US8290358B1 - Methods and apparatus for light-field imaging - Google Patents
Methods and apparatus for light-field imaging Download PDFInfo
- Publication number
- US8290358B1 US8290358B1 US12/144,411 US14441108A US8290358B1 US 8290358 B1 US8290358 B1 US 8290358B1 US 14441108 A US14441108 A US 14441108A US 8290358 B1 US8290358 B1 US 8290358B1
- Authority
- US
- United States
- Prior art keywords
- optical
- array
- light
- photosensor
- camera
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active, expires
Links
- 238000000034 method Methods 0.000 title claims abstract description 42
- 238000003384 imaging method Methods 0.000 title abstract description 4
- 230000003287 optical effect Effects 0.000 claims description 232
- 238000012545 processing Methods 0.000 claims description 24
- 238000009826 distribution Methods 0.000 claims description 10
- 238000013461 design Methods 0.000 abstract description 101
- 238000005070 sampling Methods 0.000 abstract description 17
- 238000003672 processing method Methods 0.000 abstract description 4
- 238000003491 array Methods 0.000 description 14
- 238000009877 rendering Methods 0.000 description 10
- 238000013459 approach Methods 0.000 description 9
- 230000006870 function Effects 0.000 description 7
- 238000003860 storage Methods 0.000 description 7
- 238000004891 communication Methods 0.000 description 6
- PXFBZOLANLWPMH-UHFFFAOYSA-N 16-Epiaffinine Natural products C1C(C2=CC=CC=C2N2)=C2C(=O)CC2C(=CC)CN(C)C1C2CO PXFBZOLANLWPMH-UHFFFAOYSA-N 0.000 description 5
- 238000004422 calculation algorithm Methods 0.000 description 5
- 230000000694 effects Effects 0.000 description 5
- 238000012935 Averaging Methods 0.000 description 4
- 238000012986 modification Methods 0.000 description 4
- 230000004048 modification Effects 0.000 description 4
- 239000005304 optical glass Substances 0.000 description 4
- 230000002093 peripheral effect Effects 0.000 description 4
- 238000012805 post-processing Methods 0.000 description 4
- 230000011218 segmentation Effects 0.000 description 4
- 238000000638 solvent extraction Methods 0.000 description 4
- 230000008901 benefit Effects 0.000 description 3
- 230000005540 biological transmission Effects 0.000 description 3
- 239000002131 composite material Substances 0.000 description 3
- 238000013500 data storage Methods 0.000 description 3
- 230000010354 integration Effects 0.000 description 3
- 230000007246 mechanism Effects 0.000 description 3
- 238000004458 analytical method Methods 0.000 description 2
- 230000006399 behavior Effects 0.000 description 2
- 230000015572 biosynthetic process Effects 0.000 description 2
- 238000013213 extrapolation Methods 0.000 description 2
- 239000000835 fiber Substances 0.000 description 2
- 239000000203 mixture Substances 0.000 description 2
- 230000008569 process Effects 0.000 description 2
- 239000000126 substance Substances 0.000 description 2
- 238000003786 synthesis reaction Methods 0.000 description 2
- 230000009466 transformation Effects 0.000 description 2
- 238000013519 translation Methods 0.000 description 2
- 230000014616 translation Effects 0.000 description 2
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 1
- 230000009471 action Effects 0.000 description 1
- 239000000956 alloy Substances 0.000 description 1
- 229910045601 alloy Inorganic materials 0.000 description 1
- 230000004075 alteration Effects 0.000 description 1
- 230000008859 change Effects 0.000 description 1
- 230000001427 coherent effect Effects 0.000 description 1
- 239000003086 colorant Substances 0.000 description 1
- 238000010276 construction Methods 0.000 description 1
- 238000007796 conventional method Methods 0.000 description 1
- 238000013501 data transformation Methods 0.000 description 1
- 238000009795 derivation Methods 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 230000005669 field effect Effects 0.000 description 1
- 239000011521 glass Substances 0.000 description 1
- 238000007726 management method Methods 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- 238000002156 mixing Methods 0.000 description 1
- 238000012856 packing Methods 0.000 description 1
- 238000003909 pattern recognition Methods 0.000 description 1
- 229920003023 plastic Polymers 0.000 description 1
- 239000004033 plastic Substances 0.000 description 1
- 229920001690 polydopamine Polymers 0.000 description 1
- 230000009467 reduction Effects 0.000 description 1
- 238000011160 research Methods 0.000 description 1
- 238000004904 shortening Methods 0.000 description 1
- 230000003068 static effect Effects 0.000 description 1
- 229920000638 styrene acrylonitrile Polymers 0.000 description 1
- 238000010408 sweeping Methods 0.000 description 1
- 230000001360 synchronised effect Effects 0.000 description 1
- 238000012546 transfer Methods 0.000 description 1
- 238000012800 visualization Methods 0.000 description 1
Images
Classifications
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B27/00—Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
- G02B27/0075—Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00 with means for altering, e.g. increasing, the depth of field or depth of focus
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B3/00—Simple or compound lenses
- G02B3/0006—Arrays
- G02B3/0037—Arrays characterized by the distribution or form of lenses
- G02B3/0056—Arrays characterized by the distribution or form of lenses arranged along two different directions in a plane, e.g. honeycomb arrangement of lenses
-
- G—PHYSICS
- G03—PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
- G03B—APPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
- G03B35/00—Stereoscopic photography
- G03B35/08—Stereoscopic photography by simultaneous recording
- G03B35/10—Stereoscopic photography by simultaneous recording having single camera with stereoscopic-base-defining system
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04N—PICTORIAL COMMUNICATION, e.g. TELEVISION
- H04N13/00—Stereoscopic video systems; Multi-view video systems; Details thereof
- H04N13/20—Image signal generators
- H04N13/204—Image signal generators using stereoscopic image cameras
- H04N13/207—Image signal generators using stereoscopic image cameras using a single 2D image sensor
- H04N13/218—Image signal generators using stereoscopic image cameras using a single 2D image sensor using spatial multiplexing
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04N—PICTORIAL COMMUNICATION, e.g. TELEVISION
- H04N13/00—Stereoscopic video systems; Multi-view video systems; Details thereof
- H04N13/20—Image signal generators
- H04N13/204—Image signal generators using stereoscopic image cameras
- H04N13/207—Image signal generators using stereoscopic image cameras using a single 2D image sensor
- H04N13/232—Image signal generators using stereoscopic image cameras using a single 2D image sensor using fly-eye lenses, e.g. arrangements of circular lenses
Definitions
- the light-field or radiance density function is a complete representation of light energy flowing along “all rays” in 3D space. This density is a field defined in the 4D domain of the optical phase space, the space of all lines in 3D with symplectic structure.
- a conventional camera does not capture information about the location on the aperture where different light rays enter the camera.
- a conventional digital camera captures a two-dimensional (2-D) image representing a total amount of light that strikes each point on a photosensor within the camera.
- this 2-D image contains no information about the directional distribution of the light that strikes the photosensor.
- Directional information at the pixels corresponds to locational information at the aperture.
- Light-field cameras sample the four-dimensional (4-D) optical phase space or light-field and in doing so capture information about the directional distribution of the light rays.
- This information captured by light-field cameras may be referred to as the light-field, the plenoptic function, or radiance.
- a light-field is a 4-D record of all light rays in 3-D.
- Radiance describes both spatial and angular information, and is defined as density of energy per unit of area per unit of stereo angle (in radians).
- a light-field camera captures radiance; therefore, light-field images originally taken out-of-focus may be refocused, noise may be reduced, viewpoints may be changed, and other light-field effects may be achieved.
- integral photography used arrays of lenslets or pinholes placed directly in front of film, creating multiple images on the film like an array of cameras. Optically similar to that is a physical array of digital cameras, which is a primary approach used in current light-field research (see FIG. 1A , described below).
- a related type of integral photography design places an array of positive lenses in front of a conventional camera to create an array of real images between the lenses and the camera. Then the camera takes a picture focused on those images.
- Light-fields may be captured with a conventional camera.
- M ⁇ N images of a scene are captured from different positions with a conventional camera. If, for example, 8 ⁇ 8 images are captured from 64 different positions, 64 images are produced. The pixel from each position (i,j) in each image are taken and placed into blocks, to generate 64 blocks.
- FIG. 1A illustrates an exemplary conventional light-field camera array, which employs an array of cameras. Each objective lens focuses on a separate photosensor 108 .
- This light-field camera 100 is a combination of two or more conventional cameras that each simultaneously records an image of a subject on a particular photosensor 108 . The captured images may then be combined to form one image.
- a full 4D light-field may be captured with a conventional hand-held plenoptic camera.
- This approach may make light-field photography more practical, giving the photographer the freedom and the power to make adjustments of focus and aperture after the picture has been taken.
- it transfers the optics of the lens of the camera into the digital domain, extending the types of post-processing possible with software like Adobe® Photoshop®.
- Plenoptic cameras effectively place a big (main, or objective) lens in front of an array of lenslets (or cameras), forming an image on the array of lenslets.
- the array of lenslets or microlenses or other optical elements, such as pinholes
- a photosensor e.g. a charge-coupled device (CCD).
- CCD charge-coupled device
- the microlenses are placed and adjusted accurately to be exactly at one focal length f from the sensor, where f is the focal length of the microlenses in the array.
- Each microlens creates an image sampling the angular distribution of radiance at that point, which corresponds to one single direction observed from multiple points of view on the main lens aperture.
- the raw image captured with a conventional plenoptic camera is made up of an array of small images, typically circular, of the main lens.
- the conventional plenoptic camera approach swaps the placement of spatial and angular samples on the image plane: instead of producing an array of ordinary images, as in integral photography, it creates what appears as a single, recognizable “image” consisting of small 2D arrays of angular samples of a single point in the scene.
- FIG. 1B illustrates an exemplary conventional plenoptic camera, another type of light-field camera, that employs a single objective lens and a microlens or lenslet array 106 that includes, for example, about 100,000 lenslets.
- Lenslet array 106 is typically placed a small distance ( ⁇ 0.5 mm) from a photosensor 108 , e.g. a charge-coupled device (CCD).
- CCD charge-coupled device
- the raw image captured with a plenoptic camera 102 is made up of an array of small images, typically circular, of the main camera lens 108 . These small images may be referred to as microimages.
- the lenslet array 106 enables the plenoptic camera 102 to capture the light-field, i.e.
- Each lenslet splits a beam coming to it from the main lens 104 into rays coming from different “pinhole” locations on the aperture of the main lens 108 . Each of these rays is recorded as a pixel on photosensor 108 , and the pixels under each lenslet collectively form an n-pixel image.
- This n-pixel area under each lenslet may be referred to as a macropixel, and the camera 102 generates a microimage at each macropixel.
- the plenoptic photograph captured by a camera 102 with, for example, 100,000 lenslets will contain 100,000 macropixels, and thus generate 100,000 microimages of a subject.
- Each macropixel contains different angular samples of the light rays coming to a given microlens. Each macropixel contributes to only one pixel in the different angular views of the scene. As a result, each angular view contains 100,000 pixels.
- Another conventional type of integral or light-field camera is similar to the plenoptic camera of FIG. 1B , except that an array of pinholes are used between the main lens and the photosensor instead of an array of lenslets.
- Yet another type of conventional integral or light-field camera is similar to the plenoptic camera of FIG. 1B , except that a non-refractive mask is used between the main lens and the photosensor instead of an array of lenslets.
- the mask is a non-refractive element, and attenuates the incoming rays but does not bend them.
- the captured image is the convolution of the incoming light-field with the mask light-field.
- the light-field may be captured by an array of 2962 lenslets inside a conventional camera.
- Each lenslet in this example corresponds to a little camera producing an approximately 14 ⁇ 14 pixel image of the main lens aperture.
- Each pixel within that small image corresponds to one viewpoint on the aperture, while different lenslets correspond to different pixels in the final image.
- the result is an approximately 100-view light-field with 90,000 pixels per view. (The number of effective views is 100 instead of 142 due to losses, which will be discussed later.)
- each small image of the main lens aperture created by a lenslet includes pixels at the aperture boundary that are either lost entirely, or noisy. Such boundary pixels are only partially covered by the image of the aperture.
- the true irradiance corresponding to the illuminated part of each pixel one would need to know exactly what percentage of it has been illuminated, and correct for that in software. In other words, very precise calibration of all pixels in the camera would be needed.
- captured pixel values may be affected by tiny misalignments, such as pixel shift due to thermal expansion of the image sensor.
- a misalignment of a micrometer may change a boundary pixel value by, e.g., more than 10%. This problem gets very visible when the lenslets get smaller. In the limiting case of a 2 ⁇ 2 or 4 ⁇ 4 pixel image under each lenslet (depending on Bayer array), all the pixels become boundary pixels, providing no reliable 3D information at all.
- a lens is a transparent optical element consisting of one or more pieces of optical glass with surfaces so curved (usually spherical) that they serve to converge or diverge the transmitted rays from an object, thus forming a real or virtual image of that object.
- a negative lens is a lens that causes parallel light rays to spread out.
- a negative lens may also be referred to as a divergent lens, concave lens or dispersive lens.
- the lens surfaces of a negative lens may be plano-concave, double concave or concavo-convex.
- a positive lens is a lens that converges an incident bundle of rays to a focus.
- a positive lens may also be referred to as a converging lens, a convergent lens, or a convex lens.
- a prism is a transparent optical element having at least two polished plane faces inclined relative to each other, from which light is reflected or through which light is refracted.
- Embodiments of light-field camera designs described herein may be implemented in hand-held light-field cameras that may capture a light-field with a single exposure. This adds a whole new dimension to digital photography with the ability to capture a sparse light-field with higher spatial resolution with a compact camera design, and the application of later post-processing based on computer vision to compensate for the lower angular resolution.
- Some of the light-field camera designs are internal to the camera (i.e., incorporating additional optical elements between the main or objective lens of the camera and the camera photosensor), while others are external to the camera (i.e., incorporating additional optical elements in front of the main or objective lens of the camera, coupled externally to the camera for example in an attachment or tube).
- a light-field camera design includes a lens array of multiple relatively smaller lenses instead of or as a replacement for a single larger main or objective lens as in conventional cameras.
- a light-field camera implemented according to this design is a single camera rather than an array of distinct and separate cameras.
- a light-field camera design incorporates an array of multiple prisms internal to the camera and proximate to the main or objective lens.
- the prisms in the array each act to tilt rays from the main lens onto a corresponding region of the photosensor.
- a light-field camera design incorporates an array of multiple positive lenses internal to the camera and proximate to the main or objective lens.
- the positive lenses act to move the image plane forward, or closer to the main lens than the original location of the image plane of the main lens.
- the positive lenses in the array each act to shift rays from the main lens onto a corresponding region of the photosensor.
- a light-field camera design incorporates an array of multiple negative lenses internal to the camera and proximate to the main or objective lens.
- the negative lenses act to move the image plane backward, or further away from the main lens than the original location of the image plane of the main lens.
- the negative lenses in the array each act to shift rays from the main lens onto a corresponding region of the photosensor.
- a light-field camera design includes multiple optical elements that are placed in front of (external to) the main lens of a conventional camera.
- the optical elements include a single, relatively large lens, arranged in front of an array of negative lenses.
- the single lens and the array of negative lenses may be assembled in a tube or attachment, which may attach to the conventional camera via any standard, or optionally by custom, camera lens attachment mechanisms.
- FIG. 1A illustrates an exemplary conventional light-field camera array.
- FIG. 1B illustrates an exemplary conventional plenoptic camera.
- FIG. 2A illustrates partitioning optical phase space into sampling regions for a light-field camera.
- FIG. 2B illustrates the “plenoptic” way of sampling.
- FIG. 2C illustrates the “integral photography” way of sampling.
- FIG. 3 illustrates light-field transformation at the plane of a lens.
- FIG. 4 shows an external light-field camera design that uses arrays of negative lenses and prisms placed between the object field and the main lens of the camera, according to one embodiment.
- FIG. 5A illustrates a light-field camera design embodiment in which the single objective lens of a camera is replaced by an array of N lenses.
- FIG. 5B illustrates a light-field camera design embodiment that incorporates an array of multiple prisms internal to the camera and proximate to the main or objective lens.
- FIG. 5C illustrates a light-field camera design embodiment that incorporates an array of multiple positive lenses internal to the camera and proximate to the main or objective lens.
- FIG. 5D illustrates a light-field camera design embodiment that incorporates an array of multiple negative lenses internal to the camera and proximate to the main or objective lens.
- FIG. 5E shows an external light-field camera design that uses a single large lens and an array of negative lenses placed between the object field and the main lens of the camera, according to one embodiment.
- FIG. 6 illustrates a light-field camera implementation of the light-field camera design illustrated in FIG. 5A , according to one embodiment.
- FIG. 7 illustrates a light-field camera implementation of the light-field camera design illustrated in FIG. 5B , according to one embodiment.
- FIG. 8 illustrates a light-field camera implementation of the light-field camera design illustrated in FIG. 5C .
- FIG. 9 illustrates a light-field camera implementation of the light-field camera design illustrated in FIG. 5D , according to one embodiment.
- FIG. 10 illustrates a light-field camera implementation of the light-field camera design illustrated in FIG. 5E , according to one embodiment.
- FIGS. 11A through 11D illustrate exemplary configurations for arrays of optical elements in various embodiments of the light-field cameras.
- FIG. 12 is a flow chart illustrating how light is directed within a light-field camera in accordance with an embodiment of a light-field camera design as illustrated in FIG. 5A and FIG. 6 .
- FIG. 13 is a flow chart illustrating how light is directed within a light-field camera in accordance with an embodiment of a light-field camera design internal to the camera, as illustrated in FIGS. 5B through 5D and FIGS. 7 through 9 .
- FIG. 14 is a flow chart illustrating how light is directed within a light-field camera in accordance with an embodiment of a light-field camera design external to the camera as illustrated in FIG. 5E and FIG. 10 .
- FIG. 15 shows an exemplary optical device consisting of an array of 19 negative lenses in front of an array of 18 prisms, as may be used in a light-field camera as illustrated in FIG. 4 .
- FIG. 16 illustrates an exemplary conventional camera with a tube or attachment that incorporates the optical components of the light-field camera design illustrated in FIG. 5E .
- FIG. 17 illustrates processing a light-field image by a light-field processing module according to one embodiment.
- FIG. 18 illustrates an exemplary light-field image as captured by an exemplary embodiment of a light-field camera.
- FIG. 19 illustrates a triangular mesh that may be used in a tri-view morphing method implemented in an embodiment of a light-field processing module.
- FIG. 20 illustrates synthetic aperture photography, and refocusing to different depths, according to one embodiment.
- FIGS. 21A through 21C illustrate synthetic aperture photography of motion focusing at different depths, according to one embodiment.
- FIG. 22 illustrates an exemplary computer system that may be used in embodiments.
- integral or light-field photography may be approached from the perspective of radiance analysis in geometrical optics. This provides a new way of looking at integral photography and the associated light-field rendering.
- integral or light-field camera designs are provided that produce higher spatial resolution than conventional plenoptic camera designs such as camera 102 of FIG. 1B , while trading-off the light-field's angular sampling density.
- this lower angular resolution in the input may be compensated for by inserting data synthesized by view interpolation of the measured light-field.
- three-view morphing may be used to interpolate the missing angular samples of radiance. Such interpolated light-fields generated from sparsely sampled radiance are generally good enough to produce synthetic aperture effects, new view synthesis, and refocusing with minimal loss in quality.
- Embodiments may employ a sparse sampling of the angular dimensions of the light-field in order to achieve better spatial resolution.
- various embodiments of light-field cameras as described herein may be used to produce results with higher spatial resolution than conventional plenoptic cameras, using the same image sensor.
- computer vision techniques may be used as a post-processing tool to interpolate or “fill in” the sparse light-field.
- the effectiveness of this framework is demonstrated with realistic refocusing and depth of field results, according to one embodiment. Averaging multiple intermediate views not only reduces sampling errors, but also makes errors caused by stereo matching much more tolerable, according to one embodiment.
- Embodiments of light-field camera designs described herein may be implemented in hand-held light-field cameras that may capture a light-field with a single exposure. This adds a whole new dimension to digital photography with the ability to capture a sparse light-field with higher spatial resolution with a compact camera design, and the application of later post-processing based on computer vision to compensate for the lower angular resolution.
- an integral camera uses a system of lenses and/or prisms as an external optical attachment to a conventional camera.
- an embodiment of the integral camera may be used to adjust the depth of field and novel views for scenes with high-speed action may be synthesized, which are impossible to do with conventional cameras.
- some embodiments may achieve a much higher spatial resolution, for example 700 ⁇ 700 pixels, in the computed images. Note that a 16-megapixel sensor is used by way of example; N-megapixel sensors may be used in embodiments.
- the general point is that embodiments of the integral camera designs described herein may achieve higher spatial resolution with similar sensors when compared to conventional integral camera designs.
- FIGS. 2A through 2C Possible designs for a 1D image detector are shown in FIGS. 2A through 2C .
- FIG. 2A illustrates partitioning optical phase space (x, ⁇ ) into sampling regions for the light-field camera.
- FIG. 2B illustrates the “plenoptic” way of sampling.
- FIG. 2C illustrates the “integral photography” way of sampling.
- light-field data may be rearranged, or multiplexed, to fit into a single row, as a 1D array.
- the “plenoptic camera arrangement” illustrated in FIG. 2B puts all angular samples for pixel 1 (the first column in FIG. 2A ) in a row, then all angular samples for pixel 2 (the second column in FIG. 2A ) next to them, and so on.
- the problem at the boundaries discussed above is encountered. Out of three angular samples, only one is left intact. The left and right pixels in each sub-image, ⁇ 1 and ⁇ 3 , are lost.
