US8145060B2 - Passive optical network transceiver with temperature compensation circuit - Google Patents

Passive optical network transceiver with temperature compensation circuit Download PDF

Info

Publication number
US8145060B2
US8145060B2 US12/437,617 US43761709A US8145060B2 US 8145060 B2 US8145060 B2 US 8145060B2 US 43761709 A US43761709 A US 43761709A US 8145060 B2 US8145060 B2 US 8145060B2
Authority
US
United States
Prior art keywords
bias voltage
signal
value
avalanche photodiode
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related, expires
Application number
US12/437,617
Other versions
US20090279896A1 (en
Inventor
Eric Hufstedler
Xiaoming Lou
Genzao Zhang
Leonel Gomez
Eva Peral
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Emcore Corp
Original Assignee
Emcore Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Emcore Corp filed Critical Emcore Corp
Priority to US12/437,617 priority Critical patent/US8145060B2/en
Assigned to EMCORE CORPORATION reassignment EMCORE CORPORATION ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: PERAL, EVA, ZHANG, GENZAO, GOMEZ, LEONEL, HUFSTEDLER, ERIC, LOU, XIAOMING
Publication of US20090279896A1 publication Critical patent/US20090279896A1/en
Assigned to WELLS FARGO BANK, NATIONAL ASSOCIATION reassignment WELLS FARGO BANK, NATIONAL ASSOCIATION SECURITY AGREEMENT Assignors: EMCORE CORPORATION, EMCORE SOLAR POWER, INC.
Application granted granted Critical
Publication of US8145060B2 publication Critical patent/US8145060B2/en
Assigned to EMCORE CORPORATION, EMCORE SOLAR POWER, INC. reassignment EMCORE CORPORATION RELEASE BY SECURED PARTY (SEE DOCUMENT FOR DETAILS). Assignors: WELLS FARGO BANK
Expired - Fee Related legal-status Critical Current
Adjusted expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/27Arrangements for networking
    • H04B10/272Star-type networks or tree-type networks
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/60Receivers
    • H04B10/66Non-coherent receivers, e.g. using direct detection
    • H04B10/69Electrical arrangements in the receiver
    • H04B10/691Arrangements for optimizing the photodetector in the receiver
    • H04B10/6911Photodiode bias control, e.g. for compensating temperature variations

