US8475748B2 - Metal solvent extraction reagents and use thereof - Google Patents

Metal solvent extraction reagents and use thereof Download PDF

Info

Publication number
US8475748B2
US8475748B2 US13/401,921 US201213401921A US8475748B2 US 8475748 B2 US8475748 B2 US 8475748B2 US 201213401921 A US201213401921 A US 201213401921A US 8475748 B2 US8475748 B2 US 8475748B2
Authority
US
United States
Prior art keywords
metal
reagent composition
linear
oxime
methyl
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
US13/401,921
Other versions
US20120219474A1 (en
Inventor
Michael Virnig
Jack BENDER
Nathan C. Emmerich
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Cognis IP Management GmbH
Original Assignee
Cognis IP Management GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Cognis IP Management GmbH filed Critical Cognis IP Management GmbH
Priority to US13/401,921 priority Critical patent/US8475748B2/en
Assigned to COGNIS IP MANAGEMENT GMBH reassignment COGNIS IP MANAGEMENT GMBH ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: BENDER, JACK, EMMERICH, NATHAN C., VIRNIG, MICHAEL
Publication of US20120219474A1 publication Critical patent/US20120219474A1/en
Application granted granted Critical
Publication of US8475748B2 publication Critical patent/US8475748B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B3/00Extraction of metal compounds from ores or concentrates by wet processes
    • C22B3/20Treatment or purification of solutions, e.g. obtained by leaching
    • C22B3/26Treatment or purification of solutions, e.g. obtained by leaching by liquid-liquid extraction using organic compounds
    • C22B3/36Heterocyclic compounds
    • C22B3/362Heterocyclic compounds of a single type
    • C22B3/364Quinoline
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B15/00Obtaining copper
    • C22B15/0063Hydrometallurgy
    • C22B15/0084Treating solutions
    • C22B15/0089Treating solutions by chemical methods
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B19/00Obtaining zinc or zinc oxide
    • C22B19/20Obtaining zinc otherwise than by distilling
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B23/00Obtaining nickel or cobalt
    • C22B23/04Obtaining nickel or cobalt by wet processes
    • C22B23/0453Treatment or purification of solutions, e.g. obtained by leaching
    • C22B23/0461Treatment or purification of solutions, e.g. obtained by leaching by chemical methods
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B3/00Extraction of metal compounds from ores or concentrates by wet processes
    • C22B3/20Treatment or purification of solutions, e.g. obtained by leaching
    • C22B3/26Treatment or purification of solutions, e.g. obtained by leaching by liquid-liquid extraction using organic compounds
    • C22B3/30Oximes
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B3/00Extraction of metal compounds from ores or concentrates by wet processes
    • C22B3/20Treatment or purification of solutions, e.g. obtained by leaching
    • C22B3/44Treatment or purification of solutions, e.g. obtained by leaching by chemical processes
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B15/00Obtaining copper
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B34/00Obtaining refractory metals
    • C22B34/30Obtaining chromium, molybdenum or tungsten
    • C22B34/34Obtaining molybdenum
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B59/00Obtaining rare earth metals
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B60/00Obtaining metals of atomic number 87 or higher, i.e. radioactive metals
    • C22B60/02Obtaining thorium, uranium, or other actinides
    • C22B60/0204Obtaining thorium, uranium, or other actinides obtaining uranium
    • C22B60/0217Obtaining thorium, uranium, or other actinides obtaining uranium by wet processes
    • C22B60/0252Obtaining thorium, uranium, or other actinides obtaining uranium by wet processes treatment or purification of solutions or of liquors or of slurries
    • C22B60/026Obtaining thorium, uranium, or other actinides obtaining uranium by wet processes treatment or purification of solutions or of liquors or of slurries liquid-liquid extraction with or without dissolution in organic solvents
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/20Recycling

