US8116424B2 - Shift register and liquid crystal display using same - Google Patents
Shift register and liquid crystal display using same Download PDFInfo
- Publication number
- US8116424B2 US8116424B2 US12/283,816 US28381608A US8116424B2 US 8116424 B2 US8116424 B2 US 8116424B2 US 28381608 A US28381608 A US 28381608A US 8116424 B2 US8116424 B2 US 8116424B2
- Authority
- US
- United States
- Prior art keywords
- transistor
- circuit
- voltage signal
- level voltage
- shift register
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active, expires
Links
Images
Classifications
-
- G—PHYSICS
- G11—INFORMATION STORAGE
- G11C—STATIC STORES
- G11C19/00—Digital stores in which the information is moved stepwise, e.g. shift registers
- G11C19/28—Digital stores in which the information is moved stepwise, e.g. shift registers using semiconductor elements
-
- G—PHYSICS
- G09—EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
- G09G—ARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
- G09G2310/00—Command of the display device
- G09G2310/02—Addressing, scanning or driving the display screen or processing steps related thereto
- G09G2310/0264—Details of driving circuits
- G09G2310/0286—Details of a shift registers arranged for use in a driving circuit
-
- G—PHYSICS
- G09—EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
- G09G—ARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
- G09G3/00—Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes
- G09G3/20—Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters
- G09G3/34—Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters by control of light from an independent source
- G09G3/36—Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters by control of light from an independent source using liquid crystals
- G09G3/3611—Control of matrices with row and column drivers
- G09G3/3674—Details of drivers for scan electrodes
- G09G3/3677—Details of drivers for scan electrodes suitable for active matrices only
-
- G—PHYSICS
- G09—EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
- G09G—ARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
- G09G3/00—Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes
- G09G3/20—Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters
- G09G3/34—Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters by control of light from an independent source
- G09G3/36—Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters by control of light from an independent source using liquid crystals
- G09G3/3611—Control of matrices with row and column drivers
- G09G3/3685—Details of drivers for data electrodes
- G09G3/3688—Details of drivers for data electrodes suitable for active matrices only
Definitions
- Embodiments of the present disclosure relate to a shift register, and more particularly to a shift register in a liquid crystal display (LCD).
- LCD liquid crystal display
- Shift registers are core circuit units of integrated circuits that are used in products such as thin film transistor liquid crystal displays (TFT-LCDs).
- a shift register provides sequential pulse signals to scanning lines of a TFT-LCD, so as to control on and off states of TFTs connected to the scanning lines.
- one such shift register unit 100 includes a first clock inversion circuit 110 , an inverter 120 , and a second clock inversion circuit 130 . All transistors in the first clock inversion circuit 110 , the inverter 120 , and the second clock inversion circuit 130 are PMOS (P-channel metal oxide semiconductor) transistors.
- the first clock inversion circuit 110 receives an output signal VS from a pre-stage shift register unit (not shown). The output signal VS functions as a start signal.
- the first clock inversion circuit 110 includes a first transistor P 1 , a second transistor P 2 , a third transistor P 3 , a fourth transistor P 4 , a first output V 1 , and a second output V 2 .
- the inverter 120 includes a fifth transistor P 5 and a sixth transistor P 6 .
- the inverter 120 outputs an output signal that serves as a shift register signal V.
- the second clock inversion circuit 130 and the first clock inversion circuit 120 have similar structures.
- the second clock inversion circuit 130 includes a seventh transistor P 7 , an eighth transistor P 8 , a ninth transistor P 9 , and a tenth transistor P 10 .
- a sequence waveform diagram of pulse signals of the shift register unit 100 is shown.
- the inverter 120 and the second clock inversion circuit 130 perform a latch operation.
- the sixth transistor P 6 is switched off such that the shift register signal V of the inverter 120 keeps an original state of the previous stage.
- no latch operation is performed.
- the start signal VS is applied to the inverter 120
- the second clock inversion circuit 130 keeps the same state as the start signal VS.
- the first transistor P 1 is switched on because the start signal VS jumps to a low voltage, such that the fifth transistor P 5 is switched off and the sixth transistor P 6 is switched on.
- the inverter 120 outputs the shift register signal V having a low level through the activated sixth transistor P 6 .
- the inverter 120 and the second clock inversion circuit 130 perform latch operation.
