US8343692B2 - Exposure apparatus inspection mask and exposure apparatus inspection method - Google Patents

Exposure apparatus inspection mask and exposure apparatus inspection method Download PDF

Info

Publication number
US8343692B2
US8343692B2 US12/886,157 US88615710A US8343692B2 US 8343692 B2 US8343692 B2 US 8343692B2 US 88615710 A US88615710 A US 88615710A US 8343692 B2 US8343692 B2 US 8343692B2
Authority
US
United States
Prior art keywords
layers
exposure light
absorption
reflection
reflectance
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active, expires
Application number
US12/886,157
Other versions
US20110300472A1 (en
Inventor
Nobuhiro Komine
Kazuya Fukuhara
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kioxia Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Assigned to KABUSHIKI KAISHA TOSHIBA reassignment KABUSHIKI KAISHA TOSHIBA ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: FUKUHARA, KAZUYA, KOMINE, NOBUHIRO
Publication of US20110300472A1 publication Critical patent/US20110300472A1/en
Application granted granted Critical
Publication of US8343692B2 publication Critical patent/US8343692B2/en
Assigned to TOSHIBA MEMORY CORPORATION reassignment TOSHIBA MEMORY CORPORATION ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: KABUSHIKI KAISHA TOSHIBA
Assigned to TOSHIBA MEMORY CORPORATION reassignment TOSHIBA MEMORY CORPORATION CHANGE OF NAME AND ADDRESS Assignors: K.K. PANGEA
Assigned to KIOXIA CORPORATION reassignment KIOXIA CORPORATION CHANGE OF NAME AND ADDRESS Assignors: TOSHIBA MEMORY CORPORATION
Assigned to K.K. PANGEA reassignment K.K. PANGEA MERGER (SEE DOCUMENT FOR DETAILS). Assignors: TOSHIBA MEMORY CORPORATION
Active legal-status Critical Current
Adjusted expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/027Making masks on semiconductor bodies for further photolithographic processing not provided for in group H01L21/18 or H01L21/34
    • H01L21/033Making masks on semiconductor bodies for further photolithographic processing not provided for in group H01L21/18 or H01L21/34 comprising inorganic layers
    • H01L21/0334Making masks on semiconductor bodies for further photolithographic processing not provided for in group H01L21/18 or H01L21/34 comprising inorganic layers characterised by their size, orientation, disposition, behaviour, shape, in horizontal or vertical plane
    • H01L21/0337Making masks on semiconductor bodies for further photolithographic processing not provided for in group H01L21/18 or H01L21/34 comprising inorganic layers characterised by their size, orientation, disposition, behaviour, shape, in horizontal or vertical plane characterised by the process involved to create the mask, e.g. lift-off masks, sidewalls, or to modify the mask, e.g. pre-treatment, post-treatment
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F1/00Originals for photomechanical production of textured or patterned surfaces, e.g., masks, photo-masks, reticles; Mask blanks or pellicles therefor; Containers specially adapted therefor; Preparation thereof
    • G03F1/38Masks having auxiliary features, e.g. special coatings or marks for alignment or testing; Preparation thereof
    • G03F1/44Testing or measuring features, e.g. grid patterns, focus monitors, sawtooth scales or notched scales
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/70483Information management; Active and passive control; Testing; Wafer monitoring, e.g. pattern monitoring
    • G03F7/70605Workpiece metrology
    • G03F7/70616Monitoring the printed patterns
    • G03F7/70641Focus
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/70483Information management; Active and passive control; Testing; Wafer monitoring, e.g. pattern monitoring
    • G03F7/70605Workpiece metrology
    • G03F7/70681Metrology strategies
    • G03F7/70683Mark designs
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/027Making masks on semiconductor bodies for further photolithographic processing not provided for in group H01L21/18 or H01L21/34
    • H01L21/0271Making masks on semiconductor bodies for further photolithographic processing not provided for in group H01L21/18 or H01L21/34 comprising organic layers
    • H01L21/0273Making masks on semiconductor bodies for further photolithographic processing not provided for in group H01L21/18 or H01L21/34 comprising organic layers characterised by the treatment of photoresist layers
    • H01L21/0274Photolithographic processes