Definitions

  • the present invention relates generally to the field of extractive metallurgy.
  • the present invention relates to metal solvent extraction methods and reagents.
  • Copper and its metal alloys have been used for thousands of years. The importance of copper, as well as a variety of other metals, has led to a continuing search for more efficient and productive procurement methods.
  • One method of copper extraction is a process of leaching, coupled together with solvent extraction, and finally copper production by electrowinning. Leaching is typically carried out by stacking the ore in piles on a prepared pad or by stacking it in a small canyon. A solution of sulfuric acid is then applied, and as the acid solution is trickled down through the heap, copper is dissolved from the rock.
  • the resultant copper-bearing solution (pregnant leach solution or PLS) is collected, and then transferred to the solvent extraction plant, where it is contacted by vigorous mixing with an organic solution comprising an extractant dissolved in a kerosene-like hydrocarbon diluent.
  • the copper (as cupric ion) is transferred to the organic phase, where it forms a chelate-type complex with the extractant.
  • the mixture of aqueous and organic is allowed to separate.
  • the copper-depleted aqueous solution (raffinate) exits the solvent extraction plant, and the organic is transferred to stripping, where it is contacted with a strong acid solution.
  • the cupric ion is transferred to the aqueous phase and protons are transferred to the organic.
  • the now copper-depleted organic is returned to extraction for re-use.
  • the copper-rich aqueous strip solution (pregnant or rich electrolyte) is transferred to electrowinning.
  • electrowinning copper is plated as metal from solution at the cathode, and water is broken down at the anode to form oxygen and protons as acid.
  • the temperature of the PLS entering the plant could range from about 10° C. to about 30° C.
  • temperatures in extraction typically range from about 20 to 25° C.
  • temperatures in stripping may range from about 30 to 35° C.
  • the temperature in the electrowinning cells is typically about 45° C., incorporated herein by reference.
  • This acid leach process may also be used for other metals.
  • leaching with ammonia may be carried out analogously. Combinations of ammonia with an ammonium salt, such as ammonium carbonate or ammonium sulfate, have been used on a commercial scale to leach copper metal (recycling applications), copper oxide ores and copper sulfide ores. Ammonia leaching can be applied other metals such as nickel and zinc as well.
  • Reagents useful in such processes should generally possess certain qualities. Examples of important features are the rates of reaction, phase separation and reagent stability. A detailed discussion of the useful characteristics in a liquid ion exchange reagent is available in Swanson, “Liquid Ion Exchange: Organic Molecules for Hydrometallurgy” presented at the International Solvent Exchange Conference September 1977.
  • extractant reagents including some phenolic oxime extractants. Among those used are 5-nonylsalicylaldoxime, 5-nonyl-2-hydroxyacetophenone oxime and 5-dodecylsalicylaldoxime.
  • these aldoximes bind copper very tightly, and only a small part of the copper can be recovered in stripping under the commercially typical conditions of acid and copper content in the lean electrolyte that is used as strip media. To maximize stripping, one typically adds a thermodynamic modifier to the extractant.
  • extractants can be formulated that have different relative extractant strengths, which strip significantly better than the standard aldoximes by themselves. Blends of aldoximes and ketoximes have been used, and demonstrate that ketoximes act as an extractant, as well as a thermodynamic modifier. However, the copper content on the stripped organic is lower than one would expect based on consideration of the stripping behavior of the individual oximes.
  • extractant loss also known as degradation
  • concentration of the hydrolysis products in the organic phase increases until the rate of formation equals the rate of loss in entrainment.
  • the rate at which hydrolysis occurs is dependent on the acid concentration and the temperature of the system.
  • Current reagents may not work properly due to hydrolysis.
  • One trend in the industry is towards the treatment of primary copper sulfide concentrates by hydrometallurgical routes rather than smelting. These processes result in the production of leach solutions which are very warm. Solutions fed to the copper solvent extraction process will range in temperatures from about 35° C. to 50° C., or higher.
  • Copper/iron selectivity is very important for some solvent extraction/electrowinning systems. Iron that is transferred to the electrowinning system has a negative effect on the processing of copper in the electrolyte. As the concentration of ferric ions increases, there is a substantial drop in current efficiency. In addition to the cost incurred by the drop in current efficiency, there is the additional cost of bleeding the system to control the iron concentration. Bleeding electrolyte results in the reduction of cobalt concentration (in addition to other additives) which is added to protect lead anodes, and this can be a large expense in an electrowinning plant.
  • Nitrate in the PLS or strip solution can lead to attack on the phenolic oximes resulting in nitration of the ring to form the corresponding 3-nitro aldoximes or ketoxime.
  • the nitro oximes are extremely strong copper chelators. They cannot be stripped under typical plant conditions resulting in loss of net transfer. Such problems are discussed in the Virnig, et al., “Effects of nitrate on copper SX circuits: A case study” in Proceedings Copper 2003-Cobre 2003, Vol VI-Hydrometallurgy of Copper (Book1), edited by P. A. Riveros, D. Dixon, D. B. Dreisinger, J.
  • Yet another problem relates to currently used oximes for extraction of copper and nickel from ammoniacal solutions.
  • applications involving extraction of nickel or copper from ammonia one typically finds that degradation of the organic by hydrolysis of the oxime is an issue.
  • the resultant complex carries with it some chemically bound ammonia, which is undesirable.
  • the ammonia is transferred to stripping where it consumes acid to form the corresponding ammonium salt which builds up overtime in the circulating electrolyte and can lead to the formation of insoluble salts such as nickel ammonium sulfate which can cause plugging of lines, etc.
  • insoluble salts such as nickel ammonium sulfate which can cause plugging of lines, etc.
  • One aspect of the invention relates to a reagent composition
  • a reagent composition comprising a mixture of at least two oximes, a first oxime having a structure represented by:
  • R 5 is a C 1-22 linear or branched alkyl group
  • R 1 is a C 1-22 linear or branched alkyl or alkenyl group, a C 6 aryl group or a C 7-22 aralkyl group
  • R 2 -R 4 are independently hydrogen, halogen, a linear or branched C 6-12 alkyl group, OR 6 wherein R 6 is a C 1-22 linear or branched alkyl group, a C 2-22 linear or branched alkenyl group, a C 6 aryl group, or a C 7-22 aralkyl group
  • a second oxime having a structure represented by:
  • R 5 is a C 1-22 linear or branched alkyl group
  • R 1 is hydrogen
  • R 2 -R 4 are each independently hydrogen, halogen, a linear or branched C 6-12 alkyl group, OR 6 wherein R 6 is a C 1-22 linear or branched alkyl group, a C 2-22 linear or branched alkenyl group, a C 6 aryl group, or a C 7-22 aralkyl group.
  • the first oxime is a 3-methyl ketoxime and the second oxime is a 3-methyl aldoxime
  • the reagent composition comprises a molar ratio of ketoxime to aldoxime having a range of about 85:15 to about 25:75.
  • R 3 is a C 8-12 linear or branched alkyl group for at least one of the oximes. In particular embodiments, R 3 is dodecyl or nonyl for at least one of the oximes. In other embodiments, R 5 is a C 1-3 linear or branched alkyl or alkoxy group for at least one of the oximes. In a further embodiment, R 5 is methyl for at least one of the oximes. In another specific embodiment, R 1 is hydrogen or CH 3 for at least one of the oximes.
  • the reagent composition comprises a 3-methyl aldoxime having a structure represented by:
  • the reagent composition further comprises thermodynamic modifiers.
  • the reagent composition further comprises kinetic modifiers.
  • the kinetic modifier comprises 5,8-diethyl-7-hydroxydodecan-6-oxime.
  • the reagent composition further comprises one or more of 5-nonylsalicylaldoxime, 5-dodecylsalicylaldoxime, 5-nonyl-2-hydroxyacetophenonoxime and 5-dodecyl-2-hydroxyacetophenonoxime.
  • the reagent composition further comprises a water immiscible organic solvent.
  • the concentrations of the oximes can also be varied.
  • the first and second oximes have a combined concentration of about 1.5M to about 2.6M.
  • the first and second oximes have a concentration of about 0.018M to about 1.1M.
  • Another aspect of the invention relates to a method for the recovery of a metal from a metal-containing aqueous solution.
  • the method comprises contacting the metal-containing aqueous solution with an organic phase comprising a water immiscible solvent and a reagent composition of the type described herein to extract at least a portion of the metal values into the organic phase to provide a metal-pregnant organic phase and metal-barren aqueous phase; separating the resultant metal-pregnant organic phase from the resultant metal-barren aqueous phase; and recovering metal values from the metal-pregnant organic phase.
  • the metal recovered is selected from the group consisting of copper, uranium, molybdenum, nickel, zinc, cobalt and combinations thereof.
  • the reagent composition further comprises one or more of 5-nonylsalicylaldoxime, 5-dodecylsalicylaldoxime, 5-nonyl-2-hydroxyacetophenonoxime and 5-dodecyl-2-hydroxyacetophenonoxime.
  • the reagent composition comprises a mixture of a 3-methyl ketoxime having a structure represented by:
  • the recovery of the metal may occur at a temperature ranging from about 15° C. to about 60° C., or more specifically at about 25° C. to about 50° C. In other embodiments, the recovery of metal occurs at a temperature above about 35° C., or more specifically at a temperature above about 50° C.
  • FIG. 1 is a graphical representation of the level of copper in several stripped organic solutions containing various ratios of 3-methyl ketoxime and 3-methyl aldoxime.
  • NSAO as used herein is used interchangeably with 5-nonylsalicylaldoxime, and refers to a compound having the structure:
  • DSAO sulfonylsalicylaldoxime
  • HNAO as used herein is used interchangeably with 5-nonyl-2-hydroxyacetophenonoxime, and refers to a compound having the structure:
  • 3-MNSAO 3-methyl-5-nonylsalicylaldoxime
  • 3-MHNAO 3-methyl-5-nonyl-2-hydroxyacetophenone oxime
  • 3-methyl oxime refers to a compound having a structure represented by:
  • R 5 is methyl;
  • R 1 is hydrogen, a C 1-22 linear or branched alkyl or alkenyl group, a C 6 aryl group or a C 7-22 aralkyl group;
  • R 2 -R 4 are each independently hydrogen, halogen, a linear or branched C 6-12 alkyl group, OR 6 wherein R 6 is a C 1-22 linear or branched alkyl group, a C 2-22 linear or branched alkenyl group, a C 6 aryl group, or a C 7-22 aralkyl group.
  • 3-methyl ketoxime refers to a compound having a structure represented by:
  • R 5 is methyl;
  • R 1 is a C 1-22 linear or branched alkyl or alkenyl group, a C 6 aryl group or a C 7-22 aralkyl group;
  • R 2 -R 4 are each independently hydrogen, halogen, a linear or branched C 6-12 alkyl group, OR 6 wherein R 6 is a C 1-22 linear or branched alkyl group, a C 2-22 linear or branched alkenyl group, a C 6 aryl group, or a C 7-22 aralkyl group
  • 3-methyl aldoxime refers to a compound having a structure represented by:
  • R 5 is methyl;
  • R 1 is hydrogen;
  • R 2 -R 4 are each independently hydrogen, halogen, a linear or branched C 6-12 alkyl group, OR 6 wherein R 6 is a C 1-22 linear or branched alkyl group, a C 2-22 linear or branched alkenyl group, a C 6 aryl group, or a C 7-22 aralkyl group.
  • a first aspect of the invention relates to reagent compositions.
  • the compositions comprise a mixture of at least two oximes, a ketoxime and an aldoxime.
  • the ketoxime has a structure represented by Formula I:
  • R 5 is a C 1-22 linear or branched alkyl group
  • R 1 is a C 1-22 linear or branched alkyl or alkenyl group, a C 6 aryl group or a C 7-22 aralkyl group
  • R 2 -R 4 are each independently hydrogen, halogen, a linear or branched C 6-12 alkyl group, OR 6 wherein R 6 is a C 1-22 linear or branched alkyl group, a C 2-22 linear or branched alkenyl group, a C 6 aryl group, or a C 7-22 aralkyl group
  • the aldoxime has a structure represented by Formula II:
  • R 5 is a C 1-22 linear or branched alkyl group
  • R 1 is hydrogen
  • R 2 -R 4 are each independently hydrogen, halogen, a linear or branched C 6-12 alkyl group, OR 6 wherein R 6 is a C 1-22 linear or branched alkyl group, a C 2-22 linear or branched alkenyl group, a C 6 aryl group, or a C 7-22 aralkyl group.
  • the R 3 is a C 8-12 linear or branched alkyl group for Formula I and/or Formula II. In another embodiment, the R 3 of Formula I and/or II is dodecyl. In yet other embodiment, the R 3 of Formula I and/or II is nonyl. In yet another embodiment, R 5 is a C 1-3 linear or branched alkyl or alkoxy group for the compound of Formula I and/or II.
  • ketoxime (Formula I) and aldoxime (Formula II) reagents each have a methyl group substituted at the R 5 position.
  • the ketoxime has a structure represented by Formula III:
  • R 1 is hydrogen, halogen, a linear or branched C 6-12 alkyl group and R 2 is a C 1-22 linear or branched alkyl or alkenyl group; and the aldoxime has a structure represented by Formula IV:
  • R 1 is hydrogen, halogen, a linear or branched C 6-12 alkyl group and R 2 is hydrogen.
  • the ketoxime is a 3-methyl ketoxime having a structure represented by:
  • aldoxime is a 3-methyl aldoxime having a structure represented by:
  • the ratio of ketoxime to aldoxime can be varied.
  • the molar amount of ketoxime can be about 25%, 30%, 40%, 50%, 60%, 65% 70%, 75%, 80%, or 85% of the total amount of oxime.
  • the molar ratio of ketoxime to aldoxime is about 85% ketoxime to about 15% aldoxime.
  • the molar ratio of ketoxime to aldoxime is about 60% ketoxime to about 40% aldoxime.
  • the molar ratio of ketoxime to aldoxime ranges from about 85:15 to about 25:75, more specifically from about 80:20 to about 30:70, and even more specifically from about 80:20 to about 40:60. Accordingly, in a very specific embodiment, the molar ratio of 3-methyl ketoxime to 3-methyl aldoxime is about 85% ketoxime to about 15% aldoxime. In another specific embodiment, the molar ratio of 3-methyl ketoxime to 3-methyl aldoxime is about 60% ketoxime to about 40% aldoxime.
  • 3-methyl-5-nonylsalicylaldoxime can be made by reacting o-cresol with tripropylene in the presence of an acid catalyst such as AMBERLYST® 15 resin to form 4-nonyl-2-cresol which is in turn converted to the aldehyde by reaction with para-formaldehyde in the presence of a catalyst such as titanium cresylate.
  • an acid catalyst such as AMBERLYST® 15 resin
  • 4-nonyl-2-cresol which is in turn converted to the aldehyde by reaction with para-formaldehyde in the presence of a catalyst such as titanium cresylate.
  • the 3-methyl-5-nonylsalicylaldehyde is then reacted with hydroxylamine sulfate to form the 3-methyl-5-nonylsalicylaldoxime.
  • the total number of carbon atoms in all of R 2 -R 5 groups must be great enough so that the corresponding copper-extractant complex is soluble in the hydrocarbon solvent.
  • the feedstock solution containing dissolved metal values is contacted with the water-immiscible organic solution comprised of a hydrocarbon solvent as described herein and one or more reagent compositions of the Formula I and/or Formula II for a period of time sufficient to allow the oxime described herein to form a complex with the iron and copper ions.
  • the feedstock can be contacted by the organic solution in any manner that brings the two immiscible phases together for a period of time sufficient to allow the compounds of Formula I and/or Formula II to form a complex with the metal ions. This includes shaking the two phases together in a separatory funnel or mixing the two phases together in a mix tank as described in U.S. Pat. No. 4,957,714, the entire contents of which is incorporated herein by reference.
  • Reagent compositions include modifiers that can be added to the reagent to increase functionality.
  • modifiers that can be added to the reagent to increase functionality.
  • the use of highly branched chain aliphatic or aliphatic-aromatic C 10 -C 30 esters or C 10 -C 30 alcohols have beneficial results as strip modifiers.
  • an equilibrium modifier where the modifier is a linear diester or polyester of an unbranched monocarboxylic acid or unbranched dicarboxylic acid and an unbranched alcohol.
  • One embodiment of the invention is the reagent composition described above, further comprising thermodynamic modifiers.
  • a second embodiment is the reagent composition described above, further comprising kinetic modifiers.
  • suitable kinetic modifiers include, but are not limited to, dioximes such as 8,9-dioximohexadecane or alpha-bromocarboxylic acids such as alpha-bromolauric acid.
  • the kinetic modifier comprises 5,8-diethyl-7-hydroxydodecan-6-oxime.
  • the reagent compositions in one or more embodiments include a solvent in which the reagent is dissolved.
  • the solvent comprises a water immiscible organic solvent.
  • the water immiscible organic solvent is selected from the group consisting of kerosene, benzene, toluene, xylene and combinations thereof.
  • the oximes in the composition can be present in any suitable concentration for extraction.
  • concentration of the oxime ranges from about 0.018M to about 1.1M.
  • concentration of oxime ranges from about 0.018M to about 0.9M or 0.018M to about 0.72M.
  • concentration of both ketoxime and aldoxime ranges from about 0.018M to about 0.9M or from about 0.018M to about 0.72M.
  • the reagent composition may also be concentrated. Concentrated forms can be useful, for example, for transporting the reagent composition.
  • oxime concentration of about 1.7M or about 1.8M and up to about 2.25M, 2.5M, and 2.6M.
  • This oxime concentration can be the combined concentration of the oximes in embodiments where more than one oxime is present.
  • a second aspect of the invention relates to a reagent composition
  • a reagent composition comprising a first oxime having a structure represented by:
  • R 5 is a C 1-22 linear or branched alkyl group
  • R 1 is a C 1-22 linear or branched alkyl or alkenyl group, a C 6 aryl group or a C 7-22 aralkyl group
  • R 2 -R 4 are each independently hydrogen, halogen, a linear or branched C 6-12 alkyl group, OR 6 wherein R 6 is a C 1-22 linear or branched alkyl group, a C 2-22 linear or branched alkenyl group, a C 6 aryl group, or a C 7-22 aralkyl group; and 5,8-diethyl-7-hydroxydodecan-6-oxime.
  • Another aspect of the invention relates to a method for the recovery of a metal from a metal-containing aqueous solution, the method comprising: contacting the metal-containing aqueous solution with an organic phase comprising a water immiscible solvent and a reagent composition comprising a mixture of a first oxime represented by formula I and a second oxime represented by formula II to extract at least a portion of the metal values into the organic phase; separating the resultant metal-pregnant organic phase from the resultant metal-barren aqueous phase; and recovering metal values from the metal-pregnant organic phase.
  • copper from a copper-containing aqueous solution is recovered, which includes contacting the copper-containing aqueous solution with an organic phase comprising a water immiscible solvent and a reagent composition of the type described herein.
  • the recovered metal is selected from the group consisting of uranium, molybdenum, cobalt, copper, nickel and combinations thereof. Other specific embodiments of such methods will be described further herein.
  • ketoxime (Formula I) and aldoxime (Formula II) reagents each have a methyl group substituted at the R 5 position.
  • the ketoxime has a structure represented by Formula III:
  • R 1 is hydrogen, halogen, a linear or branched C 6-12 alkyl group and R 2 is a C 1-22 linear or branched alkyl or alkenyl group; and the aldoxime has a structure represented by Formula IV:
  • R 1 is hydrogen, halogen, a linear or branched C 6-12 alkyl group and R 2 is hydrogen.
  • the ketoxime is a 3-methyl ketoxime having a structure represented by:
  • aldoxime is a 3-methyl aldoxime having a structure represented by:
  • the method includes 3-methyl reagents are used for extraction occurring over a wider temperature range than is presently commercially feasible with existing reagents.
  • the metal recovered is selected from the group consisting of copper, uranium, molybdenum, nickel, zinc, cobalt and combinations thereof.
  • the metal recovered is copper.
  • Another aspect of the invention relates to a method for the recovery of metal from a metal-containing aqueous solution at an elevated temperature, the method comprising: contacting the metal-containing aqueous solution with an organic phase comprising a water immiscible solvent and a reagent composition comprising a ketoxime having a structure represented by:
  • R 5 is a C 1-22 linear or branched alkyl group
  • R 1 is a C 1-22 linear or branched alkyl or alkenyl group, a C 6 aryl group or a C 7-22 aralkyl group
  • R 2 -R 4 are each independently hydrogen, halogen, a linear or branched C 6-12 alkyl group, OR 6 wherein R 6 is a C 1-22 linear or branched alkyl group, a C 2-22 linear or branched alkenyl group, a C 6 aryl group, or a C 7-22 aralkyl group to extract at least a portion of the metal values into the organic phase to provide a metal-pregnant organic phase and a metal-barren aqueous phase; separating the metal-pregnant organic phase from the resultant metal-barren aqueous phase; and recovering metal values from the metal-pregnant organic phase.
  • reagent compositions and processes for recovering copper are provided that can be used in the range of about 15° C. to about 60° C.
  • reagent compositions and processes of copper extraction using such compositions can be performed at temperatures exceeding 30° C., 35° C., 40° C., 45° C., and 50° C.
  • extraction can be carried out in the range of about 25° C. to about 60° C., of about 25° C. to about 50° C., of about 35° C. to about 60° C., and of about 35° C. to about 50° C.
  • Other variants of ranges within the values discussed above are possible.
  • the oxime reagents described herein are advantageously used at higher temperatures, as currently used oximes undergo hydrolytic degradation and cause operational problems and increased cost.
  • the composition can include a ketoxime represented by the structure of formula I described above.
  • the composition can comprise a mixture containing a ketoxime represented by the structure of formula I and an aldoxime represented by the structure of formula II described above.
  • the composition can include a solvent and modifiers as described above.
  • a feature of one or more of the reagent compositions and/or methods described herein is that they exhibit improved hydrolytic stability compared to currently used oximes for extraction. While not wishing to be bound by theory, it is possible that a combination of effects leads to the added stability. For example, with 3-methyl aldoxime and 3-methyl ketoxime, it is believed that the methyl group ortho to the phenol changes the orientation of the oxime functional group at the interface. This change in orientation shelters the oxime functional group from hydrolysis.
  • Nitration of current reagents is accomplished by electrophilic aromatic substitution which is illustrated in Schematic 1.
  • nitro oximes are extremely strong copper chelators, they cannot be stripped under typical plant conditions resulting in a loss of net transfer.
  • the oxime depicted in Schematic 1 can be used to represent any of the current reagents.
  • the nitration can only take place at the position ortho to the phenol due to the resonance stabilization it affords the intermediate (2). This is a well known general reaction scheme in synthetic chemistry and has been investigated thoroughly.
  • 3-methyl ketoximes and 3-methyl aldoximes are used, such that the methyl group ortho to the phenol group prevents nitration.
  • yet another aspect of the invention pertains to a method of extracting a metal from a nitrate-containing aqueous solution, the method comprising: contacting a nitrate-containing aqueous solution containing dissolved metal values with an organic phase comprising a water immiscible solvent and a reagent composition comprising an oxime having a structure represented by:
  • R 1 is hydrogen or CH 3 , R 3 is a C 8-12 alkyl group, R 2 and R 4 are hydrogen, R 5 is a methyl group, to extract at least a portion of the metal values into the organic phase to provide a metal-pregnant organic phase and a metal-barren aqueous phase; separating the resultant metal-pregnant organic phase from the metal-barren aqueous phase; and recovering metal values from the metal-pregnant organic phase.
  • R 5 is a methyl or methoxy group, and in more specific embodiments, the oxime is
  • the metal according to such processes containing nitrate can include, but are not limited to, the metals selected from the group consisting of copper, molybdenum, uranium, rare earth metals (scandium, yttrium, lanthanum, cerium, praseodymium, neodymium, promethium, samarium, europium, gadolinium, terbium, dysprosium, holmium, erbium, thulium, ytterbium, and lutetium) and combinations thereof.
  • the metal is copper.
  • the nitrate-containing aqueous solution has a concentration of nitrate that ranges from about 1 grams per liter to about 50 grams per liter, and more specifically 3 grams per liter to about 35 grams per liter.
  • the nitrate-containing aqueous solution also contains chloride, wherein the chloride has a concentration ranging from about 1 gram per liter to about 30 grams per liter.
  • the pH of the nitrate-containing aqueous solution ranges from about 0.6 to about 2.0.
  • Such methods of extracting a metal from a nitrate-containing aqueous solution may also have applicability in proposed leaching schemes such as those described in U.S. Pat. No. 6,569,391, where sodium nitrate is added to a dilute sulfuric acid solution to leach copper sulfides.
  • U.S. Pat. No. 6,569,391 is herein incorporated by reference in its entirety.
  • separating copper from iron in an aqueous solution containing dissolved copper and iron values includes contacting the aqueous solution with a water-immiscible organic solution comprising a hydrocarbon solvent and a 3-methyl ketoxime.
  • the invention relates to a method of separating copper from iron in an aqueous solution containing dissolved copper and iron values, the method comprising: contacting the aqueous solution with a water-immiscible organic solution comprising a hydrocarbon solvent and a 3-methyl ketoxime having a structure represented by:
  • R 1 is CH3, R 3 is a C8, C9 or C12 alkyl group, R 2 and R 4 are hydrogen, R 5 is a methyl group, to form an aqueous phase comprised of iron and an organic phase comprised of the hydrocarbon solvent and a copper-extractant complex wherein the copper-extractant complex is soluble in the hydrocarbon solvent; separating the organic phase from the resultant aqueous phase; and recovering copper values from the organic phase.
  • R 3 is nonyl.
  • the 3-methyl ketoxime has a structure represented by:
  • the water immiscible organic solution further comprises a 3-methyl aldoxime, having a structure represented by:
  • R 1 is H
  • R 3 is a C8, C9 or C12 alkyl group
  • R 2 and R 4 are hydrogen
  • R 5 is a methyl group.
  • the 3-methyl aldoxime has a structure represented by:
  • the ratio of ketoxime to aldoxime can be varied.
  • the molar amount of ketoxime can be about 25%, 30%, 40%, 50%, 60%, 65% 70%, 75%, 80%, or 85% of the total amount of oxime.
  • the molar ratio of ketoxime to aldoxime is about 85% ketoxime to about 15% aldoxime.
  • the molar ratio of ketoxime to aldoxime is about 60% ketoxime to about 40% aldoxime.
  • the molar ratio of ketoxime to aldoxime ranges from about 85:15 to about 25:75, more specifically from about 80:20 to about 30:70, and even more specifically from about 80:20 to about 40:60. Accordingly, in a very specific embodiment, the molar ratio of 3-methyl ketoxime to 3-methyl aldoxime is about 85% ketoxime to about 15% aldoxime. In another specific embodiment, the molar ratio of 3-methyl ketoxime to 3-methyl aldoxime is about 60% ketoxime to about 40% aldoxime.
  • One or more of the reagent compositions and methods described herein may also be used for extraction from ammoniacal solutions.
  • these may be used to extract nickel, cobalt and/or zinc from ammoniacal solutions.
  • nickel can be extracted from ammoniacal solutions using HNAO.
  • the reaction proceeds using either Scheme 2 or Scheme 3.
  • Cobalt is often found in conjunction with nickel. It is advantageous to convert Co +2 to Co +3 by oxidation, because nickel is extracted selectivity over Co +3 by ketoximes. Considering that data suggests that cobalt-loading can lead to faster degradation of the ketoxime, the added stability and possible lower cobalt loading of the 3-methyl ketoxime (including, but not limited to, 3-MHNAO) would be advantageous for nickel extraction.
  • another aspect of the invention pertains to methods of extracting metal from aqueous ammoniacal solutions containing metal values comprising: contacting an ammoniacal solution containing metal values with an organic solution comprising a water immiscible organic solvent containing dissolved extractant comprising an oxime having a structure represented by:
  • R 1 is hydrogen or CH 3
  • R 3 is a C8-12 alkyl group
  • R 2 and R 4 are hydrogen
  • R 5 is a methyl group, forming a water immiscible organic phase, whereby metal values are extracted from the aqueous ammoniacal solution into the organic phase, thereby providing a metal-pregnant organic phase and a metal barren aqueous phase; separating the metal-barren aqueous phase from the metal-pregnant organic phase; and recovering the metal values from the metal-pregnant organic phase.
  • the metal is selected from one or more of nickel, zinc and copper.
  • R 3 is octyl, nonyl or dodecyl.
  • the oxime can have a structure represented by:
  • ammonia antagonists such as those described in U.S. Pat. No. 6,210,647, the contents of which are herein incorporated by reference, would also be expected to result in further reductions in ammonia loading when combined with the 3-MNSAO or 3-MHNAO or blends thereof.
  • Such ammonia antagonists are referred to as “non-hydrogen bond donating” and are only “hydrogen bond accepting” compounds.
  • ammonia antagonists for use in the present improvement are those organic hydrogen bond acceptor compounds containing one or more of the following organic functionalities: ester, ketone, sulfoxide, sulfone, ether, amine oxide, tertiary amide, phosphate, carbonate, carbamate, urea, phosphine oxide, and nitrile and having greater than 8 carbon atoms, up to about 36 carbon atoms and a water solubility of less than 100 ppm, more desirably less than 50 ppm and preferably less than 20 ppm.
  • the ammonia antagonist comprises 2,2,4-trimethylpentane-1,3-diol diisobutyrate.
  • alkyl esters and dialkyl ketones in which the alkyl groups contain from 4 to about 12 carbon atoms, such as isobutyl isooctanoate and isobutyl heptyl ketone and the dinitrile of dimerized fatty acids such as dimerized C18 fatty acids, (Dimer AcidTM dinitrile).
  • the invention pertains to methods of recovering metal from an aqueous solution, comprising: contacting an aqueous solution containing at least two metals selected from molybdenum, cobalt, nickel, zinc and iron with an organic solvent and an oxime-containing reagent composition comprising an oxime having a structure represented by
  • R 1 is hydrogen or CH 3
  • R 3 is a C8-12 alkyl group
  • R 2 and R 4 are hydrogen
  • R 5 is a methyl group, at a predetermined pH, the predetermined pH selected to provide a high first metal extraction and a low second metal extraction; and separating the first metal from the solution.
  • R 3 is nonyl.
  • the oxime used can be
  • the metals can be zinc, nickel, molybdenum and cobalt.
  • the oxime compositions exhibit one or more useful features including one or more of hydrolytic stability, good selectivity, fast kinetics and resistance to nitration.
  • useful features including one or more of hydrolytic stability, good selectivity, fast kinetics and resistance to nitration.
  • the following non-limiting examples are intended to demonstrate one or more of these features.
  • the phases were separated after shaking and the process was repeated for a total of 4 contacts.
  • the equilibrated organic phase was then filtered through phase separation paper to remove residual entrainment and analyzed for copper content by atomic absorption spectroscopy. The results are summarized in FIG. 1 .
  • Example 1 demonstrate that the 3-methyl-ketoxime and 3-methyl-aldoxime blend does not behave in this way.
  • the level of copper in the stripped organics containing various ratios of 3-methyl-ketoxime to 3-methyl-aldoxime very closely approximate a straight line, corresponding to what would be expected theoretically. A very slight downward bow in FIG. 1 is within the experimental error of the method.
  • LIX® 860N-I is a solution of 5-nonylsalicylaldoxime in Shellsol® D70, a hydrocarbon diluent from Shell Chemical.
  • LIX® 664N-LV is a solution of 5-nonylsalicylaldoxime and di-n-butyladipate (0.8 M) in Shellsol D70.
  • LIX® 8180 is a solution of 2-hydroxy-5-nonylacetophenone oxime in Shellsol D70.
  • Example 2A The same procedure was used as in Example 2A with the exception that the experiments were carried out at 40° C. The results are summarized in Tables 4, 5, and 6.
  • the hydrolytic stability of the 5-nonylsalicylaldoxime (NSAO), 5-dodecylsalicylaldoxime (DSAO), 2-hydroxy-5-nonylacetophenone oxime (HNAO), 3-MHNAO and 3-MNSAO were determined by preparing solutions of the reagents (about 0.175 M) in Shellsol® D70. These solutions were then contacted with an aqueous solution containing 30 gpl of copper as copper sulfate and 180 gpl sulfuric acid in deionized water. The solutions were stirred in a 3 neck round bottom flask fitted with a condenser, paddle stirrer, and a thermometer.
  • the condenser was fitted with a polyurethane foam plug to minimize evaporation.
  • the flask was immersed in an oil bath heated to 45° C. to maintain constant temperature.
  • the aqueous was periodically replaced, initially on a weekly basis and finally on a monthly basis.
  • Samples were periodically removed at weekly intervals during the first month, and then monthly thereafter.
  • the samples were max loaded with copper under the conditions of the Standard Cognis Quality Control Test for LIX® Oxime Reagents at 25° C.
  • the residual oxime content was calculated based on the copper max load values assuming a complex consisting of two oximes per copper.
  • the results were plotted against time and a point at which half the oxime remained was determined by extrapolation. This was termed the half life of the oxime.
  • the results are summarized in Table 8.
  • 3-MNSAO is approximately 7 times more hydrolytically stable than NSAO and 3-MHNAO is 6.5 times more hydrolytically stable than HNAO.
  • thermodynamic modifiers were di-n-butyl adipate (DBA), iso-tridecanol (TDA) and 2,2,4-trimethyl-1,3-pentanediol di-isobutyrate (TXIB).
  • DBA di-n-butyl adipate
  • TDA iso-tridecanol
  • TXIB 2,2,4-trimethyl-1,3-pentanediol di-isobutyrate
  • thermodynamic modifiers can be used to adjust the stripping behavior of these reagents.
  • the Cognis Quality Control Test for LIX® Nickel Oxime Reagents was modified to reduce the volume of organic solution required.
  • the test involves extraction of nickel from an ammoniacal solution followed by stripping with a sulfuric acid solution.
  • Three organic solutions were prepared to contain 0.5M 3-methyl aldoxime and varying levels (0.0028M, 0.028M, and 0.14M) of 5,8-diethyl-7-hydroxydodecan-6-oxime (LIX®63 Oxime) in Conosol® 170 ES diluent.
  • the starting organic volume was scaled down to 100 ml and all other volumes scaled down proportionally.
  • the mixing took place in a 250 ml baffled jacked beaker with a 3.175 cm diameter QC impellor at 1750 RPM.
  • 5,8-diethyl-7-hydroxydodecan-6-oxime does not have an appreciable effect of the kinetics of extraction of nickel from ammoniacal solutions by 3-methyl aldoxime. Extraction from ammoniacal solutions is typically very fast in any case and any incremental changes would be hard to detect. In the case of stripping, however; addition of the 5,8-diethyl-7-hydroxydodecan-6-oxime significantly improves stripping kinetics.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Metallurgy (AREA)
  • Mechanical Engineering (AREA)
  • Materials Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Geology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Environmental & Geological Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Manufacture And Refinement Of Metals (AREA)
  • Extraction Or Liquid Replacement (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Abstract

