US8289138B2 - Wireless communications unit operating as a tag when a host device is turned off - Google Patents
Wireless communications unit operating as a tag when a host device is turned off Download PDFInfo
- Publication number
- US8289138B2 US8289138B2 US12/263,420 US26342008A US8289138B2 US 8289138 B2 US8289138 B2 US 8289138B2 US 26342008 A US26342008 A US 26342008A US 8289138 B2 US8289138 B2 US 8289138B2
- Authority
- US
- United States
- Prior art keywords
- communications unit
- host
- wireless network
- turned
- network communications
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active, expires
Links
- 230000004044 response Effects 0.000 claims abstract 6
- 281999990011 institutions and organizations companies 0.000 description 4
- 238000004590 computer program Methods 0.000 description 2
- 281999990587 Federal Government companies 0.000 description 1
- 239000000969 carriers Substances 0.000 description 1
- 238000000034 methods Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 238000006011 modification reactions Methods 0.000 description 1
- 230000000051 modifying Effects 0.000 description 1
- 230000003287 optical Effects 0.000 description 1
- 229920001690 polydopamine Polymers 0.000 description 1
Images
Classifications
-
- H04M1/72409—
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING; COUNTING
- G06Q—DATA PROCESSING SYSTEMS OR METHODS, SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL, SUPERVISORY OR FORECASTING PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL, SUPERVISORY OR FORECASTING PURPOSES, NOT OTHERWISE PROVIDED FOR
- G06Q10/00—Administration; Management
- G06Q10/08—Logistics, e.g. warehousing, loading, distribution or shipping; Inventory or stock management, e.g. order filling, procurement or balancing against orders
- G06Q10/087—Inventory or stock management, e.g. order filling, procurement, balancing against orders
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04M—TELEPHONIC COMMUNICATION
- H04M2250/00—Details of telephonic subscriber devices
- H04M2250/02—Details of telephonic subscriber devices including a Bluetooth interface
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04M—TELEPHONIC COMMUNICATION
- H04M2250/00—Details of telephonic subscriber devices
- H04M2250/06—Details of telephonic subscriber devices including a wireless LAN interface
Abstract
Description
The present application claims priority from provisional application Ser. No. 61/024,305, filed Jan. 29, 2008, the contents of which are incorporated herein by reference in their entirety.
The demand for tracking laptops and other mobile equipment is very high in many organizations, especially financial organizations and the federal government. Tracking is performed for many purposes including to prevent theft, for inventory, and to prevent the unauthorized access or transport of data from secure areas. For example, many financial institutions require employees and visitors to record their laptop serial numbers when entering and exiting the premises in an attempt to provide physical monitoring of laptops.
Some current equipment tracking systems use serial numbers to track their equipment. For example, large organizations that provide mobile devices, such as laptops, for their employees manual record serial numbers of the devices, for example, when the employees enter or exit the site. Some organizations are looking at passive RFID tags to automate this procedure. For example, passive RFID tags are affixed to the laptops, and RFID tag readers are installed at various locations of a building, such as at exits/entrances of a building or at other locations in a building. These tracking systems allow the equipment to be tracked even when turned off. For example, as the laptops pass in the vicinity of the readers, the serial numbers of the tags are read. For each reading of a tag, the location and timestamp are recorded, so the laptop can be tracked. In addition to laptops, other types of electronic equipment or non-electronic equipment can be tracked in the same manner by affixing RFID tags to the equipment.
These type of tracking systems are limited in that the equipment can only be tracked at the locations of the readers. Thus, for example, if someone carried a laptop through an exit with no reader, there would be no tracking data for that event. As an alternative, active RFID tags may be used that have a greater range than passive RFID tags, so readers may be used to cover a larger area. However, active RFID tags are bulkier than passive RFID tags and are also much more expensive.
Many electronic devices already come equipped with wireless transceiver capability, but this wireless transceiver capability cannot be leveraged for tracking the electronic devices. For example, electronic devices that are typically tracked, such as laptops, cell phones, personal digital assistants (PDAs), etc., typically utilize a wireless network card to access a network or another device. For example, laptops, many cell phones and PDAs include a WiFi network interface and/or a BLUETOOTH interface for accessing a network and/or another device wirelessly. However, when these electronic devices are turned off, the WiFi network interface and/or a BLUETOOTH interface are also turned off. Thus, these wireless interfaces cannot be used to send or receive signals for tracking when the devices are turned off.
