US8199452B2 - Disconnection arrangement and method for operation of a disconnection arrangement - Google Patents

Disconnection arrangement and method for operation of a disconnection arrangement Download PDF

Info

Publication number
US8199452B2
US8199452B2 US12/447,327 US44732707A US8199452B2 US 8199452 B2 US8199452 B2 US 8199452B2 US 44732707 A US44732707 A US 44732707A US 8199452 B2 US8199452 B2 US 8199452B2
Authority
US
United States
Prior art keywords
electrode
cover
disconnection arrangement
gas generator
disconnection
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active, expires
Application number
US12/447,327
Other languages
English (en)
Other versions
US20100051437A1 (en
Inventor
Bernd Kruska
Kai Steinfeld
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Siemens Energy Global GmbH and Co KG
Original Assignee
Siemens AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Siemens AG filed Critical Siemens AG
Publication of US20100051437A1 publication Critical patent/US20100051437A1/en
Assigned to SIEMENS AKTIENGESELLSCHAFT reassignment SIEMENS AKTIENGESELLSCHAFT ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: STEINFELD, KAI, KRUSKA, BERND
Application granted granted Critical
Publication of US8199452B2 publication Critical patent/US8199452B2/en
Assigned to Siemens Energy Global GmbH & Co. KG reassignment Siemens Energy Global GmbH & Co. KG ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: SIEMENS AKTIENGESELLSCHAFT
Active legal-status Critical Current
Adjusted expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01TSPARK GAPS; OVERVOLTAGE ARRESTERS USING SPARK GAPS; SPARKING PLUGS; CORONA DEVICES; GENERATING IONS TO BE INTRODUCED INTO NON-ENCLOSED GASES
    • H01T1/00Details of spark gaps
    • H01T1/14Means structurally associated with spark gap for protecting it against overload or for disconnecting it in case of failure
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01CRESISTORS
    • H01C7/00Non-adjustable resistors formed as one or more layers or coatings; Non-adjustable resistors made from powdered conducting material or powdered semi-conducting material with or without insulating material
    • H01C7/10Non-adjustable resistors formed as one or more layers or coatings; Non-adjustable resistors made from powdered conducting material or powdered semi-conducting material with or without insulating material voltage responsive, i.e. varistors
    • H01C7/12Overvoltage protection resistors