Reagent compositions, methods for their manufacture and methods of their use are described. In particular, provided are reagent compositions comprising an aldoxime and ketoxime with an alkyl substituent. Also provided are methods of metal recovery using these reagent compositions.

Description

CROSS REFERENCE TO RELATED APPLICATIONS
This application claims priority to U.S. Provisional Patent application No. 61/446,878, filed on Feb. 25, 2011, which is incorporated herein by reference in its entirety.
TECHNICAL FIELD
The present invention relates generally to the field of extractive metallurgy. In particular, the present invention relates to metal solvent extraction methods and reagents.
BACKGROUND
Copper and its metal alloys have been used for thousands of years. The importance of copper, as well as a variety of other metals, has led to a continuing search for more efficient and productive procurement methods. One method of copper extraction is a process of leaching, coupled together with solvent extraction, and finally copper production by electrowinning. Leaching is typically carried out by stacking the ore in piles on a prepared pad or by stacking it in a small canyon. A solution of sulfuric acid is then applied, and as the acid solution is trickled down through the heap, copper is dissolved from the rock. The resultant copper-bearing solution (pregnant leach solution or PLS) is collected, and then transferred to the solvent extraction plant, where it is contacted by vigorous mixing with an organic solution comprising an extractant dissolved in a kerosene-like hydrocarbon diluent. In this extraction, the copper (as cupric ion) is transferred to the organic phase, where it forms a chelate-type complex with the extractant. After contact, the mixture of aqueous and organic is allowed to separate. The copper-depleted aqueous solution (raffinate) exits the solvent extraction plant, and the organic is transferred to stripping, where it is contacted with a strong acid solution. In stripping, the cupric ion is transferred to the aqueous phase and protons are transferred to the organic. The now copper-depleted organic is returned to extraction for re-use. The copper-rich aqueous strip solution (pregnant or rich electrolyte) is transferred to electrowinning. In electrowinning, copper is plated as metal from solution at the cathode, and water is broken down at the anode to form oxygen and protons as acid. Depending on the climatic conditions at the site, the size of the ore heap or dump, and the irrigation rate, the temperature of the PLS entering the plant could range from about 10° C. to about 30° C. As a result, temperatures in extraction typically range from about 20 to 25° C., and temperatures in stripping may range from about 30 to 35° C. The temperature in the electrowinning cells is typically about 45° C., incorporated herein by reference. This acid leach process may also be used for other metals. Additionally, leaching with ammonia may be carried out analogously. Combinations of ammonia with an ammonium salt, such as ammonium carbonate or ammonium sulfate, have been used on a commercial scale to leach copper metal (recycling applications), copper oxide ores and copper sulfide ores. Ammonia leaching can be applied other metals such as nickel and zinc as well.
Reagents useful in such processes should generally possess certain qualities. Examples of important features are the rates of reaction, phase separation and reagent stability. A detailed discussion of the useful characteristics in a liquid ion exchange reagent is available in Swanson, “Liquid Ion Exchange: Organic Molecules for Hydrometallurgy” presented at the International Solvent Exchange Conference September 1977.
Several extractant reagents have been used, including some phenolic oxime extractants. Among those used are 5-nonylsalicylaldoxime, 5-nonyl-2-hydroxyacetophenone oxime and 5-dodecylsalicylaldoxime. However under certain conditions of use, the current reagents are not ideal and have had issues not yet fully addressed. For example, these aldoximes bind copper very tightly, and only a small part of the copper can be recovered in stripping under the commercially typical conditions of acid and copper content in the lean electrolyte that is used as strip media. To maximize stripping, one typically adds a thermodynamic modifier to the extractant. Alternatively, extractants can be formulated that have different relative extractant strengths, which strip significantly better than the standard aldoximes by themselves. Blends of aldoximes and ketoximes have been used, and demonstrate that ketoximes act as an extractant, as well as a thermodynamic modifier. However, the copper content on the stripped organic is lower than one would expect based on consideration of the stripping behavior of the individual oximes.
Another general problem is extractant loss (also known as degradation) via chemical hydrolysis to the corresponding ketone or aldehyde. The concentration of the hydrolysis products in the organic phase increases until the rate of formation equals the rate of loss in entrainment. The rate at which hydrolysis occurs is dependent on the acid concentration and the temperature of the system. Current reagents may not work properly due to hydrolysis. One trend in the industry is towards the treatment of primary copper sulfide concentrates by hydrometallurgical routes rather than smelting. These processes result in the production of leach solutions which are very warm. Solutions fed to the copper solvent extraction process will range in temperatures from about 35° C. to 50° C., or higher. Higher temperatures also occur when the oxide ores are extremely rich, such as the ores from the Democratic Republic of the Congo. They are typically vat or agitation leached with sulfuric acid. The leaching reactions are quite exothermic, resulting in PLS for extraction that are higher in temperature than typical heap or dump leach operations. The higher temperature results in a significantly higher rate of hydrolysis of the oxime extractants. This leads to buildup of the hydrolysis products in the circuit organics to very high levels relative to that observed in typical head and dump leach operations. Due to the higher rate of degradation, the level of degradation products can approach levels as high as 100% of the oxime concentration in the circuit organics. This results in a significant increase in the density and viscosity of the organic phase, which in turn is reflected in slower phase disengagement and higher entrainments.
Another problem with current technology is with copper selectivity over iron. Copper/iron selectivity is very important for some solvent extraction/electrowinning systems. Iron that is transferred to the electrowinning system has a negative effect on the processing of copper in the electrolyte. As the concentration of ferric ions increases, there is a substantial drop in current efficiency. In addition to the cost incurred by the drop in current efficiency, there is the additional cost of bleeding the system to control the iron concentration. Bleeding electrolyte results in the reduction of cobalt concentration (in addition to other additives) which is added to protect lead anodes, and this can be a large expense in an electrowinning plant.
Current reagent technology could also be improved when nitrate is present in the PLS or strip solution. Nitrate in the PLS or strip solution can lead to attack on the phenolic oximes resulting in nitration of the ring to form the corresponding 3-nitro aldoximes or ketoxime. The nitro oximes are extremely strong copper chelators. They cannot be stripped under typical plant conditions resulting in loss of net transfer. Such problems are discussed in the Virnig, et al., “Effects of nitrate on copper SX circuits: A case study” in Proceedings Copper 2003-Cobre 2003, Vol VI-Hydrometallurgy of Copper (Book1), edited by P. A. Riveros, D. Dixon, D. B. Dreisinger, J. Menacho; Canadian Institute of Mining, Metallurgy and Petroleum; Montreal, Quebec, Canada; 2003, pp 795-810. There have been attempts to deal with this nitration issue. For example, it has been proposed to add lower molecular weight phenol to the extractant formulation as a sacrificial lamb. The phenol is more readily nitrated than is the oxime, and so long as there is any phenol present, the oxime is protected. However, as soon as the phenol is consumed, then nitration of the oxime will occur.
Yet another problem relates to currently used oximes for extraction of copper and nickel from ammoniacal solutions. In applications involving extraction of nickel or copper from ammonia, one typically finds that degradation of the organic by hydrolysis of the oxime is an issue. During such extraction, the resultant complex carries with it some chemically bound ammonia, which is undesirable. The ammonia is transferred to stripping where it consumes acid to form the corresponding ammonium salt which builds up overtime in the circulating electrolyte and can lead to the formation of insoluble salts such as nickel ammonium sulfate which can cause plugging of lines, etc. There is thus a need for reagents and/or methods that address one or more of these problems.
SUMMARY
One aspect of the invention relates to a reagent composition comprising a mixture of at least two oximes, a first oxime having a structure represented by:
Figure US08475748-20130702-C00001