The embodiments of the invention will be described in detail in the following description with reference to the following figures.
For simplicity and illustrative purposes, the principles of the embodiments are described by referring mainly to examples thereof. In the following description, numerous specific details are set forth in order to provide a thorough understanding of the embodiments. It will be apparent however, to one of ordinary skill in the art, that the embodiments may be practiced without limitation to these specific details. In some instances, well known methods and structures have not been described in detail so as not to unnecessarily obscure the embodiments.
According to an embodiment, a multimode wireless communications unit is operable to send and receive data for a host device in one mode and in a tag operational mode, the wireless communications unit functions as a tag to transmit data identifying the host device. The tag operational mode is entered when the host device is turned off or the wireless communications unit is turned off. The tag operational mode may be used for tracking the host device. Thus, the wireless communications unit may function as a conventional network card when the host device is on and may function as a tag when the host device is off. Hence, another separate unit, such as an RFID tag affixed to the host device, is not required for tracking the host device. Also, the wireless communication unit is functional to provide host identification data for tracking even when the host device is off.
The host device 100 also includes a main device board 101, a power supply 102 and a wireless communications unit 103. The main device board 101 may include components of the host device, such as a processor 106, memory 107 and other circuits. When the host device 100 is on, the host device 100 uses the wireless communications unit 103 to send and receive data wirelessly. For example, the wireless communication unit 103 operates as an interface to a wireless network, and the processor 106 uses the wireless communication unit 103 to transmit data over the wireless network to other devices or receive data from other devices via the wireless network. The wireless communications unit 103 is operable to use the wireless protocol of the network to send and receive data. For example, the wireless communications unit may use WiFi, BLUETOOTH or another wireless network protocol to send and receive data via the wireless network.
The wireless communications unit 103 may be connected to the main device board 101 via a data line 110 and a signal line 111. The data line 110 is for sending and receiving data between the main device board 101 and the wireless communications unit 103. The data line 110 may include a bus shared by multiple components of the host device 100.
The signal line 110 provides a signal to the wireless communications unit 103 indicating whether the host device 100 is on. For example, if the main device board 101 is on, it may drive the signal line 110 “high” indicating to the wireless communications unit 103 that the host device 100 is on. If the main device board 101 is off, the signal line 110 is “low” indicating the host device 100 is off.
The host device 100 is considered on when the main device board 101 or other components, such as a processor, are operable to send and receive data using the wireless communications unit 103. For example, when the host device 100 is powered up, it is operational to send and receive data using the wireless communications unit 103. The host device 100 may be in a low power state but still may be able to send and receive data using the wireless communications unit 103 and is considered on. When the host device is on, the wireless communications unit 103 operates as a conventional wireless network card. The wireless communications unit 103 includes a tag component 104 that is operable to determine whether the host device 100 is on and whether the wireless communications unit 103 is on based on a user setting. In some embodiments, the tag component 104 includes a processor and memory as shown in
It should be noted that for certain host devices, the wireless communications unit 103 may be turned off even if the host device 100 is on. These devices may have a setting that can be toggled by a user to enable or disable a wireless network interface. For example, laptops typically include a button allowing a user to turn off the wireless network card and/or BLUETOOTH interface even when the laptop is on. In these instances, the signal line 110 may be used to indicate to the wireless communications unit 103 when both the host device 100 is on and the wireless communications unit 103 is on or off depending on a user setting or switch. The signal line 110 may comprise one or more signal lines. If one or more signals on the signal lines indicate that both the host device 100 is on and the wireless communications unit 103 is on, then the wireless communications unit 103 operates as a conventional wireless network card and is operable to send and receive data via the wireless network based on a predetermined wireless protocol.
If one or more signals on the signal lines indicate that the host device 100 is off or the wireless communications unit 103 is off, for example, based on a user setting indicating the wireless communications unit 103 is off, then the wireless communications unit 103 operates in tag operational mode. In tag operational mode, the wireless communications unit 103 transmits data identifying the host device 100 wirelessly in the network. The identification data may be broadcasted or transmitted to particular devices. For example, the data may be sent to any access points in the wireless network that are in range or to other devices that can collect data for tracking devices. The data identifying the host device includes at least some data that is unique to the host device. One example of the unique data may include a MAC address, but other types of unique data may be used. In addition to the unique data, other data for tracking may be transmitted and stored, such as a timestamp of when the unique data was received and a location of the device receiving the data. Location data and a timestamp may also be transmitted in tag operational mode if that data is available. After the wireless communications unit 103 determines that the host device 100 is on and the wireless communications unit 103 is on, the wireless communications unit 103 resumes operation as a conventional network card. It should be noted that in the tag operational mode, the tag component may only be able to transmit data-stored in a memory for the tag component that receives power when the host device 100 is off. The data stored in the memory for the tag component may only include the data identifying the host device and/or other data described above.