Definitions

  • the invention relates to a disconnection arrangement having a first electrode and a second electrode, with the second electrode having a recess which at least partially holds a gas generator.
  • a disconnection arrangement such as this is known from Swiss Patent Specification CH 347 885, which describes a surge arrester which is equipped with a disconnection arrangement in order to interrupt current.
  • the disconnection arrangement has a first and a second electrode, which are separated from one another with the recess in the second electrode being overhung partially by the first electrode.
  • the recess is designed such that a gas generator is accommodated in it, with the recess being closed because of the shape of the gas generator.
  • the second electrode Surrounding the gas generator, the second electrode has a projecting shoulder, such that the projecting shoulder is used as a foot point zone for an arc. The projecting shoulder is intended to protect the gas generator there against arcs flashing over.
  • the invention is therefore based on the object of specifying a disconnection arrangement which has a better tripping response.
  • this is achieved in the case of a disconnection arrangement of the type mentioned initially in that the recess is covered by an electrically conductive cover.
  • the shielding of the gas generator serves on the one hand to guide an arc of projecting body edges of the second electrode, while on the other hand these body edges are also used to shield the gas generator.
  • This multiple purpose means that compromises have to be made with regard to the design of the body edges.
  • a cover according to the invention makes it possible to guide and to steer the foot point of the arc in an enlarged area in the vicinity of the gas generator. This allows the thermal effect of the arc to act on the gas generator in a better manner, preventing direct jumping over to a housing section of the gas generator since the gas generator is located within an area in which there is no field, and the gas generator itself is not part of the shield for the area in which there is no field. It is thus possible to set the response of a disconnection apparatus in a better manner. For certain cases, there is no need for the gas generator to be tripped on operation, that is to say when an arc is struck between electrodes. This is true in particular for relatively low-powered arcs.
  • the power level of an arc is governed by its absolute magnitude and by its time profile.
  • the cover allows arc paths of relatively low-power arcs to be lengthened within the disconnection arrangement, and allows the arcs to be quenched earlier. This is additionally assisted since, because of the cover, a larger volume of electrically conductive material is available, which allows heat to be dissipated quickly.
  • the wall thickness of the cover can be varied in order to adjust the response threshold of the gas generator. It is also possible to use different material combinations and/or alloys for the electrically conductive cover.
  • the provision of an electrically conductive cover is particularly advantageous for disconnection apparatuses in which the gas generator is tripped exclusively by arc effects. Disconnection arrangements such as these are also referred to as a “one-way disconnection arrangement”. In contrast to this, an additional heating element is provided on “two-way disconnection arrangements”, and can be used to trip the gas generator.
  • explosive capsules containing explosives for example blank cartridges
  • gas generator By way of example, explosive capsules containing explosives, for example blank cartridges, can be used as a gas generator.
  • other pyrotechnic elements By way of example, it is also possible to use other pyrotechnic elements.
  • An electrically conductive connection to the second electrode makes it possible to transfer the electrode potential to the cover in a simple manner.
  • the cover is possible to use the cover as a guide for a foot point of a burning arc.
  • Lower-cost materials can thus correspondingly be used for the electrode material.
  • An alloy material, which is correspondingly resistant to being burnt away, can be used for the volume of the cover, which is smaller than the volume of the second electrode.
  • the provision of a separate cover on the electrode makes it possible to combine the electrode with covers shaped in different ways. Arc paths of different shapes can thus be produced in a simple manner.
  • a further advantageous refinement makes it possible to provide for the cover to be formed like a shroud.
  • the cover In addition to the configuration of the cover, for example in a flat, disk-like form, it is advantageous to provide the cover with a recessed area.
  • the recessed area can be used in order to hold an arc foot point in specific areas of the cover and thus to form an arc foot point zone.
  • the shroud-like recessed area in a cover can be used, for example, to center and to position the gas generator.
  • the cover it is advantageous, for example, for the cover to have a dome-like projection.
  • This dome-like projection may in this case have various shapes.
  • cup-like shrouds can be provided, or it is possible to provide truncated-conical or cylindrical spheres.
  • volume elements can be distributed variably by means of a more or less strongly pronounced shroud shape.
  • volume elements can be compartmentalized which are intended to be used only as required for accommodation, for example, of erosion products of the arc or for temporary accommodation of expanded gases.
  • a further advantageous refinement makes it possible to provide for the gas generator to be pressed in the recess such that it can move guided with respect to the cover.
  • the gas generator such that it can move allows it to be moved while an arc is burning.
  • expanded gases can be used for this purpose.
  • the compression of the arc energy to a movement of the gas generator allows a portion of the arc energy to be dissipated in the interior of the disconnection apparatus.
  • the gas generator can be guided in a cylindrical recess in which it can be moved like a piston.
  • the gas generator is always arranged, when the disconnection apparatus is in the unoperated state, in the vicinity of the zones which are intended for guidance of the arc. This makes it possible to ensure rapid response times, for example in the case of high-power arcs.
