US8087189B2 - Chemically-treated outsole assembly for a golf shoe - Google Patents
Chemically-treated outsole assembly for a golf shoe Download PDFInfo
- Publication number
- US8087189B2 US8087189B2 US12/961,265 US96126510A US8087189B2 US 8087189 B2 US8087189 B2 US 8087189B2 US 96126510 A US96126510 A US 96126510A US 8087189 B2 US8087189 B2 US 8087189B2
- Authority
- US
- United States
- Prior art keywords
- diisocyanate
- polyurethane
- isocyanate
- molding
- polyurea
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
Images
Classifications
-
- A—HUMAN NECESSITIES
- A43—FOOTWEAR
- A43B—CHARACTERISTIC FEATURES OF FOOTWEAR; PARTS OF FOOTWEAR
- A43B5/00—Footwear for sporting purposes
- A43B5/001—Golf shoes
-
- A—HUMAN NECESSITIES
- A43—FOOTWEAR
- A43B—CHARACTERISTIC FEATURES OF FOOTWEAR; PARTS OF FOOTWEAR
- A43B13/00—Soles; Sole-and-heel integral units
- A43B13/02—Soles; Sole-and-heel integral units characterised by the material
- A43B13/026—Composites, e.g. carbon fibre or aramid fibre; the sole, one or more sole layers or sole part being made of a composite
-
- A—HUMAN NECESSITIES
- A43—FOOTWEAR
- A43B—CHARACTERISTIC FEATURES OF FOOTWEAR; PARTS OF FOOTWEAR
- A43B13/00—Soles; Sole-and-heel integral units
- A43B13/02—Soles; Sole-and-heel integral units characterised by the material
- A43B13/04—Plastics, rubber or vulcanised fibre
-
- A—HUMAN NECESSITIES
- A43—FOOTWEAR
- A43B—CHARACTERISTIC FEATURES OF FOOTWEAR; PARTS OF FOOTWEAR
- A43B13/00—Soles; Sole-and-heel integral units
- A43B13/02—Soles; Sole-and-heel integral units characterised by the material
- A43B13/12—Soles with several layers of different materials
Definitions
- the present invention relates to golf shoes. More specifically, the present invention relates to an outsole assembly for a golf shoe.
- the traction portion of a golf shoe is subject to tremendous wear and tear during a round of golf.
- spikes composed of a polymer materials should be replaced after ten rounds of golf.
- the out-sole assembly for a golf shoe having improved durability and dynamic flexibility is disclosed herein.
- the out-sole assembly has components that are subjected to an isocyanate solution for added durability.
- the outsole assembly includes an internal base member composed of EVA, an inner frame member composed thermoplastic polyurethane subjected to an isocyanate solution, an external base member composed of a thermoplastic polyurethane, a dual looping frame composed of a thermoplastic polyurethane, and a plurality of spike members.
- the golf shoe includes an internal base member, an inner frame member, an external base member, a dual looping frame, and a plurality of spike members.
- At least one of the components above is molded from a thermoplastic material comprising a polyurethane, polyurea or polyurethane/polyurea composition having a melt index of 15 g/10 min or more at a temperature of 200° C. to 210° C. and a load of 8.7 kg prior to molding, and the component is treated with a secondary curing agent comprising an isocyanate subsequent to molding.
- all of the components are molded from a thermoplastic material comprising a polyurethane, polyurea or polyurethane/polyurea composition having a melt index of 15 g/10 min or more at a temperature of 200° C. to 210° C. and a load of 8.7 kg prior to molding, and the component is treated with a secondary curing agent comprising an isocyanate subsequent to molding.
- Yet another aspect of the present invention is a golf shoe having a component composed of a certain material.
- the golf shoe includes an internal base member, an inner frame member, an external base member, a dual looping frame, and a plurality of spike members.
- At least one of the components above has a Shore D hardness of 60 or less and is molded from a thermoplastic material comprising a polyurethane, polyurea or polyurethane/polyurea composition having a flex modulus of 30,000 psi or less and a melt index of 15 g/10 min or more at a temperature of 200° C. to 210° C. and a load of 8.7 kg prior to molding, and the component is treated with a secondary curing agent comprising an isocyanate subsequent to molding.
- all of the components have a Shore D hardness of 60 or less and is molded from a thermoplastic material comprising a polyurethane, polyurea or polyurethane/polyurea composition having a flex modulus of 30,000 psi or less and a melt index of 15 g/10 min or more at a temperature of 200° C. to 210° C. and a load of 8.7 kg prior to molding, and the component is treated with a secondary curing agent comprising an isocyanate subsequent to molding.
- FIG. 1 is a top perspective view of a golf shoe of the present invention.
- FIG. 2 is a bottom view of a out-sole assembly of the present invention.
- FIG. 3 is a medial view of the out-sole assembly of FIG. 2 .
- FIG. 4 is an isolated view of an internal base member of the out-sole assembly of the present invention.
- FIG. 5 is an isolated view of an inner frame member of the out-sole assembly of the present invention.
- FIG. 6 is an isolated view of an external base member of the out-sole assembly of the present invention.
- FIG. 7 is an isolated view of a dual looping member, spike members and logo medallion of the out-sole assembly of the present invention.
- FIG. 8 is a bottom view of a out-sole assembly of the present invention.
- FIG. 9 is a medial view of the out-sole assembly of FIG. 8 .
- FIG. 10 is a lateral view of the out-sole assembly of FIG. 8 .
- FIG. 11 is a heel end view of the out-sole assembly of FIG. 8 .
- FIG. 12 is a toe end view of the out-sole assembly of FIG. 8 .
- FIG. 13 is a top plan view of the out-sole assembly of FIG. 8 .
- FIG. 14 is a cross-sectional view of the out-sole assembly of FIG. 8 along line 14 - 14 .
- FIG. 15 is a cross-sectional view of the out-sole assembly of FIG. 8 along line 15 - 15 .
- FIG. 16 is a cross-sectional view of the out-sole assembly of FIG. 8 along line 16 - 16 .
- FIG. 17 is a cross-sectional view of the out-sole assembly of FIG. 8 along line 17 - 17 .
- FIG. 18 is a cross-sectional view of the out-sole assembly of FIG. 8 along line 18 - 18 .
- FIG. 19 is a cross-sectional view of the out-sole assembly of FIG. 8 along line 19 - 19 .
- FIG. 20 is a cross-sectional view of the out-sole assembly of FIG. 8 along line 20 - 20 .
- FIG. 21 is a cross-sectional view of the out-sole assembly of FIG. 8 along line 21 - 21 .
- FIG. 22 is an isolated view of a spike member with partial cross-sectional views.
- FIG. 23 is an isolated view of a spike member with partial cross-sectional views.
- FIG. 24 is an isolated view of a tooth of the plurality of teeth of the dual loop member of the out-sole assembly of the present invention along with a partial cross-sectional view.
- a golf shoe is generally designated 20 .
- the golf shoe 20 preferably comprises an out-sole assembly 25 , a mid-sole 30 , an upper 35 with an opening 40 .