Definitions

  • Embodiments described herein relate generally to an exposure apparatus inspection mask and an exposure apparatus inspection method.
  • EUV extreme ultraviolet
  • transmissive lenses cannot be used because of the high absorption coefficient of the substance. Instead, a reflective optical system using mirrors is used.
  • a reflection type photomask is used.
  • FIG. 1 is a schematic cross-sectional view illustrating the configuration of an exposure apparatus inspection mask according to a first embodiment
  • FIG. 2A and FIG. 2B are schematic views illustrating operations of the exposure apparatus inspection mask
  • FIG. 3 is a schematic cross-sectional view illustrating the configuration of an exposure apparatus inspection mask of a comparative example
  • FIG. 4 is a schematic view illustrating characteristics of the exposure apparatus inspection mask according to the first embodiment
  • FIG. 5A and FIG. 5B are schematic views illustrating characteristics of the exposure apparatus inspection mask according to the first embodiment
  • FIG. 6 is a schematic cross-sectional view illustrating the configuration of an alternative exposure apparatus inspection mask according to the first embodiment
  • FIG. 7 is a schematic cross-sectional view illustrating the configuration of an alternative exposure apparatus inspection mask according to the first embodiment
  • FIG. 8 is a schematic cross-sectional view illustrating the configuration of an alternative exposure apparatus inspection mask according to the first embodiment
  • FIG. 9 is a schematic plan view illustrating the configuration of an exposure apparatus inspection mask according to a second embodiment
  • FIG. 10A and FIG. 10B are schematic cross-sectional views illustrating the configuration of the exposure apparatus inspection mask according to the second embodiment
  • FIG. 11A and FIG. 11B are schematic cross-sectional views illustrating the configuration of the exposure apparatus inspection mask according to the second embodiment
  • FIG. 12 is a graph illustrating characteristics of the exposure apparatus inspection mask according to the second embodiment.
  • FIG. 13 is a schematic plan view illustrating the configuration of an alternative exposure apparatus inspection mask according to the second embodiment.
  • FIG. 14 is a flow chart illustrating an exposure apparatus inspection method according to a third embodiment.
  • an exposure apparatus inspection mask includes a substrate and a first pattern portion.
  • the substrate has a major surface reflective to exposure light.
  • the first pattern portion is provided on the major surface.
  • the first pattern portion includes a first lower layer and a plurality of first reflection layers.
  • the first lower layer is provided on the major surface and includes a plurality of first absorption layers periodically arranged at a prescribed pitch along a first direction parallel to the major surface and is absorptive to the exposure light.
  • the plurality of first reflection layers are provided on a side of the first lower layer opposite to the substrate.
  • the plurality of first reflection layers are periodically arranged at the pitch along the first direction, expose at least part of each of the plurality of first absorption layers, and have a reflectance for the exposure light higher than a reflectance for the exposure light of the first absorption layers.
  • an exposure apparatus inspection method can form a resist layer by irradiating a resist film formed on an inspection wafer with an exposure light reflected by an exposure apparatus inspection mask, the resist layer having a pattern based on a pattern of the exposure apparatus inspection mask.
  • the method can measure a position of the pattern of the resist layer.
  • the exposure apparatus inspection mask includes a substrate and a first pattern portion.
  • the substrate has a major surface reflective to the exposure light.
  • the first pattern portion is provided on the major surface.
  • the first pattern portion includes a first lower layer and a plurality of first reflection layers.
  • the first lower layer is provided on the major surface and includes a plurality of first absorption layers periodically arranged at a prescribed pitch along a first direction parallel to the major surface and being absorptive to the exposure light.
  • the plurality of first reflection layers are provided on a side of the first lower layer opposite to the substrate.
  • the plurality of first reflection layers are periodically arranged at the pitch along the first direction, expose at least part of each of the plurality of first absorption layers, and have a reflectance for the exposure light higher than a reflectance for the exposure light of the first absorption layers.
  • FIG. 1 is a schematic cross-sectional view illustrating the configuration of an exposure apparatus inspection mask according to a first embodiment.
  • the exposure apparatus inspection mask 110 is an exposure apparatus inspection mask used to inspect an exposure apparatus using a reflection type photomask.
  • the exposure apparatus to be inspected is illustratively an exposure apparatus using EUV light having a wavelength of 13.5 nm as exposure light.
  • the exposure apparatus inspection mask 110 generates plus first order diffraction light and minus first order diffraction light.
  • the plus first order diffraction light and the minus first order diffraction light are mutually different in diffraction efficiency.
  • the exposure apparatus inspection mask 110 includes a substrate 10 and a first pattern portion 60 a.
  • the substrate 10 includes a major surface 10 a reflective to exposure light (e.g., EUV light) used in the exposure apparatus.
  • exposure light e.g., EUV light
  • the substrate 10 includes a base 11 and a stacked film 14 .
  • the stacked film 14 is provided on the base 11 .
  • the stacked film 14 includes a plurality of first layers 12 and second layers 13 .
  • the first layers 12 are stacked in a stacking direction perpendicular to the major surface 10 a .
  • the second layer 13 is provided between the plurality of first layers 12 .
  • the optical characteristic for the exposure light of the first layer 12 is different from the optical characteristic for the exposure light of the second layer 13 .
  • the optical characteristic for the exposure light includes at least one of refractive index for the exposure light, reflectance for the exposure light, and absorptance for the exposure light.
  • the first layer 12 includes silicon (Si)
  • the second layer 13 includes molybdenum (Mo).
  • the substrate 10 can include a plurality of first layers 12 and second layers 13 .
  • the first layers 12 are stacked on the major surface 10 a in the stacking direction perpendicular to the major surface 10 a .
  • the second layer 13 is provided between the plurality of first layers 12 and has a different optical characteristic for the exposure light from the first layer 12 . This allows the major surface 10 a to be reflective to the exposure light.
  • six first layers 12 and five second layers 13 are provided.
  • the number of first layers 12 and the number of second layers 13 are arbitrary.
  • a direction perpendicular to the major surface 10 a is defined as a Z-axis direction.
  • One direction perpendicular to the Z-axis direction is defined as an X-axis direction.
  • a direction perpendicular to the Z-axis direction and the X-axis direction is defined as a Y-axis direction.
  • stacked refers not only to the case where a plurality of layers are directly piled up, but also to the case where a plurality of layers are piled up with other components interposed therebetween.
  • the first pattern portion 60 a includes a first lower layer 30 a and a plurality of first reflection layers 40 a.
  • the first lower layer 30 a is provided on the major surface 10 a of the substrate 10 .
  • the first lower layer 30 a includes a plurality of first absorption layers 31 a .
  • the plurality of first absorption layers 31 a are periodically arranged at a prescribed pitch P along a first direction parallel to the major surface 10 a .
  • the first absorption layer 31 a is absorptive to the exposure light.
  • the first lower layer 30 a further includes a first lower reflection layer 32 a provided between the plurality of first absorption layers 31 a and having higher reflectance for the exposure light than the first absorption layer 31 a .
  • the first lower reflection layer 32 a is provided as necessary, and can be omitted in some cases.
  • the plurality of first reflection layers 40 a are provided on the opposite side of the first lower layer 30 a from the substrate 10 .
  • the plurality of first reflection layers 40 a are provided on the first lower layer 30 a .
  • the plurality of first reflection layers 40 a are periodically arranged at the pitch P along the aforementioned first direction.
  • Each of the plurality of first reflection layers 40 a exposes at least part of each of the plurality of first absorption layers 31 a .
  • the reflectance for the exposure light of the plurality of first reflection layers 40 a is higher than the reflectance for the exposure light of the first absorption layer 31 a.
  • the first direction is the X-axis direction. Furthermore, it is assumed that a second direction parallel to the major surface 10 a and perpendicular to the first direction (X-axis direction) is the Y-axis direction.
  • Each of the plurality of first absorption layers 31 a can have, for example, a strip-like pattern shape aligned along the Y-axis direction.
  • the width W 11 (width along the X-axis direction) of each of the plurality of first absorption layers 31 a can be set to substantially half the pitch P. That is, the width W 11 along the X-axis direction of each of the plurality of first absorption layers 31 a can be set substantially equal to the width W 12 between the plurality of first absorption layers 31 a .
  • the total of the width W 11 and the width W 12 is equal to the pitch P.
  • the width W 12 between the plurality of first absorption layers 31 a is substantially coincident with the width along the X-axis direction of each of a plurality of first lower reflection layers 32 a.
  • the width W 11 of each of the plurality of first absorption layers 31 a is arbitrary.
  • the width W 12 between the plurality of first absorption layers 31 a is arbitrary.
  • Each of the plurality of first reflection layers 40 a can have, for example, a strip-like pattern shape aligned along the Y-axis direction.
  • the width W 22 along the X-axis direction of each of the plurality of first reflection layers 40 a can be set smaller than the width W 11 of each of the plurality of first absorption layers 31 a .
  • the width W 22 along the X-axis direction of each of the plurality of first reflection layers 40 a can be set smaller than the width W 12 between the plurality of first absorption layers 31 a (in this example, the width along the X-axis direction of each of the plurality of first lower reflection layers 32 a ).
  • the first reflection layer 40 a and at least part of the first absorption layer 31 a are exposed.
  • the width W 22 along the X-axis direction of each of the plurality of first reflection layers 40 a is substantially equal to half the width W 12 between the plurality of first absorption layers 31 a (in this example, the width along the X-axis direction of each of the plurality of first lower reflection layers 32 a ).
  • width W 22 along the X-axis direction of each of the plurality of first reflection layers 40 a is arbitrary.
  • the pitch P can be set to, for example, 80 nm.
  • the width W 11 of each of the plurality of first absorption layers 31 a can be set to, for example, 40 nm.
  • the width W 12 between the plurality of first absorption layers 31 a (in this example, the width along the X-axis direction of each of the plurality of first lower reflection layers 32 a ) can be set to, for example, 40 nm.
  • the width W 22 along the X-axis direction of each of the plurality of first reflection layers 40 a can be set to, for example, 20 nm.
  • the width W 11 , the width W 12 , and the width W 22 are arbitrary. A preferable condition for the pitch P is described below.
  • the first absorption layer 31 a includes, for example, a tantalum (Ta) material.
  • the first lower reflection layer 32 a includes, for example, silicon.
  • the first reflection layer 40 a includes, for example, silicon.
  • the first absorption layer 31 a can include any material having higher absorptance for the exposure light than the first reflection layer 40 a .
  • the first lower reflection layer 32 a can include any material having higher reflectance for the exposure light than the first absorption layer 31 a .
  • the first reflection layer 40 a can include any material having higher reflectance for the exposure light than the first absorption layer 31 a.
  • the thickness t 11 (thickness along the Z-axis direction) of the first absorption layer 31 a can be set to, for example, 61 nm.
  • the thickness t 12 (thickness along the Z-axis direction) of the first lower reflection layer 32 a can be set substantially equal to the thickness t 11 of the first absorption layer 31 a .
  • the thickness t 22 (thickness along the Z-axis direction) of the first reflection layer 40 a can be set to, for example, 61 nm.
  • the thickness t 11 of the first absorption layer 31 a , the thickness t 12 of the first lower reflection layer 32 a , and the thickness t 22 of the first reflection layer 40 a are arbitrary.
  • the exposure apparatus inspection mask 110 thus configured generates plus first order diffraction light and minus first order diffraction light being mutually different in diffraction efficiency.
  • FIG. 2A and FIG. 2B are schematic views illustrating operations of the exposure apparatus inspection mask. More specifically, FIG. 2A illustrates the case where the diffraction efficiency of the exposure apparatus inspection mask is asymmetric, and FIG. 2B illustrates the case where the diffraction efficiency of the exposure apparatus inspection mask is symmetric.
  • a direction parallel to a focus direction 230 of the exposure apparatus is defined as a Z1-axis direction.
  • One direction perpendicular to the Z1-axis direction is defined as an X1-axis direction.
  • a direction perpendicular to the Z1-axis direction and the X1-axis direction is defined as an Y1-axis direction.
  • a zeroth order light 210 a plus first order diffraction light 211 , and a minus first order diffraction light 212 are projected at the same positions in the X1-Y1 plane on the wafer.
  • a pattern transfer position 220 on the wafer does not change, for example, in the X1-Y1 plane.
  • the focus position is shifted along the Z1-axis direction
  • the plus first order diffraction light 211 and the minus first order diffraction light 212 are shifted in the X1-Y1 plane on the wafer in accordance with the shift of the focus position.
  • the pattern transfer position 220 on the wafer is shifted, for example, in the X1-Y1 plane.
  • the exposure apparatus inspection mask 110 includes a stacked structure of the first lower layer 30 a including the first absorption layer 31 a , and the first reflection layer 40 a provided on the first lower layer 30 a and exposing at least part of the first absorption layer 31 a .
  • the plus first order diffraction light and the minus first order diffraction light are mutually different in diffraction efficiency. That is, the plus first order diffraction light and the minus first order diffraction light are asymmetric.
  • the pattern transfer position 220 on the wafer can be shifted, for example, in the X1-Y1 plane.
  • the focus position of the exposure apparatus can be detected.
  • FIG. 3 is a schematic cross-sectional view illustrating the configuration of an exposure apparatus inspection mask of a comparative example.
  • a plurality of absorption layers 31 are provided as a first pattern portion 69 on the major surface of a substrate 10 .
  • the plurality of absorption layers 31 are arranged at a pitch P along the X-axis direction.
  • the width W 11 of the absorption layer 31 and the width W 12 between the absorption layers 31 are, for example, half the pitch P.
  • the plus first order diffraction light and the minus first order diffraction light are mutually identical in diffraction efficiency and are symmetric.
  • the pattern transfer position 220 on the wafer is not shifted.
  • the focus position of the exposure apparatus cannot be detected.
  • the exposure apparatus inspection mask 110 is based on a stacked structure of the first lower layer 30 a including the first absorption layer 31 a , and the first reflection layer 40 a .
  • the plus first order diffraction light and the minus first order diffraction light are made mutually different in diffraction efficiency.
  • the focus position of the exposure apparatus can be detected. That is, by using the exposure apparatus inspection mask 110 , the focus characteristic (e.g., focus accuracy) of an exposure apparatus using a reflection type photomask can be inspected.
  • FIG. 4 is a schematic view illustrating characteristics of the exposure apparatus inspection mask according to the first embodiment. More specifically, FIG. 4 schematically illustrates the relationship between the numerical aperture NA of the projection optical system and the projection range of the diffraction light.
  • the wavelength of the exposure light of the exposure apparatus is wavelength ⁇ .
  • the numerical aperture of the illumination optical system of the exposure apparatus is illumination optical system numerical aperture INA.
  • the numerical aperture of the projection optical system of the exposure apparatus is projection optical system numerical aperture LNA.
  • the first order diffraction light (at least part of the plus first order diffraction light 211 and at least part of the minus first order diffraction light 212 ) is projected in the range 240 of the projection optical system numerical aperture LNA.
  • the pitch P is set to ⁇ / ⁇ LNA ⁇ (1+ ⁇ ) ⁇ or more.
  • FIG. 5A and FIG. 5B are schematic views illustrating characteristics of the exposure apparatus inspection mask according to the first embodiment.
  • FIG. 5A and FIG. 5B illustrate characteristics more preferable than that illustrated in FIG. 4 .
  • all the first order diffraction light (all the plus first order diffraction light 211 and all the minus first order diffraction light 212 ) is projected in the range 240 of the projection optical system numerical aperture LNA.
  • the second order diffraction light (the plus second order diffraction light 213 and the minus second order diffraction light 214 ) is not projected in the range 240 of the projection optical system numerical aperture LNA.
  • the pitch P is not less than ⁇ / ⁇ LNA ⁇ (1 ⁇ ) ⁇ and not more than 2 ⁇ / ⁇ LNA ⁇ (1+ ⁇ ) ⁇ . Accordingly, all the first order diffraction light is projected in the range 240 of the projection optical system numerical aperture LNA, while the second order diffraction light is not projected in the range 240. This further improves the accuracy of pattern transfer on the wafer, and further improves the detection accuracy for the focus position of the exposure apparatus.
  • the exposure wavelength ⁇ is 13.5 nm
  • the projection optical system numerical aperture LNA is 0.25
  • the numerical aperture ratio ⁇ is 0.10
  • FIG. 6 is a schematic cross-sectional view illustrating the configuration of an alternative exposure apparatus inspection mask according to the first embodiment.
  • the alternative exposure apparatus inspection mask 111 also includes a substrate 10 and a first pattern portion 61 .
  • the first pattern portion 61 includes a first lower layer 30 a including a first absorption layer 31 a and a first lower reflection layer 32 a , and a first reflection layer 40 a provided on the opposite side of the first lower layer 30 a from the substrate 10 .
  • the position along the X-axis direction of each first reflection layer 40 a is located at the center along the X-axis direction of each first lower reflection layer 32 a .
  • the position along the X-axis direction of each first reflection layer 40 a is located at the end along the X-axis direction of each first lower reflection layer 32 a .
  • the position along the X-axis direction of each first reflection layer 40 a is arbitrary.
  • FIG. 7 is a schematic cross-sectional view illustrating the configuration of an alternative exposure apparatus inspection mask according to the first embodiment.
  • the alternative exposure apparatus inspection mask 112 also includes a substrate 10 and a first pattern portion 62 .
  • the first pattern portion 62 includes a first lower layer 30 a including a first absorption layer 31 a and a first lower reflection layer 32 a , and a first reflection layer 40 a.
  • each first reflection layer 40 a is provided on the boundary between the first lower reflection layer 32 a and the first absorption layer 31 a . That is, each first reflection layer 40 a is provided on the first lower reflection layer 32 a and the first absorption layer 31 a being adjacent to each other.
  • the first reflection layer 40 a may be provided only on the first lower reflection layer 32 a (e.g., the exposure apparatus inspection masks 110 and 111 ), or may be provided on both the first lower reflection layer 32 a and the first absorption layer 31 a (e.g., the exposure apparatus inspection mask 112 ).
  • FIG. 8 is a schematic cross-sectional view illustrating the configuration of an alternative exposure apparatus inspection mask according to the first embodiment.
  • the alternative exposure apparatus inspection mask 113 also includes a substrate 10 and a first pattern portion 63 .
  • the first pattern portion 63 includes a first lower layer 30 a including a first absorption layer 31 a , and a first reflection layer 40 a .
  • the first lower layer 30 a does not include a first lower reflection layer 32 a.
  • each first reflection layer 40 a is provided on the corresponding first absorption layer 31 a (on the opposite side of the first absorption layer 31 a from the substrate 10 ). Each first reflection layer 40 a exposes part of the corresponding first absorption layer 31 a.
  • the exposure apparatus inspection masks 111 , 112 , and 113 configured as above can also generate plus first order diffraction light and minus first order diffraction light being mutually different in diffraction efficiency, and can inspect an exposure apparatus using a reflection type photomask.
  • the width W 11 of the first absorption layer 31 a the width W 12 between the plurality of first absorption layers 31 a (e.g., the width along the X-axis direction of each of the plurality of first lower reflection layers 32 a ), and the width W 22 of the first reflection layer 40 a are arbitrary.
  • the exposure apparatus inspected by the exposure apparatus inspection masks 110 , 111 , 112 , and 113 uses EUV light having a wavelength of, for example, 13.5 nm as exposure light.
  • EUV light having a wavelength of, for example, 13.5 nm as exposure light.
  • the absorption coefficient in substances is high, unlike exposure using a deep ultra violet (DUV) light such as KrF and ArF as a light source.
  • the exposure apparatus inspection masks 110 , 111 , 112 , and 113 are used in a vacuum.
  • FIG. 9 is a schematic plan view illustrating the configuration of an exposure apparatus inspection mask according to a second embodiment.
  • FIG. 10A and FIG. 10B are schematic cross-sectional views illustrating the configuration of the exposure apparatus inspection mask according to the second embodiment.
  • FIG. 10A is a cross-sectional view taken along line A 1 -A 2 of FIG. 9
  • FIG. 10B is a cross-sectional view taken along line B 1 -B 2 of FIG. 9 .
  • FIG. 11A and FIG. 11B are schematic cross-sectional views illustrating the configuration of the exposure apparatus inspection mask according to the second embodiment.
  • FIG. 11A is a cross-sectional view taken along line C 1 -C 2 of FIG. 9
  • FIG. 11B is a cross-sectional view taken along line D 1 -D 2 of FIG. 9 .
  • the exposure apparatus inspection mask 120 in addition to the first pattern portion 60 a , the exposure apparatus inspection mask 120 according to this embodiment further includes a second pattern portion 60 b provided on the major surface 10 a of the substrate 10 .
  • the first pattern portion 60 a can be made similar to the first pattern portion 60 a in the exposure apparatus inspection mask 110 described with reference to FIG. 1 , and hence the description thereof is omitted.
  • the second pattern portion 60 b includes a second lower layer 30 b and a plurality of second reflection layers 40 b.
  • the second lower layer 30 b is provided on the major surface 10 a .
  • the second lower layer 30 b includes a plurality of second absorption layers 31 b periodically arranged at a pitch P along the X-axis direction and being absorptive to the exposure light.
  • the plurality of second reflection layers 40 b are provided on the opposite side of the second lower layer 30 b from the substrate 10 .
  • the plurality of second reflection layers 40 b are periodically arranged at the pitch P along the X-axis direction.
  • Each of the plurality of second reflection layers 40 b exposes at least part of each of the plurality of second absorption layers 31 b .
  • the reflectance for the exposure light of the plurality of second reflection layers 40 b is higher than the reflectance for the exposure light of the second absorption layer 31 b.
  • the second lower layer 30 b further includes a second lower reflection layer 32 b provided between the plurality of second absorption layers 31 b and having higher reflectance for the exposure light than the second absorption layer 31 b.
  • the relative positional relationship along the X-axis direction between the first absorption layer 31 a and the first reflection layer 40 a and the relative positional relationship along the X-axis direction between the second absorption layer 31 b and the second reflection layer 40 b are mirror symmetric about the Y-axis direction (i.e., a direction parallel to the major surface 10 a and perpendicular to the X-axis direction).
  • the pitch P of the first absorption layers 31 a and the pitch P of the second absorption layers 31 b are substantially equal to each other.
  • the width W 11 of the first absorption layer 31 a and the width W 11 b of the second absorption layer 31 b are substantially equal to each other.
  • the width W 12 between the plurality of first absorption layers 31 a and the width W 12 b between the plurality of second absorption layers 31 b are substantially equal to each other.
  • the width W 22 of the first reflection layer 40 a and the width W 22 b of the second reflection layer 40 b are substantially equal to each other.
  • the thickness of the second absorption layer 31 b is set equal to the thickness t 11 of the first absorption layer 31 a .
  • the thickness of the second lower reflection layer 32 b is set equal to the thickness t 12 of the first lower reflection layer 32 a .
  • the thickness of the second reflection layer 40 b is set equal to the thickness t 22 of the first reflection layer 40 a.
  • the arrangement of the first reflection layer 40 a relative to the first absorption layer 31 a is mirror symmetric about the Y-axis direction with respect to the arrangement of the second reflection layer 40 b relative to the second absorption layer 31 b (the relative arrangement along the X-axis direction).
  • the shift direction of the transferred pattern of the first pattern portion 60 a on the water and the shift direction of the transferred pattern of the second pattern portion 60 b on the water can be made opposite to each other in the case where the focus of the exposure apparatus is shifted, for example. That is, if the shift direction of the transferred pattern of the first pattern portion 60 a on the water is the plus X1-axis direction, then the shift direction of the transferred pattern of the second pattern portion 60 b on the water can be made opposite to the plus X1-axis direction, i.e., can be set to the minus X1-axis direction.
  • the optical characteristic of the second absorption layer 31 b is set identical to the optical characteristic of the first absorption layer 31 a .
  • the material used for the second absorption layer 31 b is identical to the material used for the first absorption layer 31 a .
  • the second absorption layer 31 b can be formed simultaneously and collectively with the first absorption layer 31 a.
  • the optical characteristic of the second reflection layer 40 b is set identical to the optical characteristic of the first reflection layer 40 a .
  • the material used for the second reflection layer 40 b is identical to the material used for the first reflection layer 40 a .
  • the second reflection layer 40 b can be formed simultaneously and collectively with the first reflection layer 40 a .
  • the magnitude relationship between the reflectance of the major surface 10 a of the substrate 10 and the reflectance of the second reflection layer 40 b is identical to the magnitude relationship between the reflectance of the major surface 10 a of the substrate 10 and the reflectance of the first reflection layer 40 a.
  • the optical characteristic of the second lower reflection layer 32 b is set identical to the optical characteristic of the first lower reflection layer 32 a .
  • the material used for the second lower reflection layer 32 b is identical to the material used for the first lower reflection layer 32 a .
  • the second lower reflection layer 32 b can be formed simultaneously and collectively with the first lower reflection layer 32 a.
  • the detection sensitivity can be doubled as compared with the case of using only the first pattern portion 60 a , for example. Thus, more accurate inspection can be performed.
  • a plurality of pairs of the first pattern portion 60 a and the second pattern portion 60 b can be provided on the major surface 10 a of the substrate 10 .
  • the exposure apparatus inspection mask 120 further includes a third pattern portion 60 c provided on the major surface 10 a and a fourth pattern portion 60 d provided on the major surface 10 a.
  • the third pattern portion 60 c includes a third lower layer 30 c and a plurality of third reflection layers 40 c.
  • the third lower layer 30 c is provided on the major surface 10 a .
  • the third lower layer 30 c includes a plurality of third absorption layers 31 c periodically arranged at a pitch P along the Y-axis direction parallel to the major surface 10 a and perpendicular to the X-axis direction, and being absorptive to the exposure light.
  • the plurality of third reflection layers 40 c are provided on the opposite side of the third lower layer 30 c from the substrate 10 .
  • the plurality of third reflection layers 40 c are periodically arranged at the pitch P along the Y-axis direction.
  • Each of the plurality of third reflection layers 40 c exposes at least part of each of the plurality of third absorption layers 31 c .
  • the reflectance for the exposure light of the plurality of third reflection layers 40 c is higher than the reflectance for the exposure light of the third absorption layer 31 c.
  • the third lower layer 30 c further includes a third lower reflection layer 32 c provided between the plurality of third absorption layers 31 c and having higher reflectance for the exposure light than the third absorption layer 31 c.
  • the fourth pattern portion 60 d includes a fourth lower layer 30 d and a plurality of fourth reflection layers 40 d.
  • the fourth lower layer 30 d is provided on the major surface 10 a .
  • the fourth lower layer 30 d includes a plurality of fourth absorption layers 31 d periodically arranged at a pitch P along the Y-axis direction and being absorptive to the exposure light.
  • the plurality of fourth reflection layers 40 d are provided on the opposite side of the fourth lower layer 30 d from the substrate 10 .
  • the plurality of fourth reflection layers 40 d are periodically arranged at the pitch P along the Y-axis direction.
  • Each of the plurality of fourth reflection layers 40 d exposes at least part of each of the plurality of fourth absorption layers 31 d .
  • the reflectance for the exposure light of the plurality of fourth reflection layers 40 d is higher than the reflectance for the exposure light of the fourth absorption layer 31 d.
  • the fourth lower layer 30 d further includes a fourth lower reflection layer 32 d provided between the plurality of fourth absorption layers 31 d and having higher reflectance for the exposure light than the fourth absorption layer 31 d.
  • the relative positional relationship along the Y-axis direction between the third absorption layer 31 c and the third reflection layer 40 c and the relative positional relationship along the Y-axis direction between the fourth absorption layer 31 d and the fourth reflection layer 40 d are mirror symmetric about the X-axis direction.
  • the pitch P of the third absorption layers 31 c and the pitch P of the fourth absorption layers 31 d are substantially equal to each other.
  • the width W 11 c of the third absorption layer 31 c and the width W 11 d of the fourth absorption layer 31 d are substantially equal to each other.
  • the width W 12 c between the plurality of third absorption layers 31 c and the width W 12 d between the plurality of fourth absorption layers 31 d are substantially equal to each other.
  • the width W 22 c of the third reflection layer 40 c and the width W 22 d of the fourth reflection layer 40 d are substantially equal to each other.
  • the thickness of the fourth absorption layer 31 d is set equal to the thickness of the third absorption layer 31 c
  • the thickness of the fourth lower reflection layer 32 d is set equal to the thickness of the third lower reflection layer 32 c
  • the thickness of the fourth reflection layer 40 d is set equal to the thickness of the third reflection layer 40 c.
  • the arrangement of the third reflection layer 40 c relative to the third absorption layer 31 c is mirror symmetric about the X-axis direction with respect to the arrangement of the fourth reflection layer 40 d relative to the fourth absorption layer 31 d (the relative arrangement along the Y-axis direction).
  • the shift direction of the transferred pattern of the third pattern portion 60 c on the water and the shift direction of the transferred pattern of the fourth pattern portion 60 d on the water can be made opposite to each other in the case where the focus of the exposure apparatus is shifted, for example.
  • the optical characteristics of the third absorption layer 31 c and the fourth absorption layer 31 d are set identical to the optical characteristics of the first absorption layer 31 a and the second absorption layer 31 b .
  • the materials used for the third absorption layer 31 c and the fourth absorption layer 31 d are identical to the materials used for the first absorption layer 31 a and the second absorption layer 31 b .
  • the third absorption layer 31 c and the fourth absorption layer 31 d can be formed simultaneously and collectively with the first absorption layer 31 a and the second absorption layer 31 b.
  • the optical characteristics of the third reflection layer 40 c and the fourth reflection layer 40 d are set identical to the optical characteristics of the first reflection layer 40 a and the second reflection layer 40 b .
  • the materials used for the third reflection layer 40 c and the fourth reflection layer 40 d are identical to the materials used for the first reflection layer 40 a and the second reflection layer 40 b .
  • the third reflection layer 40 c and the fourth reflection layer 40 d can be formed simultaneously and collectively with the first reflection layer 40 a and the second reflection layer 40 b.
  • the optical characteristics of the third lower reflection layer 32 c and the fourth lower reflection layer 32 d are set identical to the optical characteristics of the first lower reflection layer 32 a and the second lower reflection layer 32 b.
  • the materials used for the third lower reflection layer 32 c and the fourth lower reflection layer 32 d are identical to the material used for the first lower reflection layer 32 a and the second lower reflection layer 32 b .
  • the third lower reflection layer 32 c and the fourth lower reflection layer 32 d can be formed simultaneously and collectively with the first lower reflection layer 32 a and the second lower reflection layer 32 b.
  • the detection sensitivity can be doubled as compared with the case of using only the third pattern portion 60 c , for example. Thus, more accurate inspection can be performed.
  • a plurality of pairs of the third pattern portion 60 c and the fourth pattern portion 60 d can be provided on the major surface 10 a of the substrate 10 .
  • FIG. 12 is a graph illustrating characteristics of the exposure apparatus inspection mask according to the second embodiment.
  • FIG. 12 illustrates the results of simulating the shift amount, for example, along the X1-axis direction of the pattern transfer position 220 on the wafer when the focus position (e.g., the position along the Z1-axis direction) of the exposure apparatus is shifted in the inspection of the exposure apparatus using the exposure apparatus inspection mask 120 .
  • the horizontal axis represents the shift amount Sf of the focus position of the exposure apparatus
  • the vertical axis represents the shift amount Sx 1 along the X1-axis direction of the pattern transfer position 220 on the wafer.
  • the pitch P was 80 nm.
  • the width W 11 of the first absorption layer 31 a was 40 nm.
  • the width W 12 between the plurality of first absorption layers 31 a (in this example, the width along the X-axis direction of each of the plurality of first lower reflection layers 32 a ) was 40 nm.
  • the width W 22 of the first reflection layer 40 a was 20 nm.
  • the thickness t 11 of the first absorption layer 31 a was 61 nm.
  • the thickness t 12 of the first lower reflection layer 32 a was equal to the thickness t 11 of the first absorption layer 31 a .
  • the thickness t 22 of the first reflection layer 40 a was 61 nm.
  • the shift amount Sx 1 along the X1-axis direction of the pattern transfer position 220 on the wafer is proportional to the shift amount Sf of the focus position of the exposure apparatus.
  • the relationship between the shift amount Sx 1 and the shift amount Sf is sufficiently linear. For example, when the shift amount Sf of the focus position of the exposure apparatus is 100 nm, the absolute value of the shift amount Sx 1 along the X1-axis direction of the pattern transfer position 220 on the wafer is 4.8 nm.
  • the pattern transfer position 220 on the wafer can be shifted in the X1-Y1 plane on the basis of the shift along the Z1-axis direction of the focus position. Furthermore, by measuring the shift of the pattern transfer position, the focus position of the exposure apparatus can be detected. That is, the focus characteristic of the exposure apparatus can be evaluated.
  • the first pattern portion 60 a includes the configuration illustrated in FIG. 1 .
  • the first pattern portion 60 a of the exposure apparatus inspection mask 120 can includes the configuration of the first pattern portions 61 , 62 , and 63 illustrated in FIG. 6 , FIG. 7 , and FIG. 8 .
  • the second pattern portion 60 b of the exposure apparatus inspection mask 120 is adapted to the configuration of the first pattern portions 61 , 62 , and 63 , respectively.
  • the third pattern portion 60 c may also include the configuration of the first pattern portions 61 , 62 , and 63 illustrated in FIG. 6 , FIG. 7 , and FIG. 8 .
  • the fourth pattern portion 60 d is adapted to the configuration of the first pattern portions 61 , 62 , and 63 , respectively.
  • FIG. 13 is a schematic plan view illustrating the configuration of an alternative exposure apparatus inspection mask according to the second embodiment.
  • an exposure apparatus inspection mask 121 also includes a substrate 10 , a first pattern portion 60 a , a second pattern portion 60 b , a third pattern portion 60 c , and a fourth pattern portion 60 d .
  • the cross-sectional configuration of the first pattern portion 60 a , the second pattern portion 60 b , the third pattern portion 60 c , and the fourth pattern portion 60 d can be the configuration illustrated in FIG. 10A , FIG. 10B , FIG. 11A , and FIG. 11B , and hence the description thereof is omitted.
  • the layout of the first pattern portion 60 a , the second pattern portion 60 b , the third pattern portion 60 c , and the fourth pattern portion 60 d in the major surface 10 a is different from that in the exposure apparatus inspection mask 120 .
  • the first pattern portion 60 a and the second pattern portion 60 b are arranged along the X-axis direction. Furthermore, in the exposure apparatus inspection mask 120 , the third pattern portion 60 c and the fourth pattern portion 60 d are arranged along the Y-axis direction.
  • the first pattern portion 60 a and the second pattern portion 60 b are arranged along the Y-axis direction. Furthermore, in the exposure apparatus inspection mask 121 , the third pattern portion 60 c and the fourth pattern portion 60 d are arranged along the X-axis direction.
  • the exposure apparatus inspection mask 121 can also generate plus first order diffraction light and minus first order diffraction light being mutually different in diffraction efficiency, and can inspect an exposure apparatus using a reflection type photomask.
  • FIG. 14 is a flow chart illustrating an exposure apparatus inspection method according to a third embodiment.
  • This inspection method is a method for inspecting an exposure apparatus using a reflection type photomask.
  • the exposure apparatus to be inspected is, for example, an exposure apparatus using EUV light having a wavelength of 13.5 nm as exposure light.
  • This inspection method uses an exposure apparatus inspection mask for generating plus first order diffraction light and minus first order diffraction light being mutually different in diffraction efficiency.
  • a resist film formed on a test wafer is irradiated with exposure light reflected by the exposure apparatus inspection mask according to the embodiments to form a resist layer having a pattern based on the pattern of the exposure apparatus inspection mask (step S 110 ).
  • a resist film formed on a test wafer is irradiated with exposure light reflected by the exposure apparatus inspection masks 110 , 111 , 112 , 113 , 120 , and 121 described with reference to the first and second embodiments, and exposure apparatus inspection masks modified therefrom.
  • development treatment is performed to form a resist layer having a pattern based on the pattern of the exposure apparatus inspection mask (e.g., the pattern of the first pattern portion 60 a and the like).
  • step S 120 the position of the pattern of the resist layer formed on the test wafer is measured. That is, for example, the position of the pattern of the resist layer corresponding to the pattern of the first pattern portion 60 a is measured.
  • the plus first order diffraction light and the minus first order diffraction light are mutually different in diffraction efficiency.
  • the position of the pattern of the resist layer is shifted in accordance with the shift of the focus position of the exposure apparatus.
  • the focus characteristic of the exposure apparatus can be inspected.
  • the shift of the position of the pattern of the resist layer can be easily measured by measuring the relative position of the pattern of the resist layer corresponding to the pattern of the first pattern portion 60 a and the pattern of the resist layer corresponding to the pattern of the second pattern portion 60 b .
  • the detection sensitivity can be doubled as compared with the case of using a single pattern portion. Thus, more accurate inspection can be performed.
  • the shift of the position of the pattern of the resist layer can be easily measured.
  • the detection sensitivity can be doubled as compared with the case of using a single pattern portion. Thus, more accurate inspection can be performed.
  • the embodiments can provide an exposure apparatus inspection mask and an exposure apparatus inspection method for inspecting an exposure apparatus using a reflection type photomask.
  • perpendicular and parallel refer to not only strictly perpendicular and strictly parallel but also include, for example, the fluctuation due to manufacturing processes, etc. It is sufficient to be substantially perpendicular and substantially parallel.
  • exemplary embodiments of the invention are described with reference to specific examples. However, the invention is not limited to these specific examples.
  • one skilled in the art may similarly practice the invention by appropriately selecting specific configurations of components included in exposure apparatus inspection masks such as substrates, bases, stacked films, pattern portions, lower layers, absorption layers, reflection layers, and lower reflection layers, and the like from known art. Such practice is included in the scope of the invention to the extent that similar effects thereto are obtained.