- the inverter 120 maintains output of a low level shift register signal V through the activated sixth transistor P 6 .
- no latch operation is performed.
- the inverter 120 stops output of the low-level shift register signal V.
- the shift register unit 100 receives the start signal VS during period t 2 , and at the same time, outputs the shirt register signal V.
- These two signals VS, V may liable to overlap during period t 2 . That is, in the LCD that taking the shift register units 100 as gate or data driving circuits, two rows or columns of the gate/data lines may be scanned at the same time. Therefore, it may cause signal distortions, which may cause color shift while displaying images on the LCD.
- a shift register includes a plurality of shift register units, and each two adjacent shift register units receives two inverse clock signals.
- Each of the shift register unit includes an output circuit, and input circuit, and a logic circuit.
- the output circuit receives a clock signal from an external circuit, which includes a clock transistor for receiving the clock signal; and a voltage stabilizing transistor for receiving a low level voltage signal.
- the input circuit receives signals output by a previous shift register unit and outputs signals to turn on the clock transistor.
- the logic circuit receives a high level voltage signal, a low level voltage signal, and signals output by the input circuit, to control the logic circuit to output a high level voltage signal or a low level voltage signal to the voltage stabilizing transistor.
- the logic circuit When the input circuit outputs signals to switch on the clock transistor, the logic circuit outputs a low level voltage signal to shut off the voltage stabilizing transistor. Thus, the output circuit outputs signals via the clock circuit. On the other hand, when the input circuit outputs signals to shut off the clock transistor, the logic circuit outputs a high level voltage signal to turn on the voltage stabilizing transistor, so as to maintain the output circuit to output low level voltage signal.
- a liquid crystal display includes a liquid crystal panel, a gate driving circuit, and a data driving circuit.
- Each of the gate driving circuit and the data driving circuit includes at least one shift register, and each of the shift registers includes a plurality of shift register units connected in stages. Further, each two adjacent shift register units receives two inverse clock signals.
- Each of the shift register unit includes an output circuit, and input circuit, and a logic circuit.
- the output circuit receives a clock signal from an external circuit, which includes a clock transistor for receiving the clock signal; and a voltage stabilizing transistor for receiving a low level voltage signal.
- the input circuit receives signals output by a previous shift register unit and outputs signals to turn on the clock transistor.
- the logic circuit receives a high level voltage signal, a low level voltage signal, and signals output by the input circuit, to control the logic circuit to output a high level voltage signal or a low level voltage signal to the voltage stabilizing transistor.
- the logic circuit When the input circuit outputs signals to switch on the clock transistor, the logic circuit outputs a low level voltage signal to shut off the voltage stabilizing transistor.
- the output circuit outputs signals via the clock circuit.
- the logic circuit when the input circuit outputs signals to shut off the clock transistor, the logic circuit outputs a high level voltage signal to turn on the voltage stabilizing transistor, so as to maintain the output circuit to output low level voltage signal.
- FIG. 1 illustrates a circuit diagram of one embodiment of a shift register of the present disclosure including a plurality of shift register units.
- FIG. 2 illustrates a low-level schematic diagram of one embodiment of the shift register unit of FIG. 1 .
- FIG. 3 illustrates a sequence waveform diagram of exemplary pulse signals of the shift register unit of FIG. 1 .
- FIG. 4 illustrates one embodiment of a liquid crystal display employing at least one of the shift registers of FIG. 1 .
- FIG. 5 is a circuit diagram of a shift register unit of a conventional shift register.
- FIG. 6 is a sequence waveform diagram of pulse signals of the shift register of FIG. 5 .
- FIG. 1 illustrates a circuit diagram of one embodiment of a shift register 20 of the present disclosure including a plurality of shift register units 21 , 22 .
- the shift register units 21 , 22 are connected in series, and each of which receives a first clock signal CLK, a second clock signal CLKB inverse to the first clock signal CLK, a high level voltage signal VGH, and a low level voltage signal VGL.
- Each shift register unit 21 includes a plurality of NMOS (N-channel metal oxide semiconductor) transistors, and each NMOS transistor includes a gate, a source, and a drain.
- the shift register units 21 includes an input STV, a first output VOUT 1 , and a second VOUT 2 .
- the shift register unit 22 includes an input VIN, a first output VO 1 , and a second output VO 2 . Signals output by the first output VOUT 1 of the shift register unit 21 are transmitted to the input VIN of the shift register unit 22 , and signals output by the first output VO 1 and the second output VO 2 of the shift register unit 22 may feedback to the shift register unit 21 .