- the golf shoe 20 also has a heel end 45 and a toe end 50 .
- the out-sole assembly 25 of the present invention comprises an internal base member 55 , an inner frame member 60 , an external base member 65 , a dual looping frame member 70 and a plurality of spike members 75 a , 75 b , 75 c and 75 d .
- the out-sole assembly 25 optionally comprises a logo medallion 80 .
- the dual looping frame 70 comprises a plurality of traction teeth 85 .
- a height, Ho, of the out-sole assembly preferably ranges from 30 mm to 50 mm, and is most preferably 39 mm.
- the thickness of the external base member 65 is preferably between 2 mm and 5 mm, and most preferably 3 mm.
- the thickness of the internal base member 55 preferably ranges from 5 mm to 30 mm.
- the height of each of the teeth 85 is preferably between 1 mm and 6 mm, and most preferably 4 mm.
- the internal base member 55 is composed of an ethylene vinyl acetate (“EVA”) material.
- the inner frame member 60 is preferably composed of a thermoplastic polyurethane material subjected to an additional isocyanate treatment as set forth below.
- the external base member 65 is preferably composed of a thermoplastic polyurethane material.
- the dual looping frame member 70 is preferably composed of a thermoplastic polyurethane material subjected to an additional isocyanate treatment as set forth below.
- Each of the plurality of spike members 75 a - d is preferably composed of a thermoplastic polyurethane material subjected to an additional isocyanate treatment as set forth below.
- the present invention concerns the production of a thermoplastic polyurethane, polyurea or polyurethane/polyurea golf ball component wherein the melt index of polyurethane, polyurea or polyurethane/polyurea material is high (i.e., 15 g/10 min or more, preferably 20 g/10 min or more, more preferably greater than 25 grams per 10 minutes at the temperature of 200° C. to 210° C. and a load of 8.7 Kg) or substantially increased prior to molding.
- the melt index of polyurethane, polyurea or polyurethane/polyurea material is high (i.e., 15 g/10 min or more, preferably 20 g/10 min or more, more preferably greater than 25 grams per 10 minutes at the temperature of 200° C. to 210° C. and a load of 8.7 Kg) or substantially increased prior to molding.
- the melt index of the material can be increased, from supplied or base material to refined or processed material, at least 10% or more, preferably 20% to 720%, more preferably 50% to 720%, and most preferably 100% or more prior to molding of the components of the out-sole assembly 25 .
- the enhanced melt index of the material may be achieved by secondary processing or refining steps, such as by mechanical, chemical or electrical means.
- the melt index is increased by mechanical means such as by extrusion.
- mechanical means such as by extrusion.
- the melt index increases after extrusion due to a decrease in molecular weight, either by mechanical shearing or chemical changes or both.
- Additional processes for decreasing the molecular weight of the material can also be used.
- other methods for decreasing the molecular weight and/or increasing the melt index of the material include the use of, or the incorporation of, heat, light, irradiation, moisture, flow additives, plasticizers, extenders, lubricants or other thermoplastic materials having a higher melt index, etc.
- the melt index of the material is adjusted to the high melt index range desired prior to molding.
- each of the components of the out-sole assembly 25 is treated with a secondary curing or treating agent, such as a solution containing one or more isocyanates, to improve durability of the component. It is believed that the isocyanate further cross-links the material to provide additional scuff resistance while maintaining the other desirable features of the component, such as flexibility.
- the solution containing the isocyanate is preferably added to the material by any suitable method known in the art, although dipping, wiping, soaking, brushing or spraying the components of the out-sole assembly 25 in or with the isocyanate solution is preferred. The method of adding the isocyanate to the components of the out-sole assembly 25 is discussed in more detail below.
- the solution of the isocyanate that is added to the material to improve scuff resistance can be any aliphatic or aromatic isocyanate or diisocyanate or blends thereof known in the art.
- the isocyanate or diisocyanate used may have a solids content in the range of about 1 to about 100 weight %, preferably about 5 to about 50 weight %, most preferably about 10 to about 30 weight %. If it is necessary to adjust the solids content, any suitable solvent that will allow penetration of the isocyanate into the polyurethane, polyurea or polyurethane/polyurea material without causing distortion may be used. Examples of suitable solvents include ketone and acetate.
- the components of the out-sole assembly 25 are formed from a thermoplastic polyurethane, polyurea or polyurethane/polyurea material having a relatively high melt index, or that which is adjusted prior to molding so as to exhibit a relatively high melt index.
- the melt of the material is 25 g/10 min or more at a temperature of 200° C. to 210° C. and a load of 8.7 kg prior to molding.
- the melt index of the material is of 30 g/10 min or more, more preferably 35 g/10 min or more and most preferably 40 g/10 min or more at the above noted temperature and conditions.
- melt index or melt flow values referred to herein are determined (unless specified differently) in accordance with ASTM Standard D1238, herein incorporated by reference.
- the previously noted preferred thermoplastic polyurethane materials may be adjusted into higher melt index materials. It is preferably to raise the melt index to allow for the molding of the components of the out-sole assembly 25 .
- Bayer TEXIN® DP7-1097 has (according to Bayer Corporation) a melt index of about 7 to 12 g/10 min at 200° C. and 8.7 kg.
- the base material received from Bayer is then further processed to exhibit a melt index of from about 25 to about 45 g/10 min at 200° C. and 8.7 kg.
- This material when used for forming the components of the out-sole assembly 25 , preferably has an increased melt index of about 35 to about 85 g/10 min at 200° C. and 8.7 kg.
- Bayer TEXIN® 245 has (according to Bayer Corporation) a melt index of about 20 to 40 g/10 min at 230° C. and 1.2 kg. It can be further processed or refined to exhibit a melt index of about 25 to about 45 g/10 min at 210° C. and 8.7 kg.
- the high melt index of the components of the out-sole assembly 25 are further treated with a liquid isocyanate solution.
- the physical properties of the thermoplastic polyurethane, polyurea or polyurethane/polyurea material may not only increase, but may increase beyond the values of the non-refined material. This physical property improvement yields a significant improvement in durability, namely improved cut and scuff resistance.
- isocyanate is believed to allow for the use of relatively high melt index thermoplastic polyurethane, polyurea or polyurethanes/polyureas to be used in conventional injection molding machines and/or in reaction injection molding (“RIM”) equipment to mold the components of the out-sole assembly 25 .
- the components of the out-sole assembly 25 are preferably dipped in an isocyanate solution for 1 to 10 minutes (preferably 1 to 5 minutes); the isocyanate may be aliphatic or aromatic, such as HDI, IPDI, MDI, TDI type or others as discussed below and the isocyanate solution may range from 10 to 100% solids.
- the solvent used to reduce the solids and make the isocyanate solutions may be a ketone or acetate or any solvent that will allow penetration of the isocyanate into the material without distortion.
- the components of the out-sole assembly 25 are preferably air-dried for 1 hour and then post-cured at 175° F. for 4 hours. After the post-cure the components of the out-sole assembly 25 may be cleaned with isopropanol to remove any excess isocyanate and then finished in a normal manner.