wherein R5 is a C1-22 linear or branched alkyl group; R1 is a C1-22 linear or branched alkyl or alkenyl group, a C6 aryl group or a C7-22 aralkyl group; R2-R4 are independently hydrogen, halogen, a linear or branched C6-12 alkyl group, OR6 wherein R6 is a C1-22 linear or branched alkyl group, a C2-22 linear or branched alkenyl group, a C6 aryl group, or a C7-22 aralkyl group; and a second oxime having a structure represented by:
Figure US08475748-20130702-C00002

wherein R5 is a C1-22 linear or branched alkyl group; R1 is hydrogen; R2-R4 are each independently hydrogen, halogen, a linear or branched C6-12 alkyl group, OR6 wherein R6 is a C1-22 linear or branched alkyl group, a C2-22 linear or branched alkenyl group, a C6 aryl group, or a C7-22 aralkyl group. In one embodiment, the first oxime is a 3-methyl ketoxime and the second oxime is a 3-methyl aldoxime, and the reagent composition comprises a molar ratio of ketoxime to aldoxime having a range of about 85:15 to about 25:75.
In one or more embodiments, R3 is a C8-12 linear or branched alkyl group for at least one of the oximes. In particular embodiments, R3 is dodecyl or nonyl for at least one of the oximes. In other embodiments, R5 is a C1-3 linear or branched alkyl or alkoxy group for at least one of the oximes. In a further embodiment, R5 is methyl for at least one of the oximes. In another specific embodiment, R1 is hydrogen or CH3 for at least one of the oximes.
In another embodiment, the reagent composition comprises a 3-methyl aldoxime having a structure represented by:
Figure US08475748-20130702-C00003

and a 3-methyl ketoxime having a structure represented by:
Figure US08475748-20130702-C00004
In other variants of this aspect, additional components may be added to the reagent composition. For example, in one embodiment, the reagent composition further comprises thermodynamic modifiers. In another embodiment, the reagent composition further comprises kinetic modifiers. In a specific embodiment, the kinetic modifier comprises 5,8-diethyl-7-hydroxydodecan-6-oxime. In yet another embodiment, the reagent composition further comprises one or more of 5-nonylsalicylaldoxime, 5-dodecylsalicylaldoxime, 5-nonyl-2-hydroxyacetophenonoxime and 5-dodecyl-2-hydroxyacetophenonoxime. In other variants, the reagent composition further comprises a water immiscible organic solvent.
The concentrations of the oximes can also be varied. For example, in one embodiment, the first and second oximes have a combined concentration of about 1.5M to about 2.6M. In another embodiment, the first and second oximes have a concentration of about 0.018M to about 1.1M.
Another aspect of the invention relates to a method for the recovery of a metal from a metal-containing aqueous solution. The method comprises contacting the metal-containing aqueous solution with an organic phase comprising a water immiscible solvent and a reagent composition of the type described herein to extract at least a portion of the metal values into the organic phase to provide a metal-pregnant organic phase and metal-barren aqueous phase; separating the resultant metal-pregnant organic phase from the resultant metal-barren aqueous phase; and recovering metal values from the metal-pregnant organic phase. In one or more embodiments, the metal recovered is selected from the group consisting of copper, uranium, molybdenum, nickel, zinc, cobalt and combinations thereof. In some embodiments, the reagent composition further comprises one or more of 5-nonylsalicylaldoxime, 5-dodecylsalicylaldoxime, 5-nonyl-2-hydroxyacetophenonoxime and 5-dodecyl-2-hydroxyacetophenonoxime.
In a specific embodiment, the reagent composition comprises a mixture of a 3-methyl ketoxime having a structure represented by:
Figure US08475748-20130702-C00005
and a 3-methyl aldoxime having a structure represented by:
Figure US08475748-20130702-C00006
In one or more variants, the recovery of the metal may occur at a temperature ranging from about 15° C. to about 60° C., or more specifically at about 25° C. to about 50° C. In other embodiments, the recovery of metal occurs at a temperature above about 35° C., or more specifically at a temperature above about 50° C.
BRIEF DESCRIPTION OF THE DRAWINGS
FIG. 1 is a graphical representation of the level of copper in several stripped organic solutions containing various ratios of 3-methyl ketoxime and 3-methyl aldoxime.
DETAILED DESCRIPTION
Before describing several exemplary embodiments of the invention, it is to be understood that the invention is not limited to the details of construction or process steps set forth in the following description. The invention is capable of other embodiments and of being practiced or being carried out in various ways.
Reference throughout this specification to “one embodiment,” “certain embodiments,” “one or more embodiments” or “an embodiment” means that a particular feature, structure, material, or characteristic described in connection with the embodiment is included in at least one embodiment of the invention. Thus, the appearances of the phrases such as “in one or more embodiments,” “in certain embodiments,” “in one embodiment” or “in an embodiment” in various places throughout this specification are not necessarily referring to the same embodiment of the invention. Furthermore, the particular features, structures, materials, or characteristics may be combined in any suitable manner in one or more embodiments.
The term “NSAO” as used herein is used interchangeably with 5-nonylsalicylaldoxime, and refers to a compound having the structure:
Figure US08475748-20130702-C00007
The term “DSAO” as used herein is used interchangeably with 5-dodecylsalicylaldoxime, and refers to a compound having the structure:
Figure US08475748-20130702-C00008
The term “HNAO” as used herein is used interchangeably with 5-nonyl-2-hydroxyacetophenonoxime, and refers to a compound having the structure:
Figure US08475748-20130702-C00009
The term “3-MNSAO” as used herein is used interchangeably with 3-methyl-5-nonylsalicylaldoxime, and refers to a compound having the structure:
Figure US08475748-20130702-C00010
The term “3-MHNAO” as used herein is used interchangeably with 3-methyl-5-nonyl-2-hydroxyacetophenone oxime, and refers to a compound having the structure:
Figure US08475748-20130702-C00011
The term “3-methyl oxime” as used herein refers to a compound having a structure represented by:
Figure US08475748-20130702-C00012

wherein R5 is methyl; R1 is hydrogen, a C1-22 linear or branched alkyl or alkenyl group, a C6 aryl group or a C7-22 aralkyl group; R2-R4 are each independently hydrogen, halogen, a linear or branched C6-12 alkyl group, OR6 wherein R6 is a C1-22 linear or branched alkyl group, a C2-22 linear or branched alkenyl group, a C6 aryl group, or a C7-22 aralkyl group.
The term “3-methyl ketoxime” as used herein refers to a compound having a structure represented by:
Figure US08475748-20130702-C00013

wherein R5 is methyl; R1 is a C1-22 linear or branched alkyl or alkenyl group, a C6 aryl group or a C7-22 aralkyl group; R2-R4 are each independently hydrogen, halogen, a linear or branched C6-12 alkyl group, OR6 wherein R6 is a C1-22 linear or branched alkyl group, a C2-22 linear or branched alkenyl group, a C6 aryl group, or a C7-22 aralkyl group
The term “3-methyl aldoxime” as used herein refers to a compound having a structure represented by:
Figure US08475748-20130702-C00014

wherein R5 is methyl; R1 is hydrogen; R2-R4 are each independently hydrogen, halogen, a linear or branched C6-12 alkyl group, OR6 wherein R6 is a C1-22 linear or branched alkyl group, a C2-22 linear or branched alkenyl group, a C6 aryl group, or a C7-22 aralkyl group.
Reagents
A first aspect of the invention relates to reagent compositions. In one or more embodiments, the compositions comprise a mixture of at least two oximes, a ketoxime and an aldoxime. The ketoxime has a structure represented by Formula I:
Figure US08475748-20130702-C00015

wherein R5 is a C1-22 linear or branched alkyl group; R1 is a C1-22 linear or branched alkyl or alkenyl group, a C6 aryl group or a C7-22 aralkyl group; R2-R4 are each independently hydrogen, halogen, a linear or branched C6-12 alkyl group, OR6 wherein R6 is a C1-22 linear or branched alkyl group, a C2-22 linear or branched alkenyl group, a C6 aryl group, or a C7-22 aralkyl group; and the aldoxime has a structure represented by Formula II:
Figure US08475748-20130702-C00016

wherein R5 is a C1-22 linear or branched alkyl group; R1 is hydrogen; R2-R4 are each independently hydrogen, halogen, a linear or branched C6-12 alkyl group, OR6 wherein R6 is a C1-22 linear or branched alkyl group, a C2-22 linear or branched alkenyl group, a C6 aryl group, or a C7-22 aralkyl group.
In one embodiment of the invention, the R3 is a C8-12 linear or branched alkyl group for Formula I and/or Formula II. In another embodiment, the R3 of Formula I and/or II is dodecyl. In yet other embodiment, the R3 of Formula I and/or II is nonyl. In yet another embodiment, R5 is a C1-3 linear or branched alkyl or alkoxy group for the compound of Formula I and/or II.
In one embodiment, the ketoxime (Formula I) and aldoxime (Formula II) reagents each have a methyl group substituted at the R5 position. In another embodiment, the ketoxime has a structure represented by Formula III:
Figure US08475748-20130702-C00017

wherein R1 is hydrogen, halogen, a linear or branched C6-12 alkyl group and R2 is a C1-22 linear or branched alkyl or alkenyl group; and the aldoxime has a structure represented by Formula IV:
Figure US08475748-20130702-C00018

wherein R1 is hydrogen, halogen, a linear or branched C6-12 alkyl group and R2 is hydrogen.
In yet another embodiment, the ketoxime is a 3-methyl ketoxime having a structure represented by:
Figure US08475748-20130702-C00019

and the aldoxime is a 3-methyl aldoxime having a structure represented by:
Figure US08475748-20130702-C00020
In one or more embodiments where a ketoxime and aldoxime are used, the ratio of ketoxime to aldoxime can be varied. In various embodiments, the molar amount of ketoxime can be about 25%, 30%, 40%, 50%, 60%, 65% 70%, 75%, 80%, or 85% of the total amount of oxime. Thus, in a specific embodiment, the molar ratio of ketoxime to aldoxime is about 85% ketoxime to about 15% aldoxime. In another specific embodiment, the molar ratio of ketoxime to aldoxime is about 60% ketoxime to about 40% aldoxime. In yet another embodiment, the molar ratio of ketoxime to aldoxime ranges from about 85:15 to about 25:75, more specifically from about 80:20 to about 30:70, and even more specifically from about 80:20 to about 40:60. Accordingly, in a very specific embodiment, the molar ratio of 3-methyl ketoxime to 3-methyl aldoxime is about 85% ketoxime to about 15% aldoxime. In another specific embodiment, the molar ratio of 3-methyl ketoxime to 3-methyl aldoxime is about 60% ketoxime to about 40% aldoxime.
Methods of making such individual reagent compounds are known in the art, such as those disclosed in U.S. Pat. No. 6,632,410, the entire contents of which are incorporated herein by reference. For example, 3-methyl-5-nonylsalicylaldoxime can be made by reacting o-cresol with tripropylene in the presence of an acid catalyst such as AMBERLYST® 15 resin to form 4-nonyl-2-cresol which is in turn converted to the aldehyde by reaction with para-formaldehyde in the presence of a catalyst such as titanium cresylate. The 3-methyl-5-nonylsalicylaldehyde is then reacted with hydroxylamine sulfate to form the 3-methyl-5-nonylsalicylaldoxime. In all cases, the total number of carbon atoms in all of R2-R5 groups must be great enough so that the corresponding copper-extractant complex is soluble in the hydrocarbon solvent.
The feedstock solution containing dissolved metal values is contacted with the water-immiscible organic solution comprised of a hydrocarbon solvent as described herein and one or more reagent compositions of the Formula I and/or Formula II for a period of time sufficient to allow the oxime described herein to form a complex with the iron and copper ions. The feedstock can be contacted by the organic solution in any manner that brings the two immiscible phases together for a period of time sufficient to allow the compounds of Formula I and/or Formula II to form a complex with the metal ions. This includes shaking the two phases together in a separatory funnel or mixing the two phases together in a mix tank as described in U.S. Pat. No. 4,957,714, the entire contents of which is incorporated herein by reference.
Reagent compositions according to one or more embodiments include modifiers that can be added to the reagent to increase functionality. U.S. Pat. Nos. 4,978,788; 6,177,055; 6,231,784; 7,585,475 and 7,993,613, the contents of which are incorporated herein by reference, provide examples of modifiers that can be used in accordance with embodiments of the present invention. For example, the use of highly branched chain aliphatic or aliphatic-aromatic C10-C30 esters or C10-C30 alcohols have beneficial results as strip modifiers. Another example is an equilibrium modifier, where the modifier is a linear diester or polyester of an unbranched monocarboxylic acid or unbranched dicarboxylic acid and an unbranched alcohol. One embodiment of the invention is the reagent composition described above, further comprising thermodynamic modifiers. A second embodiment is the reagent composition described above, further comprising kinetic modifiers. Examples of suitable kinetic modifiers include, but are not limited to, dioximes such as 8,9-dioximohexadecane or alpha-bromocarboxylic acids such as alpha-bromolauric acid. In a particular embodiment, the kinetic modifier comprises 5,8-diethyl-7-hydroxydodecan-6-oxime.
The reagent compositions in one or more embodiments include a solvent in which the reagent is dissolved. In one embodiment, the solvent comprises a water immiscible organic solvent. In another embodiment, the water immiscible organic solvent is selected from the group consisting of kerosene, benzene, toluene, xylene and combinations thereof.
The oximes in the composition can be present in any suitable concentration for extraction. For example, in one or more embodiments, concentration of the oxime ranges from about 0.018M to about 1.1M. In specific embodiments, the concentration of oxime ranges from about 0.018M to about 0.9M or 0.018M to about 0.72M. In embodiments in which a ketoxime and aldoxime are present, the concentration of both ketoxime and aldoxime ranges from about 0.018M to about 0.9M or from about 0.018M to about 0.72M. The reagent composition may also be concentrated. Concentrated forms can be useful, for example, for transporting the reagent composition. Several embodiments of concentrated forms can have an oxime concentration of about 1.7M or about 1.8M and up to about 2.25M, 2.5M, and 2.6M. This oxime concentration can be the combined concentration of the oximes in embodiments where more than one oxime is present.
A second aspect of the invention relates to a reagent composition comprising a first oxime having a structure represented by:
Figure US08475748-20130702-C00021

