US8083448B2 - Interlocking pallets, and shipping and storage systems employing the same - Google Patents
Interlocking pallets, and shipping and storage systems employing the same Download PDFInfo
- Publication number
- US8083448B2 US8083448B2 US12/287,166 US28716608A US8083448B2 US 8083448 B2 US8083448 B2 US 8083448B2 US 28716608 A US28716608 A US 28716608A US 8083448 B2 US8083448 B2 US 8083448B2
- Authority
- US
- United States
- Prior art keywords
- pallet
- locking
- openings
- another
- interface fittings
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related, expires
Links
- 230000001808 coupling Effects 0.000 claims description 60
- 238000010168 coupling process Methods 0.000 claims description 60
- 238000005859 coupling reaction Methods 0.000 claims description 60
- 230000036633 rest Effects 0.000 description 16
- 230000000712 assembly Effects 0.000 description 14
- 239000000789 fastener Substances 0.000 description 10
- 238000011068 load Methods 0.000 description 10
- 230000004913 activation Effects 0.000 description 8
- 238000010276 construction Methods 0.000 description 8
- 230000000875 corresponding Effects 0.000 description 8
- 238000003780 insertion Methods 0.000 description 8
- 239000000463 material Substances 0.000 description 8
- 230000002787 reinforcement Effects 0.000 description 6
- 238000004642 transportation engineering Methods 0.000 description 6
- 239000002131 composite material Substances 0.000 description 4
- 238000007906 compression Methods 0.000 description 4
- 230000002708 enhancing Effects 0.000 description 4
- -1 for example Substances 0.000 description 4
- 239000002184 metal Substances 0.000 description 4
- 239000000203 mixture Substances 0.000 description 4
- 230000004048 modification Effects 0.000 description 4
- 238000006011 modification reaction Methods 0.000 description 4
- 230000000284 resting Effects 0.000 description 4
- 239000007787 solid Substances 0.000 description 4
- 239000002023 wood Substances 0.000 description 4
- 206010022114 Injury Diseases 0.000 description 2
- 230000001419 dependent Effects 0.000 description 2
- 230000000994 depressed Effects 0.000 description 2
- 230000001788 irregular Effects 0.000 description 2
- 238000004806 packaging method and process Methods 0.000 description 2
- 231100000773 point of departure Toxicity 0.000 description 2
- 230000000717 retained Effects 0.000 description 2
- 238000009964 serging Methods 0.000 description 2
- 238000006467 substitution reaction Methods 0.000 description 2
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B65—CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
- B65D—CONTAINERS FOR STORAGE OR TRANSPORT OF ARTICLES OR MATERIALS, e.g. BAGS, BARRELS, BOTTLES, BOXES, CANS, CARTONS, CRATES, DRUMS, JARS, TANKS, HOPPERS, FORWARDING CONTAINERS; ACCESSORIES, CLOSURES, OR FITTINGS THEREFOR; PACKAGING ELEMENTS; PACKAGES
- B65D19/00—Pallets or like platforms, with or without side walls, for supporting loads to be lifted or lowered
- B65D19/02—Rigid pallets with side walls, e.g. box pallets
- B65D19/06—Rigid pallets with side walls, e.g. box pallets with bodies formed by uniting or interconnecting two or more components
- B65D19/08—Rigid pallets with side walls, e.g. box pallets with bodies formed by uniting or interconnecting two or more components made wholly or mainly of metal
- B65D19/12—Collapsible pallets
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B65—CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
- B65D—CONTAINERS FOR STORAGE OR TRANSPORT OF ARTICLES OR MATERIALS, e.g. BAGS, BARRELS, BOTTLES, BOXES, CANS, CARTONS, CRATES, DRUMS, JARS, TANKS, HOPPERS, FORWARDING CONTAINERS; ACCESSORIES, CLOSURES, OR FITTINGS THEREFOR; PACKAGING ELEMENTS; PACKAGES
- B65D2519/00—Pallets or like platforms, with or without side walls, for supporting loads to be lifted or lowered
- B65D2519/00004—Details relating to pallets
- B65D2519/00009—Materials
- B65D2519/00014—Materials for the load supporting surface
- B65D2519/00024—Metal
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B65—CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
- B65D—CONTAINERS FOR STORAGE OR TRANSPORT OF ARTICLES OR MATERIALS, e.g. BAGS, BARRELS, BOTTLES, BOXES, CANS, CARTONS, CRATES, DRUMS, JARS, TANKS, HOPPERS, FORWARDING CONTAINERS; ACCESSORIES, CLOSURES, OR FITTINGS THEREFOR; PACKAGING ELEMENTS; PACKAGES