Definitions

  • the present invention relates to a passive optical network (PON) transceiver.
  • PON passive optical network
  • Fiber optic technology has been recognized for its high bandwidth capacity over longer distances, enhanced overall network reliability and service quality.
  • Fiber to the premises as opposed to fiber to the node (FTTN) or fiber to the curb (FTTC) delivery which still depend on copper wires for “last mile” (final connection) to the customers premises, enables service providers to deliver substantial bandwidth and a wide range of applications directly to business and residential subscribers.
  • FTTP can be further categorized into fiber to the home (FTTH) and fiber to the building (FTTB).
  • FTTP can accommodate the so-called “triple-play” bundle of services, e.g., high-speed Internet access and networking, multiple telephone lines and high-definition and interactive video applications.
  • FTTP involves equipping each subscriber premises with the ability to receive an optical signal and convert it into a signal compatible with pre-existing wiring in the premises (e.g., twisted pair and coaxial).
  • the premises should be equipped with the ability to convert outbound signals into optical signals.
  • these abilities are implemented with a passive optical network (“PON”), with each premises having a dedicated optical network unit (“ONU”) for transceiving optical and electrical signals.
  • PON passive optical network
  • ONU dedicated optical network unit
  • ONU dedicated optical network unit
  • a PON is a point-to-multipoint fiber to the premises network architecture in which un-powered optical splitters are used to enable a single optical fiber to serve multiple (e.g., 32) premises.
  • the receiver section of a PON network is characterized by three main challenging features: maintain high sensitivity, report the received optical signal strength indication (RSSI), which is the input optical power level, and report an indication of the signal detect (SD) status, for example a binary indication would assign 1 to signal detected and 0 to signal not detected.
  • RSSI received optical signal strength indication
  • SD signal detect
  • U.S. Pat. No. 7,217,914 discloses a method for calibrating optoelectronic transceivers based upon an avalanche photodiode breakdown voltage. The method involves adjusting a reverse-bias voltage of the avalanche photodiode until avalanche breakdown of the avalanche photodiode occurs. An optimized APD reverse-bias voltage is then determined by reducing the reverse-bias voltage at which avalanche breakdown occurs by a predetermined offset voltage. This process is performed at a variety of different temperatures. Information concerning each temperature and the corresponding optimized APD reverse-bias voltage is then stored in a memory of the optoelectronic device.
  • the present invention provides a PON transceiver with a low cost temperature compensation circuit.
  • the PON transceiver has an optical triplexer operating at an operating temperature with an avalanche photodiode for coupling to an optical fiber and for receiving an input optical signal, a bias voltage generator coupled to the avalanche photodiode for supplying a bias voltage to the avalanche photodiode, a temperature detector for measuring the operating temperature and for generating an operating temperature signal representative of the value of the measured operating temperature and a memory for storing one reference bias voltage value representative of the bias voltage maximizing sensitivity of the avalanche photodiode at one reference temperature.
  • the PON transceiver also comprises processing circuitry coupled to the temperature detector and to the bias voltage generator for receiving the operating temperature signal and processing the value of the measured operating temperature and the value of the reference bias voltage. Based on this processing, the processing circuitry generates a control signal for controlling the bias voltage generator to adjust the bias voltage supplied by the bias voltage generator to the avalanche photodiode.
  • the processing circuitry includes a microprocessor or microcontroller configured to carry out the desired processing through execution of stored program instructions.
  • the processing circuitry additionally or alternatively includes a Complex Programmable Logic Device (CPLD), Field Programmable Gate Array (FPGA), or other digital processing circuit, configured to carry out the desired processing.
  • CPLD Complex Programmable Logic Device
  • FPGA Field Programmable Gate Array
  • FIG. 1 is a block diagram illustrating an implementation of a PON (e.g., GPON) network architecture
  • PON e.g., GPON
  • FIG. 2 is a block diagram of an implementation of a transceiver
  • FIG. 3 is a block diagram of a triplexer included in the transceiver of FIG. 2 .
  • FIG. 1 illustrates an implementation of a network topology associated with a passive optical network, e.g., a GPON.
  • a passive optical network e.g., a GPON.
  • a typical passive optical network comprises an optical line termination unit 108 coupled to a service provider 109 that provides one or more data services to a group of subscribers 101 - 103 .
  • the service provider 109 is adapted to provide the data services content via a non-optical link to the optical line termination unit (“OLT”) 108 .
  • the OLT 108 is adapted to receive data from the service provider 109 in one format (e.g., electrical) and convert to an optical format.
  • the OLT 108 is further adapted to receive data from subscribers 101 - 103 in an optical format and convert it to another format (e.g., electrical) for transmission to the service provider 109 .
  • the OLT 108 may be analogized to an electro-optical transceiver that receives upstream data in an optical format from subscribers, transmits downstream data in an optical format to subscribers, transmits the upstream data in electrical format to the service provider 109 and receives the downstream data from the service provider in an electrical format.
  • the OLT 108 is coupled to an optical splitter 107 via an optical link.
  • the optical splitter 107 splits the incoming optical signal from the OLT 108 into multiple, substantially identical copies of the original incoming optical signal.
  • the optical splitter 107 provides substantially identical downstream signals to optical network units (ONUs), 104 , 105 , 106 , respectively, associated with subscribers 101 , 102 , 103 , respectively.
  • ONUs optical network units
  • Each ONU for example the ONU 104 receives a downstream signal and demultiplexes it into its constituent optical signals. These constituent optical signals are converted to corresponding electrical signal and transmitted via electrical links to the targeted hardware.
  • FIG. 2 illustrates a schematic of an implementation of a PON transceiver 200 that is disposed inside an ONU, e.g., ONU 104 of FIG. 1 .
  • the transceiver 200 comprises an optical triplexer 202 which is coupled to an optical fiber 201 .
  • the optical fiber 201 carries an upstream optical signal from an optical splitter, e.g., optical splitter 107 of FIG. 1 , and carries a downstream optical signal to the optical splitter.
  • the triplexer 202 can take the form of a packaged electro-optical transceiver, and comprises one optical input/output port, coupled to optical fiber 201 , two electrical outputs, one for data and one for video, and one electrical input, for upstream data.
  • the triplexer demultiplexes the downstream optical signal into two constituent optical signals.
  • the constituent optical signals are converted into electrical signals, e.g., by photodiodes, in particular avalanche photodiodes.
  • the electrical signal corresponding to downstream data e.g. from the 1490 nm optical signal, is transmitted to a digital receiver 203 .
  • the digital receiver 203 under control of digital control 205 , provides an electrical data output signal 207 .
  • the digital control 205 ensures that the electrical signal 207 properly corresponds to the 1490 nm downstream optical signal according to one or more standards. For example, in a gigabit PON (GPON), the digital control 205 ensures that all upstream and downstream data is processed substantially in compliance with ITU-T G.984.
  • the electrical data output signal 207 is coupled to a digital interface 213 .
  • the digital interface 213 is coupled to wiring in the subscriber's premises, e.g. via an adapter or other interface, and provides downstream data for telephone and data, e.g. via twisted-pair lines.
  • the digital interface 213 also can transmit and receive data to/from televisions or set-top boxes, e.g., in connection with “on demand” programming.
  • the electrical signal corresponding to downstream video (e.g., from the 1550 nm optical signal) is transmitted to an analog video receiver 206 , which comprises an amplifier. Under control of digital control 205 , the analog video receiver generates (and subsequently amplifies) an RF electrical signal 209 s .
  • the RF electrical signal 209 s is coupled to an RF interface 214 .
  • the RF interface 214 is coupled via an adapter or other interface (not shown) to television wiring in the subscriber's premises (e.g., coaxial cable).
  • the RF interface 214 can include three terminals: two grounds and one signal, or it can be a coaxial connector.
  • television wiring may be coupled to the digital interface 213 .
  • the triplexer 202 also generates an upstream, optical signal representative of data originating from the subscriber.
  • the digital interface 213 receives data (in an electrical format) originating from, e.g., telephones, computers and set-top boxes associated with the subscriber. This received data 208 is sent to the digital transmitter 204 .
  • the digital transmitter 204 under control of digital control 205 , converts the data into a format appropriate for triplexer 202 to convert to an optical signal that is transmitted on fiber 201 .
  • FIG. 3 shows an implementation of the triplexer 202 .
  • the triplexer 202 comprises an avalanche photodiode 3 , operating at an operating temperature T, for coupling to an optical fiber (not shown in the figures) and for receiving an input optical signal S in with input optical power P in , and a bias voltage generator 4 coupled to the avalanche photodiode 3 , through a resistor R 1 , for supplying a bias voltage Vbias to the avalanche photodiode 3 .