wherein R5 is a C1-22 linear or branched alkyl group; R1 is a C1-22 linear or branched alkyl or alkenyl group, a C6 aryl group or a C7-22 aralkyl group; R2-R4 are each independently hydrogen, halogen, a linear or branched C6-12 alkyl group, OR6 wherein R6 is a C1-22 linear or branched alkyl group, a C2-22 linear or branched alkenyl group, a C6 aryl group, or a C7-22 aralkyl group; and 5,8-diethyl-7-hydroxydodecan-6-oxime.
Processes for Metal Recovery
Another aspect of the invention relates to a method for the recovery of a metal from a metal-containing aqueous solution, the method comprising: contacting the metal-containing aqueous solution with an organic phase comprising a water immiscible solvent and a reagent composition comprising a mixture of a first oxime represented by formula I and a second oxime represented by formula II to extract at least a portion of the metal values into the organic phase; separating the resultant metal-pregnant organic phase from the resultant metal-barren aqueous phase; and recovering metal values from the metal-pregnant organic phase. In one embodiment, copper from a copper-containing aqueous solution is recovered, which includes contacting the copper-containing aqueous solution with an organic phase comprising a water immiscible solvent and a reagent composition of the type described herein. Another embodiment is where the recovered metal is selected from the group consisting of uranium, molybdenum, cobalt, copper, nickel and combinations thereof. Other specific embodiments of such methods will be described further herein.
In one embodiment, the ketoxime (Formula I) and aldoxime (Formula II) reagents each have a methyl group substituted at the R5 position. In another embodiment, the ketoxime has a structure represented by Formula III:
Figure US08475748-20130702-C00022

wherein R1 is hydrogen, halogen, a linear or branched C6-12 alkyl group and R2 is a C1-22 linear or branched alkyl or alkenyl group; and the aldoxime has a structure represented by Formula IV:
Figure US08475748-20130702-C00023

wherein R1 is hydrogen, halogen, a linear or branched C6-12 alkyl group and R2 is hydrogen.
In yet another embodiment, the ketoxime is a 3-methyl ketoxime having a structure represented by:
Figure US08475748-20130702-C00024

and the aldoxime is a 3-methyl aldoxime having a structure represented by:
Figure US08475748-20130702-C00025
As will be appreciated in light of the above discussion of the results of the degradation testing, in one or more embodiments, the method includes 3-methyl reagents are used for extraction occurring over a wider temperature range than is presently commercially feasible with existing reagents. As discussed above, extraction of extremely rich oxide ores, processes that result in the production of warmer leach solutions and processes conducted in warmer climates require improved reactant compositions capable of operating at higher temperatures than is presently possible. In one embodiment, the metal recovered is selected from the group consisting of copper, uranium, molybdenum, nickel, zinc, cobalt and combinations thereof. In another embodiment, the metal recovered is copper.
One or more embodiments of the reagents described herein are thus suitable for metal recovery at an elevated temperature. Thus, another aspect of the invention relates to a method for the recovery of metal from a metal-containing aqueous solution at an elevated temperature, the method comprising: contacting the metal-containing aqueous solution with an organic phase comprising a water immiscible solvent and a reagent composition comprising a ketoxime having a structure represented by:
Figure US08475748-20130702-C00026

wherein R5 is a C1-22 linear or branched alkyl group; R1 is a C1-22 linear or branched alkyl or alkenyl group, a C6 aryl group or a C7-22 aralkyl group; R2-R4 are each independently hydrogen, halogen, a linear or branched C6-12 alkyl group, OR6 wherein R6 is a C1-22 linear or branched alkyl group, a C2-22 linear or branched alkenyl group, a C6 aryl group, or a C7-22 aralkyl group to extract at least a portion of the metal values into the organic phase to provide a metal-pregnant organic phase and a metal-barren aqueous phase; separating the metal-pregnant organic phase from the resultant metal-barren aqueous phase; and recovering metal values from the metal-pregnant organic phase.
In one or more embodiments, reagent compositions and processes for recovering copper are provided that can be used in the range of about 15° C. to about 60° C. In specific embodiments, reagent compositions and processes of copper extraction using such compositions can be performed at temperatures exceeding 30° C., 35° C., 40° C., 45° C., and 50° C. In specific embodiments, extraction can be carried out in the range of about 25° C. to about 60° C., of about 25° C. to about 50° C., of about 35° C. to about 60° C., and of about 35° C. to about 50° C. Other variants of ranges within the values discussed above are possible. The oxime reagents described herein are advantageously used at higher temperatures, as currently used oximes undergo hydrolytic degradation and cause operational problems and increased cost.
In embodiments in which the recovery of copper is performed at an elevated temperature, the composition can include a ketoxime represented by the structure of formula I described above. In specific embodiments, the composition can comprise a mixture containing a ketoxime represented by the structure of formula I and an aldoxime represented by the structure of formula II described above. In one or more embodiments, the composition can include a solvent and modifiers as described above.
According to one or more embodiments, a feature of one or more of the reagent compositions and/or methods described herein is that they exhibit improved hydrolytic stability compared to currently used oximes for extraction. While not wishing to be bound by theory, it is possible that a combination of effects leads to the added stability. For example, with 3-methyl aldoxime and 3-methyl ketoxime, it is believed that the methyl group ortho to the phenol changes the orientation of the oxime functional group at the interface. This change in orientation shelters the oxime functional group from hydrolysis.
One advantage of one or more of the reagents and methods described herein is resistance to nitration. Nitration of current reagents (DSAO, NSAO, and HNAO) is accomplished by electrophilic aromatic substitution which is illustrated in Schematic 1. As the nitro oximes are extremely strong copper chelators, they cannot be stripped under typical plant conditions resulting in a loss of net transfer. The oxime depicted in Schematic 1 can be used to represent any of the current reagents. The nitration can only take place at the position ortho to the phenol due to the resonance stabilization it affords the intermediate (2). This is a well known general reaction scheme in synthetic chemistry and has been investigated thoroughly.
Figure US08475748-20130702-C00027
In the case of the new extractants, substitution at the position ortho to the phenol group prevents nitration. This renders these compounds nitration resistant under the conditions found in typical mining solutions. In one embodiment, 3-methyl ketoximes and 3-methyl aldoximes, (including, but not limited to, 3-MHNAO and 3-MNSAO) are used, such that the methyl group ortho to the phenol group prevents nitration.
Accordingly, yet another aspect of the invention pertains to a method of extracting a metal from a nitrate-containing aqueous solution, the method comprising: contacting a nitrate-containing aqueous solution containing dissolved metal values with an organic phase comprising a water immiscible solvent and a reagent composition comprising an oxime having a structure represented by:
Figure US08475748-20130702-C00028

wherein R1 is hydrogen or CH3, R3 is a C8-12 alkyl group, R2 and R4 are hydrogen, R5 is a methyl group, to extract at least a portion of the metal values into the organic phase to provide a metal-pregnant organic phase and a metal-barren aqueous phase; separating the resultant metal-pregnant organic phase from the metal-barren aqueous phase; and recovering metal values from the metal-pregnant organic phase. In specific embodiments, R5 is a methyl or methoxy group, and in more specific embodiments, the oxime is
Figure US08475748-20130702-C00029

or mixtures thereof.
The metal according to such processes containing nitrate can include, but are not limited to, the metals selected from the group consisting of copper, molybdenum, uranium, rare earth metals (scandium, yttrium, lanthanum, cerium, praseodymium, neodymium, promethium, samarium, europium, gadolinium, terbium, dysprosium, holmium, erbium, thulium, ytterbium, and lutetium) and combinations thereof. In a specific embodiment, the metal is copper. In one embodiment, the nitrate-containing aqueous solution has a concentration of nitrate that ranges from about 1 grams per liter to about 50 grams per liter, and more specifically 3 grams per liter to about 35 grams per liter. In specific embodiments, the nitrate-containing aqueous solution also contains chloride, wherein the chloride has a concentration ranging from about 1 gram per liter to about 30 grams per liter. In one or more embodiments, the pH of the nitrate-containing aqueous solution ranges from about 0.6 to about 2.0.
Such methods of extracting a metal from a nitrate-containing aqueous solution may also have applicability in proposed leaching schemes such as those described in U.S. Pat. No. 6,569,391, where sodium nitrate is added to a dilute sulfuric acid solution to leach copper sulfides. U.S. Pat. No. 6,569,391 is herein incorporated by reference in its entirety.
3-methyl aldoximes, 3-methyl ketoximes and their blends transfer much lower quantities of iron than HNAO. The transfer of iron is very dependent on the conditions used in the static test. However, HNAO transfers between 2-10 times more iron than the analogous 3-methyl species. In most cases, the iron values are so low that they are at the limits of detection. The excellent results of the iron/copper selectivity are demonstrated in Example 2 below.
Accordingly, another aspect of the invention pertains to separating copper from iron in an aqueous solution containing dissolved copper and iron values. In one embodiment, separating copper from iron in an aqueous solution containing dissolved copper and iron values includes contacting the aqueous solution with a water-immiscible organic solution comprising a hydrocarbon solvent and a 3-methyl ketoxime. In another aspect, the invention relates to a method of separating copper from iron in an aqueous solution containing dissolved copper and iron values, the method comprising: contacting the aqueous solution with a water-immiscible organic solution comprising a hydrocarbon solvent and a 3-methyl ketoxime having a structure represented by:
Figure US08475748-20130702-C00030

wherein R1 is CH3, R3 is a C8, C9 or C12 alkyl group, R2 and R4 are hydrogen, R5 is a methyl group, to form an aqueous phase comprised of iron and an organic phase comprised of the hydrocarbon solvent and a copper-extractant complex wherein the copper-extractant complex is soluble in the hydrocarbon solvent; separating the organic phase from the resultant aqueous phase; and recovering copper values from the organic phase. In particular embodiments, R3 is nonyl.
In a particular embodiment, the 3-methyl ketoxime has a structure represented by:
Figure US08475748-20130702-C00031
In one or more embodiments of this aspect, the water immiscible organic solution further comprises a 3-methyl aldoxime, having a structure represented by:
Figure US08475748-20130702-C00032

wherein R1 is H, R3 is a C8, C9 or C12 alkyl group, R2 and R4 are hydrogen, R5 is a methyl group. In a particular embodiment, the 3-methyl aldoxime has a structure represented by:
Figure US08475748-20130702-C00033
In one or more embodiments where a ketoxime and aldoxime are used, the ratio of ketoxime to aldoxime can be varied. In various embodiments, the molar amount of ketoxime can be about 25%, 30%, 40%, 50%, 60%, 65% 70%, 75%, 80%, or 85% of the total amount of oxime. Thus, in a specific embodiment, the molar ratio of ketoxime to aldoxime is about 85% ketoxime to about 15% aldoxime. In another specific embodiment, the molar ratio of ketoxime to aldoxime is about 60% ketoxime to about 40% aldoxime. In yet another embodiment, the molar ratio of ketoxime to aldoxime ranges from about 85:15 to about 25:75, more specifically from about 80:20 to about 30:70, and even more specifically from about 80:20 to about 40:60. Accordingly, in a very specific embodiment, the molar ratio of 3-methyl ketoxime to 3-methyl aldoxime is about 85% ketoxime to about 15% aldoxime. In another specific embodiment, the molar ratio of 3-methyl ketoxime to 3-methyl aldoxime is about 60% ketoxime to about 40% aldoxime.
One or more of the reagent compositions and methods described herein may also be used for extraction from ammoniacal solutions. In particular, these may be used to extract nickel, cobalt and/or zinc from ammoniacal solutions. For example, nickel can be extracted from ammoniacal solutions using HNAO. Depending on the nickel ammonia complex, the reaction proceeds using either Scheme 2 or Scheme 3.
Figure US08475748-20130702-C00034
Figure US08475748-20130702-C00035
Cobalt is often found in conjunction with nickel. It is advantageous to convert Co+2 to Co+3 by oxidation, because nickel is extracted selectivity over Co+3 by ketoximes. Considering that data suggests that cobalt-loading can lead to faster degradation of the ketoxime, the added stability and possible lower cobalt loading of the 3-methyl ketoxime (including, but not limited to, 3-MHNAO) would be advantageous for nickel extraction.
Therefore, another aspect of the invention pertains to methods of extracting metal from aqueous ammoniacal solutions containing metal values comprising: contacting an ammoniacal solution containing metal values with an organic solution comprising a water immiscible organic solvent containing dissolved extractant comprising an oxime having a structure represented by:
Figure US08475748-20130702-C00036

wherein R1 is hydrogen or CH3, R3 is a C8-12 alkyl group, R2 and R4 are hydrogen, R5 is a methyl group, forming a water immiscible organic phase, whereby metal values are extracted from the aqueous ammoniacal solution into the organic phase, thereby providing a metal-pregnant organic phase and a metal barren aqueous phase; separating the metal-barren aqueous phase from the metal-pregnant organic phase; and recovering the metal values from the metal-pregnant organic phase. In one or more embodiments, the metal is selected from one or more of nickel, zinc and copper. In other embodiments, R3 is octyl, nonyl or dodecyl.
In specific embodiments, the oxime can have a structure represented by:
Figure US08475748-20130702-C00037

or mixtures thereof.
The addition of ammonia antagonists such as those described in U.S. Pat. No. 6,210,647, the contents of which are herein incorporated by reference, would also be expected to result in further reductions in ammonia loading when combined with the 3-MNSAO or 3-MHNAO or blends thereof. Such ammonia antagonists are referred to as “non-hydrogen bond donating” and are only “hydrogen bond accepting” compounds. The ammonia antagonists for use in the present improvement are those organic hydrogen bond acceptor compounds containing one or more of the following organic functionalities: ester, ketone, sulfoxide, sulfone, ether, amine oxide, tertiary amide, phosphate, carbonate, carbamate, urea, phosphine oxide, and nitrile and having greater than 8 carbon atoms, up to about 36 carbon atoms and a water solubility of less than 100 ppm, more desirably less than 50 ppm and preferably less than 20 ppm. In a specific embodiment, the ammonia antagonist comprises 2,2,4-trimethylpentane-1,3-diol diisobutyrate. Other illustrative ammonia antagonists which are only hydrogen bond acceptor compounds are: alkyl esters and dialkyl ketones in which the alkyl groups contain from 4 to about 12 carbon atoms, such as isobutyl isooctanoate and isobutyl heptyl ketone and the dinitrile of dimerized fatty acids such as dimerized C18 fatty acids, (Dimer Acid™ dinitrile).
In yet another aspect, the invention pertains to methods of recovering metal from an aqueous solution, comprising: contacting an aqueous solution containing at least two metals selected from molybdenum, cobalt, nickel, zinc and iron with an organic solvent and an oxime-containing reagent composition comprising an oxime having a structure represented by
Figure US08475748-20130702-C00038

wherein R1 is hydrogen or CH3, R3 is a C8-12 alkyl group, R2 and R4 are hydrogen, R5 is a methyl group, at a predetermined pH, the predetermined pH selected to provide a high first metal extraction and a low second metal extraction; and separating the first metal from the solution. In specific embodiments, R3 is nonyl. In other specific embodiments, the oxime used can be
Figure US08475748-20130702-C00039