Landscapes

  • General Physics & Mathematics (AREA)
  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Inorganic Chemistry (AREA)
  • Chemical & Material Sciences (AREA)
  • Exposure And Positioning Against Photoresist Photosensitive Materials (AREA)
  • Preparing Plates And Mask In Photomechanical Process (AREA)
  • Exposure Of Semiconductors, Excluding Electron Or Ion Beam Exposure (AREA)
  • Investigating Materials By The Use Of Optical Means Adapted For Particular Applications (AREA)

Abstract

According to one embodiment, an exposure apparatus inspection mask includes a substrate and a first pattern portion. The substrate has a major surface reflective to exposure light. The first pattern portion is provided on the major surface. The first pattern portion includes a first lower layer and a plurality of first reflection layers. The first lower layer is provided on the major surface and includes a plurality of first absorption layers periodically arranged at a prescribed pitch along a first direction parallel to the major surface and is absorptive to the exposure light. The plurality of first reflection layers are provided on a side of the first lower layer opposite to the substrate, are periodically arranged at the pitch along the first direction, expose at least part of each of the plurality of first absorption layers, and have higher reflectance for the exposure light than the first absorption layers.

Description

CROSS-REFERENCE TO RELATED APPLICATIONS
This application is based upon and claims the benefit of priority from the prior Japanese Patent Application No. 2010-126698, filed on Jun. 2, 2010; the entire contents of which are incorporated herein by reference.
FIELD
Embodiments described herein relate generally to an exposure apparatus inspection mask and an exposure apparatus inspection method.
BACKGROUND
With the miniaturization of semiconductor devices, the exposure light of the exposure apparatus used to manufacture semiconductor devices has been shifted to shorter wavelengths. For example, there are expectations for practical application of the exposure technique using extreme ultraviolet (EUV) light having a wavelength of 13.5 nanometers (nm). In such exposure using EUV light, transmissive lenses cannot be used because of the high absorption coefficient of the substance. Instead, a reflective optical system using mirrors is used. Thus, in exposure using EUV light, a reflection type photomask is used.
The development of a special technology for evaluating the performance of an exposure apparatus using a reflection type photomask is necessary.
BRIEF DESCRIPTION OF THE DRAWINGS
FIG. 1 is a schematic cross-sectional view illustrating the configuration of an exposure apparatus inspection mask according to a first embodiment;
FIG. 2A and FIG. 2B are schematic views illustrating operations of the exposure apparatus inspection mask;
FIG. 3 is a schematic cross-sectional view illustrating the configuration of an exposure apparatus inspection mask of a comparative example;
FIG. 4 is a schematic view illustrating characteristics of the exposure apparatus inspection mask according to the first embodiment;
FIG. 5A and FIG. 5B are schematic views illustrating characteristics of the exposure apparatus inspection mask according to the first embodiment;
FIG. 6 is a schematic cross-sectional view illustrating the configuration of an alternative exposure apparatus inspection mask according to the first embodiment;
FIG. 7 is a schematic cross-sectional view illustrating the configuration of an alternative exposure apparatus inspection mask according to the first embodiment;
FIG. 8 is a schematic cross-sectional view illustrating the configuration of an alternative exposure apparatus inspection mask according to the first embodiment;
FIG. 9 is a schematic plan view illustrating the configuration of an exposure apparatus inspection mask according to a second embodiment;
FIG. 10A and FIG. 10B are schematic cross-sectional views illustrating the configuration of the exposure apparatus inspection mask according to the second embodiment;
FIG. 11A and FIG. 11B are schematic cross-sectional views illustrating the configuration of the exposure apparatus inspection mask according to the second embodiment;
FIG. 12 is a graph illustrating characteristics of the exposure apparatus inspection mask according to the second embodiment;
FIG. 13 is a schematic plan view illustrating the configuration of an alternative exposure apparatus inspection mask according to the second embodiment; and
FIG. 14 is a flow chart illustrating an exposure apparatus inspection method according to a third embodiment.
DETAILED DESCRIPTION
In general, according to one embodiment, an exposure apparatus inspection mask includes a substrate and a first pattern portion. The substrate has a major surface reflective to exposure light. The first pattern portion is provided on the major surface. The first pattern portion includes a first lower layer and a plurality of first reflection layers. The first lower layer is provided on the major surface and includes a plurality of first absorption layers periodically arranged at a prescribed pitch along a first direction parallel to the major surface and is absorptive to the exposure light. The plurality of first reflection layers are provided on a side of the first lower layer opposite to the substrate. The plurality of first reflection layers are periodically arranged at the pitch along the first direction, expose at least part of each of the plurality of first absorption layers, and have a reflectance for the exposure light higher than a reflectance for the exposure light of the first absorption layers.
According to another embodiment, an exposure apparatus inspection method is disclosed. The method can form a resist layer by irradiating a resist film formed on an inspection wafer with an exposure light reflected by an exposure apparatus inspection mask, the resist layer having a pattern based on a pattern of the exposure apparatus inspection mask. The method can measure a position of the pattern of the resist layer. The exposure apparatus inspection mask includes a substrate and a first pattern portion. The substrate has a major surface reflective to the exposure light. The first pattern portion is provided on the major surface. The first pattern portion includes a first lower layer and a plurality of first reflection layers. The first lower layer is provided on the major surface and includes a plurality of first absorption layers periodically arranged at a prescribed pitch along a first direction parallel to the major surface and being absorptive to the exposure light. The plurality of first reflection layers are provided on a side of the first lower layer opposite to the substrate. The plurality of first reflection layers are periodically arranged at the pitch along the first direction, expose at least part of each of the plurality of first absorption layers, and have a reflectance for the exposure light higher than a reflectance for the exposure light of the first absorption layers.
Embodiments of the invention will now be described with reference to the drawings.
The drawings are schematic or conceptual. The relationship between the thickness and the width of each portion, and the size ratio between the portions, for example, are not necessarily identical to those in reality. Furthermore, the same portion may be shown with different dimensions or ratios depending on the figures.
In the present specification of the application and the drawings, the same components as those described previously with reference to earlier figures are labeled with like reference numerals, and the detailed description thereof is omitted as appropriate.
(First Embodiment)
FIG. 1 is a schematic cross-sectional view illustrating the configuration of an exposure apparatus inspection mask according to a first embodiment.
The exposure apparatus inspection mask 110 according to this embodiment is an exposure apparatus inspection mask used to inspect an exposure apparatus using a reflection type photomask. The exposure apparatus to be inspected is illustratively an exposure apparatus using EUV light having a wavelength of 13.5 nm as exposure light.
As described below, the exposure apparatus inspection mask 110 generates plus first order diffraction light and minus first order diffraction light. The plus first order diffraction light and the minus first order diffraction light are mutually different in diffraction efficiency.
As shown in FIG. 1, the exposure apparatus inspection mask 110 according to this embodiment includes a substrate 10 and a first pattern portion 60 a.
The substrate 10 includes a major surface 10 a reflective to exposure light (e.g., EUV light) used in the exposure apparatus.
In this example, the substrate 10 includes a base 11 and a stacked film 14. The stacked film 14 is provided on the base 11. The stacked film 14 includes a plurality of first layers 12 and second layers 13. The first layers 12 are stacked in a stacking direction perpendicular to the major surface 10 a. The second layer 13 is provided between the plurality of first layers 12. The optical characteristic for the exposure light of the first layer 12 is different from the optical characteristic for the exposure light of the second layer 13. The optical characteristic for the exposure light includes at least one of refractive index for the exposure light, reflectance for the exposure light, and absorptance for the exposure light. For example, the first layer 12 includes silicon (Si), and the second layer 13 includes molybdenum (Mo).
Thus, the substrate 10 can include a plurality of first layers 12 and second layers 13. The first layers 12 are stacked on the major surface 10 a in the stacking direction perpendicular to the major surface 10 a. The second layer 13 is provided between the plurality of first layers 12 and has a different optical characteristic for the exposure light from the first layer 12. This allows the major surface 10 a to be reflective to the exposure light. In this example, six first layers 12 and five second layers 13 are provided. However, the number of first layers 12 and the number of second layers 13 are arbitrary.
Here, a direction perpendicular to the major surface 10 a is defined as a Z-axis direction. One direction perpendicular to the Z-axis direction is defined as an X-axis direction. A direction perpendicular to the Z-axis direction and the X-axis direction is defined as a Y-axis direction.
The term “stacked” used herein refers not only to the case where a plurality of layers are directly piled up, but also to the case where a plurality of layers are piled up with other components interposed therebetween.
The first pattern portion 60 a includes a first lower layer 30 a and a plurality of first reflection layers 40 a.
The first lower layer 30 a is provided on the major surface 10 a of the substrate 10. The first lower layer 30 a includes a plurality of first absorption layers 31 a. The plurality of first absorption layers 31 a are periodically arranged at a prescribed pitch P along a first direction parallel to the major surface 10 a. The first absorption layer 31 a is absorptive to the exposure light.
In this example, the first lower layer 30 a further includes a first lower reflection layer 32 a provided between the plurality of first absorption layers 31 a and having higher reflectance for the exposure light than the first absorption layer 31 a. As described below, the first lower reflection layer 32 a is provided as necessary, and can be omitted in some cases.
The plurality of first reflection layers 40 a are provided on the opposite side of the first lower layer 30 a from the substrate 10. For example, the plurality of first reflection layers 40 a are provided on the first lower layer 30 a. The plurality of first reflection layers 40 a are periodically arranged at the pitch P along the aforementioned first direction. Each of the plurality of first reflection layers 40 a exposes at least part of each of the plurality of first absorption layers 31 a. The reflectance for the exposure light of the plurality of first reflection layers 40 a is higher than the reflectance for the exposure light of the first absorption layer 31 a.
In the following description, it is assumed that the first direction is the X-axis direction. Furthermore, it is assumed that a second direction parallel to the major surface 10 a and perpendicular to the first direction (X-axis direction) is the Y-axis direction.
Each of the plurality of first absorption layers 31 a can have, for example, a strip-like pattern shape aligned along the Y-axis direction. The width W11 (width along the X-axis direction) of each of the plurality of first absorption layers 31 a can be set to substantially half the pitch P. That is, the width W11 along the X-axis direction of each of the plurality of first absorption layers 31 a can be set substantially equal to the width W12 between the plurality of first absorption layers 31 a. The total of the width W11 and the width W12 is equal to the pitch P. In this example, the width W12 between the plurality of first absorption layers 31 a is substantially coincident with the width along the X-axis direction of each of a plurality of first lower reflection layers 32 a.
However, the width W11 of each of the plurality of first absorption layers 31 a is arbitrary. Furthermore, the width W12 between the plurality of first absorption layers 31 a (in this example, the width along the X-axis direction of each of the plurality of first lower reflection layers 32 a) is arbitrary.
Each of the plurality of first reflection layers 40 a can have, for example, a strip-like pattern shape aligned along the Y-axis direction. The width W22 along the X-axis direction of each of the plurality of first reflection layers 40 a can be set smaller than the width W11 of each of the plurality of first absorption layers 31 a. The width W22 along the X-axis direction of each of the plurality of first reflection layers 40 a can be set smaller than the width W12 between the plurality of first absorption layers 31 a (in this example, the width along the X-axis direction of each of the plurality of first lower reflection layers 32 a). Thus, at least part of each of the plurality of first absorption layers 31 a is not covered with the plurality of first reflection layers 40 a.
That is, on the major surface 10 a side of the substrate 10, the first reflection layer 40 a and at least part of the first absorption layer 31 a are exposed.
In this example, the width W22 along the X-axis direction of each of the plurality of first reflection layers 40 a is substantially equal to half the width W12 between the plurality of first absorption layers 31 a (in this example, the width along the X-axis direction of each of the plurality of first lower reflection layers 32 a).
However, the width W22 along the X-axis direction of each of the plurality of first reflection layers 40 a is arbitrary.
The pitch P can be set to, for example, 80 nm. The width W11 of each of the plurality of first absorption layers 31 a can be set to, for example, 40 nm. The width W12 between the plurality of first absorption layers 31 a (in this example, the width along the X-axis direction of each of the plurality of first lower reflection layers 32 a) can be set to, for example, 40 nm. The width W22 along the X-axis direction of each of the plurality of first reflection layers 40 a can be set to, for example, 20 nm. However, as described above, the width W11, the width W12, and the width W22 are arbitrary. A preferable condition for the pitch P is described below.
The first absorption layer 31 a includes, for example, a tantalum (Ta) material. The first lower reflection layer 32 a includes, for example, silicon. The first reflection layer 40 a includes, for example, silicon.
However, the first absorption layer 31 a can include any material having higher absorptance for the exposure light than the first reflection layer 40 a. The first lower reflection layer 32 a can include any material having higher reflectance for the exposure light than the first absorption layer 31 a. The first reflection layer 40 a can include any material having higher reflectance for the exposure light than the first absorption layer 31 a.
The thickness t11 (thickness along the Z-axis direction) of the first absorption layer 31 a can be set to, for example, 61 nm. The thickness t12 (thickness along the Z-axis direction) of the first lower reflection layer 32 a can be set substantially equal to the thickness t11 of the first absorption layer 31 a. The thickness t22 (thickness along the Z-axis direction) of the first reflection layer 40 a can be set to, for example, 61 nm. However, the thickness t11 of the first absorption layer 31 a, the thickness t12 of the first lower reflection layer 32 a, and the thickness t22 of the first reflection layer 40 a are arbitrary.
The exposure apparatus inspection mask 110 thus configured generates plus first order diffraction light and minus first order diffraction light being mutually different in diffraction efficiency.
FIG. 2A and FIG. 2B are schematic views illustrating operations of the exposure apparatus inspection mask. More specifically, FIG. 2A illustrates the case where the diffraction efficiency of the exposure apparatus inspection mask is asymmetric, and FIG. 2B illustrates the case where the diffraction efficiency of the exposure apparatus inspection mask is symmetric.
Here, a direction parallel to a focus direction 230 of the exposure apparatus is defined as a Z1-axis direction. One direction perpendicular to the Z1-axis direction is defined as an X1-axis direction. A direction perpendicular to the Z1-axis direction and the X1-axis direction is defined as an Y1-axis direction.
As shown in FIG. 2B, in the case of symmetric diffraction efficiency, even if the focus position is shifted along the Z1-axis direction, a zeroth order light 210, a plus first order diffraction light 211, and a minus first order diffraction light 212 are projected at the same positions in the X1-Y1 plane on the wafer. Thus, even if the focus position is shifted along the Z1-axis direction, a pattern transfer position 220 on the wafer does not change, for example, in the X1-Y1 plane.