The wireless communications unit 103 and the main device board 101 are connected to a power supply 102. The power supply 102 may include a power supply connected to an adapter that is plugged into a wall outlet. The power supply 102 may include a battery. For example, the battery provides power when power from a wall outlet is not available. The battery may be charged when the host device 100 is connected to the wall outlet.
The wireless communications unit 103 is connected to the power supply 102 and can receive power from the power supply 102 even if the host device 100 is off. For example, the main device board 101 may be off, but the wireless communications unit 103 can function in the tag operational mode using power from the power supply 102. The wireless communications unit 103 may have its own power supply or may use the power supply of the host device 100.
The wireless communications unit 103 may be an internal circuit in the host device 100 or may be a network card, e.g., PCI, MINIPCI, CNR, etc., connected to a slot on the host device 100.
The network card 200 includes a processor 201, a memory 202 and a wireless interface 203. The processor 201 determines whether the host device 100 is on and whether the wireless network card 200 is supposed to be on, for example, based on signals received via the slot interface 204. If the host device 100 is on and the wireless network card 200 is supposed to be on, the wireless network card 200 is operable to receive data from the host device 100 and send the data to other devices wirelessly using a predetermined wireless protocol. Also, the network card 200 is operable to receive data from other devices via a wireless local area network in the predetermined protocol and send the data to the host device 100 via the slot interface 200.
If the host device 100 is off or the network card 200 is off, the network card 200 operates in the tag operational mode. In this mode, the processor 201 sends data identifying the host device 100 and possibly other tracking data, as described above. The memory 202 stores the data identifying the host device 100 and other tracking data if provided. The memory 202 may also store code running on the processor 201 for providing the tag operational mode and the conventional network card operating mode. The memory 202 may include volatile and/or non-volatile memory. The wireless interface 203 includes an antenna and conventional digital signal processing circuitry as needed for sending and receiving data over the wireless network. The network card 200 may include a battery 205. If the battery 205 is not provided, the network card 200 receives power from the power supply of the host device 100.
At step 401, the wireless communications unit 103 determines whether the host device 100 is on. If the host device 100 is off, then the wireless communications unit 103 operates in tag operational mode at step 404 and transmits host identifying data and other tracking data if available.
At step 402, the wireless communications unit 103 determines whether the wireless communications unit is on, for example, based on a user setting. If the wireless communications unit is off, then the wireless communications unit 103 operates in tag operational mode at step 404 and transmits host identifying data and other tracking data if available.
If both the host device 100 is on and the wireless communications unit 103 is on, the wireless communications unit 103 operates as a conventional network card at step 403.
Some host devices may not have a user setting that allows the wireless communications unit to be turned off when the host device is on. For these devices, step 402 is omitted.
One or more of the steps of the method 400 and other steps described herein may be implemented as software embedded on a computer readable medium, such as memory, and executed for example, by a processor. The steps may be embodied by a computer program, which may exist in a variety of forms both active and inactive. For example, they may exist as software program(s) comprised of program instructions in source code, object code, executable code or other formats for performing some of the steps. Any of the above may be embodied on a computer readable medium, which include storage devices and signals, in compressed or uncompressed form. Examples of suitable computer readable storage devices include conventional computer system RAM (random access memory), ROM (read only memory), EPROM (erasable, programmable ROM), EEPROM (electrically erasable, programmable ROM), and magnetic or optical disks or tapes. Examples of computer readable signals, whether modulated using a carrier or not, are signals that a computer system hosting or running the computer program may be configured to access, including signals downloaded through the Internet or other networks. Concrete examples of the foregoing include distribution of the programs on a CD ROM or via Internet download. In a sense, the Internet itself, as an abstract entity, is a computer readable medium. The same is true of computer networks in general. It is therefore to be understood that those functions enumerated below may be performed by any electronic device capable of executing the above-described functions.
While the embodiments have been described with reference to examples, those skilled in the art will be able to make various modifications to the described embodiments without departing from the scope of the claimed embodiments.