  • the triplexer 202 also comprises a temperature detector 5 for measuring the operating temperature T and for generating an operating temperature signal S T representative of the measured value of the operating temperature T and a memory 7 for storing the reference bias voltage value Vbias T0 representative of the bias voltage Vbias maximizing sensitivity of the avalanche photodiode 3 at one reference temperature T 0 .
  • the gain setting which is adjusted by the bias voltage Vbias, varies over temperature for optimum sensitivity.
  • the triplexer 202 comprises processing circuitry 6 coupled to the memory 7 , the temperature detector 5 and the bias voltage generator 4 for receiving the operating temperature signal S T and processing the value of the measured operating temperature T and the reference bias voltage value Vbias T0 to generate a control signal S Vbias for controlling the bias voltage generator 4 to adjust the bias voltage Vbias supplied by the bias voltage generator 4 to the avalanche photodiode 3 .
  • the processing circuitry 6 comprises a processor 8 coupled to the memory 7 for processing the values of the measured operating temperature T and the reference bias voltage Vbias T0 to generate the control signal S Vbias .
  • the illustrated embodiment of the processing circuitry 6 further includes an analog to digital converter (ADC) 9 .
  • the ADC 9 is coupled to the temperature detector 5 for receiving the temperature signal S T and converting the received temperature signal S T into the value of the measured operating temperature T associated to the temperature signal S T .
  • the ADC 9 is communicatively coupled to the processor 8 , to provide the processor 8 with a (digitized) value representing the measured operating temperature T, as indicated by the temperature signal S T .
  • the processing circuitry 6 comprises an integrated processing circuit, e.g., an IC, that includes the processor 8 and the ADC 9 , and, preferably, further includes at least a portion of the memory 7 .
  • the processing circuitry 6 comprises a microcontroller that includes an integrated ADC and memory.
  • the processing circuitry 6 may output the signal S Vbias as an analog control signal or as a digital control signal (e.g., PWM, PCM, binary, etc.)
  • the processing circuitry 6 also may include a digital-to-analog converter (DAC), which may be included in the processor 8 , along with the ADC 9 , to convert digital values for S Vbias into analog signal values.
  • DAC digital-to-analog converter
  • the processor 8 is configured to process the values of the measured operating temperature T and the reference bias voltage Vbias T0 (e.g., as stored in the memory 7 ) to calculate a temperature-compensated bias voltage value Vbias T to adjust the value of the bias voltage supplied to the avalanche photodiode 3 at the measured operating temperature T.
  • the processor 8 is configured to determine the value of the signal S Vbias that will control the APD bias voltage generator 4 to output a temperature-compensated Vbias signal that is optimized for the measured operating temperature T.
  • the processing circuitry 6 determines the correct bias voltage for the currently measured operating temperature, referred to as Vbias T .
  • the processing circuitry 6 generates or otherwise controls the adjustment signal S Vbias such that the APD bias voltage generator 4 outputs the bias voltage Vbias at or substantially at the desired value Vbias T .
  • This closed loop, temperature-based bias adjustment process may be carried out as needed, such as by detecting more than a threshold amount of temperature increase or decrease, or by periodically performing a S T signal measurement and corresponding Vbias T calculation and S Vbias adjustment.
  • the avalanche photodiode 3 operates with a temperature-compensated bias voltage that is advantageously determined using single reference point compensation.
  • the avalanche photodiode 3 Upon receiving the input optical signal S in , the avalanche photodiode 3 outputs a current signal I out .
  • the processing circuitry 6 is also configured to measure the value of current I out output from the avalanche photodiode 3 and convert this value of measured current I out into input optical power P in , as received by the avalanche photodiode 3 and associated to the input optical signal S in .
  • This value of input optical power P in is associated to the characteristics parameter RSSI (received optical signal strength indication).
  • the processing circuitry 6 is configured to process the values of the measured operating temperature T and the input optical power P in to calculate a temperature-compensated input optical power value P inT .
  • the temperature compensation is linear with temperature.
  • the value of A may be represented in configuration memory, program code, etc.
  • the bias voltage generator 4 can be overloaded resulting in a drop in the supplied bias voltage Vbias and in the gain of the avalanche photodiode 3 with consequences in the reported RSSI.
  • the processing circuitry 6 is coupled to the output of the bias voltage generator 4 for measuring the value Vbias of the bias voltage supplied by the bias voltage generator 4 to the avalanche photodiode 3 and to process the values of the measured bias voltage Vbias and the input optical power P in to calculate a voltage-compensated input optical power value P inV .
  • the ADC 9 may be coupled to the bias voltage generator 4 for measuring the value of bias voltage Vbias supplied by the bias voltage generator 4 to the avalanche photodiode 3 .
  • the aforementioned temperature-compensated determination of P in can be done with or in addition to voltage-compensated P in determination, such that the processor 8 determines and operates using a measure of P in that is both temperature compensated and voltage compensated.
  • the triplexer 202 comprises a transimpedance amplifier 10 coupled to the output of the avalanche photodiode 3 for receiving the current signal I out .
  • the transimpedance amplifier 10 comprises a voltage output 10 a to output an amplified voltage signal V out and a current output 10 b to output a mirror current I out substantially corresponding to the current output from the avalanche photodiode 3 .
  • the current output 10 b is coupled to an earth ground through a resistor R 2 .
  • the processing circuitry 6 is coupled to the current output 10 b of the transimpedance amplifier 10 to measure the value of the mirror current I out and convert the value of this mirror current I out into input optical power P in of the avalanche photodiode 3 .
  • the memory 7 stores a lookup table comprising a plurality of current values associated to a corresponding plurality of optical power values at the reference temperature T 0 .
  • the triplexer 202 comprises an amplification circuitry 11 coupled to the transimpedance amplifier 10 for receiving the amplified voltage signal V out and to output to the processing circuitry 6 a signal-detect signal having a value depending on the value of the voltage level of the amplified voltage signal V out and a value of reference signal detection threshold V th set at the reference temperature T 0 and stored in the memory 7 .
  • the processing circuitry 6 is configured to process the values of the measured operating temperature T and the reference signal detection threshold V th to calculate a temperature-compensated signal detection threshold V thT .
  • This temperature compensation is also linear with temperature, with the slope having been determined empirically.
  • the amplification circuitry 11 comprises a post amplifier to output a signal V rx to an optical network termination unit of the passive optical network (not shown in the figures).
  • the signal V rx may be an analog signal, although it may be constrained or otherwise limited, such as by passing it through a limiting amplifier. In other embodiments, V rx is a digital signal.
  • the present invention relates to a method for controlling an electro-optical transceiver, e.g., transceiver 200 /triplexer 202 as shown in FIG. 2 .
  • the method comprises the steps of:
  • the reference bias voltage Vbias T0 is generated through following steps:
  • adjusting the bias voltage may be performed by increasing quickly the bias voltage until the output current signal I out from the transimpedance amplifier 10 increases. This indicates that the bias voltage is above the breakdown voltage of the avalanche photodiode 3 , which means that it is for example about 3V above the optimum bias voltage.
  • the reduction of the optimized bias voltage VbiasOPT by a predefined amount is performed to anticipate the aging of the avalanche photodiode.
  • the predetermined amount may be 0.5V.
  • the processing step comprises processing the values of the measured operating temperature T and reference bias voltage Vbias T0 to calculate a temperature-compensated bias voltage Vbias T value to adjust the value of the bias voltage supplied to the avalanche photodiode 3 . That is, the S Vbias signal may be generated or otherwise controlled to cause the APD bias voltage generator 4 to output the signal Vbias at or substantially at the targeted value Vbias T .
  • the processing step comprises measuring the value of the current I out output from the avalanche photodiode 3 and converting the value of the measured current I out into input optical power P in .
  • the conversion is carried out by providing a lookup table comprising a plurality of current values associated to a corresponding plurality of optical power values at the reference temperature T 0 and accessing this lookup table to convert the value of the measured current I out into input optical power P in .
  • the lookup table is generated by measuring the output current I out from the avalanche photodiode 3 at two distinct levels of input optical power, for example at ⁇ 29 dBm and ⁇ 12 dBm. Using these two readings, the lookup table can be generated.
  • the processing step comprises processing the values of the measured operating temperature T and of the input optical power P in to calculate a temperature-compensated input optical power value P inT .
  • the method may comprise measuring the value of the bias voltage Vbias supplied to the avalanche photodiode 3 so that the values of said measured bias voltage Vbias and the input optical power P in may be processed to calculate a voltage-compensated input optical power P inV .
  • the method comprises the steps of:
  • the present invention provides a PON transceiver with a low cost temperature compensation circuitry.