or mixtures thereof. The metals can be zinc, nickel, molybdenum and cobalt.
According to one or more embodiments, the oxime compositions exhibit one or more useful features including one or more of hydrolytic stability, good selectivity, fast kinetics and resistance to nitration. The following non-limiting examples are intended to demonstrate one or more of these features.
EXAMPLES Example 1
Solutions (0.175 M) of 3-methyl-5-nonyl ketoxime and 3-methyl-5-nonyl aldoxime in Conosol® 170ES, a typical hydrocarbon diluent from Conoco Phillips®, for solvent extraction applications, were prepared. These solutions were then blended in the following proportions (ketoxime:aldoxime): 100:0, 90:10, 80:20, 70:30, 60:40, 50:50, 25:75 and 0:100. Each solution was then contacted with a synthetic lean electrolyte containing 35 gpl of copper as copper sulfate and 160 gpl of sulfuric acid in deionized water by shaking for 3 minutes at an organic to aqueous ratio of 1. The phases were separated after shaking and the process was repeated for a total of 4 contacts. The equilibrated organic phase was then filtered through phase separation paper to remove residual entrainment and analyzed for copper content by atomic absorption spectroscopy. The results are summarized in FIG. 1.
As discussed above, the known mixtures of ketoxime with aldoxime have a copper content in the stripped organic that is lower than one would expect based on consideration of the stripping behavior of the individual oximes. In contrast, the results of Example 1 and FIG. 1 demonstrate that the 3-methyl-ketoxime and 3-methyl-aldoxime blend does not behave in this way. The level of copper in the stripped organics containing various ratios of 3-methyl-ketoxime to 3-methyl-aldoxime very closely approximate a straight line, corresponding to what would be expected theoretically. A very slight downward bow in FIG. 1 is within the experimental error of the method.
Example 2A
Organic solutions were prepared by dissolving LIX® 860N-I, LIX® 664N-LV and LIX®8180 in Conosol® 170ES at approximately 10% v/v so that the resultant solutions contained about 0.175 M standard aldoxime or ketoxime. LIX® 860N-I is a solution of 5-nonylsalicylaldoxime in Shellsol® D70, a hydrocarbon diluent from Shell Chemical. LIX® 664N-LV is a solution of 5-nonylsalicylaldoxime and di-n-butyladipate (0.8 M) in Shellsol D70. LIX® 8180 is a solution of 2-hydroxy-5-nonylacetophenone oxime in Shellsol D70. Solutions of 3-methyl-5-nonylsalicylaldoxime and 3-MHNAO (3-MHNAO) (0.175 M) in Conosol® 170ES were also prepared. A series of blends were also prepared by mixing the above solutions to give a 50:50 blend on a volume basis of the LIX® 860N-I solution, the LIX® 664N-LV and LIX® 8180 with the 3-MHNAO solution. The resultant solutions were then carried through the Standard Cognis Quality Control Test for LIX® Oxime Reagents with the following modifications. The standard 1 liter glass beaker was replaced with a jacketed beaker so that the temperature could be controlled precisely at 25° C. Samples of the emulsion were removed at 30, 60, 90, and 300 seconds. The 300 second point was defined as 100% of equilibrium. The organic samples were analyzed for copper and iron content by atomic absorption spectroscopy. The results are summarized in Tables 1, 2 and 3.
TABLE 1
Comparison of Extraction Kinetics at 25° C.
% of Equilibrium % of Equilibrium
Sample @ 30 sec @ 60 sec
3-MHNAO 63 75
3-MNSAO 100    99.7
LIX ® 860N-I 98% 99%
LIX ® 664N-LV 98% 98%
LIX ® 8180 92% 98%
LIX ® 860N-I:3-MHNAO 84 91
LIX ® 664N-LV:3-MHNAO 80 87
LIX ® 8180:3-MHNAO 79 88
47:53 3-MNSAO:3-MHNAO 96 99
TABLE 2
Comparison of Strip Kinetics at 25° C.
% of Equilibrium % of Equilibrium
Sample @ 30 sec @ 60 sec
3-MHNAO 50 81
3-MNSAO 100  100 
LIX ® 860N-I 99%  100%
LIX ® 664N-LV  100%   100%
LIX ® 8180 80%  100%
LIX ® 860N-I:3-MHNAO 78 87
LIX ® 664N-LV:3-MHNAO 77 87
LIX ® 8180:3-MHNAO 36 53
47:53 3-MNSAO:3-MHNAO 93 99
TABLE 3
Organic Copper to Iron ratio at 60 seconds at 25° C.
Cu/Fe Selectivity at
Sample 60 Sec [Cu]/[Fe]
3-MHNAO 2215
3-MNSAO 18397
LIX ® 860N-I 2987
LIX ® 664N-LV 4573
LIX ® 8180 2970
LIX ® 860N-I:3-MHNAO 2558
LIX ® 664N-LV:3-MHNAO 1854
LIX ® 8180:3-MHNAO 2741
47:53 3-MNSAO:3-MHNAO 51470
The overall results are surprising. Mixing the 3-MHNAO with LIX® 860N-I, LIX® 664N-LV, and LIX® 8180 result in products with slow/marginal kinetics in extraction and stripping. Surprisingly, the benefit of the faster kinetics of the LIX® 860N-I, LIX® 664N-LV or LIX® 8180 is not observed when any of them is mixed with the 3-MHNAO. Mixing the 3-MHNAO with 3-MNSAO results in a mixture having excellent extraction and stripping kinetics as well as outstanding Cu/Fe selectivity.
Example 2B
The same procedure was used as in Example 2A with the exception that the experiments were carried out at 40° C. The results are summarized in Tables 4, 5, and 6.
TABLE 4
Comparison of Extraction Kinetics at 40° C.
% of Equilibrium % of Equilibrium
Sample @ 30 sec @ 60 sec
3-MHNAO 89 97
3-MNSAO 100 100
LIX ® 860N-I 98 100
LIX ® 664N-LV 98 100
LIX ® 8180 94 99
LIX ® 860N-I:3-MHNAO 98 99
LIX ® 664N-LV:3-MHNAO 92 96
LIX ® 8180:3-MHNAO 96 99
47:53 3-MNSAO:3-MHNAO 99 100
TABLE 5
Comparison of Strip Kinetics at 40° C.
% of Equilibrium % of Equilibrium
Sample @ 30 sec @ 60 sec
3-MHNAO 95 100
3-MNSAO 100 100
LIX ® 860N-I 99 99
LIX ® 664N-LV 100 100
LIX ® 8180 89 97
LIX ® 860N-I:3-MHNAO 95 99
LIX ® 664N-LV:3-MHNAO 95 98
LIX ® 8180:3-MHNAO 78 97
47:53 3-MNSAO:3-MHNAO 88 99
TABLE 6
Organic Copper to Iron ratio at 60 seconds at 40° C.
Cu/Fe Selectivity at
Sample 60 Sec [Cu]/[Fe]
3-MHNAO 45200
3-MNSAO 13780
LIX ® 860N-I 3370
LIX ® 664N-LV 2681
LIX ® 8180 2458
LIX ® 860N-I:3-MHNAO 5718
LIX ® 664N-LV:3-MHNAO 3379
LIX ® 8180:3-MHNAO 4968
47:53 3-MNSAO:3-MHNAO No detectable iron
Example 3
Solutions of 3-MNSAO and 3-MHNAO (0.175 M) in Conosol® 170ES were prepared. A series of blends were also prepared by mixing the two solutions at different volume ratios to give 3-MNSAO:3-MHNAO of 0:100, 23:77, 29:71, 36:64, 42:58, 47:52, 60:40 and 100:0. These solutions were then evaluated under conditions of the Standard Cognis Quality Control Test for LIX® Oxime Reagents at 25° C. under the same condition as described in Example 2A. The extraction kinetics and strip kinetics at 60 sec., Cu/Fe selectivity and Net Cu Transfer were determined for each mixture. The results are summarized in Table 7.
TABLE 7
Summary of Kinetics, Cu/Fe Selectivity and Net
Cu Transfer at Different 3-MNSAO:3-MHNAO ratios
Solution (3- Extraction Strip Net
MNSAO:3- Kinetics % Kinetics % Cu/Fe Transfer
MHNAO) @ 60 Sec @ 60 Sec Selectivity gpl Cu
 0:100 75 81 2215 3.90
23:77 82 94 4010 3.56
29:71 96 100 47420 3.45
36:64 100 100 49130 3.31
42:58 100 100 24785 3.10
47:53 100 99 51570 3.00
60:40 100 100 16920 2.64
100:0  100 100 18397 1.51
Based on the data in Table 7, the extraction kinetics are marginal at 25° C. for the 23:77 blend, while net transfer is quite high. For the 60:40 blend, the extraction and strip kinetics are excellent, but the net transfer begins to fall off.
Example 4
The hydrolytic stability of the 5-nonylsalicylaldoxime (NSAO), 5-dodecylsalicylaldoxime (DSAO), 2-hydroxy-5-nonylacetophenone oxime (HNAO), 3-MHNAO and 3-MNSAO were determined by preparing solutions of the reagents (about 0.175 M) in Shellsol® D70. These solutions were then contacted with an aqueous solution containing 30 gpl of copper as copper sulfate and 180 gpl sulfuric acid in deionized water. The solutions were stirred in a 3 neck round bottom flask fitted with a condenser, paddle stirrer, and a thermometer. The condenser was fitted with a polyurethane foam plug to minimize evaporation. The flask was immersed in an oil bath heated to 45° C. to maintain constant temperature. The aqueous was periodically replaced, initially on a weekly basis and finally on a monthly basis. Samples were periodically removed at weekly intervals during the first month, and then monthly thereafter. The samples were max loaded with copper under the conditions of the Standard Cognis Quality Control Test for LIX® Oxime Reagents at 25° C. The residual oxime content was calculated based on the copper max load values assuming a complex consisting of two oximes per copper. The results were plotted against time and a point at which half the oxime remained was determined by extrapolation. This was termed the half life of the oxime. The results are summarized in Table 8.
TABLE 8
Summary of Reagent Half Lives
Reagents Half Life (Days)
NSAO 90
DSAO 167
HNAO 325
3-MHNAO 2100
3-MNSAO 725
3-MNSAO is approximately 7 times more hydrolytically stable than NSAO and 3-MHNAO is 6.5 times more hydrolytically stable than HNAO.
Example 5
Solutions of 3-methyl aldoxime, 3-methyl-ketoxime and a blend using 28.8% 3-methyl aldoxime and 71.2% 3-methyl-ketoxime were made up such that they were roughly 0.11M total oxime in Conosol® 170ES diluent. Solutions of various metals were made up approximately 0.05M in DI water and the pH adjusted to a pH of 1.0 with dilute sulfuric acid. Individually each organic was contacted in a baffled beaker using a magnetic stir bar for agitation at an O:A of 1:1 with an aqueous solution containing one metal. A pH probe was used to monitor the pH of the aqueous continuous emulsion. Once the pH was stable indicating that the system was at equilibrium, a sample of emulsion was drawn, the phases were allowed to separate and samples of the organic and aqueous phases were saved separately for analysis by atomic absorption spectroscopy. Once a sample was drawn the pH was increased by adding a portion of an aqueous ammonium hydroxide solution, the mixture was allowed to equilibrate and another emulsion sample was drawn and labeled with the pH for organic and aqueous analysis. The pH was adjusted slowly drawing samples at intervals up to a pH of 7. The results are reported below in Table 9 with percentage of metal extracted by the reagent with respect to pH for each metal and reagent.
TABLE 9
Metal extraction over a pH range for various reagent blends
pH
1 2 3 4 5 6 7
28.8% 3-MNSAO and 71.2% 3-MHNAO
Percent Cu 45% 90% 100% 100% 100% 100% 100%
Metal Fe
0% 5%
Extracted Ni 0% 0% 0% 50% 80% 95% 95%
from Co 0% 0% 0% 0% 5% 20% 70%
Aqueous
3-MNSAO
Percent Cu 85% 95% 100% 100% 100% 100% 100%
Metal Fe
0% 30%
Extracted Ni 0% 0% 0% 90%
from Co 0% 0% 0% 0% 40% 95% 100%
Aqueous Mo 65% 70% 70%
3-MHNAO
Percent Cu
50% 90% 100% 100% 100% 100% 100%
Metal Fe
0% 5%
Extracted Ni 0% 0% 0% 40% 85% 90% 95%
from Co 0% 0% 0% 0% 5% 45%
Aqueous Mo 65% 65% 65% 35% 30%
Example 6
Solutions (0.52 M) of LIX®8180, methyl aldoxime (3-MNSAO) and methyl ketoxime (3-MHNAO) in Conosol® 170ES, a typical hydrocarbon diluent from Conoco Phillips for solvent extraction applications, were prepared. The organics were tested using the Blue Line Technical Bulletin Cognis Quality Control Test For LIX® Nickel Oxime Reagents. The extraction and ammonia loading portion of this experiment was repeated for the LIX®8180 and 3-MHNAO replacing the Standard Nickel Extraction Aqueous Phase with a solution that contains 15±0.1 g/l Cu+2 (as sulfate), 32.5 g/l NH3 and 25 g/l (NH4)2SO4 drawing samples at 30, 60, 90 and 300 seconds. Extraction of the metals from ammonia aqueous solutions, the extraction of ammonia from loaded organic and the stripping of nickel were recorded. Molarity of ammonia loaded on the organic phase is reported after filtering to remove the entrained aqueous, results of extraction are reported as percentage extracted from the aqueous extraction solution, results of stripping are reported as the percentage of metal removed from the loaded organic. The results are summarized in Table 10.
TABLE 10
Nickel and Copper
Nickel Test Copper Test
3- 3- 3-
LIX ® 8180 MNSAO MHNAO LIX ® 8180 MHNAO
E30 93.93% 78.33% 64.80% E30 94.73% 96.07%
E300 94.60% 94.33% 90.40% E60 94.40% 95.80%
S10 99.42% 15.83% 27.43% E90 94.67% 95.93%
(600 sec)
S20 99.92% 35.12% 53.17% E300 94.47% 96.07%
(1200 sec)
Ammonia loading
M of 0.00804 0.00274 0.00355 M of NH3 0.00947 0.00235
NH3
It can be seen from the results above that 3-MNSAO and 3-MHNAO load significantly less ammonia than LIX® 8180 which is based on the standard ketoxime which is currently the reagent of choice for extraction of nickel and copper from ammonia.
Example 7
Solutions of 3-methyl-ketoxime and a blend consisting of 28.8% 3-methyl aldoxime and 71.2% 3-methyl-ketoxime were made up such that they were roughly 0.175 M oxime in Conosol® 170ES diluent. Both solutions were further spiked to give concentrations of 0.0028M, 0.014M, or 0.028M 5,8-diethyl-7-hydroxydodecan-6-oxime (LIX® 63 Oxime) and a blank to give a total of eight solutions. These were contacted with a synthetic aqueous PLS (6 g/L Cu, 3 g/L Fe with a pH of 2 in DI water) following the standard QC test with some modifications, it was scaled down to 100 ml of each solution in a 250 ml baffled jacketed beaker at 25° C. Kinetic samples were drawn at 30, 60, 90, and 300 sec and saved for copper analysis by atomic absorption spectroscopy. The remaining organic from the previous step was contacted at an O:A 1:1 with a synthetic electrolyte aqueous solution (35 g/L Cu and 160 g/L free sulfuric acid in DI water). Kinetic samples were drawn at 30, 60, 90, and 300 sec and saved for copper analysis by atomic absorption spectroscopy. The kinetic data is summarized in Table 11.
TABLE 11
Summary of metallurgical data for LIX ®63 copper experiment
Percent copper Percent copper Iron
extraction stripped loaded
Cu @ Cu @ Cu @ Cu @ E30
30 sec 60 sec 30 sec 60 sec Cu/Fe
3MHNAO 46.0% 59.6% 24.6% 31.1% 589
3MHNAO & 0.0028M 48.2% 63.3% 33.8% 37.8% 1558
LIX ® 63 Oxime
3MHNAO & 0.014M 61.8% 79.4% 29.4% 34.0% 2191
LIX ®63 Oxime
3MHNAO & 0.028M 69.7% 81.9% 18.2% 25.1% 1814
LIX ®63 Oxime
3M Blend 64.8% 75.6% 52.2% 64.6% 633
3M Blend & 0.0028M 65.1% 81.1% 42.6% 48.1% 1479
LIX ®63 Oxime
3M Blend & 0.014M 70.4% 79.9% 42.5% 50.3% 1343
LIX ®63 Oxime
3M Blend & 0.028M 77.9% 88.3% 44.2% 58.3% 1525
LIX ®63 Oxime
Addition of the 5,8-diethyl-7-hydroxydodecan-6-oxime resulted in faster extraction kinetics with no significant improvement in stripping kinetics.
Example 8
Solutions containing 3-methyl aldoxime, 3-methyl ketoxime and a blend consisting of 28.8% 3-methyl aldoxime and 71.2% 3-methyl ketoxime were made up such that they were roughly 0.175 M in total oxime and contained either 0.0007 or 0.0149 M of a thermodynamic modifier. The hydrocarbon diluent was Conosol® 170ES diluent. The thermodynamic modifiers were di-n-butyl adipate (DBA), iso-tridecanol (TDA) and 2,2,4-trimethyl-1,3-pentanediol di-isobutyrate (TXIB). These solutions were then contacted with a synthetic aqueous PLS (6 g/L Cu, 3 g/L Fe with a pH of 2 in DI water) to demonstrate loading of the metal and then contacted with a synthetic electrolyte aqueous solution (35 g/L Cu and 160 g/L free sulfuric acid in DI water) to remove the metal. These contacts were done at an O:A of 2:1 for extraction 20 ml to 10 ml and 1:1 for stripping 10 ml to 10 ml on an autoshaker with 30 ml seperatory funnels. The loaded and stripped organic samples were analyzed for copper and iron by atomic absorption spectrometry. The copper and iron values of the resultant solutions of each contact are reported in Table 12.
TABLE 12
Thermodynamic Modifier Blend Data
Blend of 3-MNSAO and 3-
3-MNSAO 3-MHNAO MHNAO
Loaded Stripped Loaded Loaded Stripped Loaded Loaded Stripped Loaded
Thermo- Organic Organic Organic Organic Organic Organic Organic Organic Organic
dynamic Copper Copper Iron Copper Copper Iron Copper Copper Iron
Modifier (gpl) (gpl) (gpl) (gpl) (gpl) (gpl) (gpl) (gpl) (gpl)
DBA .0007 2.776 3.182 0.0074 0.975 0.535 0.0048 1.875 1.086 0.0042
DBA .0149 2.393 1.728 0.0032 0.707 0.304 0.0033 1.364 0.493 0.0031
TDA .0007 2.886 3.199 0.0071 0.96 0.387 0.005 1.934 1.078 0.0042
TDA .0131 2.604 1.857 0.0027 0.752 0.168 0.0039 1.579 0.498 0.0033
TXIB .0008 2.896 3.359 0.0082 0.91 0.517 0.005 1.593 1.159 0.006
TXIB .0169 2.492 2.137 0.0045 0.774 0.346 0.004 1.269 0.628 0.0049
No 2.919 3.694 0.0103 1.003 0.572 0.0055 1.854 1.306 0.006
additive
No 2.925 3.694 0.0105 0.961 0.526 0.0053 1.873 1.333 0.006
additive
The data indicates that addition of thermodynamic modifiers can be used to adjust the stripping behavior of these reagents.
Example 9
The Cognis Quality Control Test for LIX® Nickel Oxime Reagents was modified to reduce the volume of organic solution required. The test involves extraction of nickel from an ammoniacal solution followed by stripping with a sulfuric acid solution. Three organic solutions were prepared to contain 0.5M 3-methyl aldoxime and varying levels (0.0028M, 0.028M, and 0.14M) of 5,8-diethyl-7-hydroxydodecan-6-oxime (LIX®63 Oxime) in Conosol® 170 ES diluent. The starting organic volume was scaled down to 100 ml and all other volumes scaled down proportionally. The mixing took place in a 250 ml baffled jacked beaker with a 3.175 cm diameter QC impellor at 1750 RPM. Samples were drawn for extraction at 30, 60, 90, and 300 seconds and for strip at 1, 5, 10, and 20 min. The percent of stripping was calculated as the difference between the nickel concentration at 300 sec of extraction and the nickel concentration at a given stripping time divided by the nickel concentration at 300 sec of extraction times 100. All other experimental parameters were held the same as the standard procedure. The results are summarized in Table 13.
TABLE 13
Effect of 5,8-diethyl-7-hydroxydodecan-6-oxime concentration on
kinetics of extraction of nickel from ammonia and stripping of
nickel with acid from 3-methyl aldoxime
0.0028M 0.028M 0.14M
LIX ® 63 LIX ® 63 LIX ® 63
Oxime Oxime Oxime
g/L g/L g/L
Ni % of final Ni % of final Ni % of final
Extrac- 30 2.11 87.63% 1.65 84.46% 2.05 89.32%
tion
60 3.08 94.65% 2.96 93.97% 3.22 98.01%
(sec) 90 3.54 97.93% 3.56 98.26% 3.45 99.73%
300 3.82 100.00% 3.80 100.00% 3.49 100.00%
Strip
1 3.26 4.08% 2.93 6.30% 1.25 16.58%
(min) 5 2.41 10.23% 0.64 22.91% 8.07 40.21%
10 1.94 13.64% 7.97 42.20% 4.92 63.56%
20 0.60 23.33% 5.57 59.61% 1.53 88.63%
The addition of 5,8-diethyl-7-hydroxydodecan-6-oxime does not have an appreciable effect of the kinetics of extraction of nickel from ammoniacal solutions by 3-methyl aldoxime. Extraction from ammoniacal solutions is typically very fast in any case and any incremental changes would be hard to detect. In the case of stripping, however; addition of the 5,8-diethyl-7-hydroxydodecan-6-oxime significantly improves stripping kinetics.
Although the invention herein has been described with reference to particular embodiments, it is to be understood that these embodiments are merely illustrative of the principles and applications of the present invention. It will be apparent to those skilled in the art that various modifications and variations can be made to the method and apparatus of the present invention without departing from the spirit and scope of the invention. Thus, it is intended that the present invention include modifications and variations that are within the scope of the appended claims and their equivalents.