Claims (18)
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US2430508P true | 2008-01-29 | 2008-01-29 | |
US12/263,420 US8289138B2 (en) | 2008-01-29 | 2008-10-31 | Wireless communications unit operating as a tag when a host device is turned off |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US12/263,420 US8289138B2 (en) | 2008-01-29 | 2008-10-31 | Wireless communications unit operating as a tag when a host device is turned off |
Publications (2)
Publication Number | Publication Date |
---|---|
US20090189737A1 US20090189737A1 (en) | 2009-07-30 |
US8289138B2 true US8289138B2 (en) | 2012-10-16 |
Family
ID=40898654
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US12/263,420 Active 2030-12-24 US8289138B2 (en) | 2008-01-29 | 2008-10-31 | Wireless communications unit operating as a tag when a host device is turned off |
Country Status (1)
Country | Link |
---|---|
US (1) | US8289138B2 (en) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP6727798B2 (en) * | 2015-12-07 | 2020-07-22 | キヤノン株式会社 | Information processing apparatus, control method thereof, and program |
Citations (27)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH11338739A (en) * | 1998-01-08 | 1999-12-10 | Xerox Corp | Method for providing diagnostic information |
KR20020027393A (en) * | 2002-01-24 | 2002-04-13 | 안명훈 | Radio controlling multi concent and method for radio controlling multi concent and radio controller therefor |
US20020174254A1 (en) * | 2000-05-16 | 2002-11-21 | Sony Corporation | Card type network interface, network conference terminal device and network conference system |
US20040032308A1 (en) * | 2002-08-19 | 2004-02-19 | Philip Cheung | Circuit package integrating passive radio frequency structure |
US20040207512A1 (en) * | 2000-12-11 | 2004-10-21 | Bastian William A. | Inventory system with image display |
US20050015536A1 (en) * | 2003-07-14 | 2005-01-20 | Kuei-Jung Lee | Peripheral device having a personal disk used for storing device drivers |
US20050030929A1 (en) * | 2003-07-15 | 2005-02-10 | Highwall Technologies, Llc | Device and method for detecting unauthorized, "rogue" wireless LAN access points |
US20050140498A1 (en) * | 2000-12-11 | 2005-06-30 | Bastian William A.Ii | Inventory system with barcode display |
US6985757B2 (en) * | 2002-09-16 | 2006-01-10 | Sierra Wireless, Inc. | Smart host power supply detection for PC card wireless modem |
US20060026297A1 (en) * | 2004-08-02 | 2006-02-02 | Shao-Tsu Kung | Computer system with multiple data access channels and control method thereof |
US20060174150A1 (en) * | 2005-02-01 | 2006-08-03 | Akiyoshi Nakano | Storage system and power control method therefor, adapter and power control method therefor, and storage controller and control method therefor |
US20070171201A1 (en) * | 2006-01-26 | 2007-07-26 | Pi Sharon W | Computer input device |
US7271674B1 (en) * | 2003-08-15 | 2007-09-18 | Dsp Group Inc. | Automatic level control for radio frequency amplifiers |
US20070229926A1 (en) * | 2006-03-30 | 2007-10-04 | Brother Kogyo Kabushiki Kaisha | Communication device capable of displaying preview of transmission data |
US20080065792A1 (en) * | 2006-09-07 | 2008-03-13 | Novatel Wireless, Inc. | Custom branding of host application based on distributed storage of graphics elements in the attached accessory |
US20080141073A1 (en) * | 2006-12-07 | 2008-06-12 | Inventec Corporation | BIOS debugging system and method |
US20080139117A1 (en) * | 2006-12-11 | 2008-06-12 | General Instrument Corporation | Power Control Apparatus and Method for Supporting Seamless Mobility |
US20090003828A1 (en) * | 2007-06-26 | 2009-01-01 | Mci Communication Services | Systems and methods for host identification |
US20090006675A1 (en) * | 2007-06-28 | 2009-01-01 | Broadcom Corporation | Universal Serial Bus Dongle Device with Millimeter Wave Transceiver and System for use Therewith |
US20090102655A1 (en) * | 2007-10-18 | 2009-04-23 | Samsung Electronics Co., Ltd. | Mobile privacy protection system using proxy, proxy device and mobile privacy protection method |
US20090201529A1 (en) * | 2008-02-08 | 2009-08-13 | Kyocera Mita Corporation | Image forming system, apparatus, method and control program |
US7577261B2 (en) * | 2005-10-13 | 2009-08-18 | Realtek Semiconductor Corp. | Wireless audio system using wireless local area network |