Abstract

A passive optical network transceiver includes an avalanche photodiode, a bias voltage generator for supplying a bias voltage to the avalanche photodiode, a temperature detector for measuring the operating temperature of the avalanche photodiode, a memory for storing one reference bias voltage and a processing circuitry to process the value of the measured operating temperature and the reference bias voltage to generate a control signal for controlling the bias voltage generator to adjust the bias voltage supplied by the said bias voltage generator.

Description

RELATED APPLICATION
The present application claims priority to U.S. Provisional Application Ser. No. 61/051,856 filed on May 9, 2008, herein incorporated by reference.
FIELD OF THE INVENTION
The present invention relates to a passive optical network (PON) transceiver.
DESCRIPTION OF THE RELATED ART
Fiber optic technology has been recognized for its high bandwidth capacity over longer distances, enhanced overall network reliability and service quality.
Fiber to the premises (FTTP), as opposed to fiber to the node (FTTN) or fiber to the curb (FTTC) delivery which still depend on copper wires for “last mile” (final connection) to the customers premises, enables service providers to deliver substantial bandwidth and a wide range of applications directly to business and residential subscribers. FTTP can be further categorized into fiber to the home (FTTH) and fiber to the building (FTTB).
For example, FTTP can accommodate the so-called “triple-play” bundle of services, e.g., high-speed Internet access and networking, multiple telephone lines and high-definition and interactive video applications. Utilizing FTTP, however, involves equipping each subscriber premises with the ability to receive an optical signal and convert it into a signal compatible with pre-existing wiring in the premises (e.g., twisted pair and coaxial). For bi-directional communication with the network, the premises should be equipped with the ability to convert outbound signals into optical signals. In some cases, these abilities are implemented with a passive optical network (“PON”), with each premises having a dedicated optical network unit (“ONU”) for transceiving optical and electrical signals. Generally speaking, a PON is a point-to-multipoint fiber to the premises network architecture in which un-powered optical splitters are used to enable a single optical fiber to serve multiple (e.g., 32) premises.
The receiver section of a PON network is characterized by three main challenging features: maintain high sensitivity, report the received optical signal strength indication (RSSI), which is the input optical power level, and report an indication of the signal detect (SD) status, for example a binary indication would assign 1 to signal detected and 0 to signal not detected.
All the above three features must be cost effective. In particular, high sensitivity and RSSI should be accurate over a range of input optical power greater than 30 dB and all three should be accurate in a temperature range from −40° C. to +85° C.
U.S. Pat. No. 7,217,914 discloses a method for calibrating optoelectronic transceivers based upon an avalanche photodiode breakdown voltage. The method involves adjusting a reverse-bias voltage of the avalanche photodiode until avalanche breakdown of the avalanche photodiode occurs. An optimized APD reverse-bias voltage is then determined by reducing the reverse-bias voltage at which avalanche breakdown occurs by a predetermined offset voltage. This process is performed at a variety of different temperatures. Information concerning each temperature and the corresponding optimized APD reverse-bias voltage is then stored in a memory of the optoelectronic device.
Although the technique disclosed in the above mentioned U.S. patent is effective, the high cost limits its employment, particularly in FTTH PON products where low cost is demanded. In fact, it should be noted that optimization of the bias voltage for each temperature gives rise to loss of time during manufacturing and increases the cost of the final product.
Therefore, there is a need to address the above mentioned drawbacks associated with the known PON transceivers.
SUMMARY OF INVENTION
The present invention provides a PON transceiver with a low cost temperature compensation circuit.
According to one embodiment, the PON transceiver has an optical triplexer operating at an operating temperature with an avalanche photodiode for coupling to an optical fiber and for receiving an input optical signal, a bias voltage generator coupled to the avalanche photodiode for supplying a bias voltage to the avalanche photodiode, a temperature detector for measuring the operating temperature and for generating an operating temperature signal representative of the value of the measured operating temperature and a memory for storing one reference bias voltage value representative of the bias voltage maximizing sensitivity of the avalanche photodiode at one reference temperature.
The PON transceiver also comprises processing circuitry coupled to the temperature detector and to the bias voltage generator for receiving the operating temperature signal and processing the value of the measured operating temperature and the value of the reference bias voltage. Based on this processing, the processing circuitry generates a control signal for controlling the bias voltage generator to adjust the bias voltage supplied by the bias voltage generator to the avalanche photodiode. In at least one embodiment, the processing circuitry includes a microprocessor or microcontroller configured to carry out the desired processing through execution of stored program instructions. The processing circuitry additionally or alternatively includes a Complex Programmable Logic Device (CPLD), Field Programmable Gate Array (FPGA), or other digital processing circuit, configured to carry out the desired processing.
These and other features of the present teachings are set forth herein. Of course, other features and advantages of the present invention will become apparent to the one skilled in the art from the following drawings and description of various embodiments. The various aspects of the various embodiments may be used alone or in combination, as is desired.
BRIEF DESCRIPTION OF THE DRAWINGS
The skilled person will understand that the drawings described below, are for illustration purposes only. The drawings are not intended to limit the scope of the present teachings in any way.
In the following, various embodiments of the invention will be described in detail with reference to the accompanying drawings in which:
FIG. 1 is a block diagram illustrating an implementation of a PON (e.g., GPON) network architecture;
FIG. 2 is a block diagram of an implementation of a transceiver; and
FIG. 3 is a block diagram of a triplexer included in the transceiver of FIG. 2.
DESCRIPTION OF VARIOUS EMBODIMENTS
Referring to the attached figures, FIG. 1 illustrates an implementation of a network topology associated with a passive optical network, e.g., a GPON.
A typical passive optical network comprises an optical line termination unit 108 coupled to a service provider 109 that provides one or more data services to a group of subscribers 101-103.
The service provider 109 is adapted to provide the data services content via a non-optical link to the optical line termination unit (“OLT”) 108. The OLT 108 is adapted to receive data from the service provider 109 in one format (e.g., electrical) and convert to an optical format. The OLT 108 is further adapted to receive data from subscribers 101-103 in an optical format and convert it to another format (e.g., electrical) for transmission to the service provider 109. In this implementation, the OLT 108 may be analogized to an electro-optical transceiver that receives upstream data in an optical format from subscribers, transmits downstream data in an optical format to subscribers, transmits the upstream data in electrical format to the service provider 109 and receives the downstream data from the service provider in an electrical format.
The OLT 108 is coupled to an optical splitter 107 via an optical link. The optical splitter 107 splits the incoming optical signal from the OLT 108 into multiple, substantially identical copies of the original incoming optical signal.
The optical splitter 107 provides substantially identical downstream signals to optical network units (ONUs), 104, 105, 106, respectively, associated with subscribers 101, 102, 103, respectively.
Each ONU, for example the ONU 104 receives a downstream signal and demultiplexes it into its constituent optical signals. These constituent optical signals are converted to corresponding electrical signal and transmitted via electrical links to the targeted hardware.
FIG. 2 illustrates a schematic of an implementation of a PON transceiver 200 that is disposed inside an ONU, e.g., ONU 104 of FIG. 1. The transceiver 200 comprises an optical triplexer 202 which is coupled to an optical fiber 201. The optical fiber 201 carries an upstream optical signal from an optical splitter, e.g., optical splitter 107 of FIG. 1, and carries a downstream optical signal to the optical splitter.