- the second output VOUT 2 of the shift register unit 21 and the second output VO 2 of the shift register unit 22 serve to output to an external circuit (not shown).
- FIG. 2 illustrates a low-level schematic diagram of one embodiment of the shift register units 21 , 22 .
- the shift register unit 21 includes an input circuit 211 , a logic circuit 213 , a feedback circuit 215 , an output circuit 217 , and a first node X 1 .
- the input circuit 211 , the logic circuit 213 , and the output circuit 217 are coupled to the first node X 1 .
- the input circuit 211 includes a first transistor M 1 .
- a drain of the first transistor M 1 receives the high level voyage signal VGH, and a gate of the first transistor M 1 serves as an input STV of the first shift register unit 21 . Further, a source of the first transistor M 1 is connected to the node X 1 .
- the logic circuit 213 includes a second transistor M 2 , a third transistor M 3 , a fourth transistor M 4 , and a fifth transistor M 5 .
- a source of the second transistor M 2 receives the low level voltage signal VGL, and a gate of the second transistor M 2 is connected to a gate of the fourth transistor M 4 .
- the gates of the second and fourth transistors M 2 , M 4 are connected to the first node X 1 .
- a drain of the second transistor M 2 is connected to sources of the fifth transistors M 5 .
- a source of the fourth transistor M 4 receives the low level voltage signal VGL, and a drain of the fourth transistor M 4 is connected to a source of the third transistor M 3 .
- a gate of the third transistor M 3 is connected to the drain of the second transistor M 2 , and a drain of the third transistor M 3 receives the high level voltage signal VGH.
- a gate and a drain of the fifth transistor M 5 is connected with each other, for receiving the high level voltage signal VGH.
- the feedback input 215 includes a sixth transistor M 6 , a seventh transistor M 7 , an eighth transistor M 8 , a ninth transistor M 9 , and a second node X 2 .
- a gate of the sixth transistor M 6 receives signals output from the second shift register unit 22 , and a drain of the sixth transistor M 6 receives the high level voltage signal VGH. Further, a source of the sixth transistor M 6 is connected to second node X 2 .
- a gate of the seventh transistor M 7 is connected to the second node X 2 , and a source of the seventh transistor M 7 receives the low level voltage signal VGL. Further, a drain of the seventh transistor M 7 is connected to the node X 1 .
- Gates of the eighth and ninth transistors M 8 , M 9 are connected to the second node X 2 , and sources of the eighth and ninth transistors M 8 , M 9 receives the low level input VGL. Further, drains of the eighth and ninth transistors M 8 , M 9 are connected to the output circuit 217 .
- the output circuit 217 includes a tenth transistor M 10 , an eleventh transistor M 11 , and a twelfth transistor M 12 .
- the tenth and eleventh transistors M 10 , M 11 serve as clock transistors of the output circuit 217 .
- Gates of the tenth and eleventh transistors M 10 , M 11 are connected to the first node X 1
- drains of the ninth and tenth transistors M 9 , M 10 are connected to the first clock signal CLK.
- sources of the tenth and eleventh transistors M 10 , M 11 are respectively connected to the drains of the eighth and ninth transistors M 8 , M 9 , and serve as the first output VOUT 1 and the second output VOUT 2 , respectively.
- Signals output by the first output VOUT 1 are transmitted to the input VIN of the second shift register unit 22 , and signals output by the second output VOUT 2 are transmitted to an external circuit.
- the twelfth transistor M 12 serves as a voltage stabilizing transistor, and a gate of the twelfth transistor M 12 is connected to the source of the fifth transistor M 5 of the logic circuit 213 .
- a source of the twelfth transistor M 12 receives the low level voltage signal VGL, and a drain of the twelfth transistor M 12 is connected to the second output VOUT 2 .
- the second shift register unit 22 has an arrangement similar to that of the first shift register unit 21 .
- the second shift register unit 22 includes twelve transistors T 1 ⁇ T 12 , an input VIN, a first output VO 1 , and a second output VO 2 .
- the input VIN receives signals output by the first output VOUT 1 of the first shift register unit 21
- the first output VO 1 is connected to the gate of the sixth transistor M 6 of the first shift register unit 21 .