Claims (24)

What is claimed is:
1. A reagent composition comprising a mixture of at least two oximes, a first oxime having a structure represented by:
Figure US08475748-20130702-C00040
wherein R5 is a C1-22 linear or branched alkyl or a C1-3 linear or branched alkoxy group; R1 is a C1-22 linear or branched alkyl or alkenyl group, a C6 aryl group or a C7-22 aralkyl group; R2-R4 are independently hydrogen, halogen, a linear or branched C6-12 alkyl group, OR6 wherein R6 is a C1-22 linear or branched alkyl group, a C2-22 linear or branched alkenyl group, a C6 aryl group, or a C7-22 aralkyl group; and
a second oxime having a structure represented by:
Figure US08475748-20130702-C00041
wherein R5 is a C1-22 linear or branched alkyl or a C1-3 linear or branched alkoxy group; R1 is hydrogen; R2-R4 are each independently hydrogen, halogen, a linear or branched C6-12 alkyl group, OR6 wherein R6 is a C1-22 linear or branched alkyl group, a C2-22 linear or branched alkenyl group, a C6 aryl group, or a C7-22 aralkyl group.
2. The reagent composition of claim 1, wherein R3 is a C8-12 linear or branched alkyl group for at least one of the oximes.
3. The reagent composition of claim 2, wherein R3 is dodecyl for at least one of the oximes.
4. The reagent composition of claim 2, wherein R3 is nonyl for at least one of the oximes.
5. The reagent composition of claim 1, wherein R5 is a C1-3 linear or branched alkyl or alkoxy group for at least one of the oximes.
6. The reagent composition of claim 5, wherein R5 is methyl for at least one of the oximes.
7. The reagent composition of claim 1, wherein R1 is CH3 for the first oxime.
8. The reagent composition of claim 7, wherein the reagent composition comprises:
a. a 3-methyl aldoxime having a structure represented by:
Figure US08475748-20130702-C00042
 and
b. a 3-methyl ketoxime having a structure represented by:
Figure US08475748-20130702-C00043
9. The reagent composition of claim 1, wherein the first oxime is a 3-methyl ketoxime and the second oxime is a 3-methyl aldoxime, and the reagent composition comprises a molar ratio of ketoxime to aldoxime having a range of about 85:15 to about 25:75.
10. The reagent composition of claim 1, further comprising thermodynamic modifiers.
11. The reagent composition of claim 1, further comprising kinetic modifiers.
12. The reagent composition of claim 11, wherein the kinetic modifier comprises 5,8-diethyl-7-hydroxydodecan-6-oxime.
13. The reagent composition of claim 1 further comprising a water immiscible organic solvent.
14. The reagent composition of claim 13, wherein the first and second oximes have a combined concentration of about 1.5M to about 2.6M.
15. The reagent composition of claim 14, wherein the first and second oximes have a concentration of about 0.018M to about 1.1M.
16. The reagent composition of claim 1, further comprising one or more of 5-nonylsalicylaldoxime, 5-dodecylsalicylaldoxime, 5-nonyl-2-hydroxyacetophenonoxime and 5-dodecyl-2-hydroxyacetophenonoxime.
17. A method for the recovery of a metal from a metal-containing aqueous solution containing metal values, the method comprising:
contacting the metal-containing aqueous solution with an organic phase comprising a water immiscible solvent and the reagent composition of claim 1 to extract at least a portion of the metal values into the organic phase to provide a resultant metal-pregnant organic phase and a resultant metal-barren aqueous phase;
separating the resultant metal-pregnant organic phase from the resultant metal-barren aqueous phase; and
recovering metal values from the metal-pregnant organic phase.
18. The method of claim 17, wherein the recovery of metal occurs at a temperature ranging from about 15° C. to about 60° C.
19. The method of claim 18, wherein the recovery of metal occurs at a temperature ranging from about 25° C. to about 50° C.
20. The method of claim 17, wherein the recovery of metal occurs at a temperature above about 35° C.
21. The method of claim 20, wherein the recovery of metal occurs at a temperature above about 50° C.
22. The method of claim 17, wherein the metal is selected from the group consisting of copper, uranium, molybdenum, nickel, zinc, cobalt and combinations thereof.
23. The method of claim 17, wherein the reagent composition comprises a mixture of a 3-methyl ketoxime having a structure represented by:
Figure US08475748-20130702-C00044
and a 3-methyl aldoxime having a structure represented by:
Figure US08475748-20130702-C00045
24. The method of claim 17, wherein the reagent composition further comprises one or more of 5-nonylsalicylaldoxime, 5-dodecylsalicylaldoxime, 5-nonyl-2-hydroxyacetophenonoxime and 5-dodecyl-2-hydroxyacetophenonoxime.
US13/401,921 2011-02-25 2012-02-22 Metal solvent extraction reagents and use thereof Active US8475748B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US13/401,921 US8475748B2 (en) 2011-02-25 2012-02-22 Metal solvent extraction reagents and use thereof

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US201161446878P 2011-02-25 2011-02-25
US13/401,921 US8475748B2 (en) 2011-02-25 2012-02-22 Metal solvent extraction reagents and use thereof

Publications (2)

Publication Number Publication Date
US20120219474A1 US20120219474A1 (en) 2012-08-30
US8475748B2 true US8475748B2 (en) 2013-07-02

Family

ID=46719104

Family Applications (6)

Application Number Title Priority Date Filing Date
US13/401,939 Active US8460623B2 (en) 2011-02-25 2012-02-22 Methods of metal extraction using oximes
US13/401,921 Active US8475748B2 (en) 2011-02-25 2012-02-22 Metal solvent extraction reagents and use thereof
US13/401,930 Active US8529850B2 (en) 2011-02-25 2012-02-22 Compositions and methods of using a ketoxime in a metal solvent
US13/401,957 Active US8435466B2 (en) 2011-02-25 2012-02-22 Methods of metal extraction from ammoniacal solutions using oximes
US13/890,637 Active US8945490B2 (en) 2011-02-25 2013-05-09 Methods of metal extraction using oximes
US13/938,427 Active US8986633B2 (en) 2011-02-25 2013-07-10 Compositions and methods of using a ketoxime in a metal solvent extraction reagent

Family Applications Before (1)

Application Number Title Priority Date Filing Date
US13/401,939 Active US8460623B2 (en) 2011-02-25 2012-02-22 Methods of metal extraction using oximes

Family Applications After (4)

Application Number Title Priority Date Filing Date
US13/401,930 Active US8529850B2 (en) 2011-02-25 2012-02-22 Compositions and methods of using a ketoxime in a metal solvent
US13/401,957 Active US8435466B2 (en) 2011-02-25 2012-02-22 Methods of metal extraction from ammoniacal solutions using oximes
US13/890,637 Active US8945490B2 (en) 2011-02-25 2013-05-09 Methods of metal extraction using oximes
US13/938,427 Active US8986633B2 (en) 2011-02-25 2013-07-10 Compositions and methods of using a ketoxime in a metal solvent extraction reagent

Country Status (13)

Country Link
US (6) US8460623B2 (en)
EP (2) EP3272735A1 (en)
CN (3) CN103492362B (en)
AP (1) AP3673A (en)
AU (2) AU2012222162B2 (en)
BR (1) BR112013021784B1 (en)
CA (1) CA2828257A1 (en)
CL (5) CL2013002461A1 (en)
EA (1) EA024320B1 (en)
ES (1) ES2653620T3 (en)
IN (1) IN2013CN06872A (en)
PE (1) PE20141013A1 (en)
WO (4) WO2012116311A2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018217083A1 (en) 2017-05-22 2018-11-29 Elemetal Holding B.V. Process for metal recovery by ammonia leaching and solvent extraction with gas desorption and absorption
WO2020077026A1 (en) * 2018-10-12 2020-04-16 Basf Se Reagent compositions for metal solvent extraction and methods of preparation and use thereof
WO2020190822A1 (en) * 2019-03-15 2020-09-24 Basf Se Methods of reducing nitration of extractants in solvent extraction systems

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8460623B2 (en) * 2011-02-25 2013-06-11 Cognis Ip Management Gmbh Methods of metal extraction using oximes
US9548295B2 (en) * 2012-09-25 2017-01-17 Infineon Technologies Ag System and method for an integrated circuit having transistor segments
CN104465486B (en) * 2013-09-18 2017-12-29 中芯国际集成电路制造(上海)有限公司 The forming method of semiconductor devices
TWI632696B (en) 2013-10-11 2018-08-11 王子控股股份有限公司 Method for producing substrate for semiconductor light emitting elements, method for manufacturing semiconductor light emitting element, ?substrate for semiconductor light emitting elements, and semiconductor light emitting element
CN106749162A (en) * 2016-12-09 2017-05-31 南华大学 A kind of modified crown ether material and its synthetic method for adsorption uranium
CN113512644B (en) * 2021-09-14 2021-11-26 赛恩斯环保股份有限公司 Method for separating rhenium from ammonium molybdate solution