The triplexer 202 can take the form of a packaged electro-optical transceiver, and comprises one optical input/output port, coupled to optical fiber 201, two electrical outputs, one for data and one for video, and one electrical input, for upstream data. In the illustrated implementation, the triplexer demultiplexes the downstream optical signal into two constituent optical signals. The constituent optical signals are converted into electrical signals, e.g., by photodiodes, in particular avalanche photodiodes. The electrical signal corresponding to downstream data, e.g. from the 1490 nm optical signal, is transmitted to a digital receiver 203. The digital receiver 203, under control of digital control 205, provides an electrical data output signal 207. The digital control 205 ensures that the electrical signal 207 properly corresponds to the 1490 nm downstream optical signal according to one or more standards. For example, in a gigabit PON (GPON), the digital control 205 ensures that all upstream and downstream data is processed substantially in compliance with ITU-T G.984. The electrical data output signal 207 is coupled to a digital interface 213. The digital interface 213 is coupled to wiring in the subscriber's premises, e.g. via an adapter or other interface, and provides downstream data for telephone and data, e.g. via twisted-pair lines. The digital interface 213 also can transmit and receive data to/from televisions or set-top boxes, e.g., in connection with “on demand” programming.
The electrical signal corresponding to downstream video (e.g., from the 1550 nm optical signal) is transmitted to an analog video receiver 206, which comprises an amplifier. Under control of digital control 205, the analog video receiver generates (and subsequently amplifies) an RF electrical signal 209 s. The RF electrical signal 209 s is coupled to an RF interface 214. The RF interface 214 is coupled via an adapter or other interface (not shown) to television wiring in the subscriber's premises (e.g., coaxial cable). The RF interface 214 can include three terminals: two grounds and one signal, or it can be a coaxial connector.
Because television content may involve generating and receiving data aside from video content from analog video receiver 206 (e.g., in connection with ordering “on demand” content), the television wiring also may be coupled to the digital interface 213.
The triplexer 202 also generates an upstream, optical signal representative of data originating from the subscriber. The digital interface 213 receives data (in an electrical format) originating from, e.g., telephones, computers and set-top boxes associated with the subscriber. This received data 208 is sent to the digital transmitter 204. The digital transmitter 204, under control of digital control 205, converts the data into a format appropriate for triplexer 202 to convert to an optical signal that is transmitted on fiber 201.
FIG. 3 shows an implementation of the triplexer 202. The triplexer 202 comprises an avalanche photodiode 3, operating at an operating temperature T, for coupling to an optical fiber (not shown in the figures) and for receiving an input optical signal Sin with input optical power Pin, and a bias voltage generator 4 coupled to the avalanche photodiode 3, through a resistor R1, for supplying a bias voltage Vbias to the avalanche photodiode 3.
The triplexer 202 also comprises a temperature detector 5 for measuring the operating temperature T and for generating an operating temperature signal ST representative of the measured value of the operating temperature T and a memory 7 for storing the reference bias voltage value VbiasT0 representative of the bias voltage Vbias maximizing sensitivity of the avalanche photodiode 3 at one reference temperature T0.
With avalanche photodiodes, the gain setting, which is adjusted by the bias voltage Vbias, varies over temperature for optimum sensitivity.
To take into account both the change in breakdown voltage over temperature as well as the change in optimum gain over temperature, the triplexer 202 comprises processing circuitry 6 coupled to the memory 7, the temperature detector 5 and the bias voltage generator 4 for receiving the operating temperature signal ST and processing the value of the measured operating temperature T and the reference bias voltage value VbiasT0 to generate a control signal SVbias for controlling the bias voltage generator 4 to adjust the bias voltage Vbias supplied by the bias voltage generator 4 to the avalanche photodiode 3.
According to one embodiment, the processing circuitry 6 comprises a processor 8 coupled to the memory 7 for processing the values of the measured operating temperature T and the reference bias voltage VbiasT0 to generate the control signal SVbias. The illustrated embodiment of the processing circuitry 6 further includes an analog to digital converter (ADC) 9. The ADC 9 is coupled to the temperature detector 5 for receiving the temperature signal ST and converting the received temperature signal ST into the value of the measured operating temperature T associated to the temperature signal ST. Correspondingly, the ADC 9 is communicatively coupled to the processor 8, to provide the processor 8 with a (digitized) value representing the measured operating temperature T, as indicated by the temperature signal ST.
In at least one embodiment, the processing circuitry 6 comprises an integrated processing circuit, e.g., an IC, that includes the processor 8 and the ADC 9, and, preferably, further includes at least a portion of the memory 7. As a non-limiting example, the processing circuitry 6 comprises a microcontroller that includes an integrated ADC and memory. In the same or other embodiments, the processing circuitry 6 may output the signal SVbias as an analog control signal or as a digital control signal (e.g., PWM, PCM, binary, etc.) To that end, the processing circuitry 6 also may include a digital-to-analog converter (DAC), which may be included in the processor 8, along with the ADC 9, to convert digital values for SVbias into analog signal values. Alternatively, any digital-to-analog conversion that is used may be performed by the APD bias voltage generator 4.
In any case, according to one or more embodiments, the processor 8 is configured to process the values of the measured operating temperature T and the reference bias voltage VbiasT0 (e.g., as stored in the memory 7) to calculate a temperature-compensated bias voltage value VbiasT to adjust the value of the bias voltage supplied to the avalanche photodiode 3 at the measured operating temperature T.
Particularly, in one or more embodiments, the processor 8 is configured to determine the value of the signal SVbias that will control the APD bias voltage generator 4 to output a temperature-compensated Vbias signal that is optimized for the measured operating temperature T. Thus, with reference to FIG. 3, the processing circuitry 6 determines the correct bias voltage for the currently measured operating temperature, referred to as VbiasT. Correspondingly, the processing circuitry 6 generates or otherwise controls the adjustment signal SVbias such that the APD bias voltage generator 4 outputs the bias voltage Vbias at or substantially at the desired value VbiasT. This closed loop, temperature-based bias adjustment process may be carried out as needed, such as by detecting more than a threshold amount of temperature increase or decrease, or by periodically performing a ST signal measurement and corresponding VbiasT calculation and SVbias adjustment.
Regardless, according to the teachings herein the avalanche photodiode 3 operates with a temperature-compensated bias voltage that is advantageously determined using single reference point compensation. Upon receiving the input optical signal Sin, the avalanche photodiode 3 outputs a current signal Iout. The processing circuitry 6 is also configured to measure the value of current Iout output from the avalanche photodiode 3 and convert this value of measured current Iout into input optical power Pin, as received by the avalanche photodiode 3 and associated to the input optical signal Sin. This value of input optical power Pin is associated to the characteristics parameter RSSI (received optical signal strength indication).
It should be noted that the gain in the avalanche photodiode 3 is not constant. As the gain changes over temperature, the average current output from the avalanche photodiode 3 also changes even if the input optical power Pin remains constant so that the reported RSSI would be erroneous. To take into account of this variation of the avalanche photodiode gain over temperature, the processing circuitry 6 is configured to process the values of the measured operating temperature T and the input optical power Pin to calculate a temperature-compensated input optical power value PinT. The temperature compensation is linear with temperature. Thus, a compensated measure of Pin(T) may be determined as, for example, Pin(T)=Pin+A*T), where Pin is the uncompensated or “raw” determination of input optical power to the avalanche photodiode 3, and where the coefficient A is determined empirically in one or more embodiments. The value of A may be represented in configuration memory, program code, etc.
It should be noted that with high optical input powers Pin to the avalanche photodiode 3, the bias voltage generator 4 can be overloaded resulting in a drop in the supplied bias voltage Vbias and in the gain of the avalanche photodiode 3 with consequences in the reported RSSI. Accordingly, the processing circuitry 6 is coupled to the output of the bias voltage generator 4 for measuring the value Vbias of the bias voltage supplied by the bias voltage generator 4 to the avalanche photodiode 3 and to process the values of the measured bias voltage Vbias and the input optical power Pin to calculate a voltage-compensated input optical power value PinV.