- Drains of the tenth transistor T 10 and the twelfth transistor T 12 are connected to the second clock signal CLKB.
- FIG. 3 illustrates a sequence waveform diagram of exemplary pulse signals of the shift register units 21 , 22 of FIG. 1 .
- the first clock signal CLK is set at a low level voltage signal VGL
- the second clock signal CLKB is set at a high level voltage signal VGH.
- the start input STV turns from a low level voltage signal VGL to a high level voltage signal VGH during the period t 1 .
- the first transistor M 1 of the input circuit 211 is switched off, so as to maintain the first node X 1 at a low level. Then, the tenth and eleventh transistors M 10 , M 11 of the output circuit 217 are switched off.
- the first clock signal CLK cannot output to the first output VOUT 1 , and the first output VOUT 1 is kept as a low level.
- the second and fourth transistors M 2 , M 4 of the logic circuit 213 are switched off, and cannot receive the low level voltage signal VGL.
- the fifth transistor M 5 of the logic circuit 213 is switched on due to that the gate and drain of which receive the high level voltage signal VGH, and cause the twelfth transistor M 12 to be switched on.
- the second output VOUT 2 of the first shift register 21 outputs low level voltage signal VGL to the external circuit.
- the second shift register unit 22 receives the second clock signal CLKB at a low level voltage signal VGL.
- the input VIN of the second shift register unit 22 receives the signals output by the first shift register unit 21 , and the signals are maintained at a low level voltage signal VGL.
- the first, the ninth, and the tenth transistors T 1 , T 9 , T 10 are all switched off.
- the first and second outputs VO 1 , VO 2 respectively output the low level signal VGL.
- the second and fourth transistors T 2 , T 4 are switched off, and the fifth transistor T 5 is switched on via receiving the high level voltage signal VGH.
- the second clock signal CLKB at high level VGH are transmitted to twelfth transistor T 12 via the fifth transistor T 5 , so as to make the low level signal VGL to be transmitted to the first and second outputs VO 1 , VO 2 . Therefore, the first and second outputs VO 1 , VO 2 respectively maintain to output the low level voltage signal VGL.
- the low level voltage signal VGL output by the second output VO 2 is feedback to the gate of the sixth transistor M 6 , so as to switch off the sixth transistor M 6 . Then, the seventh, the eighth, and the ninth transistors M 7 , M 8 , M 9 of the feedback circuit 215 are switched off.
- the first transistor M 1 is switched on, and the input circuit 211 outputs the high level voltage signal VGH to the first node X 1 via the first transistor M 1 .
- the tenth and eleventh transistors M 10 and M 11 are switched on, and the first and second outputs VOUT 1 , VOUT 2 respectively outputs the first clock signal CLK. That is, the first output VOUT 1 outputs the low level voltage signal VGL to the second shift register unit 22 , and the second output VOUT 2 outputs the low level voltage signal VGL to the external circuit.
- the second and fourth transistors M 2 , M 4 connected to the first node X 1 are also switched on, so as to pull down a voltage level of the source of the fifth transistor M 5 to a low level voltage signal. Then, the twelfth transistor M 12 is switched off, and the second output VOUT 2 maintains to output the first clock signal CLK. Meanwhile, the first and second outputs VO 1 , VO 2 respectively maintain to output the low level voltage signal VGL.
- the first clock signal CLK turns to a high level voltage signal VGH
- the second clock signal CLKB turns to a low level voltage signal VGL.
- the start signal STV turns from a high level voltage signal VGH to a low level voltage signal VGL during the period t 2 .
- the input circuit 211 outputs the high level voltage signal VGH to the first node X 1 .
- the tenth and eleventh transistors M 10 , M 11 are switched on. Therefore, the first output VOUT 1 of the output circuit 217 outputs the first clock signal CLK (the high level voltage signal VGH) to the second shift register unit 22 , and the second output VOUT 2 of the output circuit 217 outputs the first clock signal CLK (the high level voltage signal VGH) to the external circuit (not shown), so as to pull up the voltage level of the node X 1 .
- the second transistor M 2 is switched on and the source of the fifth transistor M 5 is kept at a low level.
- the twelfth transistor M 12 is switched off, and the second output VOUT 2 maintains to output the first clock signal CLK (the high level voltage signal VGH) to the external circuit (not shown).
- the second shift register unit 22 receives the second clock signal CLKB at a low level voltage signal VGL.