- B65D2519/00—Pallets or like platforms, with or without side walls, for supporting loads to be lifted or lowered
- B65D2519/00004—Details relating to pallets
- B65D2519/00009—Materials
- B65D2519/00014—Materials for the load supporting surface
- B65D2519/00029—Wood
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B65—CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
- B65D—CONTAINERS FOR STORAGE OR TRANSPORT OF ARTICLES OR MATERIALS, e.g. BAGS, BARRELS, BOTTLES, BOXES, CANS, CARTONS, CRATES, DRUMS, JARS, TANKS, HOPPERS, FORWARDING CONTAINERS; ACCESSORIES, CLOSURES, OR FITTINGS THEREFOR; PACKAGING ELEMENTS; PACKAGES
- B65D2519/00—Pallets or like platforms, with or without side walls, for supporting loads to be lifted or lowered
- B65D2519/00004—Details relating to pallets
- B65D2519/00009—Materials
- B65D2519/00049—Materials for the base surface
- B65D2519/00059—Metal
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B65—CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
- B65D—CONTAINERS FOR STORAGE OR TRANSPORT OF ARTICLES OR MATERIALS, e.g. BAGS, BARRELS, BOTTLES, BOXES, CANS, CARTONS, CRATES, DRUMS, JARS, TANKS, HOPPERS, FORWARDING CONTAINERS; ACCESSORIES, CLOSURES, OR FITTINGS THEREFOR; PACKAGING ELEMENTS; PACKAGES
- B65D2519/00—Pallets or like platforms, with or without side walls, for supporting loads to be lifted or lowered
- B65D2519/00004—Details relating to pallets
- B65D2519/00009—Materials
- B65D2519/00049—Materials for the base surface
- B65D2519/00064—Wood
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B65—CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
- B65D—CONTAINERS FOR STORAGE OR TRANSPORT OF ARTICLES OR MATERIALS, e.g. BAGS, BARRELS, BOTTLES, BOXES, CANS, CARTONS, CRATES, DRUMS, JARS, TANKS, HOPPERS, FORWARDING CONTAINERS; ACCESSORIES, CLOSURES, OR FITTINGS THEREFOR; PACKAGING ELEMENTS; PACKAGES
- B65D2519/00—Pallets or like platforms, with or without side walls, for supporting loads to be lifted or lowered
- B65D2519/00004—Details relating to pallets
- B65D2519/00258—Overall construction
- B65D2519/00263—Overall construction of the pallet
- B65D2519/00273—Overall construction of the pallet made of more than one piece
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B65—CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
- B65D—CONTAINERS FOR STORAGE OR TRANSPORT OF ARTICLES OR MATERIALS, e.g. BAGS, BARRELS, BOTTLES, BOXES, CANS, CARTONS, CRATES, DRUMS, JARS, TANKS, HOPPERS, FORWARDING CONTAINERS; ACCESSORIES, CLOSURES, OR FITTINGS THEREFOR; PACKAGING ELEMENTS; PACKAGES
- B65D2519/00—Pallets or like platforms, with or without side walls, for supporting loads to be lifted or lowered
- B65D2519/00004—Details relating to pallets
- B65D2519/00258—Overall construction
- B65D2519/00283—Overall construction of the load supporting surface
- B65D2519/00293—Overall construction of the load supporting surface made of more than one piece
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B65—CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
- B65D—CONTAINERS FOR STORAGE OR TRANSPORT OF ARTICLES OR MATERIALS, e.g. BAGS, BARRELS, BOTTLES, BOXES, CANS, CARTONS, CRATES, DRUMS, JARS, TANKS, HOPPERS, FORWARDING CONTAINERS; ACCESSORIES, CLOSURES, OR FITTINGS THEREFOR; PACKAGING ELEMENTS; PACKAGES
- B65D2519/00—Pallets or like platforms, with or without side walls, for supporting loads to be lifted or lowered
- B65D2519/00004—Details relating to pallets
- B65D2519/00258—Overall construction
- B65D2519/00313—Overall construction of the base surface
- B65D2519/00323—Overall construction of the base surface made of more than one piece
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B65—CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
- B65D—CONTAINERS FOR STORAGE OR TRANSPORT OF ARTICLES OR MATERIALS, e.g. BAGS, BARRELS, BOTTLES, BOXES, CANS, CARTONS, CRATES, DRUMS, JARS, TANKS, HOPPERS, FORWARDING CONTAINERS; ACCESSORIES, CLOSURES, OR FITTINGS THEREFOR; PACKAGING ELEMENTS; PACKAGES
- B65D2519/00—Pallets or like platforms, with or without side walls, for supporting loads to be lifted or lowered
- B65D2519/00004—Details relating to pallets
- B65D2519/00258—Overall construction
- B65D2519/00313—Overall construction of the base surface
- B65D2519/00328—Overall construction of the base surface shape of the contact surface of the base
- B65D2519/00333—Overall construction of the base surface shape of the contact surface of the base contact surface having a stringer-like shape
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B65—CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
- B65D—CONTAINERS FOR STORAGE OR TRANSPORT OF ARTICLES OR MATERIALS, e.g. BAGS, BARRELS, BOTTLES, BOXES, CANS, CARTONS, CRATES, DRUMS, JARS, TANKS, HOPPERS, FORWARDING CONTAINERS; ACCESSORIES, CLOSURES, OR FITTINGS THEREFOR; PACKAGING ELEMENTS; PACKAGES
- B65D2519/00—Pallets or like platforms, with or without side walls, for supporting loads to be lifted or lowered
- B65D2519/00004—Details relating to pallets
- B65D2519/00258—Overall construction
- B65D2519/00492—Overall construction of the side walls
- B65D2519/00532—Frame structures
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B65—CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
- B65D—CONTAINERS FOR STORAGE OR TRANSPORT OF ARTICLES OR MATERIALS, e.g. BAGS, BARRELS, BOTTLES, BOXES, CANS, CARTONS, CRATES, DRUMS, JARS, TANKS, HOPPERS, FORWARDING CONTAINERS; ACCESSORIES, CLOSURES, OR FITTINGS THEREFOR; PACKAGING ELEMENTS; PACKAGES
- B65D2519/00—Pallets or like platforms, with or without side walls, for supporting loads to be lifted or lowered
- B65D2519/00004—Details relating to pallets
- B65D2519/00547—Connections
- B65D2519/00577—Connections structures connecting side walls, including corner posts, to each other
- B65D2519/00582—Connections structures connecting side walls, including corner posts, to each other structures intended to be disassembled, i.e. collapsible or dismountable
- B65D2519/00611—Connections structures connecting side walls, including corner posts, to each other structures intended to be disassembled, i.e. collapsible or dismountable side walls maintained connected to each other by means of auxiliary locking elements, e.g. spring loaded locking pins
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B65—CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
- B65D—CONTAINERS FOR STORAGE OR TRANSPORT OF ARTICLES OR MATERIALS, e.g. BAGS, BARRELS, BOTTLES, BOXES, CANS, CARTONS, CRATES, DRUMS, JARS, TANKS, HOPPERS, FORWARDING CONTAINERS; ACCESSORIES, CLOSURES, OR FITTINGS THEREFOR; PACKAGING ELEMENTS; PACKAGES
- B65D2519/00—Pallets or like platforms, with or without side walls, for supporting loads to be lifted or lowered
- B65D2519/00004—Details relating to pallets
- B65D2519/00547—Connections
- B65D2519/00636—Connections structures connecting side walls to the pallet
- B65D2519/00641—Structures intended to be disassembled
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B65—CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
- B65D—CONTAINERS FOR STORAGE OR TRANSPORT OF ARTICLES OR MATERIALS, e.g. BAGS, BARRELS, BOTTLES, BOXES, CANS, CARTONS, CRATES, DRUMS, JARS, TANKS, HOPPERS, FORWARDING CONTAINERS; ACCESSORIES, CLOSURES, OR FITTINGS THEREFOR; PACKAGING ELEMENTS; PACKAGES
- B65D2519/00—Pallets or like platforms, with or without side walls, for supporting loads to be lifted or lowered
- B65D2519/00004—Details relating to pallets
- B65D2519/00547—Connections
- B65D2519/00636—Connections structures connecting side walls to the pallet
- B65D2519/00641—Structures intended to be disassembled
- B65D2519/00646—Structures intended to be disassembled by means of hinges
- B65D2519/00656—Structures intended to be disassembled by means of hinges separately formed
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B65—CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
- B65D—CONTAINERS FOR STORAGE OR TRANSPORT OF ARTICLES OR MATERIALS, e.g. BAGS, BARRELS, BOTTLES, BOXES, CANS, CARTONS, CRATES, DRUMS, JARS, TANKS, HOPPERS, FORWARDING CONTAINERS; ACCESSORIES, CLOSURES, OR FITTINGS THEREFOR; PACKAGING ELEMENTS; PACKAGES
- B65D2519/00—Pallets or like platforms, with or without side walls, for supporting loads to be lifted or lowered
- B65D2519/00004—Details relating to pallets
- B65D2519/00547—Connections
- B65D2519/00706—Connections structures connecting the lid or cover to the side walls or corner posts
- B65D2519/00711—Connections structures connecting the lid or cover to the side walls or corner posts removable lid or covers
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B65—CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
- B65D—CONTAINERS FOR STORAGE OR TRANSPORT OF ARTICLES OR MATERIALS, e.g. BAGS, BARRELS, BOTTLES, BOXES, CANS, CARTONS, CRATES, DRUMS, JARS, TANKS, HOPPERS, FORWARDING CONTAINERS; ACCESSORIES, CLOSURES, OR FITTINGS THEREFOR; PACKAGING ELEMENTS; PACKAGES
- B65D2519/00—Pallets or like platforms, with or without side walls, for supporting loads to be lifted or lowered
- B65D2519/00004—Details relating to pallets
- B65D2519/00736—Details
- B65D2519/00741—Dimensional aspects of the pallet
- B65D2519/00761—Dimensional aspects of the pallet the surface being variable, e.g. extendable pallets
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B65—CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
- B65D—CONTAINERS FOR STORAGE OR TRANSPORT OF ARTICLES OR MATERIALS, e.g. BAGS, BARRELS, BOTTLES, BOXES, CANS, CARTONS, CRATES, DRUMS, JARS, TANKS, HOPPERS, FORWARDING CONTAINERS; ACCESSORIES, CLOSURES, OR FITTINGS THEREFOR; PACKAGING ELEMENTS; PACKAGES
- B65D2519/00—Pallets or like platforms, with or without side walls, for supporting loads to be lifted or lowered
- B65D2519/00004—Details relating to pallets
- B65D2519/00736—Details
- B65D2519/00865—Collapsible, i.e. at least two constitutive elements remaining hingedly connected
- B65D2519/00875—Collapsible, i.e. at least two constitutive elements remaining hingedly connected collapsible side walls
- B65D2519/009—Collapsible, i.e. at least two constitutive elements remaining hingedly connected collapsible side walls whereby all side walls are hingedly connected to the base panel
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B65—CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
- B65D—CONTAINERS FOR STORAGE OR TRANSPORT OF ARTICLES OR MATERIALS, e.g. BAGS, BARRELS, BOTTLES, BOXES, CANS, CARTONS, CRATES, DRUMS, JARS, TANKS, HOPPERS, FORWARDING CONTAINERS; ACCESSORIES, CLOSURES, OR FITTINGS THEREFOR; PACKAGING ELEMENTS; PACKAGES
- B65D2519/00—Pallets or like platforms, with or without side walls, for supporting loads to be lifted or lowered
- B65D2519/00004—Details relating to pallets
- B65D2519/00736—Details
- B65D2519/00935—Details with special means for nesting or stacking
- B65D2519/00955—Details with special means for nesting or stacking stackable
- B65D2519/00965—Details with special means for nesting or stacking stackable when loaded
- B65D2519/00975—Details with special means for nesting or stacking stackable when loaded through the side walls
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10T—TECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
- Y10T403/00—Joints and connections
- Y10T403/18—Structurally installed in diverse art device
Abstract
Shipping and storage containers, racks, and pallets including interlocking mechanisms are provided. An embodiment of the pallet includes openings, interface fittings aligned with the openings, respectively, and sized to fit into openings of identical sizes and configurations as the first and second openings, respectively, locking components operatively connected to one another, and an actuator for moving concomitantly the locking components into and out of the openings, respectively.
Description
The present Application is a Divisional Application of U.S. patent application Ser. No. 11/387,082 filed on Mar. 20, 2006, now U.S. Pat. No. 7,491,024 B2, issued on Feb. 17, 2009.
The invention described herein may be manufactured and used by or for the Government of the United States of America for governmental purposes without the payment of any royalties thereon or therefore.
The present invention relates to a pallet capable of interlocking with another pallet, a container structure, and/or a rack system. The present invention further relates to container and rack systems featuring the pallet. In particular embodiments of the invention, the pallets are typically useful for storage and transportation or goods, especially those loadable and unloadable into ISO (International Organization for Standardization) intermodal containers and flat racks and vehicles, such as, trucks and cargo bays of planes.