  • the gas generator it is advantageous for the gas generator to be pressed against the cover for example by means of an elastically deformable element, such as a helical spring. Furthermore, the contact pressure with the gas generator makes it possible to remove this from the cover, for example in the case of low-power arcs, against the contact-pressure force on the elastically deformable element, and to move the gas generator back to its initial position against the cover again once a low-power arc has decayed. It is thus possible to control the tripping of the disconnection arrangement in a better manner.
  • a further advantageous refinement makes it possible for the recess to be in the form of a blind hole and to have a widening cross section at its end facing the cover.
  • blank cartridges which are pushed into the recess, which is in the form of a blind hole, are particularly suitable for use as gas generators.
  • blank cartridges In the bottom area, blank cartridges have a radial flange which is held in the widened cross section of the recess when the blank cartridge is inserted into the recess. This makes it possible to insert the gas generator into the recess such that it is flush.
  • the widening cross section should extend in its depth in the direction of the bottom area of the recess, which is in the form of a blind hole, such that, when the cartridge is moved in the direction of the blind hole, the opposite end of the blank cartridge indirectly or directly strikes against the bottom of the blind hole before the peripheral collar on the blank cartridge is in place, thus restricting any movement of the blank cartridge, which acts as the gas generator.
  • first electrode to have a first arc foot point zone
  • cover to have a second arc foot point zone
  • Arc foot point zones are used to steer and guide an arc when it is burning.
  • the arc foot point zones may, for example, have a circular structure, an annular structure, a structure with projections, shroud-like structures, etc.
  • the provision of a respective arc foot point zone on the first electrode and on the cover makes it possible to provide an arcing area for the disconnection arrangement in a comparatively versatile form.
  • a further advantageous refinement makes it possible to provide for the cover to have a gas channel.
  • a gas channel on the cover makes it possible to divert a portion of the gas pressure for example through a recess, from the arcing area of the disconnection arrangement. It is thus possible to enlarge the volume of the arcing area of the disconnection arrangement, when necessary, via the gas channel.
  • the available volume can be enlarged by mounting the gas generator in its recess such that it can be moved in a similar manner to a cylinder, with the gas generator being moved to a greater or lesser extent depending on the magnitude of the gas pressure.
  • the gas generator and gas channel in this case interact like a valve. It is thus possible to damp the influence of the arc.
  • the cross section of the gas channel should be smaller than the arc foot point zone which is intended to guide the arc on the cover.
  • a further advantageous refinement allows the cover to be positioned on an insulating body which separates the two electrodes from one another.
  • An insulating body can be used to separate and position the two electrodes, including a fixing for the cover. Furthermore, the insulating body can also be designed such that it at least partially bounds the arcing area of the disconnection arrangement.
  • hollow-cylindrical insulating bodies can be used for this purpose.
  • clamping seats and interference fit makes it possible to provide sufficient mechanical robustness for the entire arrangement. Connections formed such as these adequately seal the individual assemblies from one another.
  • the insulating body it is advantageously possible to provide for the insulating body to have a specific impedance value. This impedance value makes it possible to control the voltage drop across the arc path, in parallel with the arc path. A flashover can therefore be deliberately initiated in the arc path.
  • a non-reactive resistance to be connected in parallel with the insulating body, and to make electrical contact with the first electrode and the second electrode or the cover element. It is thus possible to set the tripping response of a disconnection arrangement more specifically when using high-impedance insulating bodies. Irrespective of the physical design of the disconnection arrangement, resistance elements connected across the arc path define different types of operating characteristics of the disconnection arrangements.
  • first electrode, the second electrode and the insulating body are embedded in an electrically insulating sheath.
  • Encapsulation compounds such as resins or silicones
  • an electrically insulating sheath can be provided as an electrically insulating sheath. These embed the electrodes and the insulating body, and surround these components. It is thus possible to protect the electrodes and the insulating body against external mechanical influences and, for example, to make the disconnection arrangement resistant to open-air use.
  • the electrically insulating sheath can make the disconnection arrangement mechanically robust. This can be done, for example, at low cost by the use of shrink sleeves which additionally press the individual components against one another and assist the robustness and angular stiffness of the overall arrangement.
  • a further advantageous refinement allows the two electrodes to be made rotationally symmetrical with respect to a rotation axis, and to be separated from one another at the end, without being coincident.
  • Rotationally symmetrical electrodes can be manufactured at low cost. Furthermore, rotationally symmetrical bodies have dielectrically good contours. Projecting points and edges are avoided. Disconnection arrangements such as these are therefore also suitable for use in the medium-voltage, high-voltage and very-high-voltage range, that is to say for voltages above 1000 volts, in particular above 10 kV, 30 kV, 70 kV, 145 kV and above. Separation of the two electrodes at the ends allows the arc foot point zones to be arranged opposite at the ends, in such a way that they are opposite in the form of a plate-type capacitor. The electrodes are therefore covered by insulating material in the radial direction in the region of the arcing area.