On the other hand, as shown in FIG. 2A, in the case of asymmetric diffraction efficiency, if the focus position is shifted along the Z1-axis direction, the plus first order diffraction light 211 and the minus first order diffraction light 212 are shifted in the X1-Y1 plane on the wafer in accordance with the shift of the focus position. Thus, if the focus position is shifted along the Z1-axis direction, the pattern transfer position 220 on the wafer is shifted, for example, in the X1-Y1 plane.
The exposure apparatus inspection mask 110 according to this embodiment includes a stacked structure of the first lower layer 30 a including the first absorption layer 31 a, and the first reflection layer 40 a provided on the first lower layer 30 a and exposing at least part of the first absorption layer 31 a. Thus, in the exposure apparatus inspection mask 110, the plus first order diffraction light and the minus first order diffraction light are mutually different in diffraction efficiency. That is, the plus first order diffraction light and the minus first order diffraction light are asymmetric. Thus, as illustrated in FIG. 2A, in the case where the focus position is shifted along the Z1-axis direction, the pattern transfer position 220 on the wafer can be shifted, for example, in the X1-Y1 plane. By measuring the amount of this shift of the pattern transfer position in the X1-Y1 plane, the focus position of the exposure apparatus can be detected.
FIG. 3 is a schematic cross-sectional view illustrating the configuration of an exposure apparatus inspection mask of a comparative example.
As shown in FIG. 3, in the exposure apparatus inspection mask 119 of the comparative example, only a plurality of absorption layers 31 are provided as a first pattern portion 69 on the major surface of a substrate 10. The plurality of absorption layers 31 are arranged at a pitch P along the X-axis direction. The width W11 of the absorption layer 31 and the width W12 between the absorption layers 31 are, for example, half the pitch P.
In the exposure apparatus inspection mask 119 of the comparative example thus configured, the plus first order diffraction light and the minus first order diffraction light are mutually identical in diffraction efficiency and are symmetric. Thus, as described with reference to FIG. 2B, even if the focus position is shifted along the Z1-axis direction, the pattern transfer position 220 on the wafer is not shifted. Hence, the focus position of the exposure apparatus cannot be detected.
In contrast, the exposure apparatus inspection mask 110 according to this embodiment is based on a stacked structure of the first lower layer 30 a including the first absorption layer 31 a, and the first reflection layer 40 a. Thus, in the exposure apparatus inspection mask 110, the plus first order diffraction light and the minus first order diffraction light are made mutually different in diffraction efficiency. Hence, when the focus position is shifted, the pattern transfer position 220 on the wafer is shifted. Thus, the focus position of the exposure apparatus can be detected. That is, by using the exposure apparatus inspection mask 110, the focus characteristic (e.g., focus accuracy) of an exposure apparatus using a reflection type photomask can be inspected.
In the following, an example of the preferable condition for the pitch P in the exposure apparatus inspection mask 110 according to this embodiment will be described.
FIG. 4 is a schematic view illustrating characteristics of the exposure apparatus inspection mask according to the first embodiment. More specifically, FIG. 4 schematically illustrates the relationship between the numerical aperture NA of the projection optical system and the projection range of the diffraction light.
Here, it is assumed as follows. The wavelength of the exposure light of the exposure apparatus is wavelength λ. The numerical aperture of the illumination optical system of the exposure apparatus is illumination optical system numerical aperture INA. The numerical aperture of the projection optical system of the exposure apparatus is projection optical system numerical aperture LNA. The ratio of the numerical aperture of the illumination optical system to the numerical aperture of the projection optical system is numerical aperture ratio σ. That is, σ=INA/LNA.
As shown in FIG. 4, in the inspection using the exposure apparatus inspection mask 110, it is only necessary that at least part of the first order diffraction light (at least part of the plus first order diffraction light 211 and at least part of the minus first order diffraction light 212) is projected in the range 240 of the projection optical system numerical aperture LNA.
Thus, it is only necessary to satisfy the following relation (1).
λ P - INA LNA ( 1 )
That is, it is only necessary to satisfy the following relation (2).
P≧λ/{LNA×(1+σ)}  (2)
Thus, the pitch P is set to λ/{LNA×(1+σ)} or more.
FIG. 5A and FIG. 5B are schematic views illustrating characteristics of the exposure apparatus inspection mask according to the first embodiment.
More specifically, FIG. 5A and FIG. 5B illustrate characteristics more preferable than that illustrated in FIG. 4.
As shown in FIG. 5A, more preferably, all the first order diffraction light (all the plus first order diffraction light 211 and all the minus first order diffraction light 212) is projected in the range 240 of the projection optical system numerical aperture LNA.
Furthermore, as shown in FIG. 5B, more preferably, the second order diffraction light (the plus second order diffraction light 213 and the minus second order diffraction light 214) is not projected in the range 240 of the projection optical system numerical aperture LNA.
Thus, it is more preferable to satisfy the following relation (3).
λ LNA × ( 1 - σ ) P 2 λ LNA × ( 1 + σ ) ( 3 )
That is, more preferably, the pitch P is not less than λ/{LNA×(1−σ)} and not more than 2×λ/{LNA×(1+σ)}. Accordingly, all the first order diffraction light is projected in the range 240 of the projection optical system numerical aperture LNA, while the second order diffraction light is not projected in the range 240. This further improves the accuracy of pattern transfer on the wafer, and further improves the detection accuracy for the focus position of the exposure apparatus.
In the case where the exposure wavelength λ is 13.5 nm, the projection optical system numerical aperture LNA is 0.25, and the numerical aperture ratio σ is 0.10, if the pitch P is set to 80 nm, then the above first, second, and third relations are satisfied.
FIG. 6 is a schematic cross-sectional view illustrating the configuration of an alternative exposure apparatus inspection mask according to the first embodiment.
As shown in FIG. 6, the alternative exposure apparatus inspection mask 111 according to this embodiment also includes a substrate 10 and a first pattern portion 61. The first pattern portion 61 includes a first lower layer 30 a including a first absorption layer 31 a and a first lower reflection layer 32 a, and a first reflection layer 40 a provided on the opposite side of the first lower layer 30 a from the substrate 10.
In this example, the position along the X-axis direction of each first reflection layer 40 a is located at the center along the X-axis direction of each first lower reflection layer 32 a. On the other hand, in the exposure apparatus inspection mask 110 illustrated in FIG. 1, the position along the X-axis direction of each first reflection layer 40 a is located at the end along the X-axis direction of each first lower reflection layer 32 a. Thus, the position along the X-axis direction of each first reflection layer 40 a is arbitrary.
FIG. 7 is a schematic cross-sectional view illustrating the configuration of an alternative exposure apparatus inspection mask according to the first embodiment.
As shown in FIG. 7, the alternative exposure apparatus inspection mask 112 according to this embodiment also includes a substrate 10 and a first pattern portion 62. The first pattern portion 62 includes a first lower layer 30 a including a first absorption layer 31 a and a first lower reflection layer 32 a, and a first reflection layer 40 a.
In this example, each first reflection layer 40 a is provided on the boundary between the first lower reflection layer 32 a and the first absorption layer 31 a. That is, each first reflection layer 40 a is provided on the first lower reflection layer 32 a and the first absorption layer 31 a being adjacent to each other. Thus, the first reflection layer 40 a may be provided only on the first lower reflection layer 32 a (e.g., the exposure apparatus inspection masks 110 and 111), or may be provided on both the first lower reflection layer 32 a and the first absorption layer 31 a (e.g., the exposure apparatus inspection mask 112).
FIG. 8 is a schematic cross-sectional view illustrating the configuration of an alternative exposure apparatus inspection mask according to the first embodiment.
As shown in FIG. 8, the alternative exposure apparatus inspection mask 113 according to this embodiment also includes a substrate 10 and a first pattern portion 63. The first pattern portion 63 includes a first lower layer 30 a including a first absorption layer 31 a, and a first reflection layer 40 a. In this example, the first lower layer 30 a does not include a first lower reflection layer 32 a.
In this example, each first reflection layer 40 a is provided on the corresponding first absorption layer 31 a (on the opposite side of the first absorption layer 31 a from the substrate 10). Each first reflection layer 40 a exposes part of the corresponding first absorption layer 31 a.
The exposure apparatus inspection masks 111, 112, and 113 configured as above can also generate plus first order diffraction light and minus first order diffraction light being mutually different in diffraction efficiency, and can inspect an exposure apparatus using a reflection type photomask. Here, also in these exposure apparatus inspection masks 111, 112, and 113, the width W11 of the first absorption layer 31 a, the width W12 between the plurality of first absorption layers 31 a (e.g., the width along the X-axis direction of each of the plurality of first lower reflection layers 32 a), and the width W22 of the first reflection layer 40 a are arbitrary.
The exposure apparatus inspected by the exposure apparatus inspection masks 110, 111, 112, and 113 according to this embodiment uses EUV light having a wavelength of, for example, 13.5 nm as exposure light. Thus, the absorption coefficient in substances is high, unlike exposure using a deep ultra violet (DUV) light such as KrF and ArF as a light source. Hence, the exposure apparatus inspection masks 110, 111, 112, and 113 are used in a vacuum.
(Second Embodiment)
FIG. 9 is a schematic plan view illustrating the configuration of an exposure apparatus inspection mask according to a second embodiment.
FIG. 10A and FIG. 10B are schematic cross-sectional views illustrating the configuration of the exposure apparatus inspection mask according to the second embodiment.
More specifically, FIG. 10A is a cross-sectional view taken along line A1-A2 of FIG. 9, and FIG. 10B is a cross-sectional view taken along line B1-B2 of FIG. 9.
FIG. 11A and FIG. 11B are schematic cross-sectional views illustrating the configuration of the exposure apparatus inspection mask according to the second embodiment.
More specifically, FIG. 11A is a cross-sectional view taken along line C1-C2 of FIG. 9, and FIG. 11B is a cross-sectional view taken along line D1-D2 of FIG. 9.
As shown in FIG. 9, in addition to the first pattern portion 60 a, the exposure apparatus inspection mask 120 according to this embodiment further includes a second pattern portion 60 b provided on the major surface 10 a of the substrate 10.
As shown in FIG. 10A, the first pattern portion 60 a can be made similar to the first pattern portion 60 a in the exposure apparatus inspection mask 110 described with reference to FIG. 1, and hence the description thereof is omitted.
As shown in FIG. 10B, the second pattern portion 60 b includes a second lower layer 30 b and a plurality of second reflection layers 40 b.
The second lower layer 30 b is provided on the major surface 10 a. The second lower layer 30 b includes a plurality of second absorption layers 31 b periodically arranged at a pitch P along the X-axis direction and being absorptive to the exposure light.
The plurality of second reflection layers 40 b are provided on the opposite side of the second lower layer 30 b from the substrate 10. The plurality of second reflection layers 40 b are periodically arranged at the pitch P along the X-axis direction. Each of the plurality of second reflection layers 40 b exposes at least part of each of the plurality of second absorption layers 31 b. The reflectance for the exposure light of the plurality of second reflection layers 40 b is higher than the reflectance for the exposure light of the second absorption layer 31 b.
In this example, the second lower layer 30 b further includes a second lower reflection layer 32 b provided between the plurality of second absorption layers 31 b and having higher reflectance for the exposure light than the second absorption layer 31 b.
As shown in FIG. 10A and FIG. 10B, the relative positional relationship along the X-axis direction between the first absorption layer 31 a and the first reflection layer 40 a and the relative positional relationship along the X-axis direction between the second absorption layer 31 b and the second reflection layer 40 b are mirror symmetric about the Y-axis direction (i.e., a direction parallel to the major surface 10 a and perpendicular to the X-axis direction).
For example, the pitch P of the first absorption layers 31 a and the pitch P of the second absorption layers 31 b are substantially equal to each other. The width W11 of the first absorption layer 31 a and the width W11 b of the second absorption layer 31 b are substantially equal to each other. The width W12 between the plurality of first absorption layers 31 a and the width W12 b between the plurality of second absorption layers 31 b are substantially equal to each other. The width W22 of the first reflection layer 40 a and the width W22 b of the second reflection layer 40 b are substantially equal to each other.
Here, for example, the thickness of the second absorption layer 31 b is set equal to the thickness t11 of the first absorption layer 31 a. The thickness of the second lower reflection layer 32 b is set equal to the thickness t12 of the first lower reflection layer 32 a. The thickness of the second reflection layer 40 b is set equal to the thickness t22 of the first reflection layer 40 a.
Furthermore, for example, the arrangement of the first reflection layer 40 a relative to the first absorption layer 31 a (the relative arrangement along the X-axis direction) is mirror symmetric about the Y-axis direction with respect to the arrangement of the second reflection layer 40 b relative to the second absorption layer 31 b (the relative arrangement along the X-axis direction).
By using the first pattern portion 60 a and the second pattern portion 60 b having such a relationship, the shift direction of the transferred pattern of the first pattern portion 60 a on the water and the shift direction of the transferred pattern of the second pattern portion 60 b on the water can be made opposite to each other in the case where the focus of the exposure apparatus is shifted, for example. That is, if the shift direction of the transferred pattern of the first pattern portion 60 a on the water is the plus X1-axis direction, then the shift direction of the transferred pattern of the second pattern portion 60 b on the water can be made opposite to the plus X1-axis direction, i.e., can be set to the minus X1-axis direction.
The optical characteristic of the second absorption layer 31 b is set identical to the optical characteristic of the first absorption layer 31 a. The material used for the second absorption layer 31 b is identical to the material used for the first absorption layer 31 a. Here, the second absorption layer 31 b can be formed simultaneously and collectively with the first absorption layer 31 a.
The optical characteristic of the second reflection layer 40 b is set identical to the optical characteristic of the first reflection layer 40 a. The material used for the second reflection layer 40 b is identical to the material used for the first reflection layer 40 a. Here, the second reflection layer 40 b can be formed simultaneously and collectively with the first reflection layer 40 a. The magnitude relationship between the reflectance of the major surface 10 a of the substrate 10 and the reflectance of the second reflection layer 40 b is identical to the magnitude relationship between the reflectance of the major surface 10 a of the substrate 10 and the reflectance of the first reflection layer 40 a.
The optical characteristic of the second lower reflection layer 32 b is set identical to the optical characteristic of the first lower reflection layer 32 a. The material used for the second lower reflection layer 32 b is identical to the material used for the first lower reflection layer 32 a. Here, the second lower reflection layer 32 b can be formed simultaneously and collectively with the first lower reflection layer 32 a.
By using a combination of the first pattern portion 60 a and the second pattern portion 60 b thus configured, the detection sensitivity can be doubled as compared with the case of using only the first pattern portion 60 a, for example. Thus, more accurate inspection can be performed.
Here, a plurality of pairs of the first pattern portion 60 a and the second pattern portion 60 b can be provided on the major surface 10 a of the substrate 10.
Furthermore, as shown in FIG. 9, the exposure apparatus inspection mask 120 further includes a third pattern portion 60 c provided on the major surface 10 a and a fourth pattern portion 60 d provided on the major surface 10 a.