- optical data may be rearranged as in FIG. 2C .
- All spatial samples at a given angle ⁇ are grouped together. In this way a coherent image of lots of pixels representing ⁇ 1 -samples is achieved, then next to them all ⁇ 2 samples are placed, and so on. Again boundary pixels are lost, but now the lost boundary pixels are much fewer as a percentage of all pixels in a subimage.
- an array of cameras would be used to capture an array of 2D images as illustrated in FIG. 2C .
- a conventional arrangement of lenses from integral photography shown in FIG. 1B , produces just such a result.
- a series of equivalent camera designs may be based on a formula from affine optics, as shown below. The affine optics treatment of optical phase space may be used in other light-field constructions.
- FIG. 3 illustrates light-field transformation at the plane of a lens.
- the following discussion is applied in a 2D optical phase space, with spatial dimension x and angular dimension ⁇ . More precisely, ⁇ is used to denote the tangent of the angle relative to the optical axis, at which a ray intersects a plane (line in this case) perpendicular to the optical axis. Finally, letfdonate focal length.
- a lens may be defined by the linear transform:
- affine optics A typical element representing an affine transform would be the prism.
- a prism shifts or tilts all rays by the same fixed angle ⁇ that depends only on the prism itself. Expressed in terms of the ray coordinates, the prism transform is:
- a lens shifted a distance s from the optical axis may be treated as follows:
- a shifted lens is equivalent to a lens with a prism.
- This result will be used to show that light-field or integral camera designs according to various embodiments, as illustrated in FIG. 4 and FIGS. 5A through 5E , may be optically equivalent to arrays of cameras. This equivalence may be exact.
- FIG. 4 and FIGS. 5A through 5E illustrate various designs of integral or light-field cameras according to embodiments. Some of the illustrated designs are internal to the camera (i.e., incorporating additional optical elements between the main, or objective, lens of the camera and the camera's photosensor), while others are external to the camera (i.e., incorporating additional optical elements in front of the main, or objective, lens of the camera, configured to be coupled externally to the camera for example in an attachment or tube).
- FIG. 4 illustrates an external design that uses arrays of negative lenses and prisms that has no analog as an internal design.
- Embodiments of a plenoptic camera design similar to the design illustrated in FIG. 4 are described in U.S. Patent Application 2007/0230944, entitled Plenoptic Camera, filed Apr. 4, 2006, whose inventor is Todor G. Georgiev, the content of which is incorporated by reference herein in its entirety.
- An exemplary embodiment of the design of FIG. 4 has been implemented in a version made up of 19 lenses and 18 prisms, as described in U.S. Patent Application 2007/0230944.
- FIG. 15 shows an exemplary optical device consisting of an array of 19 negative lenses in front of an array of 18 prisms.
- the embodiment of FIG. 4 may be relatively lightweight compared to a similar design with a single large lens and an array of smaller lenses, as illustrated in FIG. 5E .
- an array of prisms may be less expensive than a single large lens.
- the camera in FIG. 4 sees an array of virtual images created by the negative lenses in front of the optical device and focuses upon them.
- the prisms shift these images appropriately, so the result is as if the scene is viewed by an array of parallel cameras.
- a camera with a lens shifted from the optical axis is equivalent to a camera on the axis, a lens and a prism.
- the role of the negative lenses is to expand the field of view in each image, and that the prisms can be viewed as making up a Fresnel lens focused at the camera's center of projection.
- Other external designs are possible with an array of positive lenses creating real images between the array of lenses and the main camera lens.
- FIGS. 5A through 5E illustrate five novel light-field camera designs according to embodiments.
- FIGS. 5A through 5D illustrate various internal designs
- FIG. 5E illustrates an external design.
- FIG. 5A illustrates a light-field camera design embodiment that appears somewhat similar to a conventional light-field camera as illustrated in FIG. 1A .
- the single objective lens of a single camera is replaced by an array of N lenses, and N images from the N lenses may be captured on N regions of the camera's photosensor.
- the lenses are shown as positive lenses; in an alternative embodiment, the lenses may be negative lenses.
- FIG. 5B illustrates a light-field camera design embodiment that incorporates an array of multiple prisms internal to the camera and proximate to the main or objective lens.
- the array of microlenses in a conventional plenoptic camera as illustrated in FIG. 1B is proximate to the photosensor.
- the prisms in the array each act to refract or tilt rays from the main lens onto a corresponding region of the photosensor, as indicated by the dashed lines.
- N+1 images shifted by the N prisms are captured on N+1 regions of the camera's photosensor. Note that N prisms are used to capture N+1 images because there may be no prism at the center of the array, since a prism is not required to shift rays at the principal or main axis of the optical system.
- Equation 7 represents the relations between focal lengths, shifts, and prism angles that make the two camera systems optically equivalent.
- different prisms tilt rays that would otherwise converge to the same point in different directions, separating them onto different locations in the image plane and forming different sub-images.
- Those different sub-images are of the type illustrated in FIG. 2C , which may be a more efficient design than conventional plenoptic cameras.
- FIG. 5C illustrates a light-field camera design embodiment that incorporates an array of multiple positive lenses internal to the camera and proximate to the main or objective lens.
- the array of microlenses in a conventional plenoptic camera as illustrated in FIG. 1B is proximate to the photosensor.
- a shifted lens is equivalent to a lens with a prism.
- this light-field design is optically equivalent to an array of cameras. If there are N lenses in the array of positive lenses, N images from the N positive lenses may be captured on N regions of the camera's photosensor. Note, however, that in this design, the positive lenses act to move the image plane forward, or closer to the main lens than the original location of the image plane of the main lens. Thus, this embodiment would allow for a more compact camera body or enclosure at least in the front-to-back dimension.
- each of the shifted lenses in FIG. 5C is equivalent to a big lens on the optical axis and a prism.
- the big lens may be combined in one with the main lens, and equivalence with FIG. 5B is obtained.
- FIG. 5D illustrates a light-field camera design embodiment that incorporates an array of multiple negative lenses internal to the camera and proximate to the main or objective lens.
- the array of microlenses in a conventional plenoptic camera as illustrated in FIG. 1B is proximate to the photosensor.
- a shifted lens is equivalent to a lens with a prism.
- this light-field design is optically equivalent to an array of cameras. If there are N lenses in the array of negative lenses, N images from the N negative lenses may be captured on N regions of the camera's photosensor. Note, however, that in this design, the negative lenses act to move the image plane backward, or further away from the main lens than the original location of the image plane of the main lens.
- FIG. 5D is similar to the embodiment of FIG. 5C , only with negative lenses.
- the embodiments in FIG. 5C and FIG. 5D may be used practically if an array of 10-20 (positive or negative) lenslets is integrated into the barrel of a conventional camera lens proximate to the main lens, and may be used with a high resolution camera as a compact light-field camera. Note that, while 10-20 lenslets is mentioned as possibly optimal for practical applications, some embodiments may use fewer than 10 or more than 20 lenslets in the array.
- FIG. 5E illustrates a light-field camera design embodiment that appears similar to the arrangement shown in FIG. 5D ; however, this embodiment uses an optical component including multiple optical elements that is placed in front of (external to) the main lens of a conventional camera.
- the optical component consists of a single, relatively large lens, arranged in front of an array of negative lenses.
- the array of negative lenses is thus physically between the single large lens and the main lens of the camera.
- the single, relatively large lens may be composed of two or more optical elements arranged in a stack and, in contrast to the array of optical elements which are arranged perpendicular to the optical axis, centered relative to each other along the optical axis.
- the optical component may be assembled in a tube or attachment, which may attach to the conventional camera main lens via any standard, or optionally by custom, camera lens attachment mechanisms.
- An exemplary conventional camera with such a tube or attachment that incorporates the optical component illustrated in FIG. 5E is shown in FIG. 16 , in this example mounted on a tripod. Note that the assembly shown in FIG. 16 looks somewhat similar to a conventional camera with a conventional large telephoto lens attached.
- the embodiment illustrated in FIG. 5E may be similar to the embodiment illustrated in FIG. 4 and described in U.S. Patent Application 2007/0230944, which was previously incorporated by reference.
- the image plane created by the array of negative lenses is approximately at the main lens of the conventional camera.
- the main lens of the conventional camera sees and “captures” the N images from the N negative lenses as one image, and focuses the captured image on the photosensor of the camera.
- the N images from the N negative lenses may be captured on N regions of the camera's photosensor.
- N may be 20; in other words, 20 negative lenses may be used. Other embodiments may use other numbers of negative lenses in the array.
- the negative lenses may be manufactured, or alternatively may be cut or milled, into squares or rectangles, and the negative lenses may thus be closely arranged in a square or rectangle.
- FIG. 16 for example, an exemplary embodiment with 20 negative lenses each cut into a square and arranged in a 4 ⁇ 5 rectangle at the front of the attachment to the camera can be seen.
- the lenses and prisms for the design FIG. 4 are not cut into squares, which leads to loss of pixels even with hexagonal packing as illustrated in FIG. 15 .
- the design illustrated in FIG. 5E may have some image quality advantages over the design illustrated in FIG. 4 .
- each of the light-field camera designs illustrated in FIG. 4 and FIGS. 5B through 5E two different optical components (either a lens and an array of optical elements or two arrays of optical elements, depending upon the design) are described as being proximate or next to each other, generally as close as physically or practically possible.
- the two different components in each of the designs may be considered in the same plane or at “zero distance” from each other.
- the optical components just need to be arranged such that the distance between the two different components does not influence the desired optical behavior significantly; in other words, the components may be touching or there may be some gap between the components.
- too large of a distance may cause a significantly different and undesirable optical behavior.
- the two components may be considered to be in the same plane, but practically the components may actually be some relatively small distance apart, or may be touching, but in any case, the distance between the two different components is close relative to the distance from the two components to the image plane of the camera.
- the photosensor is located proximate to the image plane. The distance to the image plane is significant; the two optical components need to be far enough from the image plane for the optical system to work satisfactorily. Note that the optical characteristics of the individual elements in the two components used in embodiments of FIG. 4 and FIGS.
- 5B through 5E may define the approximate distances from the two components and other elements in the optical system (e.g., the main camera lens in external designs and the photosensor in internal designs), or alternatively the geometric configuration of a camera device to which an embodiment of one of the designs is to be integrated may define or influence the approximate optical characteristics of optical elements used in an implementation of the design.
- some embodiments of internal designs may require shortening or lengthening of the distance between the main camera lens/design implementation and the photosensor, as the image plane is shifted either closer or farther away from the main lens by the design implementation.
- Other internal designs for example the design illustrated in FIG. 5B , may be integrated directly into an existing camera with appropriate modifications to attach/insert the physical implementation (e.g., an array of prisms as illustrated in FIG. 5B ).
- FIGS. 6 through 10 illustrate exemplary light-field camera implementations of embodiments of the light-field camera designs illustrated in FIGS. 5A through 5E .
- the illustrated photosensor may be a charge-coupled device (CCD) or some other type of electronic device that is capable of capturing digital images.
- CCD charge-coupled device
- conventional film may be used as the photosensor in some embodiments.
- an individual optical element for example the main or objective lens of a camera illustrated in the Figures, may in practice be a single optical element (e.g., a single piece of optical glass) or alternatively may be composed of a stack of two or more individual optical elements (e.g., individual pieces of optical glass) centered along the optical axis of the optical system (e.g., camera), for example to correct for optical aberrations.
- a stack of individual optical elements is considered to collectively compose a single optical element or lens.
- such a stack of optical elements that collectively compose a single optical element is distinctly different than an array of optical elements as described herein, as the elements in such an array are not centered relative to each other along the optical axis of the optical system but instead are arranged perpendicular to the optical axis, and the purpose and optical characteristics of an array of optical elements are distinctly different than the purpose and optical characteristics of a stack of optical elements.
- FIG. 6 illustrates an exemplary implementation of the light-field camera design illustrated in FIG. 5A , according to one embodiment.
- Exemplary light-field camera 600 includes a lens array 602 of multiple relatively smaller lenses instead of or as a replacement for a single larger main lens as in conventional cameras.
- camera 600 is a single camera rather than an array of distinct and separate cameras.
- N images from the N lenses may be captured on N regions of the camera's photosensor 610 .
- the lenses in lens array 602 are shown as positive lenses; in an alternative embodiment, the lenses may be negative lenses.
- FIG. 7 illustrates an exemplary implementation of the light-field camera design illustrated in FIG. 5B , according to one embodiment.
- Light-field camera 700 incorporates an array 704 of multiple prisms internal to the camera and proximate to the main or objective lens 702 .
- the prisms in the array 704 each act to tilt rays from the main lens 702 onto a corresponding region of the photosensor 710 .
- FIG. 8 illustrates an exemplary implementation of the light-field camera design illustrated in FIG. 5C , according to one embodiment.
- Light-field camera 800 incorporates an array 804 of multiple positive lenses internal to the camera and proximate to the main or objective lens 802 .
- the positive lenses act to move the image plane forward, or closer to the main lens 802 than the original location of the image plane of the main lens 802 .
- FIG. 9 illustrates an exemplary implementation of the light-field camera design illustrated in FIG. 5D , according to one embodiment.
- Light-field camera 900 incorporates an array 904 of multiple negative lenses internal to the camera and proximate to the main or objective lens 902 .
- the negative lenses act to move the image plane backward, or further away from the main lens 902 than the original location of the image plane of the main lens 902 .
- FIG. 10 illustrates an exemplary implementation of the light-field camera design illustrated in FIG. 5E , according to one embodiment.
- Light-field camera 1000 includes multiple optical elements that are placed in front of (external to) the main lens 1002 of a conventional camera 1020 .
- the optical elements include a single, relatively large lens 1004 , arranged in front of an array 1006 of negative lenses.
- the array 1006 of negative lenses is thus physically between lens 1004 and the main lens 1002 of conventional camera 1020 .
- Lens 1004 and array 1006 may be assembled in a tube or attachment 1030 , which may attach to the conventional camera 1020 via any standard, or optionally by custom, camera lens attachment mechanisms.
- An exemplary conventional camera with such a tube or attachment 1030 that incorporates the optical component illustrated in FIG.
- FIG. 16 5E is shown in FIG. 16 , in this example mounted on a tripod. Note that the assembly shown in FIG. 16 looks somewhat similar to a conventional camera with a conventional large telephoto lens attached.
- an attachment that includes lens 1004 and array 1006 but does not include main camera lens 1002 , lens 1004 , array 1006 , and a main lens 1002 for the camera may all be assembled in a tube or attachment that is configured to be attached or mounted to a camera body.
- the various arrays of optical elements may be arranged according to various geometric configurations.
- the individual optical elements may be manufactured or milled/cut into various geometric shapes.
- the size, shape, and optical characteristics of all of the lenses in the array will be the same.
- the optical characteristics of the prisms may vary according to the prisms' distance from the optical axis of the camera.
- FIGS. 11A through 11D illustrate some exemplary configurations for arrays of optical elements in various embodiments.
- FIG. 11A shows an array of nineteen individually circular optical elements arranged in a hexagonal pattern.
- FIG. 11B shows an array of sixteen individually circular optical elements arranged in a square.
- FIG. 11C shows an array of twenty individually square optical elements arranged in a 4 ⁇ 5 rectangle.
- FIG. 11D shows an array of nineteen individually hexagonal optical elements arranged in a hexagon.
- the multiple optical elements arranged in arrays as described in the various embodiments are generally described as being separate individual optical elements composed into the array, in some embodiments the multiple optical elements in such an array may be cast, formed, milled, cut, or otherwise manufactured in a single sheet of optical glass or other optical material.
- the black circles in FIGS. 11A through 11D may represent a housing for the optical elements in the array. While the housings are shown in these Figures to be circular, the housings may be of other geometric shapes, such as square, rectangular, or hexagonal. The housings may be opaque to light so that light from a subject only passes through the optical elements.
- the housings may be made of a metal, alloy, plastic, composite material, or in general of any suitable substance or combination of substances.
- a housing and array of optical elements may be integrated with a camera or attachment (see, e.g., FIG. 10 ) or alternatively may be a removable and replaceable/interchangeable component or module. Further, the optical elements may be integrated with the housing or may be removable and replaceable. Further note that some embodiments may not include a housing for an array of optical elements.
- FIG. 12 is a flow chart illustrating how light is directed within a light-field camera in accordance with an embodiment of a light-field camera design as illustrated in FIG. 5A and FIG. 6 .
- light is received from objects in an object field at an array of multiple optical elements (e.g., positive lenses) that act as the main lens of the camera. Each optical element in this array receives light from the object field from a different angle, and consequently directs a different view of the object field into camera.
- the multiple optical elements direct the received light onto an image plane of the camera.
- the light from the multiple optical elements is received at a photosensor located at the image plane of the camera. The photosensor receives a different view of the object field from each optical element in the array.
- the different views of the object field which are received by the photosensor may be processed to produce a final image.
- FIG. 13 is a flow chart illustrating how light is directed within a light-field camera in accordance with an embodiment of a light-field camera design internal to the camera, as illustrated in FIGS. 5B through 5D and FIGS. 7 through 9 .
- light is received from objects in an object field at the main lens of the camera.
- light from the main lens is received at an array of optical elements (prisms, positive lenses, or negative lenses) located between the main lens and the photosensor, but proximate to the main lens (in contrast to conventional plenoptic cameras as illustrated in FIG. 1B , where the array of microlenses is located proximate to the photosensor).
- optical elements priss, positive lenses, or negative lenses
- Each optical element in the array receives light from the main lens and consequently directs a different view of the main lens onto an image plane located at the photosensor.
- light is received from the array of optical elements at the photosensor located at the image plane of the optical elements.
- the photosensor receives a different view of the object field from each optical element in the array.
- the different views of the object field which are received by the photosensor may be processed to produce a final image.
- FIG. 14 is a flow chart illustrating how light is directed within a light-field camera in accordance with an embodiment of a light-field camera design external to the camera as illustrated in FIG. 5E and FIG. 10 .
- light is received from objects in an object field at a single large lens located between the object field and the main lens of the camera.
- light from the single large lens is received at an array of optical elements (e.g., negative lenses) located between the single large lens and the main lens of the camera.
- Each optical element in this array receives light from the object field from a different angle, and consequently directs a different view of the object field onto the main lens.
- light is received from the array of optical elements at the main lens, which directs the received light onto an image plane of the camera.
- light is received from the main lens at a photosensor located at the image plane of the camera.
- the photosensor receives a different view of the object field from each optical element in the array.
- the different views of the object field which are received by the photosensor may be processed to produce a final image.
- the following describes embodiments of methods of processing and rendering light-field images, for example light-field images captured using embodiments of the various light-field camera designs illustrated in, and described in relation to, FIG. 4 , FIGS. 5A through 5E , FIGS. 6 through 10 , and FIGS. 12 through 14 .
- the described methods of processing and rendering light-field images may be implemented as or in a tool, module, library function, plug-in, stand-alone application, etc.
- implementations of embodiments of the described methods of processing and rendering light-field images may be referred to herein as a light-field processing module.
- other light-field rendering or processing techniques may be applied to captured light-field images by a light-field processing module, and/or by other modules.
- FIG. 17 illustrates processing a light-field image by a light-field processing module according to one embodiment.
- FIG. 22 illustrates an exemplary computer system on which embodiments of light-field processing module 1720 may be implemented.
- light-field processing module 1720 receives an input image 1710 captured by a light-field camera, such as one of the embodiments of light-field cameras described herein.
- An exemplary light-field image as captured by an exemplary embodiment of a light-field camera is illustrated in FIG. 18 .
- Light-field processing module 1720 then processes the input image 1710 according to one or more of the methods described herein.
- Light-field processing module 1720 generates an output image 1730 .
- Output image 1730 may, for example, be stored to a storage medium 1740 , such as system memory, a disk drive, DVD, CD, etc.
- the dashed line from input image 1710 to storage medium 1740 indicates that the original (input) light-field image 1710 may also be stored.
- light-fields may be used to simulate the defocus blur of a conventional lens by re-projecting some or all of the images onto a (real or virtual) focal plane in the scene and computing their average. Objects on this plane will appear sharp (in focus), while those not on this plane will appear blurred (out of focus) in the resulting image.
- This synthetic focus can be thought of as resulting from a large-aperture lens, the viewpoints of light-field images being point samples on the lens surface.
- This method goes under the name of synthetic aperture photography. It creates a strong sense of 3D; further, summing and averaging all the rays serves as a noise reduction filter, hence the resulting image has superior signal-to-noise ratio (SNR) compared to the original inputs.
- SNR signal-to-noise ratio
- the projection and averaging approach to synthetic aperture may require a dense light-field.
- some embodiments of light-field cameras as described above may employ relatively sparse samplings comprised of 20 or fewer images, for example. Simply projecting and averaging such an image set may result in pronounced ghosting artifacts, essentially the result of aliasing in the sampled light-field.
- Reconstruction filters may be used to reduce the aliasing in undersampled light-fields; however, even with more, for example 256, images, some artifacts may remain.
- the aliasing problem may be addressed by generating more camera views than those provided directly by the camera array through view morphing. This is equivalent to generating a synthetic light-field by carefully interpolating between the samples in the sparse camera data. Fundamentally, this is possible because of the well-known redundancy of the light-field, which in the Lambertian case is constant along angular dimensions at each point on the surface that is being observed. In the following subsections, a method is described for filling out the light-field and for using it to generate synthetic aperture images.
- sampling may include viewpoints that lie on a grid.
- This grid may be tessellated into a triangular mesh, as illustrated in FIG. 19 .