US20090256684A1 (en) * | 2007-05-07 | 2009-10-15 | Sony Corporation | Communications system and memory card |
US20100027523A1 (en) * | 2006-06-16 | 2010-02-04 | Hong Kong Applied Science And Technology Research Institute Co., Ltd. | Data communication interface and communication devices incorporating same |
US20100052854A1 (en) * | 2006-11-07 | 2010-03-04 | Jae Han Jeun | Apparatus and method for action control of rfid system |
US7768389B2 (en) * | 2003-03-31 | 2010-08-03 | Broadcom Corporation | Wireless user input device providing host link indication |
US20100248783A1 (en) * | 2007-12-21 | 2010-09-30 | Paul Jolivet | Mobile terminal and method for providing terminal related information in power-off state |
-
2008
- 2008-10-31 US US12/263,420 patent/US8289138B2/en active Active
Patent Citations (31)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH11338739A (en) * | 1998-01-08 | 1999-12-10 | Xerox Corp | Method for providing diagnostic information |
US20020174254A1 (en) * | 2000-05-16 | 2002-11-21 | Sony Corporation | Card type network interface, network conference terminal device and network conference system |
US20050140498A1 (en) * | 2000-12-11 | 2005-06-30 | Bastian William A.Ii | Inventory system with barcode display |
US20040207512A1 (en) * | 2000-12-11 | 2004-10-21 | Bastian William A. | Inventory system with image display |
US7262685B2 (en) * | 2000-12-11 | 2007-08-28 | Asap Automation, Llc | Inventory system with barcode display |
US7084738B2 (en) * | 2000-12-11 | 2006-08-01 | Asap Automation, Llc | Inventory system with image display |
KR20020027393A (en) * | 2002-01-24 | 2002-04-13 | 안명훈 | Radio controlling multi concent and method for radio controlling multi concent and radio controller therefor |
US20040032308A1 (en) * | 2002-08-19 | 2004-02-19 | Philip Cheung | Circuit package integrating passive radio frequency structure |
US6985757B2 (en) * | 2002-09-16 | 2006-01-10 | Sierra Wireless, Inc. | Smart host power supply detection for PC card wireless modem |
US7768389B2 (en) * | 2003-03-31 | 2010-08-03 | Broadcom Corporation | Wireless user input device providing host link indication |
US20050015536A1 (en) * | 2003-07-14 | 2005-01-20 | Kuei-Jung Lee | Peripheral device having a personal disk used for storing device drivers |
US20050030929A1 (en) * | 2003-07-15 | 2005-02-10 | Highwall Technologies, Llc | Device and method for detecting unauthorized, "rogue" wireless LAN access points |
US7257107B2 (en) * | 2003-07-15 | 2007-08-14 | Highwall Technologies, Llc | Device and method for detecting unauthorized, “rogue” wireless LAN access points |
US7271674B1 (en) * | 2003-08-15 | 2007-09-18 | Dsp Group Inc. | Automatic level control for radio frequency amplifiers |
US20060026297A1 (en) * | 2004-08-02 | 2006-02-02 | Shao-Tsu Kung | Computer system with multiple data access channels and control method thereof |
US7437585B2 (en) * | 2005-02-01 | 2008-10-14 | Hitachi, Ltd. | Storage system and power control method therefor, adapter and power control method therefor, and storage controller and control method therefor |
US20060174150A1 (en) * | 2005-02-01 | 2006-08-03 | Akiyoshi Nakano | Storage system and power control method therefor, adapter and power control method therefor, and storage controller and control method therefor |
US7577261B2 (en) * | 2005-10-13 | 2009-08-18 | Realtek Semiconductor Corp. | Wireless audio system using wireless local area network |
US20070171201A1 (en) * | 2006-01-26 | 2007-07-26 | Pi Sharon W | Computer input device |
US20070229926A1 (en) * | 2006-03-30 | 2007-10-04 | Brother Kogyo Kabushiki Kaisha | Communication device capable of displaying preview of transmission data |
US20100027523A1 (en) * | 2006-06-16 | 2010-02-04 | Hong Kong Applied Science And Technology Research Institute Co., Ltd. | Data communication interface and communication devices incorporating same |
US20080065792A1 (en) * | 2006-09-07 | 2008-03-13 | Novatel Wireless, Inc. | Custom branding of host application based on distributed storage of graphics elements in the attached accessory |
US20100052854A1 (en) * | 2006-11-07 | 2010-03-04 | Jae Han Jeun | Apparatus and method for action control of rfid system |