- the input VIN of the second shift register unit 22 receives the signals output by the first shift register unit 21 , and the signals are maintained at a high level voltage signal VGH.
- the first transistor T 1 is switched on to output the high level voltage signal VGH to the tenth and eleventh transistors T 10 , T 11 .
- the first and second outputs VO 1 , VO 2 respectively output the second clock signal CLKB at a low level voltage signal VGL.
- the twelfth transistor T 12 is switched off to maintain the second output VO 2 to output the second clock signal CLKB (the low level voltage signal VGL) to the external circuit and feedback the second clock signal CLKB to the first shift register unit 21 and the gate of the sixth transistor M 6 .
- the sixth transistor M 6 is switched off so as to shut off the seventh, eighth, and night transistors T 7 , T 8 , T 9 .
- the input STV keeps to receive the low level voltage signal VGL, the first clock signal CLK is at a low level, and the second clock signal CLKB is at a high level.
- the first transistor M 1 is switched off, and the first node X 1 is maintained at a high level.
- the tenth and eleventh transistors M 10 , M 11 are switched on.
- the first and second outputs VOUT 1 , VOUT 2 of the output circuit 217 output the low level voltage signal VGL.
- the second shift register unit 22 receives the second clock signal CLKB at a high level voltage signal VGH.
- the input VIN of the second shift register unit 22 receives the signals output by the first shift register unit 21 , and the signals are maintained at a low level voltage signal VGL.
- the first transistor T 1 is switched off, and the tenth and eleventh transistors T 10 , T 11 are all switched on.
- the first and second outputs VO 1 , VO 2 respectively output the second clock signal CLKB at a high level voltage signal VGH.
- the output VO 2 outputs the high level voltage signal VGH to the external circuit and feedback the high level voltage signal VGH to the sixth transistor M 6 of the first shift register unit 21 .
- the six transistor M 6 is switched on, which receives the high level signal to switch on the seventh, eighth, and ninth transistors M 7 , M 8 , M 9 . Therefore, the seventh, eighth, and ninth transistors M 7 , M 8 , M 9 receive the low level voltage signal VGL, so as to pull down the voltage level of the first node X 1 , the first and second outputs VOUT 1 , VOUT 2 . Then, the tenth and eleventh transistors M 10 , M 11 are switched off, and the second transistor M 2 is switched off.
- the fifth transistor M 5 keeps to receive the high level voltage signal VGH, so as to switch on the twelfth transistor M 12 , to keep the second output VOUT 2 to output low level voltage signal VGL.
- the input STV of the first shift register unit 21 keeps to receive the low level voltage signal VGL, and the first node X 1 is kept at a low level. Then, the tenth and eleventh transistors M 10 , M 11 are switched off. The first clock signal CLK cannot output via the tenth and eleventh transistors M 10 , M 11 . Moreover, the first transistor M 5 is switched on, so as to output the high level voltage signal VGH to switch on the twelfth transistor M 12 , for keeping the second output VOUT 2 to output the low level voltage signal VGL.
- the tenth and eleventh transistors T 10 , T 11 of the second shift register unit 22 are switched on while the tenth and eleventh transistors M 10 , M 11 of the first shift register unit 21 are switched on, and the first clock signal CLK and the second clock signal CLKB are reversed, and periodically varied. Therefore, the signals output by the first and second shift register units 21 , 22 are not overlapped with each other.
- the second shift register unit 22 may feedback the high level voltage signal VGH to the first shift register unit 21 via the feedback circuit 215 , to reset the first shift register unit 21 , so as to keep the first shift register unit 21 to output a low level voltage signal from the twelfth transistor M 12 .
- the adjacent shift register units may not cause signal distortions between adjacent shift register units due to overlapping adjacent shift register signals.
- the shift register unit 21 is liable to be stable.
- the liquid crystal display 30 includes a liquid crystal display panel 31 , a data driving circuit 32 , and a gate driving circuit 33 . Both the gate and data driving circuits 33 , 32 install shift registers 20 to control output sequence of the gate driving signals and data signals, so as to control the images displayed by the liquid crystal display 30 .
- the liquid crystal display 30 employing the shift register 20 may not have a distorted display quality because adjacent scanning lines corresponding to adjacent columns or rows of TFTs may be scanned simultaneously by the shift register pulse signals instead of being scanned sequentially.