- Embodiments may be able to fill in arbitrary viewpoints within the grid. As described below, this may be done by computing warps that allow view morphing between each pair of views connected by an edge. These warps may then be combined to allow barycentric interpolation of views within each triangle of viewpoints.
- View morphing is a method for interpolating two reference images to generate geometrically correct in-between views from any point on the line connecting the two initial centers of projection. To achieve this effect, a correspondence may be needed between the pair of images.
- color segmentation approaches have gained in popularity for dense correspondence computation. These approaches use color discontinuities to delineate object boundaries and thus depth discontinuities. Also, these approaches model mixed color pixels at boundaries with fractional contributions (a.k.a. matting) to reduce artifacts at depth discontinuities.
- Some embodiments may build on a segment-based optical flow method of Zitnick et al. described in ZITNICK C. L., JOJIC N., KANG S.: Consistent segmentation for optical flow estimation, In Proceedings of IEEE International Conference on Computer Vision (ICCV) (2005), which is herein incorporated by reference in its entirety.
- the idea behind the Zitnick et al. method is to model each pixel's color as the blend of two irregularly-shaped segments with fractional contributions a and then solve for a mutual segmentation between a pair of images that gives rise to segments with similar shapes and colors.
- the Zitnick et al. method flow algorithm may be modified, for example in one or both of the following two ways.
- the matched segments may be required to lie along epipolar lines.
- epipolar flow may be simultaneously computed between an image and two neighbors defining a triangle, so that the segments in each image are consistent between neighbors needed for tri-view morphing, described in the next subsection.
- Tri-view morphing is a more recent system for creating the appearance of 3D via multi-image morphing, making use of the trifocal tensor to generate the warping transforms among three views.
- a method for tri-view morphing within triangles on a camera grid as illustrated in FIG. 19 is summarized as follows. Given three images h, I 2 and I 3 , the method morphs to the target image I s using barycentric coefficients ⁇ 1 , ⁇ 2 and ⁇ 3 .
- W ij be the warping vector field (or “flow”) from image I i to image I j , according to the disparity map from I i to I j obtained using the segmentation-based stereo algorithm described above. Ideally, this warping function will convert image I i into an image identical to I j . In general, warping any image I by a vector field W will produce a new image denoted as I(W).
- the method may warp each of the input images to I s using affine (barycentric) combination of the three vector fields, and then blend them together based on the same barycentric coefficients:
- the method may generally sample within the camera grid, so that the desired image is inside of a triangle defined by the three input images I i , and then ⁇ i ⁇ 0 and
- an aperture location and size on the camera grid may be defined (see FIG. 19 ). Then, the method may densely sample within this aperture using tri-view morphing. Finally, the method may determine an in-focus plane, project all images within the aperture onto this plane, and average.
- Results provided and described herein are based on images taken with an exemplary embodiment of a light-field camera implemented according to the design shown in FIG. 5E .
- the implemented embodiment according to that design is described below.
- FIG. 5E An exemplary embodiment of a light-field camera implemented according to the camera design of FIG. 5E was built with an array of 4 ⁇ 5 negative lenses cut into squares and attached to each other with minimal loss of space. Before being glued together, the lenses were placed with their flat sides facing downward on a piece of glass, to be well aligned on a plane and parallel to each other. Since all lenses in this embodiment have the same focal length,—105 mm—their focal points are on one plane. This plane is perpendicular to the direction of view to the precision of lens manufacturing.
- the array of lenses, and large single lens, are integrated into a tube or attachment that is mountable or attachable to a conventional camera (the conventional camera including a main, or objective lens).
- FIG. 1 An exemplary embodiment of a light-field camera implemented according to the camera design of FIG. 5E was built with an array of 4 ⁇ 5 negative lenses cut into squares and attached to each other with minimal loss of space. Before being glued together, the lenses were placed with their flat sides facing downward on a piece
- FIG. 10 illustrates a block diagram of the light-field camera
- FIG. 11C illustrates the configuration of the array of optical elements (in this example, negative lenses).
- FIG. 16 shows the completed sparse light-field camera, with two positive lenses (the large single lens 1004 and the main camera lens 1002 illustrated in FIG. 10 ) and an array of 20 square negative lenses (located between the large single lens 1004 and the main camera lens 1002 , and proximate to lens 1004 ) in front of a conventional camera body.
- the camera centers may be calibrated using an off-the-shelf structure-from-motion (SFM) system that recovers both the intrinsic and the extrinsic parameters of the camera.
- SFM structure-from-motion
- a calibration method may be, for example as discussed by Vaish et al. in VAISH V., WILBURN B., JOSHI N., LEVOY M.: Using plane+parallax to calibrate dense camera arrays, In Proceedings of IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2004), which is herein incorporated by reference in its entirety, in which relative camera positions are recovered.
- FIG. 18 shows an exemplary sparse light-field image captured with a light-field camera according to one embodiment.
- a similar image may be captured by any of the embodiments of light-field cameras as described herein.
- On the right is a set of 20 images or views that collectively compose the captured sparse light-field image.
- the image on the right may be considered a composite image that includes each of the separate images of a scene projected onto the photosensor by the optical system of the light-field camera in a separate region of the composite image.
- a close-up of one of the images or views is shown on the left.
- the hazy edges are defocused images of the boundaries of the optical elements of the optical system of the light-field camera. For the results described herein, these contaminated pixels were discarded.
- Each vertex in the exemplary mesh shown in FIG. 19 represents one camera view (i.e. one view captured by one of the optical elements in an array of optical elements in the light-field camera).
- the camera plane may be decomposed into triangles, as illustrated in FIG. 19 . Any novel camera view inside these triangles can be synthesized using tri-view morphing, as described above.
- the circular region represents a possible virtual aperture to be simulated, as described above.
- a camera With a camera according to one embodiment, twenty views may be captured at a single exposure, with each view containing roughly 700 by 700 pixels (see FIG. 18 ). In one embodiment, twenty-four triangles may be formed to cover the entire viewing space (see FIG. 19 ). In one embodiment, the relative locations of all the cameras may be recovered by running SFM on the 20 images. Once the size, location, and shape of a virtual lens is specified, viewpoints may be densely sampled using the tri-view morphing algorithm at one reference depth, according to one embodiment. All examples shown here were sampled with about 250 views. Sweeping through planes of different depths corresponds to shifting all views accordingly. By shifting and summing all the sampled views, synthetic aperture images may be computed at different depths.
- FIG. 20 illustrates synthetic aperture photography of flying birds, refocusing to different depths, according to one embodiment.
- refocusing is demonstrated at three different depths from near to distant.
- FIGS. 21A through 21C are used to illustrate synthetic aperture photography of human motion focusing at different depths, according to one embodiment.
- FIG. 21A shows three novel views generated using tri-view morphing. Three synthesized novel views inside a triangle of input images are shown. Despite the slight motion blur of the tennis balls, the interpolated views look realistic, with clean and smooth boundaries.
- FIG. 21B shows synthetic aperture results with the focal plane moving from near to far. Three synthetic aperture images are shown, focusing at three different depths.
- FIG. 21C shows synthetic aperture results with varying depth of field. The effect is created with varying aperture size. The left image and the middle image have the exact same virtual aperture.
- the leftmost image demonstrates sparse sampling. Notice that the number of samplings makes a significant and noticeable difference, as the left uses only 24 views, and reveals strong aliasing in blurred regions, while the middle image uses over 200 views.
- the right image shows an even larger aperture that spans outside the area of the input camera array, showing that view extrapolation also produces reasonable results for this application.
- Results also include sequences of synthetic aperture images as the focal plane sweeps through a family of planes that spans the depths of the scenes.
- the sharpness of objects on the focal plane, together with the smooth blur, indicates the accuracy of the technique, according to one embodiment.
- the size of the virtual aperture used in the seagulls example ( FIG. 20 ) and in most results of the juggling scene ( FIGS. 21A-21C ) is about one quarter of the entire viewing region.
- most of the computing cycles may be spent on generating in-between views.
- An analysis on the sampling bounds may be performed for better efficiency. How densely to sample the viewing space in order to create non-aliased results may be determined.
- one embodiment may include the possibility of skipping the entire process of view interpolation, and instead realizing refocusing directly from the disparity map.
- twenty views are used in a light-field camera implementation. For typical scenes, good results are achieved with this embodiment, but for scenes with more complex 3D structure, it is possible that artifacts may be observed.
- Some embodiments may include dynamically adjusting the number of captured views based on scene geometry so that results with optimal resolution may be achieved.
- FIG. 22 Various embodiments of a light-field processing module may be executed on one or more computer systems, which may interact with various other devices.
- computer system 2200 includes one or more processors 2210 coupled to a system memory 2220 via an input/output (I/O) interface 2230 .
- Computer system 2200 further includes a network interface 2240 coupled to I/O interface 2230 , and one or more input/output devices 2250 , such as cursor control device 2260 , keyboard 2270 , audio device 2290 , and display(s) 2280 .
- embodiments may be implemented using a single instance of computer system 2200 , while in other embodiments multiple such systems, or multiple nodes making up computer system 2200 , may be configured to host different portions or instances of embodiments.
- some elements may be implemented via one or more nodes of computer system 2200 that are distinct from those nodes implementing other elements.
- computer system 2200 may be a uniprocessor system including one processor 2210 , or a multiprocessor system including several processors 2210 (e.g., two, four, eight, or another suitable number).
- Processors 2210 may be any suitable processor capable of executing instructions.
- processors 2210 may be general-purpose or embedded processors implementing any of a variety of instruction set architectures (ISAs), such as the x86, PowerPC, SPARC, or MIPS ISAs, or any other suitable ISA.
- ISAs instruction set architectures
- each of processors 2210 may commonly, but not necessarily, implement the same ISA.
- System memory 2220 may be configured to store program instructions and/or data accessible by processor 2210 .
- system memory 2220 may be implemented using any suitable memory technology, such as static random access memory (SRAM), synchronous dynamic RAM (SDRAM), nonvolatile/Flash-type memory, or any other type of memory.
- SRAM static random access memory
- SDRAM synchronous dynamic RAM
- program instructions and data implementing desired functions, such as those described above for a light-field processing module are shown stored within system memory 2220 as program instructions 2225 and data storage 2235 , respectively.
- program instructions and/or data may be received, sent or stored upon different types of computer-accessible media or on similar media separate from system memory 2220 or computer system 2200 .
- a computer-accessible medium may include storage media or memory media such as magnetic or optical media, e.g., disk or CD/DVD-ROM coupled to computer system 2200 via I/O interface 2230 .
- Program instructions and data stored via a computer-accessible medium may be transmitted by transmission media or signals such as electrical, electromagnetic, or digital signals, which may be conveyed via a communication medium such as a network and/or a wireless link, such as may be implemented via network interface 2240 .
- I/O interface 2230 may be configured to coordinate I/O traffic between processor 2210 , system memory 2220 , and any peripheral devices in the device, including network interface 2240 or other peripheral interfaces, such as input/output devices 2250 .
- I/O interface 2230 may perform any necessary protocol, timing or other data transformations to convert data signals from one component (e.g., system memory 2220 ) into a format suitable for use by another component (e.g., processor 2210 ).
- I/O interface 2230 may include support for devices attached through various types of peripheral buses, such as a variant of the Peripheral Component Interconnect (PCI) bus standard or the Universal Serial Bus (USB) standard, for example.
- PCI Peripheral Component Interconnect
- USB Universal Serial Bus
- I/O interface 2230 may be split into two or more separate components, such as a north bridge and a south bridge, for example.
- some or all of the functionality of I/O interface 2230 such as an interface to system memory 2220 , may be incorporated directly into processor 2210 .
- Network interface 2240 may be configured to allow data to be exchanged between computer system 2200 and other devices attached to a network, such as other computer systems, or between nodes of computer system 2200 .
- network interface 2240 may support communication via wired or wireless general data networks, such as any suitable type of Ethernet network, for example; via telecommunications/telephony networks such as analog voice networks or digital fiber communications networks; via storage area networks such as Fibre Channel SANs, or via any other suitable type of network and/or protocol.
- Input/output devices 2250 may, in some embodiments, include one or more display terminals, keyboards, keypads, touchpads, scanning devices, voice or optical recognition devices, or any other devices suitable for entering or retrieving data by one or more computer system 2200 .
- Multiple input/output devices 2250 may be present in computer system 2200 or may be distributed on various nodes of computer system 2200 .
- similar input/output devices may be separate from computer system 2200 and may interact with one or more nodes of computer system 2200 through a wired or wireless connection, such as over network interface 2240 .
- memory 2220 may include program instructions 2225 , configured to implement embodiments of a light-field processing module as described herein, and data storage 2235 , comprising various data accessible by program instructions 2225 .
- program instructions 2225 may include software elements of a light-field processing module as illustrated in the above Figures.
- Data storage 2235 may include data that may be used in embodiments. In other embodiments, other or different software elements and data may be included.
- computer system 2200 is merely illustrative and is not intended to limit the scope of a light-field processing module as described herein.
- the computer system and devices may include any combination of hardware or software that can perform the indicated functions, including computers, network devices, internet appliances, PDAs, wireless phones, pagers, etc.
- Computer system 2200 may also be connected to other devices that are not illustrated, or instead may operate as a stand-alone system.
- the functionality provided by the illustrated components may in some embodiments be combined in fewer components or distributed in additional components. Similarly, in some embodiments, the functionality of some of the illustrated components may not be provided and/or other additional functionality may be available.
- instructions stored on a computer-accessible medium separate from computer system 2200 may be transmitted to computer system 2200 via transmission media or signals such as electrical, electromagnetic, or digital signals, conveyed via a communication medium such as a network and/or a wireless link.
- Various embodiments may further include receiving, sending or storing instructions and/or data implemented in accordance with the foregoing description upon a computer-accessible medium. Accordingly, the present invention may be practiced with other computer system configurations.
- a computer-accessible medium may include storage media or memory media such as magnetic or optical media, e.g., disk or DVD/CD-ROM, volatile or non-volatile media such as RAM (e.g. SDRAM, DDR, RDRAM, SRAM, etc.), ROM, etc.
- storage media or memory media such as magnetic or optical media, e.g., disk or DVD/CD-ROM, volatile or non-volatile media such as RAM (e.g. SDRAM, DDR, RDRAM, SRAM, etc.), ROM, etc.
- transmission media or signals such as electrical, electromagnetic, or digital signals, conveyed via a communication medium such as network and/or a wireless link.
Landscapes
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Engineering & Computer Science (AREA)
- Multimedia (AREA)
- Signal Processing (AREA)
- Optics & Photonics (AREA)
- Studio Devices (AREA)
Abstract
Description
Extrapolation outside the grid may also be feasible to some extent, in which case one or more barycentric coordinates will be negative.
Synthetic Aperture Rendering
Claims (31)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US12/144,411 US8290358B1 (en) | 2007-06-25 | 2008-06-23 | Methods and apparatus for light-field imaging |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US94601807P | 2007-06-25 | 2007-06-25 | |
US12/144,411 US8290358B1 (en) | 2007-06-25 | 2008-06-23 | Methods and apparatus for light-field imaging |
Publications (1)
Publication Number | Publication Date |
---|---|
US8290358B1 true US8290358B1 (en) | 2012-10-16 |
Family
ID=46981802
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US12/144,411 Active 2028-09-25 US8290358B1 (en) | 2007-06-25 | 2008-06-23 | Methods and apparatus for light-field imaging |
Country Status (1)
Country | Link |
---|---|
US (1) | US8290358B1 (en) |
Cited By (167)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20110019056A1 (en) * | 2009-07-26 | 2011-01-27 | Massachusetts Institute Of Technology | Bi-Directional Screen |
US20110115916A1 (en) * | 2009-11-16 | 2011-05-19 | Eiji Yafuso | System for mosaic image acquisition |
US20120140024A1 (en) * | 2010-12-03 | 2012-06-07 | Fly's Eye Imaging, LLC | Method of displaying an enhanced three-dimensional images |
US20120242855A1 (en) * | 2011-03-24 | 2012-09-27 | Casio Computer Co., Ltd. | Device and method including function for reconstituting an image, and storage medium |
US20120249823A1 (en) * | 2011-03-31 | 2012-10-04 | Casio Computer Co., Ltd. | Device having image reconstructing function, method, and storage medium |
US20120300091A1 (en) * | 2011-05-23 | 2012-11-29 | Shroff Sapna A | Focusing and Focus Metrics for a Plenoptic Imaging System |
US20130063571A1 (en) * | 2011-09-12 | 2013-03-14 | Canon Kabushiki Kaisha | Image processing apparatus and image processing method |