US20080141073A1 (en) * | 2006-12-07 | 2008-06-12 | Inventec Corporation | BIOS debugging system and method |
US20080139117A1 (en) * | 2006-12-11 | 2008-06-12 | General Instrument Corporation | Power Control Apparatus and Method for Supporting Seamless Mobility |
US20090256684A1 (en) * | 2007-05-07 | 2009-10-15 | Sony Corporation | Communications system and memory card |
US20090003828A1 (en) * | 2007-06-26 | 2009-01-01 | Mci Communication Services | Systems and methods for host identification |
US20090006675A1 (en) * | 2007-06-28 | 2009-01-01 | Broadcom Corporation | Universal Serial Bus Dongle Device with Millimeter Wave Transceiver and System for use Therewith |
US20090102655A1 (en) * | 2007-10-18 | 2009-04-23 | Samsung Electronics Co., Ltd. | Mobile privacy protection system using proxy, proxy device and mobile privacy protection method |
US20100248783A1 (en) * | 2007-12-21 | 2010-09-30 | Paul Jolivet | Mobile terminal and method for providing terminal related information in power-off state |
US20090201529A1 (en) * | 2008-02-08 | 2009-08-13 | Kyocera Mita Corporation | Image forming system, apparatus, method and control program |
Also Published As
Publication number | Publication date |
---|---|
US20090189737A1 (en) | 2009-07-30 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US10341882B2 (en) | Optimization of NFC tag for different battery levels | |
US9396426B2 (en) | Programmatic control of RFID tags | |
EP2541863B1 (en) | Secure communications via nfc device | |
EP3236640B1 (en) | Method and apparatus for detecting and dealing with a lost electronics device | |
KR100705325B1 (en) | RF-ID tag reading system for using password and method thereof | |
TWI486004B (en) | Systems and methods for providing nfc secure application support in battery on and battery off modes | |
TWI459739B (en) | Redundant secure element components in nfc chip | |
US7382225B2 (en) | Radio frequency identification security system and method | |
US9584483B2 (en) | Method and apparatus for transmitting an NFC application via a secure channel including a proxy and computing device | |
CN101147387B (en) | Method, device and system for controlling application start in mobile terminal device | |
US9198037B2 (en) | Identification processing apparatus and mobile device using the same | |
CN1993701B (en) | Method and apparatus for accessing information on an external machine-readable tag | |
US8223000B2 (en) | Information access system for accessing information in contactless information storage device, and method therefor | |
EP2689614B1 (en) | Method and apparatus for battery with secure element | |
CN106484070A (en) | By the shared queue power management of information Store | |
US10250297B2 (en) | System and method of providing a service using a near field communication tag | |
US8112807B2 (en) | Systems, methods, and apparatuses for erasing memory on wireless devices | |
CN102197670B (en) | Embedded RFID recorder in short-range wireless devices | |
US8670712B2 (en) | Mobile terminal and method for providing enhanced contactless communication using contactless module | |
US6263440B1 (en) | Tracking and protection of display monitors by reporting their identity | |
CN101809579B (en) | Method, system, trusted service manager, service provider and memory element for managing access rights for trusted applications | |
US8717145B2 (en) | RFID portal system with RFID tags having various read ranges | |
EP2909776B1 (en) | Premises aware security | |
JP4820066B2 (en) | Mobile communication terminal incorporating camera, system for retrieving the same, and method thereof | |
TWI542163B (en) | A device capable of near field communication, and a method for selecting a near field communication target |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
AS | Assignment |
Owner name: HEWLETT-PACKARD DEVELOPMETN COMPANY, L.P., TEXAS Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:OGET, GUILLAUME;REEL/FRAME:023030/0184 Effective date: 20080210 |
|
STCF | Information on status: patent grant |
Free format text: PATENTED CASE |
|
FPAY | Fee payment |
Year of fee payment: 4 |
|
MAFP | Maintenance fee payment |
Free format text: PAYMENT OF MAINTENANCE FEE, 8TH YEAR, LARGE ENTITY (ORIGINAL EVENT CODE: M1552); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY Year of fee payment: 8 |