To this purpose, the ADC 9 may be coupled to the bias voltage generator 4 for measuring the value of bias voltage Vbias supplied by the bias voltage generator 4 to the avalanche photodiode 3. Note, too, that the aforementioned temperature-compensated determination of Pin can be done with or in addition to voltage-compensated Pin determination, such that the processor 8 determines and operates using a measure of Pin that is both temperature compensated and voltage compensated.
According to one embodiment, the triplexer 202 comprises a transimpedance amplifier 10 coupled to the output of the avalanche photodiode 3 for receiving the current signal Iout. The transimpedance amplifier 10 comprises a voltage output 10 a to output an amplified voltage signal Vout and a current output 10 b to output a mirror current Iout substantially corresponding to the current output from the avalanche photodiode 3. In particular, the current output 10 b is coupled to an earth ground through a resistor R2. In this case, the processing circuitry 6 is coupled to the current output 10 b of the transimpedance amplifier 10 to measure the value of the mirror current Iout and convert the value of this mirror current Iout into input optical power Pin of the avalanche photodiode 3.
To convert current values into optical power values, the memory 7 stores a lookup table comprising a plurality of current values associated to a corresponding plurality of optical power values at the reference temperature T0.
According to a further embodiment, the triplexer 202 comprises an amplification circuitry 11 coupled to the transimpedance amplifier 10 for receiving the amplified voltage signal Vout and to output to the processing circuitry 6 a signal-detect signal having a value depending on the value of the voltage level of the amplified voltage signal Vout and a value of reference signal detection threshold Vth set at the reference temperature T0 and stored in the memory 7.
Since also the input level of signal to the amplification circuitry 11 is dependant on the gain of the avalanche photodiode 3, which in turn varies over temperature, the value of reference signal detection threshold Vth has to be temperature compensated. To this purpose, the processing circuitry 6 is configured to process the values of the measured operating temperature T and the reference signal detection threshold Vth to calculate a temperature-compensated signal detection threshold VthT. This temperature compensation is also linear with temperature, with the slope having been determined empirically.
According to the embodiment shown in the figures, the amplification circuitry 11 comprises a post amplifier to output a signal Vrx to an optical network termination unit of the passive optical network (not shown in the figures). The signal Vrx may be an analog signal, although it may be constrained or otherwise limited, such as by passing it through a limiting amplifier. In other embodiments, Vrx is a digital signal.
According to a further aspect, the present invention relates to a method for controlling an electro-optical transceiver, e.g., transceiver 200/triplexer 202 as shown in FIG. 2. The method comprises the steps of:
    • supplying a bias voltage Vbias to the avalanche photodiode 3,
    • providing a value of reference bias voltage VbiasT0 representative of the bias voltage maximizing sensitivity of the avalanche photodiode 3 at one reference temperature T0,
    • measuring the value of the operating temperature T, and
    • processing the values of the measured operating temperature T and the reference bias voltage VbiasT0 to adjust the bias voltage supplied to said avalanche photodiode.
According to one embodiment, the reference bias voltage VbiasT0 is generated through following steps:
    • removing optical power input to the avalanche photodiode 3,
      • supplying a bias voltage Vbias to the avalanche photodiode at the operating temperature T0 representing the reference temperature,
        • Quickly finding the approximate breakdown voltage,
        • Reducing the voltage a known amount,
      • Re-supplying optical power to enable optimizing the setting,
    • adjusting the bias voltage Vbias to maximize the sensitivity to obtain an optimized bias voltage VbiasOPT,
    • reducing the maximized bias voltage VbiasOPT by a predefined amount to obtain the reference bias voltage VbiasT0, and
    • storing the reference bias voltage VbiasT0 into the memory 7.
In particular, adjusting the bias voltage may be performed by increasing quickly the bias voltage until the output current signal Iout from the transimpedance amplifier 10 increases. This indicates that the bias voltage is above the breakdown voltage of the avalanche photodiode 3, which means that it is for example about 3V above the optimum bias voltage.
The reduction of the optimized bias voltage VbiasOPT by a predefined amount is performed to anticipate the aging of the avalanche photodiode. For example the predetermined amount may be 0.5V.
According to one embodiment, the processing step comprises processing the values of the measured operating temperature T and reference bias voltage VbiasT0 to calculate a temperature-compensated bias voltage VbiasT value to adjust the value of the bias voltage supplied to the avalanche photodiode 3. That is, the SVbias signal may be generated or otherwise controlled to cause the APD bias voltage generator 4 to output the signal Vbias at or substantially at the targeted value VbiasT.
To evaluate the RSSI parameter, the processing step comprises measuring the value of the current Iout output from the avalanche photodiode 3 and converting the value of the measured current Iout into input optical power Pin.
The conversion is carried out by providing a lookup table comprising a plurality of current values associated to a corresponding plurality of optical power values at the reference temperature T0 and accessing this lookup table to convert the value of the measured current Iout into input optical power Pin.
In particular, the lookup table is generated by measuring the output current Iout from the avalanche photodiode 3 at two distinct levels of input optical power, for example at −29 dBm and −12 dBm. Using these two readings, the lookup table can be generated.
According to one embodiment, the processing step comprises processing the values of the measured operating temperature T and of the input optical power Pin to calculate a temperature-compensated input optical power value PinT.
Furthermore, the method may comprise measuring the value of the bias voltage Vbias supplied to the avalanche photodiode 3 so that the values of said measured bias voltage Vbias and the input optical power Pin may be processed to calculate a voltage-compensated input optical power PinV.
With reference to the signal-detect signal, the method comprises the steps of:
    • providing a value of reference signal detection threshold Vth set at the reference temperature T0,
    • processing the values of the measured operating temperature T and the reference signal detection threshold Vth to calculate a temperature-compensated signal detection threshold VthT.
From the discussion above, it should be clear to those skilled in the art that the present invention provides a PON transceiver with a low cost temperature compensation circuitry.
While particular embodiments of the present invention have been shown and described, it will be understood by those skilled in the art that, based upon the teachings herein, changes and modifications may be made without departing from this invention and its broader aspects and, therefore, the appended claims are to encompass within their scope all such changes and modifications as are within the scope of this invention. Furthermore, it is to be understood that the invention is solely defined by the appended claims.
It will be understood by those within the art that, in general, terms used herein, and especially in the appended claims (e.g., bodies of the appended claims) are generally intended as “open” terms (e.g., the term “including” should be interpreted as “including but not limited to,” the term “having” should be interpreted as “having at least,” the term “includes” should be interpreted as “includes but is not limited to,” “comprise” and variations thereof, such as, “comprises” and “comprising” are to be construed in an open, inclusive sense, that is as “including, but not limited to,” etc.). It will be further understood by those within the art that if a specific number of an introduced claim recitation is intended, such an intent will be explicitly recited in the claim, and in the absence of such recitation no such intent is present. For example, as an aid to understanding, the following appended claims may contain usage of the introductory phrases “at least one” and “one or more” to introduce claim recitations. However, the use of such phrases should not be construed to imply that the introduction of a claim recitation by the indefinite articles “a” or “an” limits any particular claim containing such introduced claim recitation to inventions containing only one such recitation, even when the same claim includes the introductory phrases “one or more” or “at least one” and indefinite articles such as “a” or “an” (e.g., “a” and/or “an” should typically be interpreted to mean “at least one” or “one or more”); the same holds true for the use of definite articles used to introduce claim recitations. In addition, even if a specific number of an introduced claim recitation is explicitly recited, those skilled in the art will recognize that such recitation should typically be interpreted to mean at least the recited number (e.g., the bare recitation of “two recitations,” without other modifiers, typically means at least two recitations, or two or more recitations).