  • this may be the insulating body. This allows better steering and guidance of the arc and prevents premature damage to the gas generator, for example by frequent operation of the disconnection arrangement by low-power arcs. Despite the disconnection arrangement having been operated, this ensures reliable tripping of the disconnection arrangement in the future as well.
  • a further advantageous refinement allows the disconnection arrangement to be included in an output current path which can be controlled by means of a surge arrester.
  • Surge arresters are used, for example, in electrical power transmission networks in order to form an output current path to a ground potential when necessary, for example in order to dissipate overvoltages.
  • the output current path is connected by means of voltage-dependent resistance elements, so-called varistors.
  • the surge arrester is therefore part of the output current path which, for example, runs in the form of a conductor system from parts which are generally live to ground potential.
  • the surge arrester therefore represents a switching element, which can be switched repeatedly, in the output current path.
  • the disconnection arrangement When the disconnection arrangement is included, the disconnection arrangement makes it possible to ensure that permanent disconnection of the output current path is possible, for example, in the event of a short circuit in the surge arrester.
  • a disconnection arrangement represents a safety device in order to prevent the formation of a permanent ground-fault current path in an electrical grid system in the event of a fault in the surge arrester.
  • the disconnection can be carried out in such a way that tripping can clearly be seen from the outside.
  • this can be achieved by the disconnection arrangement being broken down into a plurality of parts when the gas generator trips, such that the response can easily be seen visually, because of this breakdown.
  • a further object of the invention is to specify a method for operation of a disconnection arrangement which has a first and a second electrode and a gas generator.
  • the expression operation means that an arc is struck in an arcing area of a disconnection arrangement. Operation such as this takes place, for example, when the surge arrester responds.
  • One object of the invention is therefore to specify a method which allows more defined tripping of the disconnection arrangement.
  • the gas generator may be mounted like a piston in a sliding form in a recess which acts as a guide device, such that the movement of the gas generator opens up the additional accommodation volume for the expanded gas.
  • the gas generator should advantageously be tripped during or after movement of the gas generator. It is thus possible to provide an adequate time window during the movement of the gas generator in order to make it possible to distinguish between low-power arcs, which, although they result in operation of the disconnection arrangement, should actually not cause tripping of the disconnection arrangement, and high-power arcs which would also cause tripping of the disconnection arrangement after operation of the disconnection arrangement.
  • Low-power arcs are not able to introduce sufficient energy into the disconnection arrangement that sufficient energy is available to trip the gas generator even after an enlarged accommodation volume is made available. Low-power arcs expand after additional accommodation volume is released. It is possible to provide, for example, for the accommodation volume to have a variable volume, depending on the strength of the arc. Different chambers can therefore be provided which are connected in steps, or one chamber can be provided which itself allows a volume change by deformation or movement of the walls.
  • FIG. 1 shows an outline arrangement of a disconnection arrangement on a surge arrester
  • FIG. 2 shows a section through the disconnection arrangement in the unoperated state
  • FIG. 3 shows the disconnection arrangement in a first phase of operation of the disconnection arrangement
  • FIG. 4 shows the disconnection arrangement in a second phase during operation.
  • FIG. 1 schematically illustrates an electrical grid system 1 .
  • the electrical grid system 1 is, for example, in the form of a high-voltage overhead-line transmission grid system.
  • overvoltages can occur in the electrical grid system 1 as a result of switching processes or lightning strikes.
  • An output current path 2 with a ground cable is provided in order to dissipate such overvoltages from a conductor 1 in the electrical grid system 1 .
  • a surge arrester 3 is connected in the output current path.
  • the surge arrester 3 may be embodied in many different forms.
  • the surge arrester has an electrically insulating housing 4 which, for example, is formed from porcelain or form a plastic composite.
  • the housing 4 is essentially tubular and is provided with ribs on its outside, in order to make the surge arrester 3 resistant to outdoor use.
  • the housing 4 is provided with connecting fittings to which, on the one hand, the ground cable, which comes from the electrical conductor of the grid system, is attached.
  • a disconnection arrangement 5 is attached to the other connecting fittings.
  • the disconnection arrangement 5 likewise part of the output current path 2 , carries the output current path 2 further to a ground potential.
  • a stack of metal-oxide blocks 7 is arranged between the connecting fittings in the interior of the housing 4 of the surge arrestor 3 .
  • These metal-oxide blocks 7 are varistors which change their electrical impedance as a function of the voltage applied to them. It is thus possible to switch the output current path 2 on and off repeatedly by means of the surge arrester 3 .
  • the surge arrester 3 is installed such that it is electrically isolated from ground potential.
  • Post insulators 6 are provided for this purpose in the present case.
  • the surge arrestor it is also possible to provide for the surge arrestor to be held, for example, on masts by means of insulating elements which are designed in another appropriate manner.