As shown in FIG. 11A, the third pattern portion 60 c includes a third lower layer 30 c and a plurality of third reflection layers 40 c.
The third lower layer 30 c is provided on the major surface 10 a. The third lower layer 30 c includes a plurality of third absorption layers 31 c periodically arranged at a pitch P along the Y-axis direction parallel to the major surface 10 a and perpendicular to the X-axis direction, and being absorptive to the exposure light.
The plurality of third reflection layers 40 c are provided on the opposite side of the third lower layer 30 c from the substrate 10. The plurality of third reflection layers 40 c are periodically arranged at the pitch P along the Y-axis direction. Each of the plurality of third reflection layers 40 c exposes at least part of each of the plurality of third absorption layers 31 c. The reflectance for the exposure light of the plurality of third reflection layers 40 c is higher than the reflectance for the exposure light of the third absorption layer 31 c.
In this example, the third lower layer 30 c further includes a third lower reflection layer 32 c provided between the plurality of third absorption layers 31 c and having higher reflectance for the exposure light than the third absorption layer 31 c.
As shown in FIG. 11B, the fourth pattern portion 60 d includes a fourth lower layer 30 d and a plurality of fourth reflection layers 40 d.
The fourth lower layer 30 d is provided on the major surface 10 a. The fourth lower layer 30 d includes a plurality of fourth absorption layers 31 d periodically arranged at a pitch P along the Y-axis direction and being absorptive to the exposure light.
The plurality of fourth reflection layers 40 d are provided on the opposite side of the fourth lower layer 30 d from the substrate 10. The plurality of fourth reflection layers 40 d are periodically arranged at the pitch P along the Y-axis direction. Each of the plurality of fourth reflection layers 40 d exposes at least part of each of the plurality of fourth absorption layers 31 d. The reflectance for the exposure light of the plurality of fourth reflection layers 40 d is higher than the reflectance for the exposure light of the fourth absorption layer 31 d.
In this example, the fourth lower layer 30 d further includes a fourth lower reflection layer 32 d provided between the plurality of fourth absorption layers 31 d and having higher reflectance for the exposure light than the fourth absorption layer 31 d.
As shown in FIG. 11A and FIG. 11B, the relative positional relationship along the Y-axis direction between the third absorption layer 31 c and the third reflection layer 40 c and the relative positional relationship along the Y-axis direction between the fourth absorption layer 31 d and the fourth reflection layer 40 d are mirror symmetric about the X-axis direction.
For example, the pitch P of the third absorption layers 31 c and the pitch P of the fourth absorption layers 31 d are substantially equal to each other. The width W11 c of the third absorption layer 31 c and the width W11 d of the fourth absorption layer 31 d are substantially equal to each other. The width W12 c between the plurality of third absorption layers 31 c and the width W12 d between the plurality of fourth absorption layers 31 d are substantially equal to each other. The width W22 c of the third reflection layer 40 c and the width W22 d of the fourth reflection layer 40 d are substantially equal to each other.
Here, for example, the thickness of the fourth absorption layer 31 d is set equal to the thickness of the third absorption layer 31 c, the thickness of the fourth lower reflection layer 32 d is set equal to the thickness of the third lower reflection layer 32 c, and the thickness of the fourth reflection layer 40 d is set equal to the thickness of the third reflection layer 40 c.
Furthermore, for example, the arrangement of the third reflection layer 40 c relative to the third absorption layer 31 c (the relative arrangement along the Y-axis direction) is mirror symmetric about the X-axis direction with respect to the arrangement of the fourth reflection layer 40 d relative to the fourth absorption layer 31 d (the relative arrangement along the Y-axis direction).
By using the third pattern portion 60 c and the fourth pattern portion 60 d having such a relationship, the shift direction of the transferred pattern of the third pattern portion 60 c on the water and the shift direction of the transferred pattern of the fourth pattern portion 60 d on the water can be made opposite to each other in the case where the focus of the exposure apparatus is shifted, for example.
The optical characteristics of the third absorption layer 31 c and the fourth absorption layer 31 d are set identical to the optical characteristics of the first absorption layer 31 a and the second absorption layer 31 b. The materials used for the third absorption layer 31 c and the fourth absorption layer 31 d are identical to the materials used for the first absorption layer 31 a and the second absorption layer 31 b. Here, the third absorption layer 31 c and the fourth absorption layer 31 d can be formed simultaneously and collectively with the first absorption layer 31 a and the second absorption layer 31 b.
The optical characteristics of the third reflection layer 40 c and the fourth reflection layer 40 d are set identical to the optical characteristics of the first reflection layer 40 a and the second reflection layer 40 b. The materials used for the third reflection layer 40 c and the fourth reflection layer 40 d are identical to the materials used for the first reflection layer 40 a and the second reflection layer 40 b. Here, the third reflection layer 40 c and the fourth reflection layer 40 d can be formed simultaneously and collectively with the first reflection layer 40 a and the second reflection layer 40 b.
The optical characteristics of the third lower reflection layer 32 c and the fourth lower reflection layer 32 d are set identical to the optical characteristics of the first lower reflection layer 32 a and the second lower reflection layer 32 b.
The materials used for the third lower reflection layer 32 c and the fourth lower reflection layer 32 d are identical to the material used for the first lower reflection layer 32 a and the second lower reflection layer 32 b. Here, the third lower reflection layer 32 c and the fourth lower reflection layer 32 d can be formed simultaneously and collectively with the first lower reflection layer 32 a and the second lower reflection layer 32 b.
By using a combination of the third pattern portion 60 c and the fourth pattern portion 60 d thus configured, the detection sensitivity can be doubled as compared with the case of using only the third pattern portion 60 c, for example. Thus, more accurate inspection can be performed.
Here, a plurality of pairs of the third pattern portion 60 c and the fourth pattern portion 60 d can be provided on the major surface 10 a of the substrate 10.
FIG. 12 is a graph illustrating characteristics of the exposure apparatus inspection mask according to the second embodiment.
More specifically, FIG. 12 illustrates the results of simulating the shift amount, for example, along the X1-axis direction of the pattern transfer position 220 on the wafer when the focus position (e.g., the position along the Z1-axis direction) of the exposure apparatus is shifted in the inspection of the exposure apparatus using the exposure apparatus inspection mask 120. In FIG. 12, the horizontal axis represents the shift amount Sf of the focus position of the exposure apparatus, and the vertical axis represents the shift amount Sx1 along the X1-axis direction of the pattern transfer position 220 on the wafer.
In this simulation, the pitch P was 80 nm. The width W11 of the first absorption layer 31 a was 40 nm. The width W12 between the plurality of first absorption layers 31 a (in this example, the width along the X-axis direction of each of the plurality of first lower reflection layers 32 a) was 40 nm. The width W22 of the first reflection layer 40 a was 20 nm. The thickness t11 of the first absorption layer 31 a was 61 nm. The thickness t12 of the first lower reflection layer 32 a was equal to the thickness t11 of the first absorption layer 31 a. The thickness t22 of the first reflection layer 40 a was 61 nm.
As shown in FIG. 12, the shift amount Sx1 along the X1-axis direction of the pattern transfer position 220 on the wafer is proportional to the shift amount Sf of the focus position of the exposure apparatus. The relationship between the shift amount Sx1 and the shift amount Sf is sufficiently linear. For example, when the shift amount Sf of the focus position of the exposure apparatus is 100 nm, the absolute value of the shift amount Sx1 along the X1-axis direction of the pattern transfer position 220 on the wafer is 4.8 nm.
Thus, by using the exposure apparatus inspection mask 120 according to this embodiment, the pattern transfer position 220 on the wafer can be shifted in the X1-Y1 plane on the basis of the shift along the Z1-axis direction of the focus position. Furthermore, by measuring the shift of the pattern transfer position, the focus position of the exposure apparatus can be detected. That is, the focus characteristic of the exposure apparatus can be evaluated.
In the exposure apparatus inspection mask 120, the first pattern portion 60 a includes the configuration illustrated in FIG. 1. However, the first pattern portion 60 a of the exposure apparatus inspection mask 120 can includes the configuration of the first pattern portions 61, 62, and 63 illustrated in FIG. 6, FIG. 7, and FIG. 8. In this case, the second pattern portion 60 b of the exposure apparatus inspection mask 120 is adapted to the configuration of the first pattern portions 61, 62, and 63, respectively. Furthermore, the third pattern portion 60 c may also include the configuration of the first pattern portions 61, 62, and 63 illustrated in FIG. 6, FIG. 7, and FIG. 8. In this case, the fourth pattern portion 60 d is adapted to the configuration of the first pattern portions 61, 62, and 63, respectively.
FIG. 13 is a schematic plan view illustrating the configuration of an alternative exposure apparatus inspection mask according to the second embodiment.
As shown in FIG. 13, an exposure apparatus inspection mask 121 according to this embodiment also includes a substrate 10, a first pattern portion 60 a, a second pattern portion 60 b, a third pattern portion 60 c, and a fourth pattern portion 60 d. The cross-sectional configuration of the first pattern portion 60 a, the second pattern portion 60 b, the third pattern portion 60 c, and the fourth pattern portion 60 d can be the configuration illustrated in FIG. 10A, FIG. 10B, FIG. 11A, and FIG. 11B, and hence the description thereof is omitted.
In the exposure apparatus inspection mask 121, the layout of the first pattern portion 60 a, the second pattern portion 60 b, the third pattern portion 60 c, and the fourth pattern portion 60 d in the major surface 10 a is different from that in the exposure apparatus inspection mask 120.
More specifically, in the exposure apparatus inspection mask 120 illustrated in FIG. 9, the first pattern portion 60 a and the second pattern portion 60 b are arranged along the X-axis direction. Furthermore, in the exposure apparatus inspection mask 120, the third pattern portion 60 c and the fourth pattern portion 60 d are arranged along the Y-axis direction.
On the other hand, in the exposure apparatus inspection mask 121 illustrated in FIG. 13, the first pattern portion 60 a and the second pattern portion 60 b are arranged along the Y-axis direction. Furthermore, in the exposure apparatus inspection mask 121, the third pattern portion 60 c and the fourth pattern portion 60 d are arranged along the X-axis direction.
The exposure apparatus inspection mask 121 can also generate plus first order diffraction light and minus first order diffraction light being mutually different in diffraction efficiency, and can inspect an exposure apparatus using a reflection type photomask.
(Third Embodiment)
FIG. 14 is a flow chart illustrating an exposure apparatus inspection method according to a third embodiment.
This inspection method is a method for inspecting an exposure apparatus using a reflection type photomask. The exposure apparatus to be inspected is, for example, an exposure apparatus using EUV light having a wavelength of 13.5 nm as exposure light. This inspection method uses an exposure apparatus inspection mask for generating plus first order diffraction light and minus first order diffraction light being mutually different in diffraction efficiency.
As shown in FIG. 14, in this inspection method, a resist film formed on a test wafer is irradiated with exposure light reflected by the exposure apparatus inspection mask according to the embodiments to form a resist layer having a pattern based on the pattern of the exposure apparatus inspection mask (step S110).
For example, a resist film formed on a test wafer is irradiated with exposure light reflected by the exposure apparatus inspection masks 110, 111, 112, 113, 120, and 121 described with reference to the first and second embodiments, and exposure apparatus inspection masks modified therefrom. Next, for example, development treatment is performed to form a resist layer having a pattern based on the pattern of the exposure apparatus inspection mask (e.g., the pattern of the first pattern portion 60 a and the like).
Next, as shown in FIG. 14, the position of the pattern of the resist layer formed on the test wafer is measured (step S120). That is, for example, the position of the pattern of the resist layer corresponding to the pattern of the first pattern portion 60 a is measured.
As described with reference to FIG. 2A, in the exposure apparatus inspection mask according to the embodiments, the plus first order diffraction light and the minus first order diffraction light are mutually different in diffraction efficiency. Hence, the position of the pattern of the resist layer is shifted in accordance with the shift of the focus position of the exposure apparatus. Thus, by measuring this position of the pattern of the resist layer, the focus characteristic of the exposure apparatus can be inspected.
As described with reference to the second embodiment, in the case of using a combination of the first pattern portion 60 a and the second pattern portion 60 b, the shift of the position of the pattern of the resist layer can be easily measured by measuring the relative position of the pattern of the resist layer corresponding to the pattern of the first pattern portion 60 a and the pattern of the resist layer corresponding to the pattern of the second pattern portion 60 b. In this case, the detection sensitivity can be doubled as compared with the case of using a single pattern portion. Thus, more accurate inspection can be performed.
Furthermore, by using a combination of the third pattern portion 60 c and the fourth pattern portion 60 d, the shift of the position of the pattern of the resist layer can be easily measured. The detection sensitivity can be doubled as compared with the case of using a single pattern portion. Thus, more accurate inspection can be performed.
Thus, the embodiments can provide an exposure apparatus inspection mask and an exposure apparatus inspection method for inspecting an exposure apparatus using a reflection type photomask.
In the specification of the application, “perpendicular” and “parallel” refer to not only strictly perpendicular and strictly parallel but also include, for example, the fluctuation due to manufacturing processes, etc. It is sufficient to be substantially perpendicular and substantially parallel.
Hereinabove, exemplary embodiments of the invention are described with reference to specific examples. However, the invention is not limited to these specific examples. For example, one skilled in the art may similarly practice the invention by appropriately selecting specific configurations of components included in exposure apparatus inspection masks such as substrates, bases, stacked films, pattern portions, lower layers, absorption layers, reflection layers, and lower reflection layers, and the like from known art. Such practice is included in the scope of the invention to the extent that similar effects thereto are obtained.
Further, any two or more components of the specific examples may be combined within the extent of technical feasibility; and are included in the scope of the invention to the extent that the purport of the invention is included.
Moreover, all exposure apparatus inspection masks and exposure apparatus inspection methods practicable by an appropriate design modification by one skilled in the art based on the exposure apparatus inspection masks and the exposure apparatus inspection methods described above as exemplary embodiments of the invention also are within the scope of the invention to the extent that the purport of the invention is included.
Furthermore, various modifications and alterations within the spirit of the invention will be readily apparent to those skilled in the art. All such modifications and alterations should therefore be seen as within the scope of the invention. For example, additions, deletions, or design modifications of components or additions, omissions, or condition modifications of processes appropriately made by one skilled in the art in regard to the exemplary embodiments described above are within the scope of the invention to the extent that the purport of the invention is included.
While certain embodiments have been described, these embodiments have been presented by way of example only, and are not intended to limit the scope of the inventions. Indeed, the novel embodiments described herein may be embodied in a variety of other forms; furthermore, various omissions, substitutions and changes in the form of the embodiments described herein may be made without departing from the spirit of the inventions. The accompanying claims and their equivalents are intended to cover such forms or modification as would fall within the scope and spirit of the inventions.