Claims (9)

1. A transceiver for use in a passive optical network, said passive optical network comprising an optical line termination unit coupled to a service provider for providing downstream data and receiving upstream data in an optical format to and from subscribers, a passive optical splitter coupled to the optical line termination unit and disposed at a location remote therefrom, the passive optical splitter adapted to divide the downstream data into multiple downstream optical signals and further adapted to receive multiple upstream optical signals, and transceivers, each associated with a respective subscriber and adapted to receive a downstream input optical signal and transmit an upstream optical signal, said transceiver comprising an optical triplexer, wherein the optical triplexer comprises:
an avalanche photodiode, for coupling to an optical fiber and for receiving an input optical signal, wherein said avalanche photodiode outputs a current signal;
a bias voltage generator coupled to said avalanche photodiode for supplying a bias voltage to said avalanche photodiode;
a temperature detector for measuring an operating temperature of said avalanche photodiode and for generating an operating temperature signal representative of the value of the measured operating temperature;
a memory for storing one reference bias voltage value representative of the bias voltage maximizing sensitivity of the avalanche photodiode at one reference temperature;
processing circuitry coupled to said memory, temperature detector and bias voltage generator for receiving said operating temperature signal and processing the value of the measured operating temperature and said one reference bias voltage to generate a control signal for controlling said bias voltage generator to adjust the bias voltage supplied by said bias voltage generator to said avalanche photodiode, wherein said processing circuitry is configured to measure the value of current output from said avalanche photodiode and convert the value of said measured current into input optical power;
a transimpedance amplifier coupled to the output of said avalanche photodiode for receiving said current signal and comprising a voltage output to output an amplified voltage signal and a current output to output a mirror current corresponding to the current output from said avalanche photodiode, wherein said processing circuitry is coupled to said current output of the transimpedance amplifier to measure the value of said mirror current and convert the value of said mirror current into input optical power; and
an amplification circuitry coupled to said transimpedance amplifier for receiving said amplified voltage signal and to output to said processing circuitry a signal-detect signal depending on the value of the voltage of said amplified voltage signal and a value of reference signal detection threshold set at said one reference temperature, wherein said memory is configured to store said value of reference signal detection threshold, and said processor is configured to process the values of said measured operating temperature and said reference signal detection threshold to calculate a temperature-compensated signal detection threshold.
2. The transceiver according to claim 1, wherein said processing circuitry comprises a processor coupled to said memory for processing the values of the measured operating temperature and the reference bias voltage to generate said control signal.
3. The transceiver according to claim 2, wherein said processing circuitry comprises an analog to digital converter coupled to said temperature detector and to said processor for receiving said temperature signal and converting said temperature signal into said value of the measured operating temperature associated to said temperature signal.
4. The transceiver according to claim 1, wherein said processor is configured to process the values of said measured operating temperature and said reference bias voltage to calculate a temperature-compensated bias voltage value to adjust the value of the bias voltage supplied to said avalanche photodiode.
5. The transceiver according to claim 1, wherein said processing circuitry is configured to process the values of said measured operating temperature and said input optical power to calculate a temperature-compensated input optical power value.
6. The transceiver according to claim 1, wherein said processing circuitry is coupled to the output of said bias voltage generator for measuring the value of the bias voltage supplied by said bias voltage generator to said avalanche photodiode and to process the values of said measured bias voltage and said input optical power to calculate a voltage-compensated input optical power value.
7. The transceiver according to claim 6, wherein said processing circuitry comprises an analog-to-digital converter coupled to said bias voltage generator for measuring the value of bias voltage supplied by said bias voltage generator to said avalanche photodiode.
8. The transceiver according to claim 1, wherein said memory is configured to store a lookup table for the conversion of values of mirror current into input optical power.
9. The transceiver according to claim 1, wherein said amplification circuitry comprises a post amplifier to output an analog signal to an optical network termination unit of said passive optical network.
US12/437,617 2008-05-09 2009-05-08 Passive optical network transceiver with temperature compensation circuit Expired - Fee Related US8145060B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US12/437,617 US8145060B2 (en) 2008-05-09 2009-05-08 Passive optical network transceiver with temperature compensation circuit

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US5185608P 2008-05-09 2008-05-09
US12/437,617 US8145060B2 (en) 2008-05-09 2009-05-08 Passive optical network transceiver with temperature compensation circuit

Publications (2)

Publication Number Publication Date
US20090279896A1 US20090279896A1 (en) 2009-11-12
US8145060B2 true US8145060B2 (en) 2012-03-27

Family

ID=41266963

Family Applications (1)

Application Number Title Priority Date Filing Date
US12/437,617 Expired - Fee Related US8145060B2 (en) 2008-05-09 2009-05-08 Passive optical network transceiver with temperature compensation circuit

Country Status (1)

Country Link
US (1) US8145060B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110445541A (en) * 2019-08-13 2019-11-12 青岛海信宽带多媒体技术有限公司 Control method, device and the optical module of bias voltage are provided to APD
US20190372672A1 (en) * 2016-10-27 2019-12-05 Accelink Technologies Co., Ltd. Optical Power And Gain Detection Apparatus And Method For Optical Amplifier In Burst Mode
US10958224B2 (en) * 2017-08-21 2021-03-23 Infineon Technologies Ag Method and device for providing a bias voltage in transceivers operating in time division multiplexing operation
US20230050920A1 (en) * 2021-08-13 2023-02-16 Allegro Microsystems, Llc Non-uniformity correction of photodetector arrays

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7831210B1 (en) * 2006-12-01 2010-11-09 Rockwell Collins, Inc. MEMS-based broadband transceiver/sensor
US8837934B2 (en) * 2011-08-30 2014-09-16 Avago Technologies General Ip (Singapore) Pte. Ltd. Monitoring circuitry for optical transceivers
US20140010555A1 (en) * 2012-07-06 2014-01-09 Alcatel-Lucent Usa Inc. PON Video Overlay Amplifier Circuit
US9590732B2 (en) * 2014-04-21 2017-03-07 Arris Enterprises, Inc. Active optical combiner for CATV network
EP3134986B1 (en) * 2014-04-21 2021-03-17 ARRIS Enterprises LLC Apparatus and system for managing wavelengths in optical networks
DE112019004886T5 (en) * 2018-09-28 2021-07-01 Sony Semiconductor Solutions Corporation SOLID IMAGING ELEMENT, CONTROL METHOD FOR A SOLID IMAGING ELEMENT, AND ELECTRONIC DEVICE