  • FIG. 2 shows a section through a disconnection arrangement 5 according to the invention.
  • the disconnection arrangement 5 has a first electrode 8 and a second electrode 9 .
  • the electrodes 8 , 9 are used to connect the disconnection arrangement 5 in the output current path 2 .
  • the two electrodes are rotationally symmetrical and are arranged along their rotation axes 10 , with a separation between their ends.
  • An insulating body 11 is provided in order to separate the two electrodes 8 , 9 , which insulating body 11 is essentially hollow-cylindrical and is likewise aligned coaxially with respect to the rotation axis 10 .
  • the second electrode 9 is inserted, with the interposition of a cover 12 , into a recess which is circumferential on the internal circumference on the insulating body 11 . Furthermore, the insulating body 11 is breached by an impedance element 13 , making contact with the first and the second electrodes 8 , 9 .
  • the impedance element 13 is in the form of a non-reactive resistance. If the insulating material for the insulating body 11 is chosen appropriately, there is no need to use an additional impedance element 13 .
  • the cover 12 rests on the second electrode 9 and covers it completely in the direction of the first electrode 8 .
  • the second electrode 9 has a recess 14 .
  • the recess 14 is in the form of a blind hole, which is likewise aligned coaxially with respect to the rotation axis 10 .
  • the recess 14 has an enlarged cross section at its end facing the first electrode 8 .
  • the end of the recess 14 facing the first electrode is covered by the cover 12 .
  • the cover 12 is like a shroud, thus forming a dome which projects in the direction of the first electrode 8 .
  • the dome sphere has an essentially truncated-conical shape.
  • the cover 12 makes electrically conductive contact with the second electrode 9 .
  • the projecting dome in the direction of the first electrode 8 reduces the volume of an arcing area 15 which is provided in the region of the insulating body 11 .
  • a projection like a truncated cone is integrally formed on the first electrode 8 , projecting into the arcing area 15 .
  • the projecting dome of the shroud-like cover 12 likewise acts as a truncated cone projecting into the arcing area 15 .
  • a first arc foot point zone 16 and a second arc foot point zone 17 are formed on the truncated-conical projections on the first electrode 8 and on the cover 12 .
  • the two arc foot point zones 16 , 17 in this case have a circular external contour, with the circle planes being aligned at right angles to the rotation axis 10 and being arranged at a distance from one another at the ends.
  • a gas generator 18 in the form of a blank cartridge is inserted into the recess 14 .
  • the gas generator 18 in this case has an essentially cylindrical external contour, being provided with a flange, which enlarges the diameter, in the bottom area.
  • the gas generator 18 is mounted on a helical spring 19 by its end 14 which faces the bottom area of the recess.
  • the helical spring 19 is preloaded and presses the bottom of the gas generator 18 against the cover 12 .
  • the cover 12 centers the gas generator 18 and may also have different shapes.
  • the recess 14 is provided with an enlarged diameter at its end facing the first electrode 8 .
  • the second electrode 9 has a reduced diameter at its end facing away from the first electrode 8 . This results in a projecting shoulder on the second electrode 9 , on which a disk element 20 is placed.
  • the disk element 20 is fixed in its position by a clasp 21 on the end of the second electrode 9 , which is provided with the reduced diameter.
  • the clasp may, for example, be in the form of a nut which is screwed onto a corresponding thread on that end of the second electrode 9 which is provided with the reduced diameter.
  • Attachments are provided on the external circumference of the disk element 20 and enlarge the surface of the disk element 20 . This ensures that an enlarged contact surface area can be achieved when the arrangement illustrated in FIGS. 2 to 4 is embedded in an electrically insulating compound, as a result of which the electrically insulating compound which is intended for embedding adheres in a torsionally stiff manner.
  • a gas channel 22 is arranged in the cover 12 .
  • the gas channel 22 is in the form of a hole which is aligned coaxially with respect to the rotation axis 10 .
  • the diameter of the hole is chosen to be sufficiently small that the bottom area of the gas generator 18 closes the gas channel 22 .
  • the helical spring 19 presses the gas generator 18 against the cover 12 .
  • FIG. 2 illustrates the disconnection arrangement in the rest state
  • FIG. 3 illustrates the disconnection arrangement during operation, that is to say the surge arrester 3 has considerably reduced its resistance because a limit voltage has been exceeded in the electrical grid system 1 , as a result of which an output current now flows to ground potential via the output current path 2 , driven by the grid system overvoltage.
  • the first electrode 8 and the second electrode 9 are part of the output current path 2 .
  • the impedance element 13 and/or the insulating body 11 are/is provided in an appropriate form in order to control the potential distribution between the arc foot point zones 16 , 17 . With appropriate dielectric conditions, an arc 23 is formed between the two arc foot point zones 16 , 17 . An output current flows.
  • the arc 23 expands gas that is located in the arcing area 15 . This increases the pressure in the arcing area 15 . If the power of the arc 23 is relatively low and the overvoltage in the electrical grid system has already been dissipated, the arc 23 is quenched. The gas which has expanded in the arcing area 15 gradually cools down again.
  • the arc 23 continues to burn, leading to further expansion of gas in the arcing area 15 .
  • the expanded gas also forces its way through the gas channel 22 and presses against the bottom of the gas generator 18 .
  • the spring force of the helical spring 19 is overcome, the helical spring 19 is compressed, and the gas generator 18 is moved in its recess 14 , which acts as a guide device, in the direction of the bottom of the recess 14 which is in the form of a blind hole.
  • the gas generator is moved to a greater or lesser extent from its rest position.