Claims (18)

1. An exposure apparatus inspection mask comprising:
a substrate having a major surface reflective to an exposure light; and
a first pattern portion provided on the major surface,
the first pattern portion including:
a first lower layer provided on the major surface and including a plurality of first absorption layers periodically arranged at a prescribed pitch along a first direction parallel to the major surface and being absorptive to the exposure light; and
a plurality of first reflection layers provided on a side of the first lower layer opposite to the substrate, the plurality of first reflection layers being periodically arranged at the pitch along the first direction, exposing at least part of each of the plurality of first absorption layers, and having a reflectance for the exposure light higher than a reflectance for the exposure light of the first absorption layers.
2. The mask according to claim 1, wherein the first lower layer further includes a plurality of first lower reflection layers provided between the plurality of first absorption layers and having a reflectance for the exposure light higher than a reflectance for the exposure light of the first absorption layers.
3. The mask according to claim 2, wherein the first absorption layers include tantalum, the first lower reflection layers include silicon, and the first reflection layers include silicon.
4. The mask according to claim 1, wherein the pitch is not less than λ/{LNA×(1−σ)} and not more than 2×λ/{LNA×(1+σ)}, where λ is a wavelength of the exposure light, LNA is numerical aperture of a projection optical system of an exposure apparatus to be inspected, and σ is a value of numerical aperture of an illumination optical system of the exposure apparatus divided by the numerical aperture of the projection optical system.
5. The mask according to claim 1, wherein a width along the first direction of each of the plurality of first absorption layers is substantially equal to a space between the plurality of first absorption layers.
6. The mask according to claim 1, wherein a width along the first direction of each of the plurality of first reflection layers is smaller than a width along the first direction of each of the plurality of first absorption layers.
7. The mask according to claim 1, wherein a width along the first direction of each of the plurality of first reflection layers is smaller than a width along the first direction between the plurality of first absorption layers.
8. The mask according to claim 1, further comprising
a second pattern portion provided on the major surface,
the second pattern portion including:
a second lower layer provided on the major surface and including a plurality of second absorption layers periodically arranged at the pitch along the first direction and being absorptive to the exposure light; and
a plurality of second reflection layers provided on a side of the second lower layer opposite to the substrate, the plurality of second reflection layers being periodically arranged at the pitch along the first direction, exposing at least part of each of the plurality of second absorption layers, and having a reflectance for the exposure light higher than a reflectance for the exposure light of the second absorption layers,
a relative positional relationship along the first direction between the first absorption layers and the first reflection layers and a relative positional relationship along the first direction between the second absorption layers and the second reflection layers being mirror symmetric about a second direction parallel to the major surface and perpendicular to the first direction.
9. The mask according to claim 8, wherein
an optical characteristic including at least one of refractive index for the exposure light, reflectance for the exposure light, and absorptance for the exposure light of the second absorption layers is identical to an optical characteristic including at least one of refractive index for the exposure light, reflectance for the exposure light, and absorptance for the exposure light of the first absorption layers, and
an optical characteristic including at least one of refractive index for the exposure light, reflectance for the exposure light, and absorptance for the exposure light of the second reflection layers is identical to an optical characteristic including at least one of refractive index for the exposure light, reflectance for the exposure light, and absorptance for the exposure light of the first reflection layers.
10. The mask according to claim 8, wherein
a material used for the second absorption layers is identical to a material used for the first absorption layers, and
a material used for the second reflection layers is identical to a material used for the first reflection layers.
11. The mask according to claim 8, wherein the second lower layer further includes a plurality of second lower reflection layers provided between the plurality of second absorption layers and having a reflectance for the exposure light higher than a reflectance for the exposure light of the second absorption layers.
12. The mask according to claim 11, wherein an optical characteristic including at least one of refractive index for the exposure light, reflectance for the exposure light, and absorptance for the exposure light of the second lower reflection layers is identical to an optical characteristic including at least one of refractive index for the exposure light, reflectance for the exposure light, and absorptance for the exposure light of the first lower reflection layers.
13. The mask according to claim 11, wherein a material used for the second lower reflection layers is identical to a material used for the first lower reflection layers.
14. The mask according to claim 8, further comprising:
a third pattern portion provided on the major surface; and
a fourth pattern portion provided on the major surface,
the third pattern portion including:
a third lower layer provided on the major surface and including a plurality of third absorption layers periodically arranged at the pitch along the second direction parallel to the major surface and perpendicular to the first direction and being absorptive to the exposure light; and
a plurality of third reflection layers provided on a side of the third lower layer opposite to the substrate, the plurality of third reflection layers being periodically arranged at the pitch along the second direction, exposing at least part of each of the plurality of third absorption layers, and having a reflectance for the exposure light higher than a reflectance for the exposure light of the third absorption layers,
the fourth pattern portion including:
a fourth lower layer provided on the major surface and including a plurality of fourth absorption layers periodically arranged at the pitch along the second direction and being absorptive to the exposure light; and
a plurality of fourth reflection layers provided on a side of the fourth lower layer opposite to the substrate, the plurality of fourth reflection layers being periodically arranged at the pitch along the second direction, exposing at least part of each of the plurality of fourth absorption layers, and having a reflectance for the exposure light higher than a reflectance for the exposure light of the fourth absorption layers,
a relative positional relationship along the second direction between the third absorption layers and the third reflection layers and a relative positional relationship along the second direction between the fourth absorption layers and the fourth reflection layers being mirror symmetric about the first direction.
15. The mask according to claim 1, wherein the first absorption layers include tantalum, and the first reflection layers include silicon.
16. The mask according to claim 1, wherein the exposure apparatus inspection mask generates a plus first order diffraction light and a minus first order diffraction light, the plus first order diffraction light has a diffraction efficiency different from a diffraction efficiency of the minus first order diffraction light.
17. The mask according to claim 1, wherein the substrate includes a plurality of first layers and a second layer, the plurality of first layers being stacked in a direction perpendicular to the major surface, the second layer being provided between the plurality of first layers and having an optical characteristic for the exposure light different from an optical characteristic for the exposure light of the first layers.
18. The mask according to claim 17, wherein one of the first layers and the second layer includes silicon, and the other of the first layers and the second layer includes molybdenum.
US12/886,157 2010-06-02 2010-09-20 Exposure apparatus inspection mask and exposure apparatus inspection method Active 2031-05-31 US8343692B2 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2010-126698 2010-06-02
JP2010126698A JP5345106B2 (en) 2010-06-02 2010-06-02 Exposure apparatus inspection mask and exposure apparatus inspection method

Publications (2)

Publication Number Publication Date
US20110300472A1 US20110300472A1 (en) 2011-12-08
US8343692B2 true US8343692B2 (en) 2013-01-01

Family

ID=45064727

Family Applications (1)

Application Number Title Priority Date Filing Date
US12/886,157 Active 2031-05-31 US8343692B2 (en) 2010-06-02 2010-09-20 Exposure apparatus inspection mask and exposure apparatus inspection method

Country Status (4)

Country Link
US (1) US8343692B2 (en)
JP (1) JP5345106B2 (en)
KR (1) KR101156237B1 (en)
TW (1) TWI439799B (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6071772B2 (en) 2013-06-13 2017-02-01 株式会社東芝 Focus measurement method, exposure apparatus, and semiconductor device manufacturing method
US9772566B2 (en) 2015-06-30 2017-09-26 Toshiba Memory Corporation Mask alignment mark, photomask, exposure apparatus, exposure method, and manufacturing method of device
TWI712849B (en) * 2017-02-17 2020-12-11 聯華電子股份有限公司 Extreme ultraviolet mask

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6674511B2 (en) 2000-08-09 2004-01-06 Kabushiki Kaisha Toshiba Evaluation mask, focus measuring method and aberration measuring method
JP2004029372A (en) 2002-06-26 2004-01-29 Nikon Corp Mask, method for measuring imaging property, exposure method and method for manufacturing device
US20090190118A1 (en) 2008-01-28 2009-07-30 Kazuya Fukuhara Exposure apparatus inspection mask, and method of inspecting exposure apparatus using exposure apparatus inspection mask
KR20100002553A (en) 2008-06-30 2010-01-07 삼성전자주식회사 Reflection mask, method of manufacturing the same and method of correcting a design of the same

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2865685B2 (en) * 1988-03-16 1999-03-08 株式会社日立製作所 Method for manufacturing semiconductor device
JP3153230B2 (en) * 1990-09-10 2001-04-03 株式会社日立製作所 Pattern formation method
JP3047541B2 (en) * 1991-08-22 2000-05-29 株式会社日立製作所 Reflective mask and defect repair method
JPH11305417A (en) * 1998-04-24 1999-11-05 Hitachi Ltd Exposing method and reflection type mask
JP2004096063A (en) * 2002-07-02 2004-03-25 Sony Corp Phase shifting mask for extremely short ultraviolet light, its manufacturing method, and method of manufacturing semiconductor device
JP4622504B2 (en) * 2004-12-21 2011-02-02 凸版印刷株式会社 Mask blank for extreme ultraviolet exposure, mask and pattern transfer method

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6674511B2 (en) 2000-08-09 2004-01-06 Kabushiki Kaisha Toshiba Evaluation mask, focus measuring method and aberration measuring method
JP2004029372A (en) 2002-06-26 2004-01-29 Nikon Corp Mask, method for measuring imaging property, exposure method and method for manufacturing device
US20090190118A1 (en) 2008-01-28 2009-07-30 Kazuya Fukuhara Exposure apparatus inspection mask, and method of inspecting exposure apparatus using exposure apparatus inspection mask
JP2009175587A (en) 2008-01-28 2009-08-06 Toshiba Corp Mask for inspection of exposure apparatus, method for manufacturing the mask, and method for inspecting exposure apparatus using the mask for inspection of exposure apparatus
KR20100002553A (en) 2008-06-30 2010-01-07 삼성전자주식회사 Reflection mask, method of manufacturing the same and method of correcting a design of the same

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
Notification of Comments issued by the Korean Patent Office on Aug. 31, 2011, for Korean Patent Application No. 10-2010-88245, and English-language translation thereof.

Also Published As

Publication number Publication date
KR20110132509A (en) 2011-12-08
KR101156237B1 (en) 2012-06-13
TW201144929A (en) 2011-12-16
US20110300472A1 (en) 2011-12-08
JP2011253933A (en) 2011-12-15
JP5345106B2 (en) 2013-11-20
TWI439799B (en) 2014-06-01

Similar Documents

Publication Publication Date Title
TWI574116B (en) Inspection apparatus, lithographic apparatus, and device manufacturing method
KR102217209B1 (en) Adjustment of metrology devices or measurement based on the characteristics of the measurement target
KR102170147B1 (en) Alternative target design for metrology using modulation technology
US20170269480A1 (en) Method and apparatus for using patterning device topography induced phase
CN104656367A (en) EUV mask for use during EUV photolithography processes
US20170329231A1 (en) Method and apparatus for using patterning device topography induced phase
TWI655519B (en) Method and computer program product for measurement
JP2005338267A (en) Evaluation method, mask pattern correction method, method for manufacturing semiconductor device, and program
KR20190008321A (en) Measurement robustness improvement technology based on penetration-wavelength similarity
KR101833017B1 (en) Method of manufacturing photomask
KR20200033967A (en) Overlay estimation method
US11726413B2 (en) Overlay marks for reducing effect of bottom layer asymmetry
JP2008096973A5 (en)
US8343692B2 (en) Exposure apparatus inspection mask and exposure apparatus inspection method
US20170343892A1 (en) Mask with multilayer structure and manufacturing method by using the same
US9128388B2 (en) Method of focus measurement, exposure apparatus, and method of manufacturing semiconductor device
US20100081093A1 (en) Exposure apparatus inspection method and method for manufacturing semiconductor device
US9250512B2 (en) Exposure amount evaluation method and photomask
US8184264B2 (en) Calibration methods and devices useful in semiconductor photolithography
US10983440B2 (en) Selection of substrate measurement recipes
JP3302966B2 (en) Exposure apparatus inspection method and exposure apparatus inspection photomask
US20090233189A1 (en) Device and method for obtaining exposure correction information, and manufacturing method of semiconductor device
JP2002184675A (en) Correction method for spherical aberration of projection lens of aligner
Bubke et al. Investigation of polarization effects on new mask materials
Fenger Image-based EUVL aberration metrology

Legal Events

Date Code Title Description
AS Assignment

Owner name: KABUSHIKI KAISHA TOSHIBA, JAPAN

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:KOMINE, NOBUHIRO;FUKUHARA, KAZUYA;REEL/FRAME:025015/0679

Effective date: 20100916

STCF Information on status: patent grant

Free format text: PATENTED CASE

FPAY Fee payment

Year of fee payment: 4

AS Assignment

Owner name: TOSHIBA MEMORY CORPORATION, JAPAN

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:KABUSHIKI KAISHA TOSHIBA;REEL/FRAME:043709/0035

Effective date: 20170706

MAFP Maintenance fee payment

Free format text: PAYMENT OF MAINTENANCE FEE, 8TH YEAR, LARGE ENTITY (ORIGINAL EVENT CODE: M1552); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY

Year of fee payment: 8

AS Assignment

Owner name: K.K. PANGEA, JAPAN

Free format text: MERGER;ASSIGNOR:TOSHIBA MEMORY CORPORATION;REEL/FRAME:055659/0471

Effective date: 20180801

Owner name: TOSHIBA MEMORY CORPORATION, JAPAN

Free format text: CHANGE OF NAME AND ADDRESS;ASSIGNOR:K.K. PANGEA;REEL/FRAME:055669/0401

Effective date: 20180801

Owner name: KIOXIA CORPORATION, JAPAN

Free format text: CHANGE OF NAME AND ADDRESS;ASSIGNOR:TOSHIBA MEMORY CORPORATION;REEL/FRAME:055669/0001

Effective date: 20191001