US8471920B2 (en) | 2009-07-15 | 2013-06-25 | Adobe Systems Incorporated | Focused plenoptic camera employing different apertures or filtering at different microlenses |
US20130169643A1 (en) * | 2012-01-03 | 2013-07-04 | Samsung Electronics Co., Ltd. | Display apparatus and method for estimating depth |
US8559756B2 (en) | 2007-08-06 | 2013-10-15 | Adobe Systems Incorporated | Radiance processing by demultiplexing in the frequency domain |
US20130286182A1 (en) * | 2011-01-21 | 2013-10-31 | Nikon Corporation | Focus position maintaining apparatus, and microscope |
US8611693B2 (en) | 2008-05-30 | 2013-12-17 | Adobe Systems Incorporated | Managing artifacts in frequency domain processing of light-field images |
US8625931B2 (en) | 2010-09-03 | 2014-01-07 | Adobe Systems Incorporated | Light space graphical model in shape from shading |
US8665341B2 (en) | 2010-08-27 | 2014-03-04 | Adobe Systems Incorporated | Methods and apparatus for rendering output images with simulated artistic effects from focused plenoptic camera data |
US20140079336A1 (en) * | 2012-09-14 | 2014-03-20 | Pelican Imaging Corporation | Systems and methods for correcting user identified artifacts in light field images |
US20140078266A1 (en) * | 2012-09-18 | 2014-03-20 | Samsung Electronics Co., Ltd. | Image capture system with image conversion mechanism and method of operation thereof |
US20140118516A1 (en) * | 2012-10-30 | 2014-05-01 | Kabushiki Kaisha Toshiba | Solid state imaging module, solid state imaging device, and information processing device |
US8724000B2 (en) | 2010-08-27 | 2014-05-13 | Adobe Systems Incorporated | Methods and apparatus for super-resolution in integral photography |
US20140152990A1 (en) * | 2012-11-06 | 2014-06-05 | X-Rite Europe Gmbh | Hand-Held Measurement Device for Capturing the Visual Impression of A Measurement Object |
US8749620B1 (en) * | 2010-02-20 | 2014-06-10 | Lytro, Inc. | 3D light field cameras, images and files, and methods of using, operating, processing and viewing same |
US8749694B2 (en) | 2010-08-27 | 2014-06-10 | Adobe Systems Incorporated | Methods and apparatus for rendering focused plenoptic camera data using super-resolved demosaicing |
US20140198187A1 (en) * | 2013-01-15 | 2014-07-17 | Disney Enterprises, Inc. | Camera with plenoptic lens |
US8803918B2 (en) | 2010-08-27 | 2014-08-12 | Adobe Systems Incorporated | Methods and apparatus for calibrating focused plenoptic camera data |
US8811769B1 (en) | 2012-02-28 | 2014-08-19 | Lytro, Inc. | Extended depth of field and variable center of perspective in light-field processing |
US8817015B2 (en) | 2010-03-03 | 2014-08-26 | Adobe Systems Incorporated | Methods, apparatus, and computer-readable storage media for depth-based rendering of focused plenoptic camera data |
US8831377B2 (en) | 2012-02-28 | 2014-09-09 | Lytro, Inc. | Compensating for variation in microlens position during light-field image processing |
US20140327674A1 (en) * | 2013-05-06 | 2014-11-06 | Disney Enterprises, Inc. | Scene reconstruction from high spatio-angular resolution light fields |
US20140334745A1 (en) * | 2013-05-10 | 2014-11-13 | Trustees Of Princeton University | Resolution light-field imaging |
WO2014188018A1 (en) | 2013-05-21 | 2014-11-27 | BLASCO WHYTE, Isabel Lena | Monolithic integration of plenoptic lenses on photosensor substrates |
WO2014191613A1 (en) * | 2013-05-27 | 2014-12-04 | Nokia Corporation | Light field imaging |
US8948545B2 (en) | 2012-02-28 | 2015-02-03 | Lytro, Inc. | Compensating for sensor saturation and microlens modulation during light-field image processing |
US8978984B2 (en) | 2013-02-28 | 2015-03-17 | Hand Held Products, Inc. | Indicia reading terminals and methods for decoding decodable indicia employing light field imaging |
US8988317B1 (en) | 2014-06-12 | 2015-03-24 | Lytro, Inc. | Depth determination for light field images |
US8995785B2 (en) | 2012-02-28 | 2015-03-31 | Lytro, Inc. | Light-field processing and analysis, camera control, and user interfaces and interaction on light-field capture devices |
US9001226B1 (en) | 2012-12-04 | 2015-04-07 | Lytro, Inc. | Capturing and relighting images using multiple devices |
US9030550B2 (en) | 2011-03-25 | 2015-05-12 | Adobe Systems Incorporated | Thin plenoptic cameras using solid immersion lenses |
US20150138402A1 (en) * | 2008-12-08 | 2015-05-21 | Lytro, Inc. | Light Field Data Acquisition |
US9041823B2 (en) | 2008-05-20 | 2015-05-26 | Pelican Imaging Corporation | Systems and methods for performing post capture refocus using images captured by camera arrays |
US9049411B2 (en) | 2008-05-20 | 2015-06-02 | Pelican Imaging Corporation | Camera arrays incorporating 3×3 imager configurations |
CN104796624A (en) * | 2015-04-20 | 2015-07-22 | 清华大学深圳研究生院 | Method for editing and propagating light fields |
US9100635B2 (en) | 2012-06-28 | 2015-08-04 | Pelican Imaging Corporation | Systems and methods for detecting defective camera arrays and optic arrays |
US20150234150A1 (en) * | 2012-05-28 | 2015-08-20 | Nikon Corporation | Imaging device |
US9123118B2 (en) | 2012-08-21 | 2015-09-01 | Pelican Imaging Corporation | System and methods for measuring depth using an array camera employing a bayer filter |
US9129183B2 (en) | 2011-09-28 | 2015-09-08 | Pelican Imaging Corporation | Systems and methods for encoding light field image files |
US9137441B2 (en) | 2012-02-16 | 2015-09-15 | Ricoh Co., Ltd. | Spatial reconstruction of plenoptic images |
US9143711B2 (en) | 2012-11-13 | 2015-09-22 | Pelican Imaging Corporation | Systems and methods for array camera focal plane control |
US20150312593A1 (en) * | 2014-04-24 | 2015-10-29 | Lytro, Inc. | Compression of light field images |
US9185276B2 (en) | 2013-11-07 | 2015-11-10 | Pelican Imaging Corporation | Methods of manufacturing array camera modules incorporating independently aligned lens stacks |
US9210392B2 (en) | 2012-05-01 | 2015-12-08 | Pelican Imaging Coporation | Camera modules patterned with pi filter groups |
CN105210361A (en) * | 2013-02-13 | 2015-12-30 | 萨尔布吕肯大学 | Plenoptic imaging device |
US9253380B2 (en) | 2013-02-24 | 2016-02-02 | Pelican Imaging Corporation | Thin form factor computational array cameras and modular array cameras |
US9264610B2 (en) | 2009-11-20 | 2016-02-16 | Pelican Imaging Corporation | Capturing and processing of images including occlusions captured by heterogeneous camera arrays |
US20160057361A1 (en) * | 2010-10-24 | 2016-02-25 | Linx Computational Imaging Ltd. | Geometrically Distorted Luminance In A Multi-Lens Camera |
US9300932B2 (en) | 2012-05-09 | 2016-03-29 | Lytro, Inc. | Optimization of optical systems for improved light field capture and manipulation |
US9305375B2 (en) | 2014-03-25 | 2016-04-05 | Lytro, Inc. | High-quality post-rendering depth blur |
US9316840B2 (en) | 2009-01-20 | 2016-04-19 | Adobe Systems Incorporated | Methods and apparatus for reducing plenoptic camera artifacts |
US9392153B2 (en) | 2013-12-24 | 2016-07-12 | Lytro, Inc. | Plenoptic camera resolution |
US9412206B2 (en) | 2012-02-21 | 2016-08-09 | Pelican Imaging Corporation | Systems and methods for the manipulation of captured light field image data |
US9420276B2 (en) | 2012-02-28 | 2016-08-16 | Lytro, Inc. | Calibration of light-field camera geometry via robust fitting |
US9426361B2 (en) | 2013-11-26 | 2016-08-23 | Pelican Imaging Corporation | Array camera configurations incorporating multiple constituent array cameras |
US9444991B2 (en) | 2014-11-13 | 2016-09-13 | Lytro, Inc. | Robust layered light-field rendering |
US9456141B2 (en) | 2013-02-22 | 2016-09-27 | Lytro, Inc. | Light-field based autofocus |
WO2016176309A1 (en) * | 2015-04-30 | 2016-11-03 | Google Inc. | Virtual eyeglass set for viewing actual scene that corrects for different location of lenses than eyes |
WO2016176207A1 (en) * | 2015-04-26 | 2016-11-03 | Mems Start, Llc | Near-eye light-field display system |
US9497370B2 (en) | 2013-03-15 | 2016-11-15 | Pelican Imaging Corporation | Array camera architecture implementing quantum dot color filters |
US9497437B2 (en) * | 2014-12-03 | 2016-11-15 | National Tsing Hua University | Digital refocusing method |
US9497429B2 (en) | 2013-03-15 | 2016-11-15 | Pelican Imaging Corporation | Extended color processing on pelican array cameras |
WO2016191035A1 (en) * | 2015-05-26 | 2016-12-01 | Lytro, Inc. | Capturing light-field images with uneven and/or incomplete angular sampling |
US9516222B2 (en) | 2011-06-28 | 2016-12-06 | Kip Peli P1 Lp | Array cameras incorporating monolithic array camera modules with high MTF lens stacks for capture of images used in super-resolution processing |
US9521319B2 (en) | 2014-06-18 | 2016-12-13 | Pelican Imaging Corporation | Array cameras and array camera modules including spectral filters disposed outside of a constituent image sensor |
US9538075B2 (en) | 2013-12-30 | 2017-01-03 | Indiana University Research And Technology Corporation | Frequency domain processing techniques for plenoptic images |
US9578259B2 (en) | 2013-03-14 | 2017-02-21 | Fotonation Cayman Limited | Systems and methods for reducing motion blur in images or video in ultra low light with array cameras |
US9607424B2 (en) | 2012-06-26 | 2017-03-28 | Lytro, Inc. | Depth-assigned content for depth-enhanced pictures |
US9635332B2 (en) | 2014-09-08 | 2017-04-25 | Lytro, Inc. | Saturated pixel recovery in light-field images |
US9655523B2 (en) | 2007-06-29 | 2017-05-23 | The Trustees Of Columbia University In The City Of New York | Optical imaging or spectroscopy systems and methods |
US9667846B2 (en) * | 2012-11-27 | 2017-05-30 | Nokia Technologies Oy | Plenoptic camera apparatus, a method and a computer program |
CN103838568B (en) * | 2012-11-26 | 2017-07-11 | 诺基亚技术有限公司 | Method, device and computer program product for generating super resolution image |
US9712820B2 (en) | 2014-04-24 | 2017-07-18 | Lytro, Inc. | Predictive light field compression |
US9733486B2 (en) | 2013-03-13 | 2017-08-15 | Fotonation Cayman Limited | Systems and methods for controlling aliasing in images captured by an array camera for use in super-resolution processing |
US9741118B2 (en) | 2013-03-13 | 2017-08-22 | Fotonation Cayman Limited | System and methods for calibration of an array camera |
US9766380B2 (en) | 2012-06-30 | 2017-09-19 | Fotonation Cayman Limited | Systems and methods for manufacturing camera modules using active alignment of lens stack arrays and sensors |
US9769365B1 (en) | 2013-02-15 | 2017-09-19 | Red.Com, Inc. | Dense field imaging |
US9774789B2 (en) | 2013-03-08 | 2017-09-26 | Fotonation Cayman Limited | Systems and methods for high dynamic range imaging using array cameras |
US9794476B2 (en) | 2011-09-19 | 2017-10-17 | Fotonation Cayman Limited | Systems and methods for controlling aliasing in images captured by an array camera for use in super resolution processing using pixel apertures |
US9800856B2 (en) | 2013-03-13 | 2017-10-24 | Fotonation Cayman Limited | Systems and methods for synthesizing images from image data captured by an array camera using restricted depth of field depth maps in which depth estimation precision varies |
US9800859B2 (en) | 2013-03-15 | 2017-10-24 | Fotonation Cayman Limited | Systems and methods for estimating depth using stereo array cameras |
US9813616B2 (en) | 2012-08-23 | 2017-11-07 | Fotonation Cayman Limited | Feature based high resolution motion estimation from low resolution images captured using an array source |
US20170359522A1 (en) * | 2016-06-10 | 2017-12-14 | Samsung Electronics Co., Ltd. | Electronic device and control method therefor |
US9866739B2 (en) | 2011-05-11 | 2018-01-09 | Fotonation Cayman Limited | Systems and methods for transmitting and receiving array camera image data |
US9888194B2 (en) | 2013-03-13 | 2018-02-06 | Fotonation Cayman Limited | Array camera architecture implementing quantum film image sensors |
US9898856B2 (en) | 2013-09-27 | 2018-02-20 | Fotonation Cayman Limited | Systems and methods for depth-assisted perspective distortion correction |
CN107741644A (en) * | 2017-11-21 | 2018-02-27 | 杭州加速云信息技术有限公司 | A kind of imaging device for different visual angles imaging |
US9936148B2 (en) | 2010-05-12 | 2018-04-03 | Fotonation Cayman Limited | Imager array interfaces |
US20180096494A1 (en) * | 2016-09-30 | 2018-04-05 | Visbit Inc. | View-optimized light field image and video streaming |
US9942474B2 (en) | 2015-04-17 | 2018-04-10 | Fotonation Cayman Limited | Systems and methods for performing high speed video capture and depth estimation using array cameras |
US9955070B2 (en) | 2013-03-15 | 2018-04-24 | Fotonation Cayman Limited | Systems and methods for synthesizing high resolution images using image deconvolution based on motion and depth information |
US9986224B2 (en) | 2013-03-10 | 2018-05-29 | Fotonation Cayman Limited | System and methods for calibration of an array camera |
US10003743B2 (en) | 2013-12-23 | 2018-06-19 | Nokia Technologies Oy | Method, apparatus and computer program product for image refocusing for light-field images |
CN108184064A (en) * | 2018-01-04 | 2018-06-19 | 中国科学技术大学 | A kind of visual angle image array division methods |
US10009538B2 (en) | 2013-02-21 | 2018-06-26 | Fotonation Cayman Limited | Systems and methods for generating compressed light field representation data using captured light fields, array geometry, and parallax information |
US10021371B2 (en) | 2015-11-24 | 2018-07-10 | Dell Products, Lp | Method and apparatus for gross-level user and input detection using similar or dissimilar camera pair |
US10057498B1 (en) * | 2013-03-15 | 2018-08-21 | Cognex Corporation | Light field vision system camera and methods for using the same |
US10061111B2 (en) | 2014-01-17 | 2018-08-28 | The Trustees Of Columbia University In The City Of New York | Systems and methods for three dimensional imaging |
US10089788B2 (en) | 2016-05-25 | 2018-10-02 | Google Llc | Light-field viewpoint and pixel culling for a head mounted display device |
US10089740B2 (en) | 2014-03-07 | 2018-10-02 | Fotonation Limited | System and methods for depth regularization and semiautomatic interactive matting using RGB-D images |
US10119808B2 (en) | 2013-11-18 | 2018-11-06 | Fotonation Limited | Systems and methods for estimating depth from projected texture using camera arrays |
US10122993B2 (en) | 2013-03-15 | 2018-11-06 | Fotonation Limited | Autofocus system for a conventional camera that uses depth information from an array camera |
US10129524B2 (en) | 2012-06-26 | 2018-11-13 | Google Llc | Depth-assigned content for depth-enhanced virtual reality images |
US10205896B2 (en) | 2015-07-24 | 2019-02-12 | Google Llc | Automatic lens flare detection and correction for light-field images |
US10250871B2 (en) | 2014-09-29 | 2019-04-02 | Fotonation Limited | Systems and methods for dynamic calibration of array cameras |
US10275892B2 (en) | 2016-06-09 | 2019-04-30 | Google Llc | Multi-view scene segmentation and propagation |
US10275898B1 (en) | 2015-04-15 | 2019-04-30 | Google Llc | Wedge-based light-field video capture |
US10298834B2 (en) | 2006-12-01 | 2019-05-21 | Google Llc | Video refocusing |
US10298914B2 (en) * | 2016-10-25 | 2019-05-21 | Intel Corporation | Light field perception enhancement for integral display applications |
US10334151B2 (en) | 2013-04-22 | 2019-06-25 | Google Llc | Phase detection autofocus using subaperture images |
US10341632B2 (en) | 2015-04-15 | 2019-07-02 | Google Llc. | Spatial random access enabled video system with a three-dimensional viewing volume |
US10348947B2 (en) * | 2016-09-07 | 2019-07-09 | Interdigital Ce Patent Holdings | Plenoptic imaging device equipped with an enhanced optical system |
US10354399B2 (en) | 2017-05-25 | 2019-07-16 | Google Llc | Multi-view back-projection to a light-field |
US10366472B2 (en) | 2010-12-14 | 2019-07-30 | Fotonation Limited | Systems and methods for synthesizing high resolution images using images captured by an array of independently controllable imagers |
US10390005B2 (en) | 2012-09-28 | 2019-08-20 | Fotonation Limited | Generating images from light fields utilizing virtual viewpoints |
US10412314B2 (en) | 2013-03-14 | 2019-09-10 | Fotonation Limited | Systems and methods for photometric normalization in array cameras |
US10412373B2 (en) | 2015-04-15 | 2019-09-10 | Google Llc | Image capture for virtual reality displays |
US10419737B2 (en) | 2015-04-15 | 2019-09-17 | Google Llc | Data structures and delivery methods for expediting virtual reality playback |
US10440407B2 (en) | 2017-05-09 | 2019-10-08 | Google Llc | Adaptive control for immersive experience delivery |
US10444931B2 (en) | 2017-05-09 | 2019-10-15 | Google Llc | Vantage generation and interactive playback |
US10469873B2 (en) | 2015-04-15 | 2019-11-05 | Google Llc | Encoding and decoding virtual reality video |
US10474227B2 (en) | 2017-05-09 | 2019-11-12 | Google Llc | Generation of virtual reality with 6 degrees of freedom from limited viewer data |
US10482618B2 (en) | 2017-08-21 | 2019-11-19 | Fotonation Limited | Systems and methods for hybrid depth regularization |
US10540818B2 (en) | 2015-04-15 | 2020-01-21 | Google Llc | Stereo image generation and interactive playback |
US10546424B2 (en) | 2015-04-15 | 2020-01-28 | Google Llc | Layered content delivery for virtual and augmented reality experiences |
US10545215B2 (en) | 2017-09-13 | 2020-01-28 | Google Llc | 4D camera tracking and optical stabilization |
US10554956B2 (en) | 2015-10-29 | 2020-02-04 | Dell Products, Lp | Depth masks for image segmentation for depth-based computational photography |
US10552947B2 (en) | 2012-06-26 | 2020-02-04 | Google Llc | Depth-based image blurring |
US10565734B2 (en) | 2015-04-15 | 2020-02-18 | Google Llc | Video capture, processing, calibration, computational fiber artifact removal, and light-field pipeline |
US10567464B2 (en) | 2015-04-15 | 2020-02-18 | Google Llc | Video compression with adaptive view-dependent lighting removal |
US10594945B2 (en) | 2017-04-03 | 2020-03-17 | Google Llc | Generating dolly zoom effect using light field image data |
US10679361B2 (en) | 2016-12-05 | 2020-06-09 | Google Llc | Multi-view rotoscope contour propagation |
US10692192B2 (en) * | 2014-10-21 | 2020-06-23 | Connaught Electronics Ltd. | Method for providing image data from a camera system, camera system and motor vehicle |
US10712545B2 (en) * | 2017-03-07 | 2020-07-14 | The United States Of America As Represented By The Secretary, Department Of Health And Human Services | Systems and methods for conducting contact-free thickness and refractive-index measurements of intraocular lenses using a self-calibrating dual confocal microscopy system |
WO2020198164A1 (en) * | 2019-03-26 | 2020-10-01 | Pcms Holdings, Inc. | System and method for multiplexed rendering of light fields |
US10832429B2 (en) * | 2016-10-18 | 2020-11-10 | Photonic Sensors & Algorithms, S.L. | Device and method for obtaining distance information from views |
US10835111B2 (en) | 2016-07-10 | 2020-11-17 | The Trustees Of Columbia University In The City Of New York | Three-dimensional imaging using swept, confocally aligned planar excitation with an image relay |
WO2020236181A1 (en) * | 2019-05-23 | 2020-11-26 | Lawrence Livermore National Security, Llc | Light field x-ray optics |
US10852520B2 (en) | 2016-09-16 | 2020-12-01 | The Trustees Of Columbia University In The City Of New York | Three-dimensional imaging using swept, confocally aligned planar excitation and a customized image splitter |
US10955652B2 (en) | 2016-09-30 | 2021-03-23 | The Trustees Of Columbia University In The City Of New York | Three-dimensional imaging using swept, confocally aligned planar excitation with a Powell lens and/or deliberate misalignment |
US10965862B2 (en) | 2018-01-18 | 2021-03-30 | Google Llc | Multi-camera navigation interface |
US11036037B2 (en) | 2016-11-12 | 2021-06-15 | The Trustees Of Columbia University In The City Of New York | Microscopy devices, methods and systems |
CN113556529A (en) * | 2021-07-30 | 2021-10-26 | 中山大学 | High-resolution light field image display method, device, equipment and medium |
US11243391B2 (en) | 2016-05-30 | 2022-02-08 | The Trustees Of Columbia University In The City Of New York | Three-dimensional imaging using swept confocally aligned planar excitation with asymmetrical magnification |
US11270110B2 (en) | 2019-09-17 | 2022-03-08 | Boston Polarimetrics, Inc. | Systems and methods for surface modeling using polarization cues |
US11290658B1 (en) | 2021-04-15 | 2022-03-29 | Boston Polarimetrics, Inc. | Systems and methods for camera exposure control |
US11302012B2 (en) | 2019-11-30 | 2022-04-12 | Boston Polarimetrics, Inc. | Systems and methods for transparent object segmentation using polarization cues |