Landscapes
- Liquid Crystal Display Device Control (AREA)
- Control Of Indicators Other Than Cathode Ray Tubes (AREA)
- Shift Register Type Memory (AREA)
Abstract
Description
Claims (14)
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN2007100771080A CN101388253B (en) | 2007-09-14 | 2007-09-14 | Shifting register and LCD |
CN200710077108.0 | 2007-09-14 | ||
CN200710077108 | 2007-09-14 |
Publications (2)
Publication Number | Publication Date |
---|---|
US20090073105A1 US20090073105A1 (en) | 2009-03-19 |
US8116424B2 true US8116424B2 (en) | 2012-02-14 |
Family
ID=40453929
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US12/283,816 Active 2030-09-13 US8116424B2 (en) | 2007-09-14 | 2008-09-15 | Shift register and liquid crystal display using same |
Country Status (2)
Country | Link |
---|---|
US (1) | US8116424B2 (en) |
CN (1) | CN101388253B (en) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20120213323A1 (en) * | 2009-11-13 | 2012-08-23 | Au Optronics Corporation | Shift register with low power consumption |
US20130135023A1 (en) * | 2010-03-02 | 2013-05-30 | Semiconductor Energy Laboratory Co., Ltd. | Pulse signal output circuit and shift register |
US8693617B2 (en) | 2010-03-02 | 2014-04-08 | Semiconductor Energy Laboratory Co., Ltd. | Pulse signal output circuit and shift register |
Families Citing this family (13)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP5751762B2 (en) * | 2009-05-21 | 2015-07-22 | 株式会社半導体エネルギー研究所 | Semiconductor device |
CN102254503B (en) | 2010-05-19 | 2013-06-12 | 北京京东方光电科技有限公司 | Shift register unit, grid driving device used for display and liquid crystal display |
CN102654982B (en) * | 2011-05-16 | 2013-12-04 | 京东方科技集团股份有限公司 | Shift register unit circuit, shift register, array substrate and liquid crystal display |
CN107707247B (en) * | 2012-08-01 | 2021-03-16 | 瑞萨电子株式会社 | Level shift circuit |
CN103400558B (en) * | 2013-07-31 | 2015-09-09 | 京东方科技集团股份有限公司 | Shift register cell and driving method, gate driver circuit and display device |
CN104332137B (en) | 2014-11-28 | 2016-11-16 | 京东方科技集团股份有限公司 | Gate driver circuit and display device |
CN104537979B (en) * | 2015-01-28 | 2017-03-15 | 京东方科技集团股份有限公司 | Shift register and its driving method, gate driver circuit |
CN105632565B (en) * | 2016-01-26 | 2019-08-13 | 京东方科技集团股份有限公司 | Shift register and its driving method, gate driving circuit and display device |
CN106128389B (en) * | 2016-08-29 | 2018-11-27 | 合肥惠科金扬科技有限公司 | A kind of TFT-LCD liquid crystal display display delayed control circuit |
KR102442099B1 (en) * | 2018-05-31 | 2022-09-13 | 에스케이하이닉스 주식회사 | Semiconductor device including misr |
CN110349536B (en) * | 2019-04-08 | 2021-02-23 | 深圳市华星光电半导体显示技术有限公司 | GOA circuit and display panel |
CN111540319A (en) * | 2020-04-23 | 2020-08-14 | 福建华佳彩有限公司 | Panel driving circuit, control method and panel |
CN117012125B (en) * | 2022-04-27 | 2024-06-28 | 荣耀终端有限公司 | Shifting register, grid driving circuit, display panel and electronic equipment |
Citations (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6611248B2 (en) * | 2000-05-31 | 2003-08-26 | Casio Computer Co., Ltd. | Shift register and electronic apparatus |
US20050201508A1 (en) * | 2004-03-12 | 2005-09-15 | Kyong-Ju Shin | Shift register and display device including the same |
US20050220262A1 (en) * | 2004-03-31 | 2005-10-06 | Lg Philips Lcd Co., Ltd. | Shift register |
US6970530B1 (en) * | 2004-08-24 | 2005-11-29 | Wintek Corporation | High-reliability shift register circuit |
US7027550B2 (en) | 2003-08-13 | 2006-04-11 | Toppoly Optoelectronics Corp. | Shift register unit and signal driving circuit using the same |
US7038653B2 (en) * | 2002-09-05 | 2006-05-02 | Samsung Electronics., Co., Ltd. | Shift resister and liquid crystal display having the same |
US7317779B2 (en) * | 2003-02-10 | 2008-01-08 | Samsung Electronics Co., Ltd. | Method of driving transistor and shift register performing the same |