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Circuit Breakers (AREA)
  • Arc-Extinguishing Devices That Are Switches (AREA)
  • Feeding, Discharge, Calcimining, Fusing, And Gas-Generation Devices (AREA)
  • Emergency Protection Circuit Devices (AREA)
US12/447,327 2006-10-25 2007-10-18 Disconnection arrangement and method for operation of a disconnection arrangement Active 2029-03-05 US8199452B2 (en)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
DE102006051166 2006-10-25
DE102006051166A DE102006051166A1 (de) 2006-10-25 2006-10-25 Abtrennanordnung und Verfahren zum Betätigen einer Abtrennanordnung
DE102006051166.2 2006-10-25
PCT/EP2007/061134 WO2008049777A1 (de) 2006-10-25 2007-10-18 Abtrennanordnung und verfahren zum betätigen einer abtrennanordnung

Publications (2)

Publication Number Publication Date
US20100051437A1 US20100051437A1 (en) 2010-03-04
US8199452B2 true US8199452B2 (en) 2012-06-12

Family

ID=38787044

Family Applications (1)

Application Number Title Priority Date Filing Date
US12/447,327 Active 2029-03-05 US8199452B2 (en) 2006-10-25 2007-10-18 Disconnection arrangement and method for operation of a disconnection arrangement

Country Status (7)

Country Link
US (1) US8199452B2 (zh)
CN (1) CN101529676B (zh)
BR (1) BRPI0718187B1 (zh)
CA (1) CA2667441C (zh)
DE (1) DE102006051166A1 (zh)
MX (1) MX2009004273A (zh)
WO (1) WO2008049777A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20120153976A1 (en) * 2010-12-16 2012-06-21 Abb Research Ltd Device with overvoltage protection and method for its testing
US20140311765A1 (en) * 2012-11-08 2014-10-23 Albert S. Richardson, Jr. Antigalloping device

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102009006545B4 (de) * 2009-01-29 2017-08-17 Epcos Ag Überspannungsableiter und Anordnung von mehreren Überspannungsableitern zu einem Array
US8467158B2 (en) 2009-06-26 2013-06-18 Varian Semiconductor Equipment Associates, Inc. Technique for limiting transmission of fault current
US8739396B2 (en) * 2010-06-17 2014-06-03 Varian Semiconductor Equipment Associates, Inc. Technique for limiting transmission of fault current
DE102010045920B4 (de) * 2010-09-21 2016-12-15 Auto-Kabel Management Gmbh Überspannungsschutz für Windkraftanlagen
EP2573779A1 (en) * 2011-09-23 2013-03-27 ABB Technology Electrical insulator and method of production
DE102016115222B4 (de) * 2016-06-30 2020-02-13 Dehn Se + Co Kg Kurzschließeinrichtung für den Einsatz in Nieder- und Mittelspannungsanlagen zum Sach- und Personenschutz
LU93206B1 (en) * 2016-09-13 2018-03-16 Abb Schweiz Ag Protection of a surge arrester with a better protection against failure from thermal overload in case of a temporary overvoltage in an electrical grid line
DE102018109824B3 (de) * 2018-04-24 2019-09-26 Auto-Kabel Management Gmbh Hochvoltschalter, Hochvoltbordnetz in einem Kraftfahrzeug und Verfahren zum Betreiben eines Hochvoltschalters
WO2021127579A1 (en) 2019-12-20 2021-06-24 Hubbell Incorporated Deadfront arrester with disconnector device