US11328446B2 (en) | 2015-04-15 | 2022-05-10 | Google Llc | Combining light-field data with active depth data for depth map generation |
WO2022128163A1 (en) | 2020-12-15 | 2022-06-23 | Photonic Sensors & Algorithms, S.L. | An optical system including a microlens array |
CN115032756A (en) * | 2022-06-07 | 2022-09-09 | 北京拙河科技有限公司 | Micro-lens array positioning method and system of light field camera |
US11456326B2 (en) * | 2018-03-15 | 2022-09-27 | Photonic Sensors & Algorithms, S.L. | Plenoptic camera for mobile devices |
US11525906B2 (en) | 2019-10-07 | 2022-12-13 | Intrinsic Innovation Llc | Systems and methods for augmentation of sensor systems and imaging systems with polarization |
WO2022269389A1 (en) * | 2021-06-21 | 2022-12-29 | Evolution Optiks Limited | Electromagnetic energy directing system, and method using same |
US11580667B2 (en) | 2020-01-29 | 2023-02-14 | Intrinsic Innovation Llc | Systems and methods for characterizing object pose detection and measurement systems |
US11689813B2 (en) | 2021-07-01 | 2023-06-27 | Intrinsic Innovation Llc | Systems and methods for high dynamic range imaging using crossed polarizers |
US11792538B2 (en) | 2008-05-20 | 2023-10-17 | Adeia Imaging Llc | Capturing and processing of images including occlusions focused on an image sensor by a lens stack array |
US11797863B2 (en) | 2020-01-30 | 2023-10-24 | Intrinsic Innovation Llc | Systems and methods for synthesizing data for training statistical models on different imaging modalities including polarized images |
US11953700B2 (en) | 2020-05-27 | 2024-04-09 | Intrinsic Innovation Llc | Multi-aperture polarization optical systems using beam splitters |
US11954886B2 (en) | 2021-04-15 | 2024-04-09 | Intrinsic Innovation Llc | Systems and methods for six-degree of freedom pose estimation of deformable objects |
US12020455B2 (en) | 2021-03-10 | 2024-06-25 | Intrinsic Innovation Llc | Systems and methods for high dynamic range image reconstruction |
US12067746B2 (en) | 2021-05-07 | 2024-08-20 | Intrinsic Innovation Llc | Systems and methods for using computer vision to pick up small objects |
US12069227B2 (en) | 2021-03-10 | 2024-08-20 | Intrinsic Innovation Llc | Multi-modal and multi-spectral stereo camera arrays |
Citations (68)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US725567A (en) | 1902-09-25 | 1903-04-14 | Frederic E Ives | Parallax stereogram and process of making same. |
US2039648A (en) | 1933-05-06 | 1936-05-05 | Perser Corp | Camera for making parallax panoramagrams |
US3743379A (en) * | 1971-09-07 | 1973-07-03 | Sperry Rand Corp | Light deflector apparatus |
US3985419A (en) | 1970-10-05 | 1976-10-12 | Canon Kabushiki Kaisha | Method of making a synthetic focused image hologram |
US4175844A (en) * | 1975-10-19 | 1979-11-27 | Yeda Research & Development Co. Ltd. | Optical imaging system |
US4180313A (en) * | 1977-03-11 | 1979-12-25 | Fuji Photo Film Co., Ltd. | Stereoscopic camera |
US4193093A (en) | 1978-08-03 | 1980-03-11 | The United States Of America As Represented By The Secretary Of The Navy | CCD camera interface circuit |
US4230942A (en) * | 1979-03-26 | 1980-10-28 | Honeywell Inc. | Crossed cylindrical lens |
US4580219A (en) | 1983-05-02 | 1986-04-01 | General Electric Company | Method for reducing image artifacts due to projection measurement inconsistencies |
US4732453A (en) | 1984-12-10 | 1988-03-22 | Integrated Images, Inc. | Integral photography apparatus and method of forming same |
US4849782A (en) | 1985-06-28 | 1989-07-18 | Canon Kabushiki Kaisha | Focus detecting device |
US5076687A (en) | 1990-08-28 | 1991-12-31 | Massachusetts Institute Of Technology | Optical ranging apparatus |
US5361127A (en) | 1992-08-07 | 1994-11-01 | Hughes Aircraft Company | Multi-image single sensor depth recovery system |
US5400093A (en) | 1992-12-28 | 1995-03-21 | U.S. Philips Corporation | Image projection system with autofocusing |
JPH07270791A (en) | 1994-03-25 | 1995-10-20 | Nikon Corp | Projector |
US5659420A (en) | 1993-09-30 | 1997-08-19 | Kabushiki Kaisha Komatsu Seisakusho | Confocal optical apparatus |
US5724122A (en) * | 1995-05-24 | 1998-03-03 | Svg Lithography Systems, Inc. | Illumination system having spatially separate vertical and horizontal image planes for use in photolithography |
US5729011A (en) * | 1995-02-24 | 1998-03-17 | Olympus Optical Co., Ltd. | Spectroscopic apparatus and spectroscopic image recording apparatus |
US5946077A (en) | 1994-09-06 | 1999-08-31 | Herman D. Mims | Method and apparatus for improved three dimensional photography |
US6097541A (en) * | 1997-01-31 | 2000-08-01 | De Montfort University | Lens arrangements |
US6097394A (en) | 1997-04-28 | 2000-08-01 | Board Of Trustees, Leland Stanford, Jr. University | Method and system for light field rendering |
US6137535A (en) * | 1996-11-04 | 2000-10-24 | Eastman Kodak Company | Compact digital camera with segmented fields of view |
US6137937A (en) | 1998-04-27 | 2000-10-24 | Nippon Hoso Kyokai | Autostereoscopic image apparatus |
WO2001037025A1 (en) | 1999-11-16 | 2001-05-25 | Agilent Technologies, Inc. | Confocal imaging |
US6268846B1 (en) | 1998-06-22 | 2001-07-31 | Adobe Systems Incorporated | 3D graphics based on images and morphing |
US20010012149A1 (en) | 1997-10-30 | 2001-08-09 | Shawn-Yu Lin | Optical elements comprising photonic crystals and applications thereof |
US6301416B1 (en) | 1998-10-09 | 2001-10-09 | Nippon Hoso Kyokai | Optical three-dimensional imaging device which uses an integral photography technique |
JP2001330769A (en) | 2000-05-24 | 2001-11-30 | Canon Inc | Image pickup device and its control method |
US20010050813A1 (en) | 1996-05-09 | 2001-12-13 | Pierre Allio | Autostereoscopic imaging device and system comprising it |
US6339506B1 (en) | 1998-11-06 | 2002-01-15 | Oni Systems Corp. | Microlens array with spatially varying optical property |
US6351269B1 (en) | 1998-04-17 | 2002-02-26 | Adobe Systems Incorporated | Multiple image morphing |
US20020140835A1 (en) | 2001-03-27 | 2002-10-03 | Silverstein D. Amnon | Single sensor chip digital stereo camera |
US6476805B1 (en) | 1999-12-23 | 2002-11-05 | Microsoft Corporation | Techniques for spatial displacement estimation and multi-resolution operations on light fields |
US20030108821A1 (en) * | 2001-12-06 | 2003-06-12 | Wenhui Mei | Microlens array fabrication |
US20030231255A1 (en) | 2002-06-12 | 2003-12-18 | Eastman Kodak Company | Imaging using silver halide films with micro-lens capture, scanning and digital reconstruction |
US6738533B1 (en) | 2000-03-29 | 2004-05-18 | Microsoft Corporation | Minimum sampling rate and minimum sampling curve for image-based rendering |
US20040114807A1 (en) | 2002-12-13 | 2004-06-17 | Dan Lelescu | Statistical representation and coding of light field data |
JP2004239932A (en) | 2003-02-03 | 2004-08-26 | Noriji Ooishi | Stereoscopic image photographing device |
US20040223214A1 (en) | 2003-05-09 | 2004-11-11 | 3M Innovative Properties Company | Scanning laser microscope with wavefront sensor |
US20050088714A1 (en) | 1997-07-08 | 2005-04-28 | Kremen Stanley H. | Method for creating a holographic screen that reconstructs uniformly magnified three-dimensional images from projected integral photographs |
US20050122418A1 (en) | 2003-12-03 | 2005-06-09 | Canon Kabushiki Kaisha | Solid state image pickup device, method for producing the same, and image pickup system comprising the solid state image pickup device |
EP1548481A1 (en) | 2002-09-30 | 2005-06-29 | Japan Science and Technology Agency | Cofocal microscope, fluorescence measuring method and polarized light measuring metod using cofocal microscope |
US7019671B2 (en) * | 2002-12-18 | 2006-03-28 | Canon Kabushiki Kaisha | Image-taking apparatus and monitoring system |
US20060104542A1 (en) | 2004-11-12 | 2006-05-18 | Microsoft Corporation | Image tapestry |
US7054067B2 (en) | 2003-05-27 | 2006-05-30 | Nippon Hoso Kyokai | Three-dimensional image optical system |
WO2006057838A1 (en) | 2004-11-24 | 2006-06-01 | Kremen Stanley H | Modular integral magnifier |
US7085062B2 (en) * | 2003-06-18 | 2006-08-01 | Hentz-Lissotschenko Patentverwaltungs Gmbh & Co. Kg | Apparatus for shaping a light beam |
US20070091197A1 (en) * | 2003-11-04 | 2007-04-26 | Hiroaki Okayama | Imaging device |
WO2007115281A1 (en) | 2006-04-04 | 2007-10-11 | Adobe Systems, Incorporated | Improved plenoptic camera |
US20070252074A1 (en) | 2004-10-01 | 2007-11-01 | The Board Of Trustees Of The Leland Stanford Junio | Imaging Arrangements and Methods Therefor |
US20080056549A1 (en) | 2006-08-29 | 2008-03-06 | Siemens Medical Solutions Usa, Inc. | System and Method for Reducing Circular Artifacts in Tomographic Imaging |
US20080107231A1 (en) | 2005-02-25 | 2008-05-08 | Hitachi Medical Corporation | X-Ray Ct Apparatus |
US20080152215A1 (en) * | 2006-12-26 | 2008-06-26 | Kenichi Horie | Coding method, electronic camera, recording medium storing coded program, and decoding method |
US20080166063A1 (en) | 2007-01-09 | 2008-07-10 | Gengsheng Lawrence Zeng | Systems And Methods For Deblurring Data Corrupted By Shift Variant Blurring |
US20080165270A1 (en) | 2007-01-09 | 2008-07-10 | Sony Corporation | Image pickup apparatus |
US20080187305A1 (en) | 2007-02-06 | 2008-08-07 | Ramesh Raskar | 4D light field cameras |
US20080193026A1 (en) * | 2007-02-09 | 2008-08-14 | Kenichi Horie | Decoding method, decoding apparatus, storage medium in which decoding program is stored, and electronic camera |
US20080218610A1 (en) | 2005-09-30 | 2008-09-11 | Glenn Harrison Chapman | Methods and Apparatus for Detecting Defects in Imaging Arrays by Image Analysis |
US20080247623A1 (en) | 2005-09-13 | 2008-10-09 | Koninklijke Philips Electronics N. V. | Automatic Generation of Optimal Views For Computed Tomography Thoracic Diagnosis |
US20090041448A1 (en) | 2007-08-06 | 2009-02-12 | Georgiev Todor G | Method and Apparatus for Radiance Capture by Multiplexing in the Frequency Domain |
US20090086304A1 (en) | 2007-08-31 | 2009-04-02 | Samsung Electro-Mechanics Co., Ltd. | Diffraction-type optical modulator and display apparatus including the same |
US20090140131A1 (en) | 2005-06-23 | 2009-06-04 | Nikon Corporation | Image input apparatus, photodetection apparatus, and image synthesis method |
US20090185801A1 (en) | 2008-01-23 | 2009-07-23 | Georgiev Todor G | Methods and Apparatus for Full-Resolution Light-Field Capture and Rendering |
US20090295829A1 (en) | 2008-01-23 | 2009-12-03 | Georgiev Todor G | Methods and Apparatus for Full-Resolution Light-Field Capture and Rendering |
US20100026852A1 (en) * | 2006-02-07 | 2010-02-04 | Yi-Ren Ng | Variable imaging arrangements and methods therefor |
US20100085468A1 (en) | 2008-10-06 | 2010-04-08 | Park Byung-Kwan | Apparatus and method of capturing image |
US20100205388A1 (en) | 2003-05-21 | 2010-08-12 | Macinnis Alexander Garland | Method and system for scalable video data width |
US7880794B2 (en) * | 2005-03-24 | 2011-02-01 | Panasonic Corporation | Imaging device including a plurality of lens elements and a imaging sensor |
-
2008
- 2008-06-23 US US12/144,411 patent/US8290358B1/en active Active
Patent Citations (76)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US725567A (en) | 1902-09-25 | 1903-04-14 | Frederic E Ives | Parallax stereogram and process of making same. |
US2039648A (en) | 1933-05-06 | 1936-05-05 | Perser Corp | Camera for making parallax panoramagrams |
US3985419A (en) | 1970-10-05 | 1976-10-12 | Canon Kabushiki Kaisha | Method of making a synthetic focused image hologram |
US3743379A (en) * | 1971-09-07 | 1973-07-03 | Sperry Rand Corp | Light deflector apparatus |
US4175844A (en) * | 1975-10-19 | 1979-11-27 | Yeda Research & Development Co. Ltd. | Optical imaging system |
US4180313A (en) * | 1977-03-11 | 1979-12-25 | Fuji Photo Film Co., Ltd. | Stereoscopic camera |
US4193093A (en) | 1978-08-03 | 1980-03-11 | The United States Of America As Represented By The Secretary Of The Navy | CCD camera interface circuit |
US4230942A (en) * | 1979-03-26 | 1980-10-28 | Honeywell Inc. | Crossed cylindrical lens |
US4580219A (en) | 1983-05-02 | 1986-04-01 | General Electric Company | Method for reducing image artifacts due to projection measurement inconsistencies |
US4732453A (en) | 1984-12-10 | 1988-03-22 | Integrated Images, Inc. | Integral photography apparatus and method of forming same |
US4849782A (en) | 1985-06-28 | 1989-07-18 | Canon Kabushiki Kaisha | Focus detecting device |
US5076687A (en) | 1990-08-28 | 1991-12-31 | Massachusetts Institute Of Technology | Optical ranging apparatus |
US5361127A (en) | 1992-08-07 | 1994-11-01 | Hughes Aircraft Company | Multi-image single sensor depth recovery system |
US5400093A (en) | 1992-12-28 | 1995-03-21 | U.S. Philips Corporation | Image projection system with autofocusing |
US5659420A (en) | 1993-09-30 | 1997-08-19 | Kabushiki Kaisha Komatsu Seisakusho | Confocal optical apparatus |
JPH07270791A (en) | 1994-03-25 | 1995-10-20 | Nikon Corp | Projector |
US5946077A (en) | 1994-09-06 | 1999-08-31 | Herman D. Mims | Method and apparatus for improved three dimensional photography |
US5729011A (en) * | 1995-02-24 | 1998-03-17 | Olympus Optical Co., Ltd. | Spectroscopic apparatus and spectroscopic image recording apparatus |
US5724122A (en) * | 1995-05-24 | 1998-03-03 | Svg Lithography Systems, Inc. | Illumination system having spatially separate vertical and horizontal image planes for use in photolithography |
US20010050813A1 (en) | 1996-05-09 | 2001-12-13 | Pierre Allio | Autostereoscopic imaging device and system comprising it |
US6137535A (en) * | 1996-11-04 | 2000-10-24 | Eastman Kodak Company | Compact digital camera with segmented fields of view |
US6097541A (en) * | 1997-01-31 | 2000-08-01 | De Montfort University | Lens arrangements |
US6097394A (en) | 1997-04-28 | 2000-08-01 | Board Of Trustees, Leland Stanford, Jr. University | Method and system for light field rendering |
US20050088714A1 (en) | 1997-07-08 | 2005-04-28 | Kremen Stanley H. | Method for creating a holographic screen that reconstructs uniformly magnified three-dimensional images from projected integral photographs |
US20010012149A1 (en) | 1997-10-30 | 2001-08-09 | Shawn-Yu Lin | Optical elements comprising photonic crystals and applications thereof |
US6351269B1 (en) | 1998-04-17 | 2002-02-26 | Adobe Systems Incorporated | Multiple image morphing |
US6137937A (en) | 1998-04-27 | 2000-10-24 | Nippon Hoso Kyokai | Autostereoscopic image apparatus |
US6268846B1 (en) | 1998-06-22 | 2001-07-31 | Adobe Systems Incorporated | 3D graphics based on images and morphing |
US6301416B1 (en) | 1998-10-09 | 2001-10-09 | Nippon Hoso Kyokai | Optical three-dimensional imaging device which uses an integral photography technique |
US6339506B1 (en) | 1998-11-06 | 2002-01-15 | Oni Systems Corp. | Microlens array with spatially varying optical property |
WO2001037025A1 (en) | 1999-11-16 | 2001-05-25 | Agilent Technologies, Inc. | Confocal imaging |
US6838650B1 (en) | 1999-11-16 | 2005-01-04 | Agilent Technologies, Inc. | Confocal imaging |
US6476805B1 (en) | 1999-12-23 | 2002-11-05 | Microsoft Corporation | Techniques for spatial displacement estimation and multi-resolution operations on light fields |
US6738533B1 (en) | 2000-03-29 | 2004-05-18 | Microsoft Corporation | Minimum sampling rate and minimum sampling curve for image-based rendering |
JP2001330769A (en) | 2000-05-24 | 2001-11-30 | Canon Inc | Image pickup device and its control method |
US20020140835A1 (en) | 2001-03-27 | 2002-10-03 | Silverstein D. Amnon | Single sensor chip digital stereo camera |
US20030108821A1 (en) * | 2001-12-06 | 2003-06-12 | Wenhui Mei | Microlens array fabrication |
US20030231255A1 (en) | 2002-06-12 | 2003-12-18 | Eastman Kodak Company | Imaging using silver halide films with micro-lens capture, scanning and digital reconstruction |
EP1548481A1 (en) | 2002-09-30 | 2005-06-29 | Japan Science and Technology Agency | Cofocal microscope, fluorescence measuring method and polarized light measuring metod using cofocal microscope |
US20040114807A1 (en) | 2002-12-13 | 2004-06-17 | Dan Lelescu | Statistical representation and coding of light field data |
US7019671B2 (en) * | 2002-12-18 | 2006-03-28 | Canon Kabushiki Kaisha | Image-taking apparatus and monitoring system |
JP2004239932A (en) | 2003-02-03 | 2004-08-26 | Noriji Ooishi | Stereoscopic image photographing device |
US20040223214A1 (en) | 2003-05-09 | 2004-11-11 | 3M Innovative Properties Company | Scanning laser microscope with wavefront sensor |
US20100205388A1 (en) | 2003-05-21 | 2010-08-12 | Macinnis Alexander Garland | Method and system for scalable video data width |
US7054067B2 (en) | 2003-05-27 | 2006-05-30 | Nippon Hoso Kyokai | Three-dimensional image optical system |
US7085062B2 (en) * | 2003-06-18 | 2006-08-01 | Hentz-Lissotschenko Patentverwaltungs Gmbh & Co. Kg | Apparatus for shaping a light beam |
US20070091197A1 (en) * | 2003-11-04 | 2007-04-26 | Hiroaki Okayama | Imaging device |
US20050122418A1 (en) | 2003-12-03 | 2005-06-09 | Canon Kabushiki Kaisha | Solid state image pickup device, method for producing the same, and image pickup system comprising the solid state image pickup device |
US20070252074A1 (en) | 2004-10-01 | 2007-11-01 | The Board Of Trustees Of The Leland Stanford Junio | Imaging Arrangements and Methods Therefor |
US20060104542A1 (en) | 2004-11-12 | 2006-05-18 | Microsoft Corporation | Image tapestry |
WO2006057838A1 (en) | 2004-11-24 | 2006-06-01 | Kremen Stanley H | Modular integral magnifier |
US20080107231A1 (en) | 2005-02-25 | 2008-05-08 | Hitachi Medical Corporation | X-Ray Ct Apparatus |
US7880794B2 (en) * | 2005-03-24 | 2011-02-01 | Panasonic Corporation | Imaging device including a plurality of lens elements and a imaging sensor |
US7732744B2 (en) * | 2005-06-23 | 2010-06-08 | Nikon Corporation | Image input apparatus, photodetection apparatus, and image synthesis method |
US20090140131A1 (en) | 2005-06-23 | 2009-06-04 | Nikon Corporation | Image input apparatus, photodetection apparatus, and image synthesis method |
US20080247623A1 (en) | 2005-09-13 | 2008-10-09 | Koninklijke Philips Electronics N. V. | Automatic Generation of Optimal Views For Computed Tomography Thoracic Diagnosis |
US20080218610A1 (en) | 2005-09-30 | 2008-09-11 | Glenn Harrison Chapman | Methods and Apparatus for Detecting Defects in Imaging Arrays by Image Analysis |
US20100026852A1 (en) * | 2006-02-07 | 2010-02-04 | Yi-Ren Ng | Variable imaging arrangements and methods therefor |
US7620309B2 (en) | 2006-04-04 | 2009-11-17 | Adobe Systems, Incorporated | Plenoptic camera |
WO2007115281A1 (en) | 2006-04-04 | 2007-10-11 | Adobe Systems, Incorporated | Improved plenoptic camera |
US20080056549A1 (en) | 2006-08-29 | 2008-03-06 | Siemens Medical Solutions Usa, Inc. | System and Method for Reducing Circular Artifacts in Tomographic Imaging |
US20080152215A1 (en) * | 2006-12-26 | 2008-06-26 | Kenichi Horie | Coding method, electronic camera, recording medium storing coded program, and decoding method |
US20080166063A1 (en) | 2007-01-09 | 2008-07-10 | Gengsheng Lawrence Zeng | Systems And Methods For Deblurring Data Corrupted By Shift Variant Blurring |
US20080165270A1 (en) | 2007-01-09 | 2008-07-10 | Sony Corporation | Image pickup apparatus |
US20080187305A1 (en) | 2007-02-06 | 2008-08-07 | Ramesh Raskar | 4D light field cameras |
US20100265386A1 (en) | 2007-02-06 | 2010-10-21 | Ramesh Raskar | 4D Light Field Cameras |
US7792423B2 (en) | 2007-02-06 | 2010-09-07 | Mitsubishi Electric Research Laboratories, Inc. | 4D light field cameras |
US20080193026A1 (en) * | 2007-02-09 | 2008-08-14 | Kenichi Horie | Decoding method, decoding apparatus, storage medium in which decoding program is stored, and electronic camera |
US20090041381A1 (en) | 2007-08-06 | 2009-02-12 | Georgiev Todor G | Method and Apparatus for Radiance Processing by Demultiplexing in the Frequency Domain |
US20090041448A1 (en) | 2007-08-06 | 2009-02-12 | Georgiev Todor G | Method and Apparatus for Radiance Capture by Multiplexing in the Frequency Domain |
US8019215B2 (en) | 2007-08-06 | 2011-09-13 | Adobe Systems Incorporated | Method and apparatus for radiance capture by multiplexing in the frequency domain |
US20090086304A1 (en) | 2007-08-31 | 2009-04-02 | Samsung Electro-Mechanics Co., Ltd. | Diffraction-type optical modulator and display apparatus including the same |
US20090295829A1 (en) | 2008-01-23 | 2009-12-03 | Georgiev Todor G | Methods and Apparatus for Full-Resolution Light-Field Capture and Rendering |
US20090185801A1 (en) | 2008-01-23 | 2009-07-23 | Georgiev Todor G | Methods and Apparatus for Full-Resolution Light-Field Capture and Rendering |