- the isocyanate used is of the MDI type at 15-30% solids reduced with a ketone (such as MONDUR MLTM from Bayer Corporation) and dipped for 2-3 minutes.
- the solids level is about 16 to 24% (20 ⁇ 4). It is beneficial that the MDI remain in a liquid state at room temperature.
- this method shall not be limited to the type of polyurethane, polyurea or polyurethane/polyurea material, isocyanate used, concentration of the isocyanate solution, solvent used, dip time, or method of application described above.
- the material of the components of the out-sole assembly 25 comprises a polyurethane, a polyurea or a blend of polyurethanes/polyureas.
- Polyurethanes/polyureas are polymers that are used to form a broad range of products. They are generally formed by mixing two primary ingredients during processing. For the most commonly used polyurethanes, the two primary ingredients are a polyisocyanate (for example, diphenylmethane diisocyanate monomer (“MDI”) and toluene diisocyanate (“TDI”) and their derivatives) and a polyol (for example, a polyester polyol or a polyether polyol).
- MDI diphenylmethane diisocyanate monomer
- TDI toluene diisocyanate
- a polyol for example, a polyester polyol or a polyether polyol.
- chain extenders known in the art, are also commonly used.
- polyurethanes A wide range of combinations of polyisocyanates and polyols, as well as other ingredients, are available. Furthermore, the end-use properties of polyurethanes can be controlled by the type of polyurethane utilized, such as whether the material is thermoset (cross-linked molecular structure) or thermoplastic (linear molecular structure).
- cross-linking occurs between the isocyanate groups (—NCO) and the polyol's hydroxyl end-groups (—OH), and/or with already formed urethane groups.
- end-use characteristics of polyurethanes can also be controlled by different types of reactive chemicals and processing parameters. For example, catalysts are utilized to control polymerization rates. Depending upon the processing method, reaction rates can be very quick (as in the case for some reaction injection molding systems (“RIM”) or may be on the order of several hours or longer (as in several coating systems). Consequently, a great variety of polyurethanes are suitable for different end-uses.
- Polyurethanes are typically classified as thermosetting or thermoplastic.
- a polyurethane becomes irreversibly “set” when a polyurethane prepolymer is cross-linked with a polyfunctional curing agent, such as a polyamine or a polyol.
- the prepolymer typically is made from polyether or polyester. Diisocyanate polyethers are typically preferred because of their hydrolytic properties.
- thermoset polyurethanes are controlled substantially by the degree of cross-linking. Tightly cross-linked polyurethanes are fairly rigid and strong. A lower amount of cross-linking results in materials that are flexible and resilient.
- Thermoplastic polyurethanes have some cross-linking, but primarily by physical means. The cross-link bonds can be reversibly broken by increasing temperature, as occurs during molding or extrusion.
- thermoplastic polyurethanes can be injection molded, and extruded as sheet and blow film. They can be used up to about 350° F. to 450° F. and are available in a wide range of hardnesses.
- Polyurethane materials suitable for the present invention are formed by the reaction of a polyisocyanate, a polyol, and optionally one or more chain extenders.
- the polyol component includes any suitable polyether- or polyester-polyol. Additionally, in an alternative embodiment, the polyol component is polybutadiene diol.
- the chain extenders include, but are not limited, to diols, triols and amine extenders. Any suitable polyisocyanate may be used to form a polyurethane according to the present invention.
- the polyisocyanate is preferably selected from the group of diisocyanates including, but not limited, to 4,4′-diphenylmethane diisocyanate (“MDI”); 2,4-toluene diisocyanate (“TDI”); m-xylylene diisocyanate (“XDI”); methylene bis-(4-cyclohexyl isocyanate) (“HMDI”); hexamethylene diisocyanate (“HDI”); naphthalene-1,5,-diisocyanate (“NDI”); 3,3′-dimethyl-4,4′-biphenyl diisocyanate (“TODI”); 1,4-diisocyanate benzene (“PPDI”); phenylene-1,4-diisocyanate; and 2,2,4- or 2,4,4-trimethyl hexamethylene diisocyanate (“TMDI”).
- MDI 4,4′-diphenylmethane diisocyanate
- diisocyanates include, but are not limited to, isophorone diisocyanate (“IPDI”); 1,4-cyclohexyl diisocyanate (“CHDI”); diphenylether-4,4′-diisocyanate; p,p′-diphenyl diisocyanate; lysine diisocyanate (“LDI”); 1,3-bis(isocyanato methyl)cyclohexane; and polymethylene polyphenyl isocyanate (“PMDI”).
- IPDI isophorone diisocyanate
- CHDI 1,4-cyclohexyl diisocyanate
- LDMI lysine diisocyanate
- PMDI polymethylene polyphenyl isocyanate
- TMXDI TMXDI
- Cytec Industries West Paterson, N.J.
- TMXDI meta-tetramethylxylylene diisocyanate
- MEXDI meta-tetramethylxylylene diisocyanate
- MEXDI meta-tetramethylxylylene diisocyanate
- MEXDI TMXDI
- aliphatic isocyanate has demonstrated favorable toxicological properties. Furthermore, because it has a low viscosity, it is usable with a wider range of diols (to polyurethane) and diamines (to polyureas).
- TMXDI TMXDI
- it typically, but not necessarily, is added as a direct replacement for some or all of the other aliphatic isocyanates in accordance with the suggestions of the supplier. Because of slow reactivity of TMXDI, it may be useful or necessary to use catalysts to have practical demolding times. Hardness, tensile strength and elongation can be adjusted by adding further materials in accordance with the supplier's instructions.
- the polyurethane, polyurea or polyurethane/polyurea which is selected for use as a component of the out-sole assembly 25 preferably has a Shore D hardness of from about 10 to about 60, more preferably from about 25 to about 60, and most preferably from about 30 to about 55 for a soft cover layer.
- the polyurethane, polyurea or polyurethane/polyurea which is to be used preferably has a flex modulus from about 1 to about 310 Kpsi, more preferably from about 5 to about 100 Kpsi, and most preferably from about 5 to about 20 Kpsi for a soft component and 30 to 70 Kpsi for a hard component.
- Non-limiting examples of a polyurethane, polyurea or polyurethane/polyurea suitable for use include a thermoplastic polyester polyurethane such as Bayer Corporation's TEXIN® polyester polyurethane (such as TEXIN® DP7-1097, TEXIN® 285 and TEXIN® 245 grades).
- a thermoplastic polyester polyurethane such as Bayer Corporation's TEXIN® polyester polyurethane (such as TEXIN® DP7-1097, TEXIN® 285 and TEXIN® 245 grades).
- TEXIN® DP7-1097 has the following properties:
- TEXIN® 245 has the following properties:
- melt indexes of the base thermoplastic polyurethanes received from Bayer Corporation are then increased to the following specifications:
- MI Melt Index
- thermoplastic polyurethane materials there are two classes of thermoplastic polyurethane materials: aliphatic polyurethanes and aromatic polyurethanes.