US7369111B2 (en) * | 2003-04-29 | 2008-05-06 | Samsung Electronics Co., Ltd. | Gate driving circuit and display apparatus having the same |
US7696974B2 (en) * | 2002-06-15 | 2010-04-13 | Samsung Electronics Co., Ltd. | Method of driving a shift register, a shift register, a liquid crystal display device having the shift register |
Family Cites Families (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5410583A (en) * | 1993-10-28 | 1995-04-25 | Rca Thomson Licensing Corporation | Shift register useful as a select line scanner for a liquid crystal display |
KR100752602B1 (en) * | 2001-02-13 | 2007-08-29 | 삼성전자주식회사 | Shift resister and liquid crystal display using the same |
JP4310939B2 (en) * | 2001-06-29 | 2009-08-12 | カシオ計算機株式会社 | Shift register and electronic device |
TWI282081B (en) * | 2002-08-13 | 2007-06-01 | Au Optronics Corp | Shift register circuit |
TWI281164B (en) * | 2005-09-29 | 2007-05-11 | Au Optronics Corp | A shift register |
TWI326445B (en) * | 2006-01-16 | 2010-06-21 | Au Optronics Corp | Shift register turning on a feedback circuit according to a signal from a next stage shift register |
-
2007
- 2007-09-14 CN CN2007100771080A patent/CN101388253B/en active Active
-
2008
- 2008-09-15 US US12/283,816 patent/US8116424B2/en active Active
Patent Citations (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6611248B2 (en) * | 2000-05-31 | 2003-08-26 | Casio Computer Co., Ltd. | Shift register and electronic apparatus |
US7696974B2 (en) * | 2002-06-15 | 2010-04-13 | Samsung Electronics Co., Ltd. | Method of driving a shift register, a shift register, a liquid crystal display device having the shift register |
US7038653B2 (en) * | 2002-09-05 | 2006-05-02 | Samsung Electronics., Co., Ltd. | Shift resister and liquid crystal display having the same |
US7317779B2 (en) * | 2003-02-10 | 2008-01-08 | Samsung Electronics Co., Ltd. | Method of driving transistor and shift register performing the same |
US7369111B2 (en) * | 2003-04-29 | 2008-05-06 | Samsung Electronics Co., Ltd. | Gate driving circuit and display apparatus having the same |
US7027550B2 (en) | 2003-08-13 | 2006-04-11 | Toppoly Optoelectronics Corp. | Shift register unit and signal driving circuit using the same |
US20050201508A1 (en) * | 2004-03-12 | 2005-09-15 | Kyong-Ju Shin | Shift register and display device including the same |
US20050220262A1 (en) * | 2004-03-31 | 2005-10-06 | Lg Philips Lcd Co., Ltd. | Shift register |
US6970530B1 (en) * | 2004-08-24 | 2005-11-29 | Wintek Corporation | High-reliability shift register circuit |
Cited By (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20120213323A1 (en) * | 2009-11-13 | 2012-08-23 | Au Optronics Corporation | Shift register with low power consumption |
US8290114B2 (en) * | 2009-11-13 | 2012-10-16 | Au Optronics Corporation | Shift register with low power consumption |
US20130135023A1 (en) * | 2010-03-02 | 2013-05-30 | Semiconductor Energy Laboratory Co., Ltd. | Pulse signal output circuit and shift register |
US8693617B2 (en) | 2010-03-02 | 2014-04-08 | Semiconductor Energy Laboratory Co., Ltd. | Pulse signal output circuit and shift register |
US8923471B2 (en) * | 2010-03-02 | 2014-12-30 | Semiconductor Energy Laboratory Co., Ltd. | Pulse signal output circuit and shift register |
US9396812B2 (en) | 2010-03-02 | 2016-07-19 | Semiconductor Energy Laboratory Co., Ltd. | Pulse signal output circuit and shift register |
KR101798645B1 (en) | 2010-03-02 | 2017-11-16 | 가부시키가이샤 한도오따이 에네루기 켄큐쇼 | Pulse signal output circuit and shift register |
KR101838628B1 (en) | 2010-03-02 | 2018-03-14 | 가부시키가이샤 한도오따이 에네루기 켄큐쇼 | Pulse signal output circuit and shift register |
US10340021B2 (en) | 2010-03-02 | 2019-07-02 | Semiconductor Energy Laboratory Co., Ltd. | Pulse signal output circuit and shift register |