US7962033B2 (en) | 2008-01-23 | 2011-06-14 | Adobe Systems Incorporated | Methods and apparatus for full-resolution light-field capture and rendering |
US20100085468A1 (en) | 2008-10-06 | 2010-04-08 | Park Byung-Kwan | Apparatus and method of capturing image |
Non-Patent Citations (73)
Title |
---|
Adelson T., Wang J.: "Single Lens Stereo with a Plenoptic Camera," IEEE Transactions on Pattern Analysis and Machine Intelligence (1992), 99-106. |
Baker S., Kanade T.: Limits on superresolution and how to break them. IEEE Transactions on Pattern Analysis and Machine Intelligence (Jan. 2002), 377 pages. |
Bishop T. E., Zanetti S., Favaro P.: Light field superresolution. In International Conference on Computational Photography (Apr. 16-17, 2009), 4 pages. |
Borman, S., and Stevenson, R., "Super-resolution from image sequences-a review", Proceedings of the 1998 Midwest Symposium on Circuits and Systems, Publication Date: Aug. 9-12, 1998, on pp. 374-378. |
Brown M., Lowe D. G.: "Unsupervised 3d Object Recognition and Reconstruction in Unordered Datasets," In Proceedings of 5th International Conference on 3D Imaging and Modelling (3DIM) (2005), pp. 21-30. |
Chang, et al., "Light Field Compression Using Disparity-Compensated Lifting and Shape Adaptation," IEEE Transactions on Image Processing, vol. 15, No. 4, Apr. 2006, pp. 793-806. |
Dana Dudley, Walter Duncan, John Slaughter, "Emerging Digital Micromirror Device (DMD) Applications", DLPTM Products New Applications, Texas Instruments, Inc., Copyright 2003 Society of Photo-Optical Instrumentation Engineers., This paper was published in SPIE Proceedings vol. 4985, 12 pages. |
David E. Roberts, History of Lenticular and Related Autostereoscopic Methods, 2003, 17 pages. |
Elad, M., and Feuer, A., "Restoration of a single superresolution image from several blurred, noisy, and undersampled measured images," IEEE Transactions on Image Processing Dec. 1997, pp. 1646-1658. |
F. Durand, N. Holzschuch, C. Soler, E. Chan, and F. Sillion: "A frequency Analysis of Light Transport," ACM Trans. Graph., pp. 1115-1126, 2005. |
Farsiu, S., Robinson, D., Elad, M., and Milanfar, P., "Advances and challenges in super-resolution," International Journal of Imaging Systems and Technology, 2004, 12 pages. |
Fife K., Gamal A. E., Wong H.-S. P.: A 3mpixel multi-aperture image sensor with 0.7um pixels in 0.11um cmos. In IEEE ISSCC Digest of Technical Papers (Feb. 2008), pp. 48-49. |
Georgeiv, et al. "Spatio-Angular Resolution Tradeoff in Integral Photography," Proc. EGSR, 2006, 10 pages. |
Georgiev T., Lumsdaine A.: Depth of field in plenoptic cameras. In Eurographics 2009-Annex (Apr. 2009), pp. 5-8. |
Georgiev T., Wainer M.: "Morphing Between Multiple Images," Tech. Rep. (1997). |
Georgiev, et al. "Light-Field Capture by Multiplexing in the Frequency Domain," ADOBE Technical Report, Apr. 2007, all pages. |
Gortler S. J., Grzeszczuk R., Szeliski, R., Cohen M. F.: "The Lumigraph," ACM Trans. Graph. (1996), 43-54. |
Grzeszczuk, R., et al., "Standard Support for 1-13 Progressive Encoding, Compression and Interactive Visualization of Surface Light Fields," Joint Video Tem (JVT) of ISO/IEC MPEG & ITU-T VGEG (ISO/IEC JTC1/SC29/WG11 and ITU-T SG16 Q6), Nov. 21, 2001, 11 pages. |
Heung-Yeung Shum, et al., "Survey of Image-Based Representations and Compression Techniques," IEEE Transactions on Circuits and Systems for Video Technology, IEEE Service Center, vol. 13, No. 11, Nov. 1, 2003, 18 pages. |
Isaksen A., McMillan L., Gortler S. J.: "Dynamically Reparameterized Light Fields," ACM Trans. Graph. (2000), 297-306. |
J. Chai, S. Chan, H. Shum, and X. Tong: "Plenoptic Sampling", ACM Trans. Graph., pp. 307-318, 2000. |
J. Neumann, et al., "Eyes from Eyes Analysis of Camera Design Using Plenoptic Video Geometry," Dec. 2001, 20 pages, XP002509893. |
JP504669 (1975), all pages, english equivalent is U.S. Patent 3985419, dated Oct. 12, 1976 by Matsumoto, et al. |
Lee S., Wolberg G., Shin S.: "Polymorph: Morphing Among Multiple Images," IEEE Computer Graphics and Applications (1998). |
Levin A., Fergus R., Durand F., Freeman W.: Image and depth from a conventional camera with a coded aperture. ACM Transactions on Graphics, SIGGRAPH 2007 Conference Proceedings, San Diego, CA (2007), 10 pages. |
Levoy M., Hanrahan P.: "Light Field Rendering," ACM Trans. Graph. (1996), 31-42. |
Levoy, et al. "Recording and controlling the 4D light field in a microscope using microlens arrays", Journal of Microscopy, 2009, 19 pages. |
Levoy, Mark et al., "Light Field Microscopy," Stanford University, Submitted to Siggraph 2006, 5 pages. |
Levoy, Mark, "Optical Recipes for Light Microscopes," Stanford Computer Grpahics Laboratory Technical Memo 2006-001, Jun. 20, 2006, 10 pages. |
Lin Z., Shum H.: Fundamental limits of reconstruction-based superresolution algorithms under local translation. IEEE Transactions on Pattern Analysis and Machine Intelligence 26, 1 (Jan. 2004), 83-97. |
Lippmann G.: "Epreuves reversible donnant la sensation du relief ("Reversible Prints Providing the Sensation of Depth")", Journal of Physics 7 (1908), pp. 821-825. |
Lippmann G.: "Epreuves Reversibles Photographies Integrales," Academie des sciences (Mar. 1908), pp. 446-451. |
Lumsdaine A., Georgiev T.: Full Resolution Lightfield Rendering. Tech. rep., Adobe Systems, Jan. 2008, 12 pages. |
Lumsdaine A., Georgiev T.: The focused plenoptic camera. In International Conference on Computational Photography (Apr. 2009), 8 pages. |
M. Levoy, "Light Fields and computational Imaging," Computer [Online], vol. 39, No. 8, Aug. 2006, pp. 46-55, XP002501300. |
Naemura T., Yoshida T., Harashima H.: "3d Computer Graphics Based on Integral Photography," Optics Express, vol. 8,2 (2001). |
Ng et al."Light Field Photography with a Hand-Held Plenoptic Camera", Apr. 2005, Stanford Tech Report CTSR Feb. 2005, pp. 1-11. * |
Ng M. K., Bose N. K.: Mathematical analysis of super-resolution methodology. Signal Processing Magazine, IEEE 20, 3 (2003), 62-74. |
Ng R., Levoy M., Brledif M., Duval G., Horowitz M., Hanrahan P.: "Light Field Photography with a Hand-held Plenoptic Camera," Tech. Rep. (2005). |
Ng R.: "Fourier Slice Photography," Proceedings of ACM SIGGRAPH 2005 (Jan. 2005). |
Ng, "Digital Light Field Photography," Jul. 2006, A Dissertation Submitted to the Dept. of Computer Science and the Committee on Graduate Studies of Stanford Univ in Partial fulfillment of the requirements for the degree of Doctor of Philosophy, 203. |
Park, S., Park, M., and Kang, M., "Super-resolution image reconstruction: a technical overview," Signal Processing Magazine, 2003, 16 pages. |
Schultz R.: Super-resolution enhancement of native digital video versus digitized NTSC sequences. In Proceedings of the Fifth IEEE Southwest Symposium on Image Analysis and Interpretation (2002), pp. 193-197. |
Sebe, et al., "Mutli-View Geometry Estimation for Light Field Compression," VMV 2002, 8 pages. |
Seitz S. M., Dyer C. R.: "View Morphing," ACM Trans. Graph. (1996), 21-30. |
Shing-Chow, Chan, et al., "The Compression of Simplified Dynamic Light Fields," Proceedings of International Conference on Acoustics, Speech and Signal Processing, Apr. 6-10, 2003 Hong Kong, vol. 3, Apr. 6, 2003, 4 pages. |
Shree K. Nayar, Vlad Branzoi, Terry E. Boult, "Programmable Imaging using a Digital Micromirror Array", Shree K. Nayar, Vlad Branzoi, Terry E. Boult, In Conf. on Computer Vision and Pattern Recognition, pp. I: 436-443, 2004. |
Stevens R., Harvey T.: "Lens Arrays for a Three-dimensional Imaging System," Journal of Optics A, vol. 4 (2002). |
Stewart J., Yu J., Gortler S. J., McMillan L.: "A New Reconstruction Filter for Undersampled Light Field," Eurographics Symposium on Rendering (2003), 150-156. |
Todor Georgiev and Chintan Intwala: "Light Field Camera Design for Integral View Photography," Adobe Tech. Rep., 2006, 13 pages. |
U.S. Appl. No. 11/627,141, filed Jan. 25, 2007. |
U.S. Appl. No. 11/874,611, filed Oct. 18, 2007. |
U.S. Appl. No. 12/111,735, filed Apr. 29, 2008. |
U.S. Appl. No. 12/130,725, filed May 30, 2008. |
U.S. Appl. No. 12/186,396, filed Jun. 23, 2008. |
U.S. Appl. No. 12/271,389, filed Nov. 14, 2008. |
U.S. Appl. No. 12/474,112, filed May 28, 2009. |
U.S. Appl. No. 12/503,803, filed Jul. 15, 2009. |
U.S. Appl. No. 12/574,183, filed Oct. 6, 2009. |
U.S. Appl. No. 12/628,437, filed Dec. 1, 2009. |
U.S. Appl. No. 12/636,168, filed Dec. 11, 2009. |
U.S. Appl. No. 12/690,569, filed Jan. 20, 2010. |
U.S. Appl. No. 12/690,871, filed Jan. 20, 2010. |
U.S. Appl. No. 12/790,677, filed May 28, 2010. |
Ulrich, Fecker, et al., "Transposed Picture Ordering for Dynamic Light Field Coding," Joint Video Team (JVT) of ISO/IEC MPEG & ITU-T VGEG (ISO/IEC JTC1/SC29/WG11 and ITU-T SG16 Q6), Jul. 9, 2004, 8 pages. |
Vaish V., Wilburn B., Joshi N., Levoy M.: "Using Plane + Parallax to Calibrate Dense Camera Arrays," In Proceedings of IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2004). |
Veeraraghavan, et al., "Dappled Photography: Mask Enhanced Cameras for Heterodyned Light Fields and Coded Aperture Refocusing," ACM Transaction on Graphics, vol. 26, No. 3, Article 69, Jul. 2007, 12 pages, XP002491494. |
Wilburn B., Joshi N., Vaish V., Talvala E., Antunez E., Barth A., Adams A., Levoy M., Horowitz M.: "High Performance Imaging Using Large Camera Arrays," In ACM Trans. Graph. (2005). |
Xiao J., Shah M.: "Tri-view Morphing," Computer Vision and Image Understanding 96, 3 (2004), 345-366. |
Yang, J C, et al., "A Real-Time Distributed Light Field Camera," Rendering Techniques 2002, Eurographics Workshop Proceedings, PIS, Italy, Jun. 26-28, 2002, 9 pages. |
Zaharia, R., et al., "Adaptive 3D-DCT Compression Algorithm for Continuous Parallax 3D Integral Imaging," Signal Processing, Image Communication, Elsevier Scient Publishers, Amsterdam, NL, vol. 17, No. 3, Mar. 1, 2002, 12 pages. |
Zhang, et al., "A Survey on Image-based Rendering-Representation, Sampling and Compression," Signal Processing, Image Communication, Elsevier Science Publishers, vol. 19, No. 1, Jan. 1, 2004, 28 pages. |
Zitnick C. L., Jojic N., Kang S.: "Consistent Segmentation for Optical Flow Estimation" In Proceedings of IEEE International Conference on Computer Vision (ICCV) (2005). |
Cited By (331)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US10298834B2 (en) | 2006-12-01 | 2019-05-21 | Google Llc | Video refocusing |
US9655523B2 (en) | 2007-06-29 | 2017-05-23 | The Trustees Of Columbia University In The City Of New York | Optical imaging or spectroscopy systems and methods |
US11653834B2 (en) | 2007-06-29 | 2023-05-23 | The Trustees Of Columbia University In The City Of New York | Optical imaging or spectroscopy systems and methods |
US11109758B2 (en) | 2007-06-29 | 2021-09-07 | The Trustees Of Columbia University In The City Of New York | Optical imaging or spectroscopy systems and methods |
US8559756B2 (en) | 2007-08-06 | 2013-10-15 | Adobe Systems Incorporated | Radiance processing by demultiplexing in the frequency domain |
US9094661B2 (en) | 2008-05-20 | 2015-07-28 | Pelican Imaging Corporation | Systems and methods for generating depth maps using a set of images containing a baseline image |
US9191580B2 (en) | 2008-05-20 | 2015-11-17 | Pelican Imaging Corporation | Capturing and processing of images including occlusions captured by camera arrays |
US9060124B2 (en) | 2008-05-20 | 2015-06-16 | Pelican Imaging Corporation | Capturing and processing of images using non-monolithic camera arrays |
US10027901B2 (en) | 2008-05-20 | 2018-07-17 | Fotonation Cayman Limited | Systems and methods for generating depth maps using a camera arrays incorporating monochrome and color cameras |
US9060142B2 (en) | 2008-05-20 | 2015-06-16 | Pelican Imaging Corporation | Capturing and processing of images captured by camera arrays including heterogeneous optics |
US11792538B2 (en) | 2008-05-20 | 2023-10-17 | Adeia Imaging Llc | Capturing and processing of images including occlusions focused on an image sensor by a lens stack array |
US11412158B2 (en) | 2008-05-20 | 2022-08-09 | Fotonation Limited | Capturing and processing of images including occlusions focused on an image sensor by a lens stack array |
US9060120B2 (en) | 2008-05-20 | 2015-06-16 | Pelican Imaging Corporation | Systems and methods for generating depth maps using images captured by camera arrays |
US9055233B2 (en) | 2008-05-20 | 2015-06-09 | Pelican Imaging Corporation | Systems and methods for synthesizing higher resolution images using a set of images containing a baseline image |
US9055213B2 (en) | 2008-05-20 | 2015-06-09 | Pelican Imaging Corporation | Systems and methods for measuring depth using images captured by monolithic camera arrays including at least one bayer camera |
US9049391B2 (en) | 2008-05-20 | 2015-06-02 | Pelican Imaging Corporation | Capturing and processing of near-IR images including occlusions using camera arrays incorporating near-IR light sources |
US9049381B2 (en) | 2008-05-20 | 2015-06-02 | Pelican Imaging Corporation | Systems and methods for normalizing image data captured by camera arrays |
US9049390B2 (en) | 2008-05-20 | 2015-06-02 | Pelican Imaging Corporation | Capturing and processing of images captured by arrays including polychromatic cameras |
US10142560B2 (en) | 2008-05-20 | 2018-11-27 | Fotonation Limited | Capturing and processing of images including occlusions focused on an image sensor by a lens stack array |
US9049411B2 (en) | 2008-05-20 | 2015-06-02 | Pelican Imaging Corporation | Camera arrays incorporating 3×3 imager configurations |
US9749547B2 (en) | 2008-05-20 | 2017-08-29 | Fotonation Cayman Limited | Capturing and processing of images using camera array incorperating Bayer cameras having different fields of view |
US9049367B2 (en) | 2008-05-20 | 2015-06-02 | Pelican Imaging Corporation | Systems and methods for synthesizing higher resolution images using images captured by camera arrays |
US9041829B2 (en) | 2008-05-20 | 2015-05-26 | Pelican Imaging Corporation | Capturing and processing of high dynamic range images using camera arrays |
US9041823B2 (en) | 2008-05-20 | 2015-05-26 | Pelican Imaging Corporation | Systems and methods for performing post capture refocus using images captured by camera arrays |
US9077893B2 (en) | 2008-05-20 | 2015-07-07 | Pelican Imaging Corporation | Capturing and processing of images captured by non-grid camera arrays |
US9485496B2 (en) | 2008-05-20 | 2016-11-01 | Pelican Imaging Corporation | Systems and methods for measuring depth using images captured by a camera array including cameras surrounding a central camera |
US9060121B2 (en) | 2008-05-20 | 2015-06-16 | Pelican Imaging Corporation | Capturing and processing of images captured by camera arrays including cameras dedicated to sampling luma and cameras dedicated to sampling chroma |
US9235898B2 (en) | 2008-05-20 | 2016-01-12 | Pelican Imaging Corporation | Systems and methods for generating depth maps using light focused on an image sensor by a lens element array |
US9576369B2 (en) | 2008-05-20 | 2017-02-21 | Fotonation Cayman Limited | Systems and methods for generating depth maps using images captured by camera arrays incorporating cameras having different fields of view |
US9712759B2 (en) | 2008-05-20 | 2017-07-18 | Fotonation Cayman Limited | Systems and methods for generating depth maps using a camera arrays incorporating monochrome and color cameras |
US9188765B2 (en) | 2008-05-20 | 2015-11-17 | Pelican Imaging Corporation | Capturing and processing of images including occlusions focused on an image sensor by a lens stack array |
US9124815B2 (en) | 2008-05-20 | 2015-09-01 | Pelican Imaging Corporation | Capturing and processing of images including occlusions captured by arrays of luma and chroma cameras |
US12041360B2 (en) | 2008-05-20 | 2024-07-16 | Adeia Imaging Llc | Capturing and processing of images including occlusions focused on an image sensor by a lens stack array |
US12022207B2 (en) | 2008-05-20 | 2024-06-25 | Adeia Imaging Llc | Capturing and processing of images including occlusions focused on an image sensor by a lens stack array |
US8611693B2 (en) | 2008-05-30 | 2013-12-17 | Adobe Systems Incorporated | Managing artifacts in frequency domain processing of light-field images |
US20150138402A1 (en) * | 2008-12-08 | 2015-05-21 | Lytro, Inc. | Light Field Data Acquisition |
US9467607B2 (en) * | 2008-12-08 | 2016-10-11 | Lytro, Inc. | Light field data acquisition |
US9316840B2 (en) | 2009-01-20 | 2016-04-19 | Adobe Systems Incorporated | Methods and apparatus for reducing plenoptic camera artifacts |
US8471920B2 (en) | 2009-07-15 | 2013-06-25 | Adobe Systems Incorporated | Focused plenoptic camera employing different apertures or filtering at different microlenses |
US20110019056A1 (en) * | 2009-07-26 | 2011-01-27 | Massachusetts Institute Of Technology | Bi-Directional Screen |
US8654234B2 (en) * | 2009-07-26 | 2014-02-18 | Massachusetts Institute Of Technology | Bi-directional screen |
US20110115916A1 (en) * | 2009-11-16 | 2011-05-19 | Eiji Yafuso | System for mosaic image acquisition |
US10306120B2 (en) | 2009-11-20 | 2019-05-28 | Fotonation Limited | Capturing and processing of images captured by camera arrays incorporating cameras with telephoto and conventional lenses to generate depth maps |
US9264610B2 (en) | 2009-11-20 | 2016-02-16 | Pelican Imaging Corporation | Capturing and processing of images including occlusions captured by heterogeneous camera arrays |
US8749620B1 (en) * | 2010-02-20 | 2014-06-10 | Lytro, Inc. | 3D light field cameras, images and files, and methods of using, operating, processing and viewing same |
US8860833B2 (en) | 2010-03-03 | 2014-10-14 | Adobe Systems Incorporated | Blended rendering of focused plenoptic camera data |
US8817015B2 (en) | 2010-03-03 | 2014-08-26 | Adobe Systems Incorporated | Methods, apparatus, and computer-readable storage media for depth-based rendering of focused plenoptic camera data |
US9936148B2 (en) | 2010-05-12 | 2018-04-03 | Fotonation Cayman Limited | Imager array interfaces |
US10455168B2 (en) | 2010-05-12 | 2019-10-22 | Fotonation Limited | Imager array interfaces |
US8665341B2 (en) | 2010-08-27 | 2014-03-04 | Adobe Systems Incorporated | Methods and apparatus for rendering output images with simulated artistic effects from focused plenoptic camera data |
US8749694B2 (en) | 2010-08-27 | 2014-06-10 | Adobe Systems Incorporated | Methods and apparatus for rendering focused plenoptic camera data using super-resolved demosaicing |
US8724000B2 (en) | 2010-08-27 | 2014-05-13 | Adobe Systems Incorporated | Methods and apparatus for super-resolution in integral photography |
US8803918B2 (en) | 2010-08-27 | 2014-08-12 | Adobe Systems Incorporated | Methods and apparatus for calibrating focused plenoptic camera data |
US8675993B2 (en) | 2010-09-03 | 2014-03-18 | Adobe Systems Incorporated | Methods and apparatus for patch-based shape from shading |
US8625931B2 (en) | 2010-09-03 | 2014-01-07 | Adobe Systems Incorporated | Light space graphical model in shape from shading |
US9615030B2 (en) | 2010-10-24 | 2017-04-04 | Linx Computational Imaging Ltd. | Luminance source selection in a multi-lens camera |
US9681057B2 (en) | 2010-10-24 | 2017-06-13 | Linx Computational Imaging Ltd. | Exposure timing manipulation in a multi-lens camera |
US20160057361A1 (en) * | 2010-10-24 | 2016-02-25 | Linx Computational Imaging Ltd. | Geometrically Distorted Luminance In A Multi-Lens Camera |
US9654696B2 (en) | 2010-10-24 | 2017-05-16 | LinX Computation Imaging Ltd. | Spatially differentiated luminance in a multi-lens camera |
US9578257B2 (en) * | 2010-10-24 | 2017-02-21 | Linx Computational Imaging Ltd. | Geometrically distorted luminance in a multi-lens camera |
US9413984B2 (en) | 2010-10-24 | 2016-08-09 | Linx Computational Imaging Ltd. | Luminance source selection in a multi-lens camera |
US9124881B2 (en) * | 2010-12-03 | 2015-09-01 | Fly's Eye Imaging LLC | Method of displaying an enhanced three-dimensional images |
US20120140024A1 (en) * | 2010-12-03 | 2012-06-07 | Fly's Eye Imaging, LLC | Method of displaying an enhanced three-dimensional images |
US10366472B2 (en) | 2010-12-14 | 2019-07-30 | Fotonation Limited | Systems and methods for synthesizing high resolution images using images captured by an array of independently controllable imagers |
US11423513B2 (en) | 2010-12-14 | 2022-08-23 | Fotonation Limited | Systems and methods for synthesizing high resolution images using images captured by an array of independently controllable imagers |