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA347885A (en) 1935-01-29 P. Weis John Sewing and trimming machine
US2305436A (en) * 1941-10-15 1942-12-15 Gen Electric Fuse device
US2481298A (en) * 1944-07-19 1949-09-06 Electric Service Mfg Company Electrical disconnector
US3291937A (en) * 1965-10-11 1966-12-13 Westinghouse Electric Corp Explosive disconnect having the explosive means thermally and electrically isolated from resistance ignition means
US4204238A (en) * 1978-02-06 1980-05-20 General Electric Company Surge voltage lightning arresters
US4663692A (en) 1985-06-27 1987-05-05 Westinghouse Electric Corp. Electrical surge arrester and disconnector
US5113167A (en) 1991-02-15 1992-05-12 Hubbell Incorporated Lightning arrester isolator
US5434550A (en) * 1994-04-07 1995-07-18 Hubbell Incorporated Arrester disconnector
US6392861B1 (en) * 1999-09-15 2002-05-21 Joslyn Manufacturing Co. Surge arrester having disconnector housed by mounting bracket and end cap
US6876289B2 (en) * 2003-05-29 2005-04-05 Hubbell Incorporated Arrester disconnector assembly having a capacitor
US7656639B2 (en) * 2006-06-22 2010-02-02 Cooper Technologies Company Retainer for surge arrester disconnector

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CH347885A (de) * 1956-11-09 1960-07-31 Mcgraw Electric Co Uberspannungsableiter mit Explosivladung zur Stromunterbrechung
US3100246A (en) * 1961-02-20 1963-08-06 Joslyn Mfg & Supply Co Disconnector
US3239631A (en) * 1964-09-29 1966-03-08 Porter Co Inc H K Lightning arrester separator
US3369091A (en) * 1966-06-20 1968-02-13 Joslyn Mfg & Supply Co Explosive disconnector with belleville washer interposed between a closure wall and an annular resistance means
US4015228A (en) * 1974-06-10 1977-03-29 Matsushita Electric Industrial Co., Ltd. Surge absorber
US4471402A (en) * 1982-02-01 1984-09-11 Joslyn Mfg. And Supply Co. Disconnector for surge arrester
US5057810A (en) * 1991-02-14 1991-10-15 Hubbell Incorporated Arrester isolator-disconnector
CN2208749Y (zh) * 1994-10-19 1995-09-27 褚松玉 避雷器热爆型脱离器
GB2305310A (en) * 1995-09-13 1997-04-02 Bowthorpe Ind Ltd Polymeric surge arrester with parallel connected disconnect device and backup device
DE10025685A1 (de) * 2000-05-19 2001-11-29 Siemens Ag Trennschalt-Vorrichtung für einen Hochspannungs-Überspannungsableiter

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA347885A (en) 1935-01-29 P. Weis John Sewing and trimming machine
US2305436A (en) * 1941-10-15 1942-12-15 Gen Electric Fuse device
US2481298A (en) * 1944-07-19 1949-09-06 Electric Service Mfg Company Electrical disconnector
US3291937A (en) * 1965-10-11 1966-12-13 Westinghouse Electric Corp Explosive disconnect having the explosive means thermally and electrically isolated from resistance ignition means
US4204238A (en) * 1978-02-06 1980-05-20 General Electric Company Surge voltage lightning arresters
US4663692A (en) 1985-06-27 1987-05-05 Westinghouse Electric Corp. Electrical surge arrester and disconnector
US5113167A (en) 1991-02-15 1992-05-12 Hubbell Incorporated Lightning arrester isolator
US5434550A (en) * 1994-04-07 1995-07-18 Hubbell Incorporated Arrester disconnector
US6392861B1 (en) * 1999-09-15 2002-05-21 Joslyn Manufacturing Co. Surge arrester having disconnector housed by mounting bracket and end cap
US6876289B2 (en) * 2003-05-29 2005-04-05 Hubbell Incorporated Arrester disconnector assembly having a capacitor
US7656639B2 (en) * 2006-06-22 2010-02-02 Cooper Technologies Company Retainer for surge arrester disconnector