- the aliphatic materials are produced from a polyol or polyols and aliphatic isocyanates, such as H 12 MDI or HDI
- the aromatic materials are produced from a polyol or polyols and aromatic isocyanates, such as MDI or TDI.
- the thermoplastic polyurethanes may also be produced from a blend of both aliphatic and aromatic materials, such as a blend of HDI and TDI with a polyol or polyols.
- the aliphatic thermoplastic polyurethanes are lightfast, meaning that they do not yellow appreciably upon exposure to ultraviolet light. Conversely, aromatic thermoplastic polyurethanes tend to yellow upon exposure to ultraviolet light.
- One method of stopping the yellowing of the aromatic materials is to paint the outer surface with a coating containing a pigment, such as titanium dioxide, so that the ultraviolet light is prevented from reaching the surface.
- Another method is to add UV absorbers and stabilizers to the clear coating, as well as to the thermoplastic polyurethane material itself. By adding UV absorbers and stabilizers to the thermoplastic polyurethane and the coating(s), aromatic polyurethanes can be effectively used. This is advantageous because aromatic polyurethanes typically have better scuff resistance characteristics than aliphatic polyurethanes, and the aromatic polyurethanes are typically lower cost than aliphatic polyurethanes.
- Non-limiting examples of suitable RIM systems for use in the present invention are Bayflex® elastomeric polyurethane RIM systems, Baydur® GS solid polyurethane RIM systems, Prism® solid polyurethane RIM systems, all from Bayer Corp. (Pittsburgh, Pa.), SPECTRIM® reaction moldable polyurethane and polyurea systems from Dow Chemical USA (Midland, Mich.), including SPECTRIM® MM 373-A (isocyanate) and 373-B (polyol), and ELASTOLIT® SR systems from BASF (Parsippany, N.J.).
- Preferred RIM systems include BAYFLEX® MP-5000 and BAYFLEX® 110-50, filled and unfilled.
- Further preferred examples are polyols, polyamines and isocyanates formed by processes for recycling polyurethanes and polyureas. Additionally, these various systems may be modified by incorporating a butadiene component in the diol agent.
- the isocyanate that is added to improve scuff resistance can be any aliphatic or aromatic isocyanate or diisocyanate or blends thereof known in the art.
- suitable isocyanates include, but are not limited to, 4,4′-diphenylmethane diisocyanate (“MDI”); 2,4-toluene diisocyanate (“TDI”); m-xylylene diisocyanate (“XDI”); methylene bis-(4-cyclohexyl isocyanate) (“HMDI”); hexamethylene diisocyanate (“HDI”); naphthalene-1,5,-diisocyanate (“NDI”); 3,3′-dimethyl-4,4′-biphenyl diisocyanate (“TODI”); 1,4-diisocyanate benzene (“PPDI”); phenylene-1,4-diisocyanate; and 2,2,4- or 2,4,4-trimethyl hexam
- diisocyanates include, but are not limited to, isophorone diisocyanate (“IPDI”); 1,4-cyclohexyl diisocyanate (“CHDI”); diphenylether-4,4′-diisocyanate; p,p′-diphenyl diisocyanate; lysine diisocyanate (“LDI”); 1,3-bis(isocyanato methyl)cyclohexane; polymethylene polyphenyl isocyanate (“PMDI”); and meta-tetramethylxylylene diisocyanate (“TMXDI”).
- the diisocyanate is MDI.
- isocyanate as used herein includes all of these compounds and other isocyanates.
- the isocyanate or diisocyanate used may have a solids content in the range of about 1 to about 100 weight %, preferably about 5 to about 50 weight %, most preferably about 10 to about 30 weight %. If it is necessary to adjust the solids content, any suitable solvent (such as ketone and acetate) that will allow penetration of the isocyanate into the polyurethane material without causing distortion may be used.
- any suitable solvent such as ketone and acetate
- the isocyanate utilized is MONDUR MLTM, an aromatic diisocyanate manufactured by the Bayer Corporation.
- MONDUR MLTM is an isomer mixture of diphenyl methane diisocyanate (MDI) containing a high percentage of 2,4 isomer. More particularly, MONDUR MLTM reportedly has the following specifications and proportions:
- the isocyanate is preferably added by dipping, soaking or spraying in or with the isocyanate solution for about 1 to 10 minutes, more preferably about 1 to 5 minutes.
- the isocyanate solution may be any desired isocyanate or diisocyanate solution, and the solids content is preferably 1 to 100 weight percent, preferably 5 to 50 weight percent, more preferably 15 to 30 weight percent, and most preferably 16 to 24 weight percent.
- the components of the out-sole assembly 25 are preferably heated to a temperature such as 110° F. to 120° F. before adding the isocyanate to facilitate the penetration of the isocyanate into the material, although heating is not required.
- the components of the out-sole assembly 25 are air dried for approximately 30 minutes to 24 hours, more preferably 1 to 2 hours, and most preferably at least about 1 hour.
- the components of the out-sole assembly 25 are then post-cured to promote cross-linking of the material, preferably at a temperature of about 150° F. to 250° F., more preferably about 175° F. for about 2 to 24 hours, more preferably about 4 hours.
- the components of the out-sole assembly 25 may be cleaned using a suitable cleaner, such as an alcohol, if needed.
- a suitable cleaner such as an alcohol, if needed.
- An example of a suitable alcohol is isopropanol, although any suitable alcohol that does not damage or react with the material may be used.
- the components of the out-sole assembly 25 finished as desired.
- the procedure for dipping was further refined for production to improve efficiency and reduce the processing time.
- the components of the out-sole assembly 25 could be oven dried for only 4 hours at 175° F. instead of 16 hours at 180° F., and the isopropanol rinse could be eliminated without adversely affecting the scuff results.
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Materials Engineering (AREA)
- Health & Medical Sciences (AREA)
- General Health & Medical Sciences (AREA)
- Physical Education & Sports Medicine (AREA)
- Footwear And Its Accessory, Manufacturing Method And Apparatuses (AREA)
- Polyurethanes Or Polyureas (AREA)
Abstract
Description
TABLE 1 |
Properties of TEXIN ® DP7-1097 |
Tensile Strength (ASTM D412) | 6000 lb/in2 |
@50% (ASTM D412) | 875 lb/in2 |
@200% (ASTM D412) | 950 lb/in2 |
@300% (ASTM D412) | 2200 lb/in2 |
Ultimate Elongation (ASTM D412) | 450% |
Flexural Modulus (ASTM D790) | |
158° F. (70° C.) | 3841 lb/in2 |
73° F. (23° C.) | 6500 lb/in2 |
−22° F. (−30° C.) | 57400 lb/in2 |
Hardness (Shore A/Shore D) | 90/40 |
Bayshore Resilience (ASTM D2632) | 35% |
Solubility in Water | Insoluble |
Tear Strength, Die “C” (ASTM D624) | 600 lbf/in |
Specific Gravity (ASTM D792) | 1.20 |
Vicat Softening Temp. (ASTM D1525) | 216° F. |
Melt Index | 7-14 g/10 min at 200° C. and 8.7 kg, |
L/D = 4 (Method 1103-A) | |
TABLE 2 |
Properties of TEXIN ® 245 |
Melt Flow | 20-40 (230° C., 1.2 kg load) | |
Hardness | 40-50 D | |
Tensile Strength | 4000 psi Minimum | |
100% Modulus | 1090-1400 psi | |
-
- dry material below 0.03% moisture
- single screw extruder, with a single stage screw having an L/D of at least 24:1 and a compression ratio of 3:1
- processing temps.