US11875475B2 (en) | 2010-12-14 | 2024-01-16 | Adeia Imaging Llc | Systems and methods for synthesizing high resolution images using images captured by an array of independently controllable imagers |
US9749591B2 (en) * | 2011-01-21 | 2017-08-29 | Nikon Corporation | Focus position maintaining apparatus, and microscope |
US20130286182A1 (en) * | 2011-01-21 | 2013-10-31 | Nikon Corporation | Focus position maintaining apparatus, and microscope |
US20120242855A1 (en) * | 2011-03-24 | 2012-09-27 | Casio Computer Co., Ltd. | Device and method including function for reconstituting an image, and storage medium |
US9197798B2 (en) | 2011-03-25 | 2015-11-24 | Adobe Systems Incorporated | Thin plenoptic cameras using microspheres |
US9030550B2 (en) | 2011-03-25 | 2015-05-12 | Adobe Systems Incorporated | Thin plenoptic cameras using solid immersion lenses |
US8542312B2 (en) * | 2011-03-31 | 2013-09-24 | Casio Computer Co., Ltd. | Device having image reconstructing function, method, and storage medium |
US20120249823A1 (en) * | 2011-03-31 | 2012-10-04 | Casio Computer Co., Ltd. | Device having image reconstructing function, method, and storage medium |
US10218889B2 (en) | 2011-05-11 | 2019-02-26 | Fotonation Limited | Systems and methods for transmitting and receiving array camera image data |
US9866739B2 (en) | 2011-05-11 | 2018-01-09 | Fotonation Cayman Limited | Systems and methods for transmitting and receiving array camera image data |
US10742861B2 (en) | 2011-05-11 | 2020-08-11 | Fotonation Limited | Systems and methods for transmitting and receiving array camera image data |
US9471728B2 (en) | 2011-05-23 | 2016-10-18 | Ricoh Company, Ltd. | Metrics for designing a plenoptic imaging system |
US20120300091A1 (en) * | 2011-05-23 | 2012-11-29 | Shroff Sapna A | Focusing and Focus Metrics for a Plenoptic Imaging System |
US8531581B2 (en) * | 2011-05-23 | 2013-09-10 | Ricoh Co., Ltd. | Focusing and focus metrics for a plenoptic imaging system |
US9516222B2 (en) | 2011-06-28 | 2016-12-06 | Kip Peli P1 Lp | Array cameras incorporating monolithic array camera modules with high MTF lens stacks for capture of images used in super-resolution processing |
US9578237B2 (en) | 2011-06-28 | 2017-02-21 | Fotonation Cayman Limited | Array cameras incorporating optics with modulation transfer functions greater than sensor Nyquist frequency for capture of images used in super-resolution processing |
US20130063571A1 (en) * | 2011-09-12 | 2013-03-14 | Canon Kabushiki Kaisha | Image processing apparatus and image processing method |
US9412151B2 (en) * | 2011-09-12 | 2016-08-09 | Canon Kabushiki Kaisha | Image processing apparatus and image processing method |
US10375302B2 (en) | 2011-09-19 | 2019-08-06 | Fotonation Limited | Systems and methods for controlling aliasing in images captured by an array camera for use in super resolution processing using pixel apertures |
US9794476B2 (en) | 2011-09-19 | 2017-10-17 | Fotonation Cayman Limited | Systems and methods for controlling aliasing in images captured by an array camera for use in super resolution processing using pixel apertures |
US9864921B2 (en) | 2011-09-28 | 2018-01-09 | Fotonation Cayman Limited | Systems and methods for encoding image files containing depth maps stored as metadata |
US12052409B2 (en) | 2011-09-28 | 2024-07-30 | Adela Imaging LLC | Systems and methods for encoding image files containing depth maps stored as metadata |
US10019816B2 (en) | 2011-09-28 | 2018-07-10 | Fotonation Cayman Limited | Systems and methods for decoding image files containing depth maps stored as metadata |
US10430682B2 (en) | 2011-09-28 | 2019-10-01 | Fotonation Limited | Systems and methods for decoding image files containing depth maps stored as metadata |
US10984276B2 (en) | 2011-09-28 | 2021-04-20 | Fotonation Limited | Systems and methods for encoding image files containing depth maps stored as metadata |
US10275676B2 (en) | 2011-09-28 | 2019-04-30 | Fotonation Limited | Systems and methods for encoding image files containing depth maps stored as metadata |
US9811753B2 (en) | 2011-09-28 | 2017-11-07 | Fotonation Cayman Limited | Systems and methods for encoding light field image files |
US20180197035A1 (en) | 2011-09-28 | 2018-07-12 | Fotonation Cayman Limited | Systems and Methods for Encoding Image Files Containing Depth Maps Stored as Metadata |
US11729365B2 (en) | 2011-09-28 | 2023-08-15 | Adela Imaging LLC | Systems and methods for encoding image files containing depth maps stored as metadata |
US9536166B2 (en) | 2011-09-28 | 2017-01-03 | Kip Peli P1 Lp | Systems and methods for decoding image files containing depth maps stored as metadata |
US9129183B2 (en) | 2011-09-28 | 2015-09-08 | Pelican Imaging Corporation | Systems and methods for encoding light field image files |
US9222767B2 (en) * | 2012-01-03 | 2015-12-29 | Samsung Electronics Co., Ltd. | Display apparatus and method for estimating depth |
US20130169643A1 (en) * | 2012-01-03 | 2013-07-04 | Samsung Electronics Co., Ltd. | Display apparatus and method for estimating depth |
US9727966B2 (en) | 2012-01-03 | 2017-08-08 | Samsung Electronics Co., Ltd. | Display apparatus and method for estimating depth |
US9288389B2 (en) | 2012-02-16 | 2016-03-15 | Ricoh Co., Ltd. | Estimation of metrics using a plenoptic imaging system |
US9307146B2 (en) | 2012-02-16 | 2016-04-05 | Ricoh Co., Ltd. | Resolution-enhanced plenoptic imaging system |
US9137441B2 (en) | 2012-02-16 | 2015-09-15 | Ricoh Co., Ltd. | Spatial reconstruction of plenoptic images |
US10311649B2 (en) | 2012-02-21 | 2019-06-04 | Fotonation Limited | Systems and method for performing depth based image editing |
US9412206B2 (en) | 2012-02-21 | 2016-08-09 | Pelican Imaging Corporation | Systems and methods for the manipulation of captured light field image data |
US9754422B2 (en) | 2012-02-21 | 2017-09-05 | Fotonation Cayman Limited | Systems and method for performing depth based image editing |
US9386288B2 (en) | 2012-02-28 | 2016-07-05 | Lytro, Inc. | Compensating for sensor saturation and microlens modulation during light-field image processing |
US8811769B1 (en) | 2012-02-28 | 2014-08-19 | Lytro, Inc. | Extended depth of field and variable center of perspective in light-field processing |
US8831377B2 (en) | 2012-02-28 | 2014-09-09 | Lytro, Inc. | Compensating for variation in microlens position during light-field image processing |
US8995785B2 (en) | 2012-02-28 | 2015-03-31 | Lytro, Inc. | Light-field processing and analysis, camera control, and user interfaces and interaction on light-field capture devices |
US8971625B2 (en) | 2012-02-28 | 2015-03-03 | Lytro, Inc. | Generating dolly zoom effect using light field image data |
US9172853B2 (en) | 2012-02-28 | 2015-10-27 | Lytro, Inc. | Microlens array architecture for avoiding ghosting in projected images |
US9420276B2 (en) | 2012-02-28 | 2016-08-16 | Lytro, Inc. | Calibration of light-field camera geometry via robust fitting |
US8948545B2 (en) | 2012-02-28 | 2015-02-03 | Lytro, Inc. | Compensating for sensor saturation and microlens modulation during light-field image processing |
US9706132B2 (en) | 2012-05-01 | 2017-07-11 | Fotonation Cayman Limited | Camera modules patterned with pi filter groups |
US9210392B2 (en) | 2012-05-01 | 2015-12-08 | Pelican Imaging Coporation | Camera modules patterned with pi filter groups |
US9866810B2 (en) | 2012-05-09 | 2018-01-09 | Lytro, Inc. | Optimization of optical systems for improved light field capture and manipulation |
US9300932B2 (en) | 2012-05-09 | 2016-03-29 | Lytro, Inc. | Optimization of optical systems for improved light field capture and manipulation |
US9625789B2 (en) | 2012-05-28 | 2017-04-18 | Nikon Corporation | Imaging device including a front optical system having a movable focusing lens group |
US9395516B2 (en) * | 2012-05-28 | 2016-07-19 | Nikon Corporation | Imaging device |
US20150234150A1 (en) * | 2012-05-28 | 2015-08-20 | Nikon Corporation | Imaging device |
US9607424B2 (en) | 2012-06-26 | 2017-03-28 | Lytro, Inc. | Depth-assigned content for depth-enhanced pictures |
US10552947B2 (en) | 2012-06-26 | 2020-02-04 | Google Llc | Depth-based image blurring |
US10129524B2 (en) | 2012-06-26 | 2018-11-13 | Google Llc | Depth-assigned content for depth-enhanced virtual reality images |
US10334241B2 (en) | 2012-06-28 | 2019-06-25 | Fotonation Limited | Systems and methods for detecting defective camera arrays and optic arrays |
US9100635B2 (en) | 2012-06-28 | 2015-08-04 | Pelican Imaging Corporation | Systems and methods for detecting defective camera arrays and optic arrays |
US9807382B2 (en) | 2012-06-28 | 2017-10-31 | Fotonation Cayman Limited | Systems and methods for detecting defective camera arrays and optic arrays |
US9766380B2 (en) | 2012-06-30 | 2017-09-19 | Fotonation Cayman Limited | Systems and methods for manufacturing camera modules using active alignment of lens stack arrays and sensors |
US10261219B2 (en) | 2012-06-30 | 2019-04-16 | Fotonation Limited | Systems and methods for manufacturing camera modules using active alignment of lens stack arrays and sensors |
US11022725B2 (en) | 2012-06-30 | 2021-06-01 | Fotonation Limited | Systems and methods for manufacturing camera modules using active alignment of lens stack arrays and sensors |
US10380752B2 (en) | 2012-08-21 | 2019-08-13 | Fotonation Limited | Systems and methods for estimating depth and visibility from a reference viewpoint for pixels in a set of images captured from different viewpoints |
US12002233B2 (en) | 2012-08-21 | 2024-06-04 | Adeia Imaging Llc | Systems and methods for estimating depth and visibility from a reference viewpoint for pixels in a set of images captured from different viewpoints |
US9240049B2 (en) | 2012-08-21 | 2016-01-19 | Pelican Imaging Corporation | Systems and methods for measuring depth using an array of independently controllable cameras |
US9235900B2 (en) | 2012-08-21 | 2016-01-12 | Pelican Imaging Corporation | Systems and methods for estimating depth and visibility from a reference viewpoint for pixels in a set of images captured from different viewpoints |
US9129377B2 (en) | 2012-08-21 | 2015-09-08 | Pelican Imaging Corporation | Systems and methods for measuring depth based upon occlusion patterns in images |
US9147254B2 (en) | 2012-08-21 | 2015-09-29 | Pelican Imaging Corporation | Systems and methods for measuring depth in the presence of occlusions using a subset of images |
US9858673B2 (en) | 2012-08-21 | 2018-01-02 | Fotonation Cayman Limited | Systems and methods for estimating depth and visibility from a reference viewpoint for pixels in a set of images captured from different viewpoints |
US9123118B2 (en) | 2012-08-21 | 2015-09-01 | Pelican Imaging Corporation | System and methods for measuring depth using an array camera employing a bayer filter |
US9123117B2 (en) | 2012-08-21 | 2015-09-01 | Pelican Imaging Corporation | Systems and methods for generating depth maps and corresponding confidence maps indicating depth estimation reliability |
US9813616B2 (en) | 2012-08-23 | 2017-11-07 | Fotonation Cayman Limited | Feature based high resolution motion estimation from low resolution images captured using an array source |
US10462362B2 (en) | 2012-08-23 | 2019-10-29 | Fotonation Limited | Feature based high resolution motion estimation from low resolution images captured using an array source |
US9214013B2 (en) * | 2012-09-14 | 2015-12-15 | Pelican Imaging Corporation | Systems and methods for correcting user identified artifacts in light field images |
US20140079336A1 (en) * | 2012-09-14 | 2014-03-20 | Pelican Imaging Corporation | Systems and methods for correcting user identified artifacts in light field images |
US20140078266A1 (en) * | 2012-09-18 | 2014-03-20 | Samsung Electronics Co., Ltd. | Image capture system with image conversion mechanism and method of operation thereof |
US10110875B2 (en) * | 2012-09-18 | 2018-10-23 | Samsung Electronics Co., Ltd. | Image capture system with image conversion mechanism and method of operation thereof |
US10390005B2 (en) | 2012-09-28 | 2019-08-20 | Fotonation Limited | Generating images from light fields utilizing virtual viewpoints |
US20140118516A1 (en) * | 2012-10-30 | 2014-05-01 | Kabushiki Kaisha Toshiba | Solid state imaging module, solid state imaging device, and information processing device |
US20140152990A1 (en) * | 2012-11-06 | 2014-06-05 | X-Rite Europe Gmbh | Hand-Held Measurement Device for Capturing the Visual Impression of A Measurement Object |
US9772230B2 (en) * | 2012-11-06 | 2017-09-26 | X-Rite Switzerland GmbH | Hand-held measurement device for capturing the visual impression of a measurement object |
US10126171B2 (en) | 2012-11-06 | 2018-11-13 | X-Rite Switzerland GmbH | Hand-held measurement device for capturing the visual impression of a measurement object |
US9749568B2 (en) | 2012-11-13 | 2017-08-29 | Fotonation Cayman Limited | Systems and methods for array camera focal plane control |
US9143711B2 (en) | 2012-11-13 | 2015-09-22 | Pelican Imaging Corporation | Systems and methods for array camera focal plane control |
CN103838568B (en) * | 2012-11-26 | 2017-07-11 | 诺基亚技术有限公司 | Method, device and computer program product for generating super resolution image |
US9667846B2 (en) * | 2012-11-27 | 2017-05-30 | Nokia Technologies Oy | Plenoptic camera apparatus, a method and a computer program |
US9001226B1 (en) | 2012-12-04 | 2015-04-07 | Lytro, Inc. | Capturing and relighting images using multiple devices |
US20140198187A1 (en) * | 2013-01-15 | 2014-07-17 | Disney Enterprises, Inc. | Camera with plenoptic lens |
US10271038B2 (en) * | 2013-01-15 | 2019-04-23 | Disney Enterprise, Inc. | Camera with plenoptic lens |
US9936188B2 (en) * | 2013-02-13 | 2018-04-03 | Universität des Saarlandes | Plenoptic imaging device |
KR101871034B1 (en) * | 2013-02-13 | 2018-07-19 | 유니버시타트 데스 사를란데스 | Plenoptic imaging device |
US20180205938A1 (en) * | 2013-02-13 | 2018-07-19 | Universität des Saarlandes | Plenoptic imaging device |
US20160057407A1 (en) * | 2013-02-13 | 2016-02-25 | Universität des Saarlandes | Plenoptic imaging device |
CN105210361B (en) * | 2013-02-13 | 2019-04-12 | 萨尔布吕肯大学 | Plenoptic imaging device |
CN105210361A (en) * | 2013-02-13 | 2015-12-30 | 萨尔布吕肯大学 | Plenoptic imaging device |
US9769365B1 (en) | 2013-02-15 | 2017-09-19 | Red.Com, Inc. | Dense field imaging |
US10277885B1 (en) * | 2013-02-15 | 2019-04-30 | Red.Com, Llc | Dense field imaging |
US10939088B2 (en) | 2013-02-15 | 2021-03-02 | Red.Com, Llc | Computational imaging device |
US10547828B2 (en) | 2013-02-15 | 2020-01-28 | Red.Com, Llc | Dense field imaging |
US10009538B2 (en) | 2013-02-21 | 2018-06-26 | Fotonation Cayman Limited | Systems and methods for generating compressed light field representation data using captured light fields, array geometry, and parallax information |
US9456141B2 (en) | 2013-02-22 | 2016-09-27 | Lytro, Inc. | Light-field based autofocus |
US9743051B2 (en) | 2013-02-24 | 2017-08-22 | Fotonation Cayman Limited | Thin form factor computational array cameras and modular array cameras |
US9774831B2 (en) | 2013-02-24 | 2017-09-26 | Fotonation Cayman Limited | Thin form factor computational array cameras and modular array cameras |
US9253380B2 (en) | 2013-02-24 | 2016-02-02 | Pelican Imaging Corporation | Thin form factor computational array cameras and modular array cameras |
US9374512B2 (en) | 2013-02-24 | 2016-06-21 | Pelican Imaging Corporation | Thin form factor computational array cameras and modular array cameras |
US8978984B2 (en) | 2013-02-28 | 2015-03-17 | Hand Held Products, Inc. | Indicia reading terminals and methods for decoding decodable indicia employing light field imaging |
US9235741B2 (en) | 2013-02-28 | 2016-01-12 | Hand Held Products, Inc. | Indicia reading terminals and methods employing light field imaging |
US9917998B2 (en) | 2013-03-08 | 2018-03-13 | Fotonation Cayman Limited | Systems and methods for measuring scene information while capturing images using array cameras |
US9774789B2 (en) | 2013-03-08 | 2017-09-26 | Fotonation Cayman Limited | Systems and methods for high dynamic range imaging using array cameras |
US10958892B2 (en) | 2013-03-10 | 2021-03-23 | Fotonation Limited | System and methods for calibration of an array camera |
US11985293B2 (en) | 2013-03-10 | 2024-05-14 | Adeia Imaging Llc | System and methods for calibration of an array camera |
US11272161B2 (en) | 2013-03-10 | 2022-03-08 | Fotonation Limited | System and methods for calibration of an array camera |
US9986224B2 (en) | 2013-03-10 | 2018-05-29 | Fotonation Cayman Limited | System and methods for calibration of an array camera |
US11570423B2 (en) | 2013-03-10 | 2023-01-31 | Adeia Imaging Llc | System and methods for calibration of an array camera |
US10225543B2 (en) | 2013-03-10 | 2019-03-05 | Fotonation Limited | System and methods for calibration of an array camera |
US9888194B2 (en) | 2013-03-13 | 2018-02-06 | Fotonation Cayman Limited | Array camera architecture implementing quantum film image sensors |
US9800856B2 (en) | 2013-03-13 | 2017-10-24 | Fotonation Cayman Limited | Systems and methods for synthesizing images from image data captured by an array camera using restricted depth of field depth maps in which depth estimation precision varies |
US9741118B2 (en) | 2013-03-13 | 2017-08-22 | Fotonation Cayman Limited | System and methods for calibration of an array camera |
US9733486B2 (en) | 2013-03-13 | 2017-08-15 | Fotonation Cayman Limited | Systems and methods for controlling aliasing in images captured by an array camera for use in super-resolution processing |
US10127682B2 (en) | 2013-03-13 | 2018-11-13 | Fotonation Limited | System and methods for calibration of an array camera |
US9578259B2 (en) | 2013-03-14 | 2017-02-21 | Fotonation Cayman Limited | Systems and methods for reducing motion blur in images or video in ultra low light with array cameras |
US10547772B2 (en) | 2013-03-14 | 2020-01-28 | Fotonation Limited | Systems and methods for reducing motion blur in images or video in ultra low light with array cameras |
US10091405B2 (en) | 2013-03-14 | 2018-10-02 | Fotonation Cayman Limited | Systems and methods for reducing motion blur in images or video in ultra low light with array cameras |
US10412314B2 (en) | 2013-03-14 | 2019-09-10 | Fotonation Limited | Systems and methods for photometric normalization in array cameras |
US10674138B2 (en) | 2013-03-15 | 2020-06-02 | Fotonation Limited | Autofocus system for a conventional camera that uses depth information from an array camera |
US10182216B2 (en) | 2013-03-15 | 2019-01-15 | Fotonation Limited | Extended color processing on pelican array cameras |
US10122993B2 (en) | 2013-03-15 | 2018-11-06 | Fotonation Limited | Autofocus system for a conventional camera that uses depth information from an array camera |
US10455218B2 (en) | 2013-03-15 | 2019-10-22 | Fotonation Limited | Systems and methods for estimating depth using stereo array cameras |
US9497429B2 (en) | 2013-03-15 | 2016-11-15 | Pelican Imaging Corporation | Extended color processing on pelican array cameras |
US9955070B2 (en) | 2013-03-15 | 2018-04-24 | Fotonation Cayman Limited | Systems and methods for synthesizing high resolution images using image deconvolution based on motion and depth information |
US9497370B2 (en) | 2013-03-15 | 2016-11-15 | Pelican Imaging Corporation | Array camera architecture implementing quantum dot color filters |
US9800859B2 (en) | 2013-03-15 | 2017-10-24 | Fotonation Cayman Limited | Systems and methods for estimating depth using stereo array cameras |
US10542208B2 (en) | 2013-03-15 | 2020-01-21 | Fotonation Limited | Systems and methods for synthesizing high resolution images using image deconvolution based on motion and depth information |
US10638099B2 (en) | 2013-03-15 | 2020-04-28 | Fotonation Limited | Extended color processing on pelican array cameras |
US10057498B1 (en) * | 2013-03-15 | 2018-08-21 | Cognex Corporation | Light field vision system camera and methods for using the same |
US10334151B2 (en) | 2013-04-22 | 2019-06-25 | Google Llc | Phase detection autofocus using subaperture images |
US9786062B2 (en) * | 2013-05-06 | 2017-10-10 | Disney Enterprises, Inc. | Scene reconstruction from high spatio-angular resolution light fields |
US20140327674A1 (en) * | 2013-05-06 | 2014-11-06 | Disney Enterprises, Inc. | Scene reconstruction from high spatio-angular resolution light fields |
US20140334745A1 (en) * | 2013-05-10 | 2014-11-13 | Trustees Of Princeton University | Resolution light-field imaging |
US9679360B2 (en) * | 2013-05-10 | 2017-06-13 | Trustees Of Princeton University | High-resolution light-field imaging |
EP3916786A2 (en) | 2013-05-21 | 2021-12-01 | Photonic Sensors & Algorithms, S.L. | Monolithic integration of plenoptic lenses on photosensor substrates |