US11348653B2 (en) | 2010-03-02 | 2022-05-31 | Semiconductor Energy Laboratory Co., Ltd. | Pulse signal output circuit and shift register |
US11942170B2 (en) | 2010-03-02 | 2024-03-26 | Semiconductor Energy Laboratory Co., Ltd. | Pulse signal output circuit and shift register |
Also Published As
Publication number | Publication date |
---|---|
CN101388253A (en) | 2009-03-18 |
CN101388253B (en) | 2011-07-27 |
US20090073105A1 (en) | 2009-03-19 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US8116424B2 (en) | Shift register and liquid crystal display using same | |
US8248355B2 (en) | Shift register and liquid crystal display using same | |
US8373637B2 (en) | Shift register and liquid crystal display using same | |
US8054934B2 (en) | Shift register with no overlap effective output signal and liquid crystal display using the same | |
US8106874B2 (en) | Shift register and liquid crystal display using same | |
US7983379B2 (en) | Shift register and liquid crystal display using same | |
US7907696B2 (en) | Shift register | |
US10210791B2 (en) | Shift register unit, driving method, gate driver on array and display device | |
US7986761B2 (en) | Shift register and liquid crystal display device using same | |
US10204582B2 (en) | Shift register and driving method thereof, gate electrode driving circuit, and display device | |
US8411017B2 (en) | Shift register and a liquid crystal display device having the same | |
US7817770B2 (en) | Shift register with lower coupling effect and a related LCD | |
KR100847091B1 (en) | Shift register circuit and image display apparatus equipped with the same | |
US8248353B2 (en) | Method and device for reducing voltage stress at bootstrap point in electronic circuits | |
US20180188578A1 (en) | Shift register and driving method thereof, gate driving device | |
WO2020010852A1 (en) | Shift register unit, driving method, gate driving circuit, and display device | |
US20040239608A1 (en) | Shift register and liquid crystal display having the same | |
TWI529682B (en) | A scanning signal line driving circuit, a display device including the same, and a driving method of a scanning signal line | |
US20080012816A1 (en) | Shift register and display apparatus including the same | |
EP2833350A1 (en) | Display device | |
US7844026B2 (en) | Shift register with six transistors and liquid crystal display using the same | |
US10878757B2 (en) | Shift register and time-sharing controlling method thereof, display panel and display apparatus | |
US20150155052A1 (en) | Shift register and display apparatus | |
US7760845B2 (en) | Shift register for a liquid crystal display | |
CN115064127A (en) | Shift register and driving method thereof, grid driving circuit and display device |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
AS | Assignment |
Owner name: INNOLUX DISPLAY CORP., TAIWAN Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:CHIANG, CHIEN-HSUEH;CHEN, SZ-HSIAO;REEL/FRAME:021601/0620 Effective date: 20080910 |
|
AS | Assignment |
Owner name: CHIMEI INNOLUX CORPORATION, TAIWAN Free format text: CHANGE OF NAME;ASSIGNOR:INNOLUX DISPLAY CORP.;REEL/FRAME:027454/0936 Effective date: 20100330 |
|
STCF | Information on status: patent grant |
Free format text: PATENTED CASE |
|
AS | Assignment |
Owner name: INNOLUX CORPORATION, TAIWAN Free format text: CHANGE OF NAME;ASSIGNOR:CHIMEI INNOLUX CORPORATION;REEL/FRAME:032621/0718 Effective date: 20121219 |
|
FPAY | Fee payment |
Year of fee payment: 4 |
|
MAFP | Maintenance fee payment |
Free format text: PAYMENT OF MAINTENANCE FEE, 8TH YEAR, LARGE ENTITY (ORIGINAL EVENT CODE: M1552); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY Year of fee payment: 8 |
|
MAFP | Maintenance fee payment |
Free format text: PAYMENT OF MAINTENANCE FEE, 12TH YEAR, LARGE ENTITY (ORIGINAL EVENT CODE: M1553); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY Year of fee payment: 12 |