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6313459B1 (en) * 2000-05-31 2001-11-06 Nortel Networks Limited Method for calibrating and operating an uncooled avalanche photodiode optical receiver
US6658217B2 (en) * 1997-03-13 2003-12-02 Hitachi, Ltd. Optical receiver
US7217914B2 (en) 2002-02-12 2007-05-15 Finisar Corporation Method for calibrating an optoelectronic device based on APD breakdown voltage
US20090080888A1 (en) * 2007-09-25 2009-03-26 Hitachi Communication Technologies, Ltd. Optical line terminating apparatus and optical communication system
US7792434B2 (en) * 2005-09-07 2010-09-07 Sumitomo Electric Industries, Ltd. Optical receiver

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6658217B2 (en) * 1997-03-13 2003-12-02 Hitachi, Ltd. Optical receiver
US6313459B1 (en) * 2000-05-31 2001-11-06 Nortel Networks Limited Method for calibrating and operating an uncooled avalanche photodiode optical receiver
US7217914B2 (en) 2002-02-12 2007-05-15 Finisar Corporation Method for calibrating an optoelectronic device based on APD breakdown voltage
US7792434B2 (en) * 2005-09-07 2010-09-07 Sumitomo Electric Industries, Ltd. Optical receiver
US20090080888A1 (en) * 2007-09-25 2009-03-26 Hitachi Communication Technologies, Ltd. Optical line terminating apparatus and optical communication system

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20190372672A1 (en) * 2016-10-27 2019-12-05 Accelink Technologies Co., Ltd. Optical Power And Gain Detection Apparatus And Method For Optical Amplifier In Burst Mode
US10797798B2 (en) * 2016-10-27 2020-10-06 Accelink Technologies Co., Ltd. Optical power and gain detection apparatus and method for optical amplifier in burst mode
US10958224B2 (en) * 2017-08-21 2021-03-23 Infineon Technologies Ag Method and device for providing a bias voltage in transceivers operating in time division multiplexing operation
CN110445541A (en) * 2019-08-13 2019-11-12 青岛海信宽带多媒体技术有限公司 Control method, device and the optical module of bias voltage are provided to APD
CN110445541B (en) * 2019-08-13 2022-01-28 青岛海信宽带多媒体技术有限公司 Control method and device for providing bias voltage for APD (avalanche photo diode), and optical module
US20230050920A1 (en) * 2021-08-13 2023-02-16 Allegro Microsystems, Llc Non-uniformity correction of photodetector arrays
US11585910B1 (en) * 2021-08-13 2023-02-21 Allegro Microsystems, Llc Non-uniformity correction of photodetector arrays

Also Published As

Publication number Publication date
US20090279896A1 (en) 2009-11-12

Similar Documents

Publication Publication Date Title
US8145060B2 (en) Passive optical network transceiver with temperature compensation circuit
US9319139B2 (en) Long distance multi-mode communication
US8983308B2 (en) Optical network device with multi-transport support
US20070023615A1 (en) Method and system for facilitating burst-mode optical power maeasurement
US9077476B2 (en) Self-characterization tunable optical receiver
US20140029635A1 (en) Laser power control using bias and modulation current feedback
US20060120732A1 (en) Apparatus and method in optical receiver for receiving burst mode signal
EP3134984B1 (en) Optical and rf techniques for aggregation of photo diode arrays
US9479264B2 (en) Avalanche photodiode bias control in passive optical networks
KR101544077B1 (en) Optical line terminal
CN100440756C (en) Passive optical network and its data communication method
US8160457B2 (en) PIN/TIA system for use in FTTx applications
US9638725B2 (en) Optical receiver and light reception current monitoring method
US20090028490A1 (en) Signal identifying apparatus for an optical fiber
US20140119395A1 (en) Laser Driver Modulation and Bias Control Scheme
JP2015089047A (en) Optical reception device and transmission apparatus
US10812190B1 (en) Active optical cable (AOC) device and operation control method thereof
JP5535384B2 (en) OPTICAL TERMINAL DEVICE, TRANSMISSION DEVICE, AND OPTICAL TRANSMISSION SYSTEM
KR101953861B1 (en) Optical receiving apparatus having improved receiving performance for multilevel optical signal and method thereof
CN107276673B (en) Optical module
JP2010283752A (en) Optical communication method, station-side apparatus and optical communication system
JP2014093759A (en) Optical communication module, communication device, method for adjusting bias voltage of photodetector, and method for measuring multiplication factor of photodetector
JP2007060548A (en) Optical receiving device and automatic gain control method
WO2023125509A1 (en) Control method and apparatus, chip, optical line termination and passive optical network
JP2010226627A (en) Burst signal identifier, burst light receiver, burst signal identifying method and burst light receiving method

Legal Events

Date Code Title Description
AS Assignment

Owner name: EMCORE CORPORATION, NEW MEXICO

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:HUFSTEDLER, ERIC;LOU, XIAOMING;ZHANG, GENZAO;AND OTHERS;REEL/FRAME:022808/0221;SIGNING DATES FROM 20090415 TO 20090429

Owner name: EMCORE CORPORATION, NEW MEXICO

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:HUFSTEDLER, ERIC;LOU, XIAOMING;ZHANG, GENZAO;AND OTHERS;SIGNING DATES FROM 20090415 TO 20090429;REEL/FRAME:022808/0221

AS Assignment

Owner name: WELLS FARGO BANK, NATIONAL ASSOCIATION, ARIZONA

Free format text: SECURITY AGREEMENT;ASSIGNORS:EMCORE CORPORATION;EMCORE SOLAR POWER, INC.;REEL/FRAME:026304/0142

Effective date: 20101111

STCF Information on status: patent grant

Free format text: PATENTED CASE

FPAY Fee payment

Year of fee payment: 4

FEPP Fee payment procedure

Free format text: PAT HOLDER CLAIMS SMALL ENTITY STATUS, ENTITY STATUS SET TO SMALL (ORIGINAL EVENT CODE: LTOS); ENTITY STATUS OF PATENT OWNER: SMALL ENTITY

FEPP Fee payment procedure

Free format text: MAINTENANCE FEE REMINDER MAILED (ORIGINAL EVENT CODE: REM.); ENTITY STATUS OF PATENT OWNER: SMALL ENTITY

LAPS Lapse for failure to pay maintenance fees

Free format text: PATENT EXPIRED FOR FAILURE TO PAY MAINTENANCE FEES (ORIGINAL EVENT CODE: EXP.); ENTITY STATUS OF PATENT OWNER: SMALL ENTITY

STCH Information on status: patent discontinuation

Free format text: PATENT EXPIRED DUE TO NONPAYMENT OF MAINTENANCE FEES UNDER 37 CFR 1.362

AS Assignment

Owner name: EMCORE SOLAR POWER, INC., CALIFORNIA

Free format text: RELEASE BY SECURED PARTY;ASSIGNOR:WELLS FARGO BANK;REEL/FRAME:061212/0728

Effective date: 20220812

Owner name: EMCORE CORPORATION, CALIFORNIA

Free format text: RELEASE BY SECURED PARTY;ASSIGNOR:WELLS FARGO BANK;REEL/FRAME:061212/0728

Effective date: 20220812