- hopper: 180-220 F
- rear: 360-390 F
- middle: 360-400 F
- front: 360-410 F
- adapter: 365-410 F
- die: 370-415 F
- melt: 385-465 F
- cushion-0.125″ max.
- back pressure-200 psi. max.
- screw speed-40-80 rpm
- screen packs-optional
- 1. Measure M.I. of dried material as received from Bayer Corporation;
- 2. Adjust extruder machine settings to achieve a nominal M.I. 40, measured at the appropriate test conditions for either DP7-1097 or Texin 245; and
- 3. Periodically check the M.I. throughout the extrusion run to ensure a target M.I. value of 40.
Assay, wt. % | 99.5 minimum | 2′,4′ isomer content, % | 50-60 |
Acidity as HCI, | 30 maximum | Dimer, wt. % | 0.3 maximum |
ppm | |||
Appearance | Clear to light | Specific Gravity | 1.19 |
yellow liquid | @ 25° C. | ||
Equivalent weight | 125 | Freezing point | 59°-68° F. |
NCO Content, % | 33.4-33.6 | (15-20° C.) | |
Viscosity @ 25° C., | 10 | Flash point | 388° F. |
mPa * s | (Setaflash) | (198° C.) | |
Weight per gallon, | 9.9 | Equivalent wt., avg. | 125 |
lb. @ 25° C. | (as supplied) | ||
*These items are provided as general information only. They are approximate values and are not considered part of the product specification. |
Claims (7)
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US12/961,265 US8087189B2 (en) | 2006-12-07 | 2010-12-06 | Chemically-treated outsole assembly for a golf shoe |
US13/333,790 US20120180342A1 (en) | 2006-12-07 | 2011-12-21 | Chemically-treated outsole assembly for a golf shoe |
Applications Claiming Priority (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US86904606P | 2006-12-07 | 2006-12-07 | |
US11/952,015 US7845097B2 (en) | 2006-12-07 | 2007-12-06 | Chemically-treated outsole assembly for a golf shoe |
US95201510A | 2010-11-22 | 2010-11-22 | |
US12/961,265 US8087189B2 (en) | 2006-12-07 | 2010-12-06 | Chemically-treated outsole assembly for a golf shoe |
Related Parent Applications (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US11/952,015 Continuation US7845097B2 (en) | 2006-12-07 | 2007-12-06 | Chemically-treated outsole assembly for a golf shoe |
US95201510A Continuation | 2006-12-07 | 2010-11-22 |
Related Child Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US13/333,790 Continuation US20120180342A1 (en) | 2006-12-07 | 2011-12-21 | Chemically-treated outsole assembly for a golf shoe |
Publications (2)
Publication Number | Publication Date |
---|---|
US20110072687A1 US20110072687A1 (en) | 2011-03-31 |
US8087189B2 true US8087189B2 (en) | 2012-01-03 |
Family
ID=40026078
Family Applications (3)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US11/952,015 Active 2029-08-27 US7845097B2 (en) | 2006-12-07 | 2007-12-06 | Chemically-treated outsole assembly for a golf shoe |
US12/961,265 Active US8087189B2 (en) | 2006-12-07 | 2010-12-06 | Chemically-treated outsole assembly for a golf shoe |
US13/333,790 Abandoned US20120180342A1 (en) | 2006-12-07 | 2011-12-21 | Chemically-treated outsole assembly for a golf shoe |
Family Applications Before (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US11/952,015 Active 2029-08-27 US7845097B2 (en) | 2006-12-07 | 2007-12-06 | Chemically-treated outsole assembly for a golf shoe |
Family Applications After (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US13/333,790 Abandoned US20120180342A1 (en) | 2006-12-07 | 2011-12-21 | Chemically-treated outsole assembly for a golf shoe |
Country Status (1)
Country | Link |
---|---|
US (3) | US7845097B2 (en) |
Families Citing this family (75)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
USD661074S1 (en) | 2009-08-10 | 2012-06-05 | Vibram S.P.A. | Sole for footwear |
US8453354B2 (en) | 2009-10-01 | 2013-06-04 | Nike, Inc. | Rigid cantilevered stud |
US9290620B2 (en) * | 2009-10-21 | 2016-03-22 | Nalco Company | Production and composition of glycerol based polyols |
US8884049B2 (en) | 2009-10-21 | 2014-11-11 | Nalco Company | Glycerol based polymer surface active chemistry and production |
USD661071S1 (en) * | 2010-02-01 | 2012-06-05 | Tod's S.P.A. | Footwear sole |
US9416490B2 (en) | 2010-03-10 | 2016-08-16 | Nalco Company | Cross-linked glycerol based polymers as digestion aids for improving wood pulping processes |
EP2627206A4 (en) * | 2010-10-15 | 2016-04-13 | Univ California | Material for mitigating impact forces with collision durations in nanoseconds to milliseconds range |
USD670070S1 (en) | 2010-11-22 | 2012-11-06 | Tod's S.P.A. | Shoe |
US8713819B2 (en) | 2011-01-19 | 2014-05-06 | Nike, Inc. | Composite sole structure |
USD702028S1 (en) * | 2011-04-11 | 2014-04-08 | Ecco Sko A/S | Sole |
US8966787B2 (en) | 2011-09-16 | 2015-03-03 | Nike, Inc. | Orientations for footwear ground-engaging member support features |
US9220320B2 (en) * | 2011-09-16 | 2015-12-29 | Nike, Inc. | Sole arrangement with ground-engaging member support features |
US9138027B2 (en) | 2011-09-16 | 2015-09-22 | Nike, Inc. | Spacing for footwear ground-engaging member support features |
US8806779B2 (en) * | 2011-09-16 | 2014-08-19 | Nike, Inc. | Shaped support features for footwear ground-engaging members |
US9402442B2 (en) * | 2012-04-27 | 2016-08-02 | Nike, Inc. | Sole structure and article of footwear including same |
US9609915B2 (en) | 2013-02-04 | 2017-04-04 | Nike, Inc. | Outsole of a footwear article, having fin traction elements |
USD707430S1 (en) * | 2012-08-24 | 2014-06-24 | Acushnet Company | Golf shoe outsole |
USD741586S1 (en) * | 2012-09-26 | 2015-10-27 | Ecco Sko A/S | Sole |
USD729503S1 (en) * | 2012-11-19 | 2015-05-19 | Payless Shoesource Worldwide, Inc. | Canvas shoe with toe cover and two decorative foxing stripes along the toe cover |
US9414642B2 (en) | 2013-01-22 | 2016-08-16 | Nike, Inc. | Cleated footwear |
DE102013002519B4 (en) | 2013-02-13 | 2016-08-18 | Adidas Ag | Production method for damping elements for sportswear |
US10238168B2 (en) * | 2013-03-15 | 2019-03-26 | Laurence James | Shoe construction |
US9451805B2 (en) * | 2013-07-26 | 2016-09-27 | Nike, Inc. | Article of footwear with support assembly having primary and secondary members |
US20150096195A1 (en) * | 2013-10-08 | 2015-04-09 | Acushnet Company | Golf shoes having outsoles with sections of differing hardness |
US9615626B2 (en) * | 2013-12-20 | 2017-04-11 | Nike, Inc. | Sole structure with segmented portions |
USD735976S1 (en) * | 2014-03-04 | 2015-08-11 | Christoph Siegel | Shoe |
USD752322S1 (en) * | 2014-09-09 | 2016-03-29 | Lotto Sport Italia S.P.A. | Footwear |
USD781029S1 (en) * | 2014-10-23 | 2017-03-14 | Fusion, Llc | Hybrid boat and golf shoe |
USD774286S1 (en) * | 2014-12-10 | 2016-12-20 | Valentino S.P.A. | Shoe |
DE102015202013B4 (en) | 2015-02-05 | 2019-05-09 | Adidas Ag | Process for producing a plastic molding, plastic molding and shoe |
USD751797S1 (en) * | 2015-03-23 | 2016-03-22 | Yves Saint Laurent | Sneaker |
USD854290S1 (en) * | 2015-05-19 | 2019-07-23 | Nike, Inc. | Shoe |
USD885718S1 (en) * | 2015-05-19 | 2020-06-02 | Nike, Inc. | Shoe |
USD789045S1 (en) * | 2015-07-07 | 2017-06-13 | Christian Dior Couture S.A. | Sneaker |
US9615625B1 (en) * | 2015-09-17 | 2017-04-11 | Wolverine Outdoors, Inc. | Sole assembly for article of footwear |
AU201612317S (en) * | 2015-10-29 | 2016-06-01 | On Clouds Gmbh | Shoes |
USD890484S1 (en) * | 2015-11-17 | 2020-07-21 | Nike, Inc. | Shoe |
USD825157S1 (en) | 2016-01-20 | 2018-08-14 | Valentino S.P.A. | Shoe |
USD866929S1 (en) * | 2016-03-15 | 2019-11-19 | Nike, Inc. | Shoe |
DE102016209045B4 (en) | 2016-05-24 | 2022-05-25 | Adidas Ag | METHOD AND DEVICE FOR AUTOMATICALLY MANUFACTURING SHOE SOLES, SOLES AND SHOES |
DE102016209046B4 (en) * | 2016-05-24 | 2019-08-08 | Adidas Ag | METHOD FOR THE PRODUCTION OF A SHOE SOLE, SHOE SOLE, SHOE AND PREPARED TPU ITEMS |
US10278451B2 (en) * | 2016-05-26 | 2019-05-07 | Nike, Inc. | Sole structure with laterally aligned fins |
USD808132S1 (en) * | 2016-06-03 | 2018-01-23 | Ecco Sko A/S | Footwear |
USD806995S1 (en) | 2016-06-03 | 2018-01-09 | Ecco Sko A/S | Footwear |
USD774288S1 (en) * | 2016-07-25 | 2016-12-20 | Puma SE | Shoe |
DE102016223980B4 (en) | 2016-12-01 | 2022-09-22 | Adidas Ag | Process for the production of a plastic molding |
USD816306S1 (en) | 2016-12-16 | 2018-05-01 | Puma SE | Shoe |
USD841959S1 (en) | 2017-03-14 | 2019-03-05 | Wolverine Outdoors, Inc. | Footwear sole |
USD842596S1 (en) | 2017-03-14 | 2019-03-12 | Wolverine Outdoors, Inc. | Footwear sole |
USD826541S1 (en) * | 2017-03-29 | 2018-08-28 | River Light V, L.P. | Golf tee shoe |
USD915036S1 (en) * | 2018-01-17 | 2021-04-06 | Valentino S.P.A. | Shoe |
USD912964S1 (en) | 2018-01-29 | 2021-03-16 | Nike, Inc. | Shoe |
USD866933S1 (en) * | 2018-04-19 | 2019-11-19 | Graziano Mazza | Footwear |
USD891042S1 (en) * | 2018-02-21 | 2020-07-28 | Golden Goose S.P.A. | Shoe |
USD889787S1 (en) | 2018-04-13 | 2020-07-14 | Puma SE | Shoe |
USD869128S1 (en) * | 2018-06-11 | 2019-12-10 | Friendly, Inc. | Footwear |
USD943247S1 (en) * | 2018-06-20 | 2022-02-15 | Louis Vuitton Malletier | Footwear |
USD862047S1 (en) * | 2018-06-25 | 2019-10-08 | Louis Vuitton Malletier | Footwear |
US10856613B2 (en) * | 2018-08-10 | 2020-12-08 | Acushnet Company | Golf shoe with outsole having flex channels and wave-like traction members |
USD900440S1 (en) | 2019-01-18 | 2020-11-03 | Puma SE | Shoe |
USD885723S1 (en) | 2019-02-14 | 2020-06-02 | Puma SE | Shoe |
USD909024S1 (en) | 2019-02-18 | 2021-02-02 | Premiata S.R.L. | Shoe |
USD899741S1 (en) * | 2019-05-14 | 2020-10-27 | Nike, Inc. | Shoe |
EP3975784B1 (en) * | 2019-05-31 | 2024-09-18 | NIKE Innovate C.V. | Sole structure for article of footwear |
USD908331S1 (en) * | 2019-07-11 | 2021-01-26 | Nike, Inc. | Shoe |
CN110423330A (en) * | 2019-07-30 | 2019-11-08 | 广东康诚新材料科技股份有限公司 | Integrally formed shoes outsole and preparation method thereof |
USD891746S1 (en) * | 2019-08-28 | 2020-08-04 | Nike, Inc. | Shoe |
USD891743S1 (en) * | 2019-08-28 | 2020-08-04 | Nike, Inc. | Shoe |
USD891747S1 (en) * | 2019-08-28 | 2020-08-04 | Nike, Inc. | Shoe |
USD891749S1 (en) * | 2019-11-01 | 2020-08-04 | Nike, Inc. | Shoe |
USD897079S1 (en) * | 2019-11-01 | 2020-09-29 | Nike, Inc. | Shoe |
USD933339S1 (en) * | 2020-03-03 | 2021-10-19 | Sung Joo D&D, Inc. | Shoe |
USD1026441S1 (en) * | 2021-02-04 | 2024-05-14 | New Balance Athletics, Inc. | Shoe upper |
US20220330662A1 (en) * | 2021-04-15 | 2022-10-20 | Craig Frankel | Device for shoes |
USD1000082S1 (en) * | 2022-02-28 | 2023-10-03 | leguano GmbH | Shoe |
Citations (25)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4679795A (en) | 1983-08-01 | 1987-07-14 | Spalding & Evenflo Companies, Inc. | Optical brighteners in golf ball covers |
US4884814A (en) | 1988-01-15 | 1989-12-05 | Spalding & Evenflo Companies, Inc. | Golf ball |
US4911451A (en) | 1989-03-29 | 1990-03-27 | Sullivan Michael J | Golf ball cover of neutralized poly(ethylene-acrylic acid) copolymer |
US4986545A (en) | 1989-12-13 | 1991-01-22 | Spalding Sports Worldwide | Golf ball compositions |
US5098105A (en) | 1989-12-13 | 1992-03-24 | Lisco, Inc. | Golf ball compositions |
US5187013A (en) | 1989-12-13 | 1993-02-16 | Lisco, Inc. | Golf ball compositions |
US5312857A (en) | 1992-01-09 | 1994-05-17 | Lisco, Inc. | Golf ball cover compositions containing high levels of metal stearates |
US5484870A (en) | 1993-06-28 | 1996-01-16 | Acushnet Company | Polyurea composition suitable for a golf ball cover |
US5688869A (en) | 1991-10-15 | 1997-11-18 | Lisco, Inc. | Golf ball cover compositions |
US5932336A (en) * | 1995-06-05 | 1999-08-03 | Acushnet Company | Shoe sole |
US6210293B1 (en) | 1993-06-01 | 2001-04-03 | Spalding Sports Worldwide, Inc. | Multi-layer golf ball |
US20010022039A1 (en) * | 2000-03-02 | 2001-09-20 | Krajcir Dezi A. | Metatarsal protectors for footwear |
US6294617B1 (en) | 1997-05-23 | 2001-09-25 | Acushnet Company | Golf ball forming compositions comprising polyamide |
US6309706B2 (en) | 1998-09-08 | 2001-10-30 | Sumitomo Rubber Industries Limited | Coating material for golf ball and golf ball coated with the same |
US20020053148A1 (en) * | 1998-11-17 | 2002-05-09 | Franz Haimerl | Footwear with last area sealing and method for its production |
US6413172B1 (en) | 1992-04-24 | 2002-07-02 | Spalding Sports Worldwide, Inc. | Golf ball with soft core |
US20020144431A1 (en) * | 2001-03-08 | 2002-10-10 | Klaus Knoerr | Methods of manufacturing shoe soles |
US20030024134A1 (en) * | 2001-07-31 | 2003-02-06 | Harold Howlett | Insole for fitness and recreational walking |
US6569037B2 (en) | 2000-11-08 | 2003-05-27 | Bridgestone Sports Co., Ltd. | Golf ball |
US6645091B2 (en) | 1999-05-14 | 2003-11-11 | Acushnet Company | Thermoplastic polyurethane golf ball with improved resiliency |
US6762273B2 (en) | 2002-05-31 | 2004-07-13 | Callaway Golf Company | Thermosetting polyurethane material for a golf ball cover |
US6855076B2 (en) | 2002-07-25 | 2005-02-15 | Callaway Golf Company | Golf ball |
US20050241186A1 (en) * | 2004-04-16 | 2005-11-03 | Ron Mulligan | Thermoplastic printed film innersole for shoes |
US20060141228A1 (en) * | 2004-12-23 | 2006-06-29 | Rearick Brian K | Color harmonization coatings for articles of manufacture comprising different substrate materials |
US7219446B1 (en) * | 1999-08-16 | 2007-05-22 | Franz Haimerl | Footwear with sealed sole construction and method for producing same |
Family Cites Families (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5985383A (en) * | 1995-03-15 | 1999-11-16 | Acushnet Company | Conforming shoe construction and gel compositions therefor |
US6301805B1 (en) * | 2000-07-31 | 2001-10-16 | Shering-Plough Healthcare Products, Inc. | Full length insole for obese people |
US6915598B2 (en) * | 2002-08-06 | 2005-07-12 | Schering-Plough Healthcare Products Inc. | Insole with arch spring |
US7597946B2 (en) * | 2003-08-29 | 2009-10-06 | Nike, Inc. | Gel reduction in blends of thermoplastic polyurethane and hydroxyl functional polymers |
US7284342B2 (en) * | 2004-08-06 | 2007-10-23 | Schering-Plough Healthcare Products, Inc. | Heel insert |
-
2007
- 2007-12-06 US US11/952,015 patent/US7845097B2/en active Active
-
2010
- 2010-12-06 US US12/961,265 patent/US8087189B2/en active Active
-
2011
- 2011-12-21 US US13/333,790 patent/US20120180342A1/en not_active Abandoned
Patent Citations (28)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4679795A (en) | 1983-08-01 | 1987-07-14 | Spalding & Evenflo Companies, Inc. | Optical brighteners in golf ball covers |
US4884814B1 (en) | 1988-01-15 | 1992-02-18 | Spalding & Evenflo | |
US4884814A (en) | 1988-01-15 | 1989-12-05 | Spalding & Evenflo Companies, Inc. | Golf ball |
US4911451A (en) | 1989-03-29 | 1990-03-27 | Sullivan Michael J | Golf ball cover of neutralized poly(ethylene-acrylic acid) copolymer |
US5187013A (en) | 1989-12-13 | 1993-02-16 | Lisco, Inc. | Golf ball compositions |
US5098105A (en) | 1989-12-13 | 1992-03-24 | Lisco, Inc. | Golf ball compositions |
US4986545A (en) | 1989-12-13 | 1991-01-22 | Spalding Sports Worldwide | Golf ball compositions |
US5688869A (en) | 1991-10-15 | 1997-11-18 | Lisco, Inc. | Golf ball cover compositions |
US5312857A (en) | 1992-01-09 | 1994-05-17 | Lisco, Inc. | Golf ball cover compositions containing high levels of metal stearates |
US6413172B1 (en) | 1992-04-24 | 2002-07-02 | Spalding Sports Worldwide, Inc. | Golf ball with soft core |
US6210293B1 (en) | 1993-06-01 | 2001-04-03 | Spalding Sports Worldwide, Inc. | Multi-layer golf ball |
US5484870A (en) | 1993-06-28 | 1996-01-16 | Acushnet Company | Polyurea composition suitable for a golf ball cover |
US5932336A (en) * | 1995-06-05 | 1999-08-03 | Acushnet Company | Shoe sole |
US5987783A (en) * | 1995-06-05 | 1999-11-23 | Acushnet Company | Golf shoe having spike socket spine system |
US6294617B1 (en) | 1997-05-23 | 2001-09-25 | Acushnet Company | Golf ball forming compositions comprising polyamide |
US6309706B2 (en) | 1998-09-08 | 2001-10-30 | Sumitomo Rubber Industries Limited | Coating material for golf ball and golf ball coated with the same |
US20020053148A1 (en) * | 1998-11-17 | 2002-05-09 | Franz Haimerl | Footwear with last area sealing and method for its production |
US6645091B2 (en) | 1999-05-14 | 2003-11-11 | Acushnet Company | Thermoplastic polyurethane golf ball with improved resiliency |
US7219446B1 (en) * | 1999-08-16 | 2007-05-22 | Franz Haimerl | Footwear with sealed sole construction and method for producing same |
US20010022039A1 (en) * | 2000-03-02 | 2001-09-20 | Krajcir Dezi A. | Metatarsal protectors for footwear |
US6569037B2 (en) | 2000-11-08 | 2003-05-27 | Bridgestone Sports Co., Ltd. | Golf ball |
US20020144431A1 (en) * | 2001-03-08 | 2002-10-10 | Klaus Knoerr | Methods of manufacturing shoe soles |
US20030024134A1 (en) * | 2001-07-31 | 2003-02-06 | Harold Howlett | Insole for fitness and recreational walking |
US6762273B2 (en) | 2002-05-31 | 2004-07-13 | Callaway Golf Company | Thermosetting polyurethane material for a golf ball cover |
US6855076B2 (en) | 2002-07-25 | 2005-02-15 | Callaway Golf Company | Golf ball |
US6935970B2 (en) | 2002-07-25 | 2005-08-30 | Callaway Golf Company | Golf ball |
US20050241186A1 (en) * | 2004-04-16 | 2005-11-03 | Ron Mulligan | Thermoplastic printed film innersole for shoes |
US20060141228A1 (en) * | 2004-12-23 | 2006-06-29 | Rearick Brian K | Color harmonization coatings for articles of manufacture comprising different substrate materials |
Also Published As
Publication number | Publication date |
---|---|
US20110072687A1 (en) | 2011-03-31 |
US7845097B2 (en) | 2010-12-07 |
US20080282579A1 (en) | 2008-11-20 |
US20120180342A1 (en) | 2012-07-19 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US8087189B2 (en) | Chemically-treated outsole assembly for a golf shoe | |
US7867111B2 (en) | Golf ball | |
US7785522B2 (en) | Cross-linked thermoplastic polyurethane/polyurea and method of making same | |
TWI492775B (en) | Over-indexed thermoplastic polyurethane elastomer, method of making, and articles comprising the elastomer | |
TWI491429B (en) | Golf ball having an over-indexed thermoplastic polyurethane elastomer cover and having a soft feeling when hit | |
TW202033721A (en) | Thermoplastic polyurethane hot-melt adhesive and its use | |
US7479533B2 (en) | Golf ball | |
US6593443B2 (en) | Wound-core golf ball | |
US8906508B2 (en) | Method of toughening thermoplastic polyurethane and articles comprising toughened thermoplastic polyurethane | |
TWI482790B (en) | Method for making over-indexed thermoplastic polyurethane elastomer precursor and thermoplastic polyurethane elastomer made from the precursor | |
US11312816B2 (en) | Thermoplastic polyurethane and composite article | |
WO2024100018A1 (en) | Bonding of parts to an article and separating the article for recycling | |
US7674193B2 (en) | Golf ball |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
AS | Assignment |
Owner name: CALLAWAY GOLF COMPANY, CALIFORNIA Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:BOBBETT, JON;ROY, MICHAEL;GORMAN, JAMES;SIGNING DATES FROM 20071210 TO 20071223;REEL/FRAME:025461/0144 |
|
STCF | Information on status: patent grant |
Free format text: PATENTED CASE |
|
FPAY | Fee payment |
Year of fee payment: 4 |
|
AS | Assignment |
Owner name: BANK OF AMERICA, N.A., CALIFORNIA Free format text: SECURITY INTEREST;ASSIGNORS:CALLAWAY GOLF COMPANY;CALLAWAY GOLF SALES COMPANY;CALLAWAY GOLF BALL OPERATIONS, INC.;AND OTHERS;REEL/FRAME:045350/0741 Effective date: 20171120 |
|
AS | Assignment |
Owner name: BANK OF AMERICA, N.A., AS ADMINISTRATIVE AGENT, NO Free format text: SECURITY AGREEMENT;ASSIGNORS:CALLAWAY GOLF COMPANY;OGIO INTERNATIONAL, INC.;REEL/FRAME:048172/0001 Effective date: 20190104 Owner name: BANK OF AMERICA, N.A., AS ADMINISTRATIVE AGENT, NORTH CAROLINA Free format text: SECURITY AGREEMENT;ASSIGNORS:CALLAWAY GOLF COMPANY;OGIO INTERNATIONAL, INC.;REEL/FRAME:048172/0001 Effective date: 20190104 |
|
AS | Assignment |
Owner name: BANK OF AMERICA, N.A., CALIFORNIA Free format text: SECURITY INTEREST;ASSIGNORS:CALLAWAY GOLF COMPANY;CALLAWAY GOLF SALES COMPANY;CALLAWAY GOLF BALL OPERATIONS, INC.;AND OTHERS;REEL/FRAME:048110/0352 Effective date: 20190104 |
|
MAFP | Maintenance fee payment |
Free format text: PAYMENT OF MAINTENANCE FEE, 8TH YEAR, LARGE ENTITY (ORIGINAL EVENT CODE: M1552); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY Year of fee payment: 8 |
|
AS | Assignment |
Owner name: OGIO INTERNATIONAL, INC., CALIFORNIA Free format text: RELEASE (REEL 048172 / FRAME 0001);ASSIGNOR:BANK OF AMERICA, N.A.;REEL/FRAME:063622/0187 Effective date: 20230316 Owner name: TOPGOLF CALLAWAY BRANDS CORP. (F/K/A CALLAWAY GOLF COMPANY), CALIFORNIA Free format text: RELEASE (REEL 048172 / FRAME 0001);ASSIGNOR:BANK OF AMERICA, N.A.;REEL/FRAME:063622/0187 Effective date: 20230316 |
|
AS | Assignment |
Owner name: BANK OF AMERICA, N.A, AS COLLATERAL AGENT, NORTH CAROLINA Free format text: SECURITY AGREEMENT;ASSIGNORS:TOPGOLF CALLAWAY BRANDS CORP. (FORMERLY CALLAWAY GOLF COMPANY);OGIO INTERNATIONAL, INC.;TOPGOLF INTERNATIONAL, INC.;AND OTHERS;REEL/FRAME:063665/0176 Effective date: 20230512 |
|
AS | Assignment |
Owner name: BANK OF AMERICA, N.A., CALIFORNIA Free format text: SECURITY INTEREST;ASSIGNORS:TOPGOLF CALLAWAY BRANDS CORP.;OGIO INTERNATIONAL, INC.;TOPGOLF INTERNATIONAL, INC.;AND OTHERS;REEL/FRAME:063692/0009 Effective date: 20230517 |
|
MAFP | Maintenance fee payment |
Free format text: PAYMENT OF MAINTENANCE FEE, 12TH YEAR, LARGE ENTITY (ORIGINAL EVENT CODE: M1553); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY Year of fee payment: 12 |