Citations (33)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3284501A (en) 1965-07-02 1966-11-08 Gen Mills Inc alpha-hydroxy oximes
US3428449A (en) 1965-02-15 1969-02-18 Gen Mills Inc Extraction of copper from acidic liquors with a phenolic oxime
US4507268A (en) 1982-01-25 1985-03-26 Henkel Corporation Solvent extraction
US4544532A (en) 1982-01-25 1985-10-01 Henkel Corporation Solvent extraction
US4563256A (en) 1984-12-31 1986-01-07 Henkel Corporation Solvent extraction process for recovery of zinc
US4957714A (en) 1988-04-28 1990-09-18 Henkel Corporation Solvent extraction process
US4978788A (en) 1985-05-16 1990-12-18 Imperial Chemical Industries Plc Composition and use of the composition for the extraction of metals from aqueous solution
US5176843A (en) 1985-05-16 1993-01-05 Imperial Chemical Industries Plc Composition and use of the composition for the extraction of metals from aqueous solution
WO1993004208A1 (en) 1991-08-14 1993-03-04 Henkel Corporation Copper recovery process
US5231336A (en) 1992-01-03 1993-07-27 Harman International Industries, Inc. Actuator for active vibration control
US5470552A (en) 1988-06-14 1995-11-28 Henkel Corporation Nickel extraction process
WO1999010546A1 (en) 1997-08-28 1999-03-04 Avecia Inc. Process for the extraction of metals from ammoniacal solution
US5976218A (en) 1996-05-10 1999-11-02 Henkel Corporation Process for the recovery of nickel
US5993757A (en) 1997-03-03 1999-11-30 Henkel Corporation Reoximation of metal extraction circuit organics
US6113804A (en) 1985-05-16 2000-09-05 Imperial Chemical Industries Plc Composition and use of the composition for the extraction of metals from aqueous solution
US6156280A (en) 1999-02-24 2000-12-05 Henkel Corporation Process for removing manganese from organic solutions of oximes and nickel ore treatment process
US6177055B1 (en) 1998-09-14 2001-01-23 Henkel Corporation Process for extracting and recovering copper
US6210647B1 (en) 1996-12-23 2001-04-03 Henkel Corporation Process of recovery of metals from aqueous ammoniacal solutions employing an ammonia antagonist having only hydrogen bond acceptor properties
US6231784B1 (en) 1995-02-16 2001-05-15 Henkel Corporation Water insoluble composition of an aldoxime extractant and an equilibrium modifier
US6261526B1 (en) 1999-08-12 2001-07-17 Henkel Corporation Nickel recovery process and compositions for use therein
US20010029811A1 (en) 2000-02-18 2001-10-18 Olafson Stephen M. Process for recovery of metals from metal-containing ores
US20010055553A1 (en) 1999-08-12 2001-12-27 Kang Sang I. Method for separating copper from iron
US6432167B1 (en) 1999-07-08 2002-08-13 Cognis Corporation Processes for the recovery of copper from aqueous solutions containing nitrate ions
US6569391B1 (en) 1998-02-17 2003-05-27 Ingesol Ltda. Heap leaching copper ore using sodium nitrate
US6596053B2 (en) 1999-07-08 2003-07-22 Cognis Corporation Processes for the recovery of copper from aqueous solutions containing nitrate ions
US6702872B1 (en) 1999-07-08 2004-03-09 Cognis Corporation Processes for the recovery of copper from aqueous solutions containing nitrate ions
US6733688B1 (en) 1999-06-24 2004-05-11 Cytec Technology Corp. Composition and process for the solvent extraction of metals using aldoxime or ketoxime extractants
US20060222580A1 (en) * 2005-03-29 2006-10-05 Tinkler Owen S Modification of copper/iron selectivity in copper solvent extraction systems
US7309474B2 (en) 2003-04-17 2007-12-18 Cytec Technology Corp. Composition and process
US20080035893A1 (en) * 2006-08-11 2008-02-14 Virnig Michael J Highly-conductive copper extractant formulations
US20080175772A1 (en) 2006-12-21 2008-07-24 Michael Virnig More efficient ether modifiers for copper extractant formulations
WO2010034688A2 (en) 2008-09-25 2010-04-01 Basf Se Use of polyether-based and vinyl monomer-based copolymers as binders for dosing forms comprising solid active ingredients
US20100092357A1 (en) 2008-10-14 2010-04-15 John Campbell Metal extractant reagents having increased resistance to degradation

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB1322532A (en) * 1970-05-21 1973-07-04 Shell Int Research Hydroxy-oximes and their use in the extraction of metal values
US4020106A (en) * 1972-03-21 1977-04-26 Imperial Chemical Industries Limited Metal extraction process
US4026988A (en) * 1975-12-22 1977-05-31 Kennecott Copper Corporation Selective extraction of molybdenum from acidic leach liquors
BG47552A1 (en) * 1987-07-28 1990-08-15 Inst Inzh Khim Method for extracting of metals from chloride solutions
CN1788096A (en) * 2003-05-15 2006-06-14 科宁公司 Method for extracting copper from leach solutions at elevated temperatures
DE102007028350A1 (en) 2007-06-20 2008-12-24 Knf Flodos Ag pump mounting
WO2010000020A1 (en) 2008-06-30 2010-01-07 Cathrx Ltd A catheter
US8460623B2 (en) * 2011-02-25 2013-06-11 Cognis Ip Management Gmbh Methods of metal extraction using oximes

Patent Citations (37)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3428449A (en) 1965-02-15 1969-02-18 Gen Mills Inc Extraction of copper from acidic liquors with a phenolic oxime
US3284501A (en) 1965-07-02 1966-11-08 Gen Mills Inc alpha-hydroxy oximes
US4507268A (en) 1982-01-25 1985-03-26 Henkel Corporation Solvent extraction
US4544532A (en) 1982-01-25 1985-10-01 Henkel Corporation Solvent extraction
US4563256A (en) 1984-12-31 1986-01-07 Henkel Corporation Solvent extraction process for recovery of zinc
US6113804A (en) 1985-05-16 2000-09-05 Imperial Chemical Industries Plc Composition and use of the composition for the extraction of metals from aqueous solution
US4978788A (en) 1985-05-16 1990-12-18 Imperial Chemical Industries Plc Composition and use of the composition for the extraction of metals from aqueous solution
US5176843A (en) 1985-05-16 1993-01-05 Imperial Chemical Industries Plc Composition and use of the composition for the extraction of metals from aqueous solution
US4957714A (en) 1988-04-28 1990-09-18 Henkel Corporation Solvent extraction process
US5470552A (en) 1988-06-14 1995-11-28 Henkel Corporation Nickel extraction process
WO1993004208A1 (en) 1991-08-14 1993-03-04 Henkel Corporation Copper recovery process
US5231336A (en) 1992-01-03 1993-07-27 Harman International Industries, Inc. Actuator for active vibration control
US6231784B1 (en) 1995-02-16 2001-05-15 Henkel Corporation Water insoluble composition of an aldoxime extractant and an equilibrium modifier
US5976218A (en) 1996-05-10 1999-11-02 Henkel Corporation Process for the recovery of nickel
US6210647B1 (en) 1996-12-23 2001-04-03 Henkel Corporation Process of recovery of metals from aqueous ammoniacal solutions employing an ammonia antagonist having only hydrogen bond acceptor properties
US5993757A (en) 1997-03-03 1999-11-30 Henkel Corporation Reoximation of metal extraction circuit organics
WO1999010546A1 (en) 1997-08-28 1999-03-04 Avecia Inc. Process for the extraction of metals from ammoniacal solution
US6569391B1 (en) 1998-02-17 2003-05-27 Ingesol Ltda. Heap leaching copper ore using sodium nitrate
US6177055B1 (en) 1998-09-14 2001-01-23 Henkel Corporation Process for extracting and recovering copper
US6156280A (en) 1999-02-24 2000-12-05 Henkel Corporation Process for removing manganese from organic solutions of oximes and nickel ore treatment process
US6733688B1 (en) 1999-06-24 2004-05-11 Cytec Technology Corp. Composition and process for the solvent extraction of metals using aldoxime or ketoxime extractants
US6596053B2 (en) 1999-07-08 2003-07-22 Cognis Corporation Processes for the recovery of copper from aqueous solutions containing nitrate ions
US6702872B1 (en) 1999-07-08 2004-03-09 Cognis Corporation Processes for the recovery of copper from aqueous solutions containing nitrate ions
US6432167B1 (en) 1999-07-08 2002-08-13 Cognis Corporation Processes for the recovery of copper from aqueous solutions containing nitrate ions
US6632410B2 (en) 1999-08-12 2003-10-14 Cognis Corporation Solvent extraction process
US20010055553A1 (en) 1999-08-12 2001-12-27 Kang Sang I. Method for separating copper from iron
US6261526B1 (en) 1999-08-12 2001-07-17 Henkel Corporation Nickel recovery process and compositions for use therein
US20010029811A1 (en) 2000-02-18 2001-10-18 Olafson Stephen M. Process for recovery of metals from metal-containing ores
US7309474B2 (en) 2003-04-17 2007-12-18 Cytec Technology Corp. Composition and process
US20060222580A1 (en) * 2005-03-29 2006-10-05 Tinkler Owen S Modification of copper/iron selectivity in copper solvent extraction systems
US20080035893A1 (en) * 2006-08-11 2008-02-14 Virnig Michael J Highly-conductive copper extractant formulations
US7585475B2 (en) 2006-08-11 2009-09-08 Cognis Ip Management Gmbh Highly-conductive copper extractant formulations
US20080175772A1 (en) 2006-12-21 2008-07-24 Michael Virnig More efficient ether modifiers for copper extractant formulations
US7993613B2 (en) 2006-12-21 2011-08-09 Cognis Ip Management Gmbh More efficient ether modifiers for copper extractant formulations
WO2010034688A2 (en) 2008-09-25 2010-04-01 Basf Se Use of polyether-based and vinyl monomer-based copolymers as binders for dosing forms comprising solid active ingredients
US20110178183A1 (en) 2008-09-25 2011-07-21 Meyer-Boehm Kathrin Use Of Polyether-Based And Vinyl Monomer-Based Copolymers As Binders For Dosing Forms Comprising Solid Active Ingredients
US20100092357A1 (en) 2008-10-14 2010-04-15 John Campbell Metal extractant reagents having increased resistance to degradation

Non-Patent Citations (12)

* Cited by examiner, † Cited by third party
Title
"Non-Final Office Action in U.S. Appl. No. 13/401,930", dated Nov. 19, 2012 10 pgs.
"Non-Final Office Action in U.S. Appl. No. 13/401,939", dated Oct. 19, 2012 , 7 pgs.
"Non-Final Office Action in U.S. Appl. No. 13/401,957", Sep. 12, 2012 , 9 pgs.
"Solvent Extraction Reagents and Applications", MCT Redbook Cognis Group 2007 , 80 pages.
Dixon, David G. et al., "Galvanox Treatment of Copper Concentrates", ALTA 2007 , 18 pages.
Dreisinger, David , "New Developments in Hydromeallurgical Treatment of Copper Concentrates", Engineering and Mining Journal May 1, 2004 , 28 pages.
Final Office Action in U.S. Appl. No. 13/401,930 dated Mar. 12, 2013, 9 pages.
PCT International Search Report in PCT/US2012/026549, mailed Dec. 12, 2012, 4 pgs.
PCT International Search Report in PCT/US2012/026558, mailed Nov. 28, 2012, 4 pgs.
PCT International Search Report in PCT/US2012/026584, mailed Sep. 20, 2012, 4 pgs.
Swanson, Ronald R. et al., "Liquid Ion Exchange: Organic Molecules for Hydrometallurgy", International Solvent Exchange Conference 1977.
Virnig, Michael J. et al., "Effects of nitrate on copper SX circuits: A case study.", Proceedings Copper, vol. VI-Hydrometallurgy of Copper (Book1) 2003 , 15 pages.

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018217083A1 (en) 2017-05-22 2018-11-29 Elemetal Holding B.V. Process for metal recovery by ammonia leaching and solvent extraction with gas desorption and absorption
WO2020077026A1 (en) * 2018-10-12 2020-04-16 Basf Se Reagent compositions for metal solvent extraction and methods of preparation and use thereof
WO2020190822A1 (en) * 2019-03-15 2020-09-24 Basf Se Methods of reducing nitration of extractants in solvent extraction systems

Also Published As

Publication number Publication date
US20130302225A1 (en) 2013-11-14
AU2012222162A1 (en) 2013-09-19
US20120219476A1 (en) 2012-08-30
CL2013002461A1 (en) 2014-04-25
WO2012150984A2 (en) 2012-11-08
CN108048653B (en) 2020-03-03
US20130247718A1 (en) 2013-09-26
BR112013021784A2 (en) 2017-03-28
CN105506283B (en) 2018-02-06
CN105506283A (en) 2016-04-20
AU2016225838A1 (en) 2016-09-29
CL2016002556A1 (en) 2017-04-21
US8945490B2 (en) 2015-02-03
WO2012116305A3 (en) 2013-03-28
WO2012116305A2 (en) 2012-08-30
WO2012116311A2 (en) 2012-08-30
US8986633B2 (en) 2015-03-24
EP2678310A2 (en) 2014-01-01
US20120219475A1 (en) 2012-08-30
AP2013007126A0 (en) 2013-09-30
WO2012116292A3 (en) 2013-02-28
US20120219474A1 (en) 2012-08-30
WO2012116292A2 (en) 2012-08-30
EA024320B1 (en) 2016-09-30
CN108048653A (en) 2018-05-18
ES2653620T3 (en) 2018-02-08
CA2828257A1 (en) 2012-08-30
US20120219478A1 (en) 2012-08-30
CL2016002558A1 (en) 2017-04-21
IN2013CN06872A (en) 2015-08-14
PE20141013A1 (en) 2014-09-12
BR112013021784B1 (en) 2019-11-26
WO2012116311A3 (en) 2012-11-08
EA201300945A1 (en) 2014-03-31
AU2012222162B2 (en) 2016-09-08
US8460623B2 (en) 2013-06-11
US8529850B2 (en) 2013-09-10
CN103492362B (en) 2016-03-09
CN103492362A (en) 2014-01-01
CL2016002559A1 (en) 2017-04-21
EP2678310B1 (en) 2017-09-27
EP2678310A4 (en) 2015-12-16
AU2016225838B2 (en) 2018-08-09
US8435466B2 (en) 2013-05-07
CL2016002557A1 (en) 2017-04-21
EP3272735A1 (en) 2018-01-24
WO2012150984A3 (en) 2013-02-28
AP3673A (en) 2016-04-15

Similar Documents

Publication Publication Date Title
US8475748B2 (en) Metal solvent extraction reagents and use thereof
US8609063B2 (en) Metal extractant reagents having increased resistance to degradation
AU760156B2 (en) Nickel ore treatment process
US20210381080A1 (en) Reagent compositions for metal solvent extraction and methods of preparation and use thereof
WO2001014604A1 (en) Use of anti-degradation agents for oxime extractants in the solvent extraction of metals

Legal Events

Date Code Title Description
AS Assignment

Owner name: COGNIS IP MANAGEMENT GMBH, GERMANY

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:VIRNIG, MICHAEL;BENDER, JACK;EMMERICH, NATHAN C.;REEL/FRAME:028294/0906

Effective date: 20120503

STCF Information on status: patent grant

Free format text: PATENTED CASE

FPAY Fee payment

Year of fee payment: 4

MAFP Maintenance fee payment

Free format text: PAYMENT OF MAINTENANCE FEE, 8TH YEAR, LARGE ENTITY (ORIGINAL EVENT CODE: M1552); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY

Year of fee payment: 8