WO2014188018A1 (en) | 2013-05-21 | 2014-11-27 | BLASCO WHYTE, Isabel Lena | Monolithic integration of plenoptic lenses on photosensor substrates |
WO2014191613A1 (en) * | 2013-05-27 | 2014-12-04 | Nokia Corporation | Light field imaging |
US10540806B2 (en) | 2013-09-27 | 2020-01-21 | Fotonation Limited | Systems and methods for depth-assisted perspective distortion correction |
US9898856B2 (en) | 2013-09-27 | 2018-02-20 | Fotonation Cayman Limited | Systems and methods for depth-assisted perspective distortion correction |
US9185276B2 (en) | 2013-11-07 | 2015-11-10 | Pelican Imaging Corporation | Methods of manufacturing array camera modules incorporating independently aligned lens stacks |
US9264592B2 (en) | 2013-11-07 | 2016-02-16 | Pelican Imaging Corporation | Array camera modules incorporating independently aligned lens stacks |
US9924092B2 (en) | 2013-11-07 | 2018-03-20 | Fotonation Cayman Limited | Array cameras incorporating independently aligned lens stacks |
US10767981B2 (en) | 2013-11-18 | 2020-09-08 | Fotonation Limited | Systems and methods for estimating depth from projected texture using camera arrays |
US10119808B2 (en) | 2013-11-18 | 2018-11-06 | Fotonation Limited | Systems and methods for estimating depth from projected texture using camera arrays |
US11486698B2 (en) | 2013-11-18 | 2022-11-01 | Fotonation Limited | Systems and methods for estimating depth from projected texture using camera arrays |
US9813617B2 (en) | 2013-11-26 | 2017-11-07 | Fotonation Cayman Limited | Array camera configurations incorporating constituent array cameras and constituent cameras |
US10708492B2 (en) | 2013-11-26 | 2020-07-07 | Fotonation Limited | Array camera configurations incorporating constituent array cameras and constituent cameras |
US9426361B2 (en) | 2013-11-26 | 2016-08-23 | Pelican Imaging Corporation | Array camera configurations incorporating multiple constituent array cameras |
US10003743B2 (en) | 2013-12-23 | 2018-06-19 | Nokia Technologies Oy | Method, apparatus and computer program product for image refocusing for light-field images |
US9392153B2 (en) | 2013-12-24 | 2016-07-12 | Lytro, Inc. | Plenoptic camera resolution |
US9628684B2 (en) | 2013-12-24 | 2017-04-18 | Lytro, Inc. | Light-field aberration correction |
US9538075B2 (en) | 2013-12-30 | 2017-01-03 | Indiana University Research And Technology Corporation | Frequency domain processing techniques for plenoptic images |
US10831014B2 (en) | 2014-01-17 | 2020-11-10 | The Trustees Of Columbia University In The City Of New York | Systems and methods for three dimensional imaging |
US11460685B2 (en) | 2014-01-17 | 2022-10-04 | The Trusteees Of Columbia University In The City Of New York | Systems and methods for three-dimensional imaging |
US10061111B2 (en) | 2014-01-17 | 2018-08-28 | The Trustees Of Columbia University In The City Of New York | Systems and methods for three dimensional imaging |
US10574905B2 (en) | 2014-03-07 | 2020-02-25 | Fotonation Limited | System and methods for depth regularization and semiautomatic interactive matting using RGB-D images |
US10089740B2 (en) | 2014-03-07 | 2018-10-02 | Fotonation Limited | System and methods for depth regularization and semiautomatic interactive matting using RGB-D images |
US9305375B2 (en) | 2014-03-25 | 2016-04-05 | Lytro, Inc. | High-quality post-rendering depth blur |
US10038909B2 (en) | 2014-04-24 | 2018-07-31 | Google Llc | Compression of light field images |
US9712820B2 (en) | 2014-04-24 | 2017-07-18 | Lytro, Inc. | Predictive light field compression |
US20150312593A1 (en) * | 2014-04-24 | 2015-10-29 | Lytro, Inc. | Compression of light field images |
US10531082B2 (en) | 2014-04-24 | 2020-01-07 | Google Llc | Predictive light-field compression |
US9414087B2 (en) * | 2014-04-24 | 2016-08-09 | Lytro, Inc. | Compression of light field images |
US8988317B1 (en) | 2014-06-12 | 2015-03-24 | Lytro, Inc. | Depth determination for light field images |
US9521319B2 (en) | 2014-06-18 | 2016-12-13 | Pelican Imaging Corporation | Array cameras and array camera modules including spectral filters disposed outside of a constituent image sensor |
US9635332B2 (en) | 2014-09-08 | 2017-04-25 | Lytro, Inc. | Saturated pixel recovery in light-field images |
US10250871B2 (en) | 2014-09-29 | 2019-04-02 | Fotonation Limited | Systems and methods for dynamic calibration of array cameras |
US11546576B2 (en) | 2014-09-29 | 2023-01-03 | Adeia Imaging Llc | Systems and methods for dynamic calibration of array cameras |
US10692192B2 (en) * | 2014-10-21 | 2020-06-23 | Connaught Electronics Ltd. | Method for providing image data from a camera system, camera system and motor vehicle |
US9444991B2 (en) | 2014-11-13 | 2016-09-13 | Lytro, Inc. | Robust layered light-field rendering |
US9497437B2 (en) * | 2014-12-03 | 2016-11-15 | National Tsing Hua University | Digital refocusing method |
US10275898B1 (en) | 2015-04-15 | 2019-04-30 | Google Llc | Wedge-based light-field video capture |
US10412373B2 (en) | 2015-04-15 | 2019-09-10 | Google Llc | Image capture for virtual reality displays |
US10419737B2 (en) | 2015-04-15 | 2019-09-17 | Google Llc | Data structures and delivery methods for expediting virtual reality playback |
US10565734B2 (en) | 2015-04-15 | 2020-02-18 | Google Llc | Video capture, processing, calibration, computational fiber artifact removal, and light-field pipeline |
US10567464B2 (en) | 2015-04-15 | 2020-02-18 | Google Llc | Video compression with adaptive view-dependent lighting removal |
US11328446B2 (en) | 2015-04-15 | 2022-05-10 | Google Llc | Combining light-field data with active depth data for depth map generation |
US10546424B2 (en) | 2015-04-15 | 2020-01-28 | Google Llc | Layered content delivery for virtual and augmented reality experiences |
US10540818B2 (en) | 2015-04-15 | 2020-01-21 | Google Llc | Stereo image generation and interactive playback |
US10469873B2 (en) | 2015-04-15 | 2019-11-05 | Google Llc | Encoding and decoding virtual reality video |
US10341632B2 (en) | 2015-04-15 | 2019-07-02 | Google Llc. | Spatial random access enabled video system with a three-dimensional viewing volume |
US9942474B2 (en) | 2015-04-17 | 2018-04-10 | Fotonation Cayman Limited | Systems and methods for performing high speed video capture and depth estimation using array cameras |
CN104796624A (en) * | 2015-04-20 | 2015-07-22 | 清华大学深圳研究生院 | Method for editing and propagating light fields |
CN104796624B (en) * | 2015-04-20 | 2017-12-19 | 清华大学深圳研究生院 | A kind of light field editor transmission method |
WO2016176207A1 (en) * | 2015-04-26 | 2016-11-03 | Mems Start, Llc | Near-eye light-field display system |
EP4236310A3 (en) * | 2015-04-30 | 2023-09-20 | Google LLC | Virtual eyeglass set for viewing actual scene that corrects for different location of lenses than eyes |
US10715791B2 (en) | 2015-04-30 | 2020-07-14 | Google Llc | Virtual eyeglass set for viewing actual scene that corrects for different location of lenses than eyes |
WO2016176309A1 (en) * | 2015-04-30 | 2016-11-03 | Google Inc. | Virtual eyeglass set for viewing actual scene that corrects for different location of lenses than eyes |
US10033986B2 (en) | 2015-05-26 | 2018-07-24 | Google Llc | Capturing light-field images with uneven and/or incomplete angular sampling |
WO2016191035A1 (en) * | 2015-05-26 | 2016-12-01 | Lytro, Inc. | Capturing light-field images with uneven and/or incomplete angular sampling |
US10205896B2 (en) | 2015-07-24 | 2019-02-12 | Google Llc | Automatic lens flare detection and correction for light-field images |
US10554956B2 (en) | 2015-10-29 | 2020-02-04 | Dell Products, Lp | Depth masks for image segmentation for depth-based computational photography |
US10021371B2 (en) | 2015-11-24 | 2018-07-10 | Dell Products, Lp | Method and apparatus for gross-level user and input detection using similar or dissimilar camera pair |
US10638117B2 (en) | 2015-11-24 | 2020-04-28 | Dell Products, Lp | Method and apparatus for gross-level user and input detection using similar or dissimilar camera pair |
US20190088023A1 (en) * | 2016-05-25 | 2019-03-21 | Google Llc | Light-field viewpoint and pixel culling for a head mounted display device |
US11087540B2 (en) * | 2016-05-25 | 2021-08-10 | Google Llc | Light-field viewpoint and pixel culling for a head mounted display device |
US10089788B2 (en) | 2016-05-25 | 2018-10-02 | Google Llc | Light-field viewpoint and pixel culling for a head mounted display device |
US11243391B2 (en) | 2016-05-30 | 2022-02-08 | The Trustees Of Columbia University In The City Of New York | Three-dimensional imaging using swept confocally aligned planar excitation with asymmetrical magnification |
US10275892B2 (en) | 2016-06-09 | 2019-04-30 | Google Llc | Multi-view scene segmentation and propagation |
US20170359522A1 (en) * | 2016-06-10 | 2017-12-14 | Samsung Electronics Co., Ltd. | Electronic device and control method therefor |
US10491836B2 (en) * | 2016-06-10 | 2019-11-26 | Samsung Electronics Co., Ltd. | Electronic device and control method in which the resolution of a combined output image can be increased without deterioration |
US10835111B2 (en) | 2016-07-10 | 2020-11-17 | The Trustees Of Columbia University In The City Of New York | Three-dimensional imaging using swept, confocally aligned planar excitation with an image relay |
US11317787B2 (en) | 2016-07-10 | 2022-05-03 | The Trustees Of Columbia University In The City Of New York | Catheter-based three-dimensional imaging using swept, confocally aligned planar excitation |
US10348947B2 (en) * | 2016-09-07 | 2019-07-09 | Interdigital Ce Patent Holdings | Plenoptic imaging device equipped with an enhanced optical system |
US10852520B2 (en) | 2016-09-16 | 2020-12-01 | The Trustees Of Columbia University In The City Of New York | Three-dimensional imaging using swept, confocally aligned planar excitation and a customized image splitter |
US11269169B2 (en) | 2016-09-16 | 2022-03-08 | The Trustees Of Columbia University In The City Of New York | Three-dimensional imaging using swept, confocally aligned planar excitation and sample perturbation |
US20180096494A1 (en) * | 2016-09-30 | 2018-04-05 | Visbit Inc. | View-optimized light field image and video streaming |
US11333874B2 (en) | 2016-09-30 | 2022-05-17 | The Trustees Of Columbia University In The City Of New York | Three-dimensional imaging using swept, confocally aligned planar excitation with a Powell lens and/or deliberate misalignment |
US10955652B2 (en) | 2016-09-30 | 2021-03-23 | The Trustees Of Columbia University In The City Of New York | Three-dimensional imaging using swept, confocally aligned planar excitation with a Powell lens and/or deliberate misalignment |
US10832429B2 (en) * | 2016-10-18 | 2020-11-10 | Photonic Sensors & Algorithms, S.L. | Device and method for obtaining distance information from views |
US10298914B2 (en) * | 2016-10-25 | 2019-05-21 | Intel Corporation | Light field perception enhancement for integral display applications |
US11036037B2 (en) | 2016-11-12 | 2021-06-15 | The Trustees Of Columbia University In The City Of New York | Microscopy devices, methods and systems |
US11604342B2 (en) | 2016-11-12 | 2023-03-14 | The Trustees Of Columbia University In The City Of New York | Microscopy devices, methods and systems |
US10679361B2 (en) | 2016-12-05 | 2020-06-09 | Google Llc | Multi-view rotoscope contour propagation |
US10712545B2 (en) * | 2017-03-07 | 2020-07-14 | The United States Of America As Represented By The Secretary, Department Of Health And Human Services | Systems and methods for conducting contact-free thickness and refractive-index measurements of intraocular lenses using a self-calibrating dual confocal microscopy system |
US11454794B2 (en) | 2017-03-07 | 2022-09-27 | The United States Of America, As Represented By The Secretary, Department Of Health And Human Services | Systems and methods for conducting contact-free thickness and refractive-index measurements of intraocular lenses using a self-calibrating dual confocal microscopy |
US10594945B2 (en) | 2017-04-03 | 2020-03-17 | Google Llc | Generating dolly zoom effect using light field image data |
US10444931B2 (en) | 2017-05-09 | 2019-10-15 | Google Llc | Vantage generation and interactive playback |
US10474227B2 (en) | 2017-05-09 | 2019-11-12 | Google Llc | Generation of virtual reality with 6 degrees of freedom from limited viewer data |
US10440407B2 (en) | 2017-05-09 | 2019-10-08 | Google Llc | Adaptive control for immersive experience delivery |
US10354399B2 (en) | 2017-05-25 | 2019-07-16 | Google Llc | Multi-view back-projection to a light-field |
US10482618B2 (en) | 2017-08-21 | 2019-11-19 | Fotonation Limited | Systems and methods for hybrid depth regularization |
US11562498B2 (en) | 2017-08-21 | 2023-01-24 | Adela Imaging LLC | Systems and methods for hybrid depth regularization |
US10818026B2 (en) | 2017-08-21 | 2020-10-27 | Fotonation Limited | Systems and methods for hybrid depth regularization |
US11983893B2 (en) | 2017-08-21 | 2024-05-14 | Adeia Imaging Llc | Systems and methods for hybrid depth regularization |
US10545215B2 (en) | 2017-09-13 | 2020-01-28 | Google Llc | 4D camera tracking and optical stabilization |
CN107741644A (en) * | 2017-11-21 | 2018-02-27 | 杭州加速云信息技术有限公司 | A kind of imaging device for different visual angles imaging |
CN108184064A (en) * | 2018-01-04 | 2018-06-19 | 中国科学技术大学 | A kind of visual angle image array division methods |
CN108184064B (en) * | 2018-01-04 | 2020-06-26 | 中国科学技术大学 | Visual angle graph array dividing method |
US10965862B2 (en) | 2018-01-18 | 2021-03-30 | Google Llc | Multi-camera navigation interface |
US11456326B2 (en) * | 2018-03-15 | 2022-09-27 | Photonic Sensors & Algorithms, S.L. | Plenoptic camera for mobile devices |
WO2020198164A1 (en) * | 2019-03-26 | 2020-10-01 | Pcms Holdings, Inc. | System and method for multiplexed rendering of light fields |
US11991402B2 (en) | 2019-03-26 | 2024-05-21 | Interdigital Vc Holdings, Inc. | System and method for multiplexed rendering of light fields |
US11894160B2 (en) | 2019-05-23 | 2024-02-06 | Lawrence Livermore National Security, Llc | Light field X-ray optics |
WO2020236181A1 (en) * | 2019-05-23 | 2020-11-26 | Lawrence Livermore National Security, Llc | Light field x-ray optics |
US11699273B2 (en) | 2019-09-17 | 2023-07-11 | Intrinsic Innovation Llc | Systems and methods for surface modeling using polarization cues |
US11270110B2 (en) | 2019-09-17 | 2022-03-08 | Boston Polarimetrics, Inc. | Systems and methods for surface modeling using polarization cues |
US12099148B2 (en) | 2019-10-07 | 2024-09-24 | Intrinsic Innovation Llc | Systems and methods for surface normals sensing with polarization |
US11525906B2 (en) | 2019-10-07 | 2022-12-13 | Intrinsic Innovation Llc | Systems and methods for augmentation of sensor systems and imaging systems with polarization |
US11982775B2 (en) | 2019-10-07 | 2024-05-14 | Intrinsic Innovation Llc | Systems and methods for augmentation of sensor systems and imaging systems with polarization |
US11302012B2 (en) | 2019-11-30 | 2022-04-12 | Boston Polarimetrics, Inc. | Systems and methods for transparent object segmentation using polarization cues |
US11842495B2 (en) | 2019-11-30 | 2023-12-12 | Intrinsic Innovation Llc | Systems and methods for transparent object segmentation using polarization cues |
US11580667B2 (en) | 2020-01-29 | 2023-02-14 | Intrinsic Innovation Llc | Systems and methods for characterizing object pose detection and measurement systems |
US11797863B2 (en) | 2020-01-30 | 2023-10-24 | Intrinsic Innovation Llc | Systems and methods for synthesizing data for training statistical models on different imaging modalities including polarized images |
US11953700B2 (en) | 2020-05-27 | 2024-04-09 | Intrinsic Innovation Llc | Multi-aperture polarization optical systems using beam splitters |
US11830901B2 (en) | 2020-12-15 | 2023-11-28 | Photonic Sensors & Algorithms, S.L. | Optical system including a microlens array |
WO2022128163A1 (en) | 2020-12-15 | 2022-06-23 | Photonic Sensors & Algorithms, S.L. | An optical system including a microlens array |
US12069227B2 (en) | 2021-03-10 | 2024-08-20 | Intrinsic Innovation Llc | Multi-modal and multi-spectral stereo camera arrays |
US12020455B2 (en) | 2021-03-10 | 2024-06-25 | Intrinsic Innovation Llc | Systems and methods for high dynamic range image reconstruction |
US11954886B2 (en) | 2021-04-15 | 2024-04-09 | Intrinsic Innovation Llc | Systems and methods for six-degree of freedom pose estimation of deformable objects |
US11683594B2 (en) | 2021-04-15 | 2023-06-20 | Intrinsic Innovation Llc | Systems and methods for camera exposure control |
US11290658B1 (en) | 2021-04-15 | 2022-03-29 | Boston Polarimetrics, Inc. | Systems and methods for camera exposure control |
US12067746B2 (en) | 2021-05-07 | 2024-08-20 | Intrinsic Innovation Llc | Systems and methods for using computer vision to pick up small objects |
WO2022269389A1 (en) * | 2021-06-21 | 2022-12-29 | Evolution Optiks Limited | Electromagnetic energy directing system, and method using same |
US11689813B2 (en) | 2021-07-01 | 2023-06-27 | Intrinsic Innovation Llc | Systems and methods for high dynamic range imaging using crossed polarizers |
CN113556529A (en) * | 2021-07-30 | 2021-10-26 | 中山大学 | High-resolution light field image display method, device, equipment and medium |
CN115032756B (en) * | 2022-06-07 | 2022-12-27 | 北京拙河科技有限公司 | Micro-lens array positioning method and system of light field camera |
CN115032756A (en) * | 2022-06-07 | 2022-09-09 | 北京拙河科技有限公司 | Micro-lens array positioning method and system of light field camera |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US8290358B1 (en) | Methods and apparatus for light-field imaging | |
Georgeiv et al. | Spatio-angular resolution tradeoff in integral photography | |
Liang et al. | Programmable aperture photography: multiplexed light field acquisition | |
Venkataraman et al. | Picam: An ultra-thin high performance monolithic camera array | |
Zhou et al. | Computational cameras: convergence of optics and processing | |
Ng | Digital light field photography | |
Bishop et al. | Light field superresolution | |
Pozo et al. | An integrated 6DoF video camera and system design | |
US8400555B1 (en) | Focused plenoptic camera employing microlenses with different focal lengths | |
US8265478B1 (en) | Plenoptic camera with large depth of field | |
Kuthirummal et al. | Flexible depth of field photography | |
EP2008445B1 (en) | Improved plenoptic camera | |
US8189089B1 (en) | Methods and apparatus for reducing plenoptic camera artifacts | |
Taguchi et al. | Axial-cones: Modeling spherical catadioptric cameras for wide-angle light field rendering | |
KR20170005009A (en) | Generation and use of a 3d radon image | |
CN106165387A (en) | Light field processing method | |
Chen et al. | Light field based digital refocusing using a DSLR camera with a pinhole array mask | |
Gu et al. | Omni-nerf: neural radiance field from 360 image captures | |
Lu et al. | A 3D imaging framework based on high-resolution photometric-stereo and low-resolution depth | |
Monteiro et al. | Standard plenoptic cameras mapping to camera arrays and calibration based on DLT | |
Neumann et al. | Eyes from eyes: analysis of camera design using plenoptic video geometry | |
Goldlücke et al. | Plenoptic Cameras. | |
Oberdörster et al. | Correcting distortion and braiding of micro-images from multi-aperture imaging systems | |
Lam | Computational photography: Advances and challenges | |
KR101608753B1 (en) | Method and apparatus for generating three dimensional contents using focal plane sweeping |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
AS | Assignment |
Owner name: ADOBE SYSTEMS INCORPORATED, CALIFORNIA Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:GEORGIEV, TODOR G.;REEL/FRAME:021137/0085 Effective date: 20080623 |
|
STCF | Information on status: patent grant |
Free format text: PATENTED CASE |
|
FPAY | Fee payment |
Year of fee payment: 4 |
|
AS | Assignment |
Owner name: ADOBE INC., CALIFORNIA Free format text: CHANGE OF NAME;ASSIGNOR:ADOBE SYSTEMS INCORPORATED;REEL/FRAME:048867/0882 Effective date: 20181008 |
|
MAFP | Maintenance fee payment |
Free format text: PAYMENT OF MAINTENANCE FEE, 8TH YEAR, LARGE ENTITY (ORIGINAL EVENT CODE: M1552); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY Year of fee payment: 8 |
|
MAFP | Maintenance fee payment |
Free format text: PAYMENT OF MAINTENANCE FEE, 12TH YEAR, LARGE ENTITY (ORIGINAL EVENT CODE: M1553); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY Year of fee payment: 12 |