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20120153976A1 (en) * 2010-12-16 2012-06-21 Abb Research Ltd Device with overvoltage protection and method for its testing
US9396848B2 (en) * 2010-12-16 2016-07-19 Abb Research Ltd Device with overvoltage protection and method for its testing
US20140311765A1 (en) * 2012-11-08 2014-10-23 Albert S. Richardson, Jr. Antigalloping device
US9620947B2 (en) * 2012-11-08 2017-04-11 Albert S. Richardson, Jr. Antigalloping device

Also Published As

Publication number Publication date
DE102006051166A1 (de) 2008-04-30
CN101529676B (zh) 2012-03-21
BRPI0718187B1 (pt) 2019-09-03
CA2667441C (en) 2016-04-26
WO2008049777A1 (de) 2008-05-02
BRPI0718187A2 (pt) 2013-11-05
CN101529676A (zh) 2009-09-09
MX2009004273A (es) 2009-05-08
US20100051437A1 (en) 2010-03-04
CA2667441A1 (en) 2008-05-02

Similar Documents

Publication Publication Date Title
US8199452B2 (en) Disconnection arrangement and method for operation of a disconnection arrangement
US11764025B2 (en) Triggered fuse for low-voltage applications
US8692149B2 (en) Low-voltage, medium-voltage or high-voltage switchgear assembly having a short-circuiting system
CN109690891B (zh) 用于电涌放电器的隔离开关装置及包括联接到所述隔离开关装置的电涌放电器的保护组件
CN107077931B (zh) 具有短路装置的过压保护装置
KR101798730B1 (ko) 고전압 전기 시스템용 스위칭 및 보호 장치
AU2018399890B2 (en) Short-circuiting device for use in low-voltage and medium-voltage systems for the protection of property and persons
US8106321B2 (en) Disconnecting switch device and method for production of a disconnecting switch device
US3291937A (en) Explosive disconnect having the explosive means thermally and electrically isolated from resistance ignition means
US5952910A (en) Isolator device for arrester
US8129648B2 (en) Surge arrester having thermal overload protection
AU2017290406B2 (en) Short-circuiting device for use in low-voltage and medium-voltage systems for protecting parts and personnel
US7120001B2 (en) Surge voltage protector for use in power transmission networks
CN110383413B (zh) 用于低压应用的熔断保险装置
CN105552720B (zh) 浪涌电压保护器
KR101935376B1 (ko) 고전압 개폐기
KR100952072B1 (ko) 피뢰기용 단로기
RU2408962C1 (ru) Отделитель
KR200157281Y1 (ko) 피뢰기용 단로기
EP3373401B1 (en) Disconnector arrangement and fabrication method
JPH05152110A (ja) 避雷器

Legal Events

Date Code Title Description
AS Assignment

Owner name: SIEMENS AKTIENGESELLSCHAFT, GERMANY

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:KRUSKA, BERND;STEINFELD, KAI;SIGNING DATES FROM 20090326 TO 20090407;REEL/FRAME:027724/0330

STCF Information on status: patent grant

Free format text: PATENTED CASE

FPAY Fee payment

Year of fee payment: 4

MAFP Maintenance fee payment

Free format text: PAYMENT OF MAINTENANCE FEE, 8TH YEAR, LARGE ENTITY (ORIGINAL EVENT CODE: M1552); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY

Year of fee payment: 8

AS Assignment

Owner name: SIEMENS ENERGY GLOBAL GMBH & CO. KG, GERMANY

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:SIEMENS AKTIENGESELLSCHAFT;REEL/FRAME:055875/0520

Effective date: 20210228

FEPP Fee payment procedure

Free format text: MAINTENANCE FEE REMINDER MAILED (ORIGINAL EVENT CODE: REM.); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY