section and the clamping section,
wherein movement of the cleaving member towards the cleaving position effects at least partial separation movement between the guide and the clamping section so as to tension and thereby cleave the optic fiber core extending therebetween.
- (a) inserting the optic fiber core into the guide of the receiving section of the apparatus until a terminal end section of the optic fiber core is arranged in the clamping section of the apparatus;
- (b) securing the terminal end section of the optic fiber core in a fixed position the clamping section; and
- (c) moving the cleaving member of the apparatus from a receiving position towards a cleaving position so that a cleaving blade at least partially fractures the optic fiber core,
wherein movement of the cleaving member towards the cleaving position effects at least partial separation movement between the guide and the clamping section so as to tension and thereby cleave the optic fiber core extending therebetween.
- 1. Stripping the primary buffer of an end section of
optic fiber 14 to expose approximately 30 mm ofoptic fiber core 12; - 2. Depressing the
reset button 64 fully into thehousing 16 of theapparatus 10 so that theguide 20 has retracted into theguide support 32; - 3. Opening the clamping
lid 48 and inserting theoptic fiber core 12 into theguide 20 of the receivingsection 18 until the buffer of the stripped end of theoptic fiber core 12 engages thenecked barrier 46; - 4. While forcing the
optic fiber core 12 into theguide 20 in the manner described in step 3, closing the clampinglid 48 and holding it closed under pressure; - 5. Whilst applying pressure on the clamping
lid 48 in the manner described in step 4, pushing thecleave button 62 from the receiving position towards the cleaving position so that theblade 30 at least partially fractures the optic fiber core, wherein movement of the cleavingmember 28 towards the cleaving position and beyond to the further tensioning position effects at least partial separation movement between theguide 20 and theclamping section 22 so as to tension and thereby cleave the optic fiber core extending therebetween; and - 6. Removing the cleaved fiber core from the
apparatus 10 for use in a mechanical splice connection, for example.
- 10 Apparatus
- 12 Optic fiber core
- 14 Optic Fiber
- 16 Housing
- 18 Receiving section
- 20 Guide
- 22 Clamping section
- 24 End section of optic fiber core
- 26 Cleaving section
- 28 Cleaving member
- 30 Cleaving blade
- 32 Guide support
- 34 Inner section of the guide support
- 36 Outer section of the guide support
- 38 Inner section of the guide
- 40 Outer section of the guide
- 42 Outer edge of the outer section of the guide
- 44 Outer peripheral edge of the outer section of the guide support
- 46 Necked barrier
- 48 Lid
- 50 Base
- 52 Hinge
- 53 Axle
- 54 a, 54 b Clamping platform
- 56 Storage compartment
- 58 Lever
- 62 Cleave button
- 64 Reset button
- 66 a, 66 b, 66 c, 66 d Elongate members
- 68 a, 68 b, 68 c, 68 d Pairs of translation slots
- 69 Cleaving arm
- 70 Access point
- 71 Cleaving arm slot
- 72 Sliding member
- 74 a, 74 b, 78 a, 78 b Tapered flange
- 76 a, 76 b, 80 a, 80 b Tapered section
- 82 Guide recess
- 84 Spring
- 86 Terminal end section of the guide
Claims (16)
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
AU2010200788 | 2010-03-02 | ||
AU2010200788A AU2010200788B2 (en) | 2010-03-02 | 2010-03-02 | Method and apparatus for mechanically cleaving a stripped end section of an optic fibre core |
Publications (2)
Publication Number | Publication Date |
---|---|
US20110262101A1 US20110262101A1 (en) | 2011-10-27 |
US8488933B2 true US8488933B2 (en) | 2013-07-16 |
Family
ID=44815857
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US13/037,035 Expired - Fee Related US8488933B2 (en) | 2010-03-02 | 2011-02-28 | Method and apparatus for mechanically cleaving a stripped end section of an optic fiber core |
Country Status (2)
Country | Link |
---|---|
US (1) | US8488933B2 (en) |
AU (1) | AU2010200788B2 (en) |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2014009512A2 (en) * | 2012-07-12 | 2014-01-16 | Tyco Electronics Raychem Bvba | Optical fiber cleaving mechanism and method of use |
EP3726264B1 (en) * | 2017-12-12 | 2023-08-23 | Sumitomo Electric Industries, Ltd. | Optical fiber cleaver and optical fiber cleaving method |
Citations (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5024363A (en) | 1987-06-16 | 1991-06-18 | Fujikura Ltd. | Method and apparatus for cutting an optical fiber |
US20020031323A1 (en) * | 2000-07-10 | 2002-03-14 | Kazunari Hattori | Optical fiber wire holder, fusion-splicing apparatus, cleaving apparatus, and optical fiber splicing method |
US20020181919A1 (en) * | 2001-05-28 | 2002-12-05 | Nobuyuki Yasuda | Apparatus and method for cutting plastic optical fiber |
US6634079B1 (en) | 1998-09-11 | 2003-10-21 | The Furukawa Electric Co., Ltd. | Optical fiber cleaver |
US6801705B2 (en) | 2001-10-23 | 2004-10-05 | Fujikura Ltd. | Optical fiber cutting apparatus and optical fiber cutting method therefor |
US20040228596A1 (en) * | 1999-10-08 | 2004-11-18 | Leviton Manufacturing Co., Inc. | Optical fiber cleaver |
US20060201986A1 (en) | 2005-03-08 | 2006-09-14 | Fujikura Ltd. | Optical fiber cutting device |
US20070292092A1 (en) * | 2006-06-15 | 2007-12-20 | Takehiro Hayashi | Optical Fiber Cleaver |
US20090224019A1 (en) * | 2006-04-10 | 2009-09-10 | Sumitomo Electric Industries , Ltd. | Optical fiber cutting method, device used in same method, and connector assembly method including same method |
US20120057837A1 (en) * | 2009-05-15 | 2012-03-08 | Christian Heidler | End-piece adaptor for a coated optical fiber and protective housing |
US20120125166A1 (en) * | 2010-11-23 | 2012-05-24 | Hallett Bradley E | Cleavers for cleaving optical fibers, and related blades, components, and methods |
-
2010
- 2010-03-02 AU AU2010200788A patent/AU2010200788B2/en not_active Ceased
-
2011
- 2011-02-28 US US13/037,035 patent/US8488933B2/en not_active Expired - Fee Related
Patent Citations (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5024363A (en) | 1987-06-16 | 1991-06-18 | Fujikura Ltd. | Method and apparatus for cutting an optical fiber |
US6634079B1 (en) | 1998-09-11 | 2003-10-21 | The Furukawa Electric Co., Ltd. | Optical fiber cleaver |
US20040228596A1 (en) * | 1999-10-08 | 2004-11-18 | Leviton Manufacturing Co., Inc. | Optical fiber cleaver |
US20020031323A1 (en) * | 2000-07-10 | 2002-03-14 | Kazunari Hattori | Optical fiber wire holder, fusion-splicing apparatus, cleaving apparatus, and optical fiber splicing method |
US20020181919A1 (en) * | 2001-05-28 | 2002-12-05 | Nobuyuki Yasuda | Apparatus and method for cutting plastic optical fiber |
US6801705B2 (en) | 2001-10-23 | 2004-10-05 | Fujikura Ltd. | Optical fiber cutting apparatus and optical fiber cutting method therefor |
US20060201986A1 (en) | 2005-03-08 | 2006-09-14 | Fujikura Ltd. | Optical fiber cutting device |
US20090224019A1 (en) * | 2006-04-10 | 2009-09-10 | Sumitomo Electric Industries , Ltd. | Optical fiber cutting method, device used in same method, and connector assembly method including same method |
US20070292092A1 (en) * | 2006-06-15 | 2007-12-20 | Takehiro Hayashi | Optical Fiber Cleaver |
US20120057837A1 (en) * | 2009-05-15 | 2012-03-08 | Christian Heidler | End-piece adaptor for a coated optical fiber and protective housing |
US20120125166A1 (en) * | 2010-11-23 | 2012-05-24 | Hallett Bradley E | Cleavers for cleaving optical fibers, and related blades, components, and methods |
Also Published As
Publication number | Publication date |
---|---|
AU2010200788B2 (en) | 2015-02-12 |
AU2010200788A1 (en) | 2011-09-22 |
US20110262101A1 (en) | 2011-10-27 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
KR100478117B1 (en) | Optical fiber mechanical splice | |
US7116882B2 (en) | Device for cleaving an optical fibre | |
CN102713705A (en) | Optical fiber handler for a fiber optic connection termination system | |
US20120018482A1 (en) | Bladeless optical fiber cleaver | |
RU2482524C2 (en) | Device for splitting optical fibres | |
KR101123439B1 (en) | Device for installing an optical fibre in a splice connector | |
US8488933B2 (en) | Method and apparatus for mechanically cleaving a stripped end section of an optic fiber core | |
JP2013109269A (en) | Alignment jig for optical fiber, alignment method for optical fiber, and fusion method for optical fiber | |
US8358899B2 (en) | Apparatus for mechanically splicing optic fibers | |
US20190278025A1 (en) | Connector loader | |
US8419297B2 (en) | Apparatus for mechanically splicing optic fibers | |
JP2004191998A (en) | System and method for reducing optical fiber splice loss | |
AU2008202304B2 (en) | Device for cleaving an optical fibre | |
Nagata et al. | Highly reliable jacket cutter for optical fibers | |
JP2003029050A (en) | Optical fiber cutting machine |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
AS | Assignment |
Owner name: ADC GMBH, GERMANY Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:SLATER, BRETT HOE;ALLWOOD, BRENT DAVID;NICHOLLS, BRYCE;REEL/FRAME:026564/0366 Effective date: 20110307 |
|
STCF | Information on status: patent grant |
Free format text: PATENTED CASE |
|
AS | Assignment |
Owner name: TYCO ELECTRONICS SERVICES GMBH, SWITZERLAND Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:ADC GMBH;REEL/FRAME:036064/0578 Effective date: 20150410 |
|
AS | Assignment |
Owner name: COMMSCOPE EMEA LIMITED, IRELAND Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:TYCO ELECTRONICS SERVICES GMBH;REEL/FRAME:036956/0001 Effective date: 20150828 |
|
AS | Assignment |
Owner name: COMMSCOPE TECHNOLOGIES LLC, NORTH CAROLINA Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:COMMSCOPE EMEA LIMITED;REEL/FRAME:037012/0001 Effective date: 20150828 |
|
AS | Assignment |
Owner name: JPMORGAN CHASE BANK, N.A., AS COLLATERAL AGENT, ILLINOIS Free format text: PATENT SECURITY AGREEMENT (TERM);ASSIGNOR:COMMSCOPE TECHNOLOGIES LLC;REEL/FRAME:037513/0709 Effective date: 20151220 Owner name: JPMORGAN CHASE BANK, N.A., AS COLLATERAL AGENT, ILLINOIS Free format text: PATENT SECURITY AGREEMENT (ABL);ASSIGNOR:COMMSCOPE TECHNOLOGIES LLC;REEL/FRAME:037514/0196 Effective date: 20151220 Owner name: JPMORGAN CHASE BANK, N.A., AS COLLATERAL AGENT, IL Free format text: PATENT SECURITY AGREEMENT (TERM);ASSIGNOR:COMMSCOPE TECHNOLOGIES LLC;REEL/FRAME:037513/0709 Effective date: 20151220 Owner name: JPMORGAN CHASE BANK, N.A., AS COLLATERAL AGENT, IL Free format text: PATENT SECURITY AGREEMENT (ABL);ASSIGNOR:COMMSCOPE TECHNOLOGIES LLC;REEL/FRAME:037514/0196 Effective date: 20151220 |
|
FPAY | Fee payment |
Year of fee payment: 4 |
|
AS | Assignment |
Owner name: REDWOOD SYSTEMS, INC., NORTH CAROLINA Free format text: RELEASE BY SECURED PARTY;ASSIGNOR:JPMORGAN CHASE BANK, N.A.;REEL/FRAME:048840/0001 Effective date: 20190404 Owner name: COMMSCOPE TECHNOLOGIES LLC, NORTH CAROLINA Free format text: RELEASE BY SECURED PARTY;ASSIGNOR:JPMORGAN CHASE BANK, N.A.;REEL/FRAME:048840/0001 Effective date: 20190404 Owner name: COMMSCOPE, INC. OF NORTH CAROLINA, NORTH CAROLINA Free format text: RELEASE BY SECURED PARTY;ASSIGNOR:JPMORGAN CHASE BANK, N.A.;REEL/FRAME:048840/0001 Effective date: 20190404 Owner name: ALLEN TELECOM LLC, ILLINOIS Free format text: RELEASE BY SECURED PARTY;ASSIGNOR:JPMORGAN CHASE BANK, N.A.;REEL/FRAME:048840/0001 Effective date: 20190404 Owner name: ANDREW LLC, NORTH CAROLINA Free format text: RELEASE BY SECURED PARTY;ASSIGNOR:JPMORGAN CHASE BANK, N.A.;REEL/FRAME:048840/0001 Effective date: 20190404 Owner name: COMMSCOPE TECHNOLOGIES LLC, NORTH CAROLINA Free format text: RELEASE BY SECURED PARTY;ASSIGNOR:JPMORGAN CHASE BANK, N.A.;REEL/FRAME:049260/0001 Effective date: 20190404 Owner name: ANDREW LLC, NORTH CAROLINA Free format text: RELEASE BY SECURED PARTY;ASSIGNOR:JPMORGAN CHASE BANK, N.A.;REEL/FRAME:049260/0001 Effective date: 20190404 Owner name: ALLEN TELECOM LLC, ILLINOIS Free format text: RELEASE BY SECURED PARTY;ASSIGNOR:JPMORGAN CHASE BANK, N.A.;REEL/FRAME:049260/0001 Effective date: 20190404 Owner name: COMMSCOPE, INC. OF NORTH CAROLINA, NORTH CAROLINA Free format text: RELEASE BY SECURED PARTY;ASSIGNOR:JPMORGAN CHASE BANK, N.A.;REEL/FRAME:049260/0001 Effective date: 20190404 Owner name: REDWOOD SYSTEMS, INC., NORTH CAROLINA Free format text: RELEASE BY SECURED PARTY;ASSIGNOR:JPMORGAN CHASE BANK, N.A.;REEL/FRAME:049260/0001 Effective date: 20190404 |
|
AS | Assignment |
Owner name: JPMORGAN CHASE BANK, N.A., NEW YORK Free format text: TERM LOAN SECURITY AGREEMENT;ASSIGNORS:COMMSCOPE, INC. OF NORTH CAROLINA;COMMSCOPE TECHNOLOGIES LLC;ARRIS ENTERPRISES LLC;AND OTHERS;REEL/FRAME:049905/0504 Effective date: 20190404 Owner name: WILMINGTON TRUST, NATIONAL ASSOCIATION, AS COLLATE Free format text: PATENT SECURITY AGREEMENT;ASSIGNOR:COMMSCOPE TECHNOLOGIES LLC;REEL/FRAME:049892/0051 Effective date: 20190404 Owner name: JPMORGAN CHASE BANK, N.A., NEW YORK Free format text: ABL SECURITY AGREEMENT;ASSIGNORS:COMMSCOPE, INC. OF NORTH CAROLINA;COMMSCOPE TECHNOLOGIES LLC;ARRIS ENTERPRISES LLC;AND OTHERS;REEL/FRAME:049892/0396 Effective date: 20190404 Owner name: WILMINGTON TRUST, NATIONAL ASSOCIATION, AS COLLATERAL AGENT, CONNECTICUT Free format text: PATENT SECURITY AGREEMENT;ASSIGNOR:COMMSCOPE TECHNOLOGIES LLC;REEL/FRAME:049892/0051 Effective date: 20190404 |
|
FEPP | Fee payment procedure |
Free format text: MAINTENANCE FEE REMINDER MAILED (ORIGINAL EVENT CODE: REM.); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY |
|
FEPP | Fee payment procedure |
Free format text: 7.5 YR SURCHARGE - LATE PMT W/IN 6 MO, LARGE ENTITY (ORIGINAL EVENT CODE: M1555); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY |
|
MAFP | Maintenance fee payment |
Free format text: PAYMENT OF MAINTENANCE FEE, 8TH YEAR, LARGE ENTITY (ORIGINAL EVENT CODE: M1552); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY Year of fee payment: 8 |
|
AS | Assignment |
Owner name: WILMINGTON TRUST, DELAWARE Free format text: SECURITY INTEREST;ASSIGNORS:ARRIS SOLUTIONS, INC.;ARRIS ENTERPRISES LLC;COMMSCOPE TECHNOLOGIES LLC;AND OTHERS;REEL/FRAME:060752/0001 Effective date: 20211115 |
|
AS | Assignment |
Owner name: APOLLO ADMINISTRATIVE AGENCY LLC, NEW YORK Free format text: SECURITY INTEREST;ASSIGNORS:ARRIS ENTERPRISES LLC;COMMSCOPE TECHNOLOGIES LLC;COMMSCOPE INC., OF NORTH CAROLINA;AND OTHERS;REEL/FRAME:069889/0114 Effective date: 20241217 |
|
AS | Assignment |
Owner name: RUCKUS WIRELESS, LLC (F/K/A RUCKUS WIRELESS, INC.), NORTH CAROLINA Free format text: RELEASE OF SECURITY INTEREST AT REEL/FRAME 049905/0504;ASSIGNOR:JPMORGAN CHASE BANK, N.A., AS COLLATERAL AGENT;REEL/FRAME:071477/0255 Effective date: 20241217 Owner name: COMMSCOPE TECHNOLOGIES LLC, NORTH CAROLINA Free format text: RELEASE OF SECURITY INTEREST AT REEL/FRAME 049905/0504;ASSIGNOR:JPMORGAN CHASE BANK, N.A., AS COLLATERAL AGENT;REEL/FRAME:071477/0255 Effective date: 20241217 Owner name: COMMSCOPE, INC. OF NORTH CAROLINA, NORTH CAROLINA Free format text: RELEASE OF SECURITY INTEREST AT REEL/FRAME 049905/0504;ASSIGNOR:JPMORGAN CHASE BANK, N.A., AS COLLATERAL AGENT;REEL/FRAME:071477/0255 Effective date: 20241217 Owner name: ARRIS SOLUTIONS, INC., NORTH CAROLINA Free format text: RELEASE OF SECURITY INTEREST AT REEL/FRAME 049905/0504;ASSIGNOR:JPMORGAN CHASE BANK, N.A., AS COLLATERAL AGENT;REEL/FRAME:071477/0255 Effective date: 20241217 Owner name: ARRIS TECHNOLOGY, INC., NORTH CAROLINA Free format text: RELEASE OF SECURITY INTEREST AT REEL/FRAME 049905/0504;ASSIGNOR:JPMORGAN CHASE BANK, N.A., AS COLLATERAL AGENT;REEL/FRAME:071477/0255 Effective date: 20241217 Owner name: ARRIS ENTERPRISES LLC (F/K/A ARRIS ENTERPRISES, INC.), NORTH CAROLINA Free format text: RELEASE OF SECURITY INTEREST AT REEL/FRAME 049905/0504;ASSIGNOR:JPMORGAN CHASE BANK, N.A., AS COLLATERAL AGENT;REEL/FRAME:071477/0255 Effective date: 20241217 |
|
FEPP | Fee payment procedure |
Free format text: MAINTENANCE FEE REMINDER MAILED (ORIGINAL EVENT CODE: REM.); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY |
|
LAPS | Lapse for failure to pay maintenance fees |
Free format text: PATENT EXPIRED FOR FAILURE TO PAY MAINTENANCE FEES (ORIGINAL EVENT CODE: EXP.); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY |
|
STCH | Information on status: patent discontinuation |
Free format text: PATENT EXPIRED DUE TO NONPAYMENT OF MAINTENANCE FEES UNDER 37 CFR 1.362 |
|
FP | Lapsed due to failure to pay maintenance fee |
Effective date: 20250716 |