Pallets are widely used in the shipping industry for facilitating efficient and expeditious movement of goods (e.g., inventory, products, parts, commodities, etc.) from one place to another, and for the storage of goods prior or subsequent to shipment. Goods are placed on the platform of a pallet, which a forklift or an other mechanical device lifts off the ground. The forklift or other device is driven or manually moved for either re-locating the goods to a desired location or loading or unloading the goods on to or off of a vehicle, such as a truck, ship, or aircraft, for transportation to their intended destination.
It is often desirable to stack loaded pallets on one another to reduce storage space requirements and to optimize the storage capacity of vehicles carrying the loaded pallets. However, the stacking of a loaded pallet on the goods of another pallet can lead to undesirable problems and in some cases catastrophic results. The upper pallet and its contents can crush or otherwise damage fragile goods loaded on the lower pallet. Also, it is difficult to properly balance the loaded upper pallet on the goods of the lower pallet lacking regular size and shape, raising the risk that the upper pallet and its load may topple over, placing individuals in proximity to the stack in grave danger of bodily injury, and risking damage to nearby property. Vibrations and load shifting encountered during shipping and forklift transfer of loaded pallets can increase the risk of goods and pallets near the top of a stack dislodging and falling to the ground.
One solution to overcome the above problems is to transfer the goods from the pallet platform to a rack or into the compartment of a shipping container. The walls of a shipping container confine the movement of the goods to the container compartment during shipment. Further, the walls of a rack or shipping container also bear the weight of other goods, racks and containers stacked thereon, removing the weight-bearing load from the goods themselves. As a consequence, goods possessing fragility or irregular sizes and shapes can be securely stored in racks or transported in shipping containers without the above-described drawbacks of pallets.
But transferring goods from a pallet to a rack or shipping container or between rack and shipping container is a time-consuming and laborious task, especially if the nature of the goods requires their individual transfer, for example, to protect against damage due to their fragility or because of extreme bulkiness or large mass that prevents the simultaneous transfer of multiple goods. Further, once the loaded containers arrive at their intended destination, oftentimes the goods must be unloaded from the container to an open storage structure, such as, a pallet or rack, which favors accessibility of the goods. The open structure of a storage rack, for example, allows potential customers to easily view and select goods for purchase without the inconvenience of lifting a container lid. In a warehouse, open racks permit workers to more easily access inventory for sale, packaging, and shipment.
Another common solution for overcoming the aforementioned problems of accidental toppling of a stack of containers or racks is to use mechanical fasteners, such as ties and straps for holding stacked containers or racks to one another. Application of conventional mechanical fasteners is time-consuming and laborious, often requiring the application of multiple fasteners to properly secure the stack. This conventional solution also requires that the shipper keep a stock of ties, straps, and mechanical fasteners, and continuously replenish their stock before it is exhausted. These inefficiencies serve to increase expenses and to complicate shipping and storage protocols. Further, the person responsible for securing the stacked containers and racks together may be placed in a vulnerable position, thereby partly defeating the purpose for strapping in the first place.
Another problem associated with the use of pallets is that after the goods have been off-loaded, the pallets oftentimes are needed for reuse at their original point of departure or elsewhere. Stacking off-loaded pallets on one another for transportation is much more efficient than moving the pallets individually, one at a time. However, as described above, various forces and hazards are encountered in the raising, lowering, and shipment of stacked pallets that can cause the stack to topple over. While the use of ties or straps can overcome these problems, application and removal of mechanical fasteners is time-consuming and laborious.
It is an aspect of the invention to provide pallets capable of interlocking with one another in a convenient and efficient manner, and to provide methods of making and using the interlocking pallets.
Yet another aspect of the invention provides a plurality of stackable, inter-lockable pallets, including at least first and second pallets. The first pallet features first and second interface fittings. The second pallet features first and second locking components operatively connected to one another, and an actuator for moving concomitantly the first and second locking components into and out of engagement with the first and second interface fittings, respectively, for selectively interlocking the pallets to one another.
Yet another aspect of the invention is directed to stackable, inter-lockable first and second pallets. The first pallet features a first pallet frame including first and second openings, a first pallet platform supported by the first pallet frame, first and second interface fittings, first and second locking components operatively connected to one another, and a first actuator for moving concomitantly the first and second locking components into and out of the first and second openings, respectively. The second pallet is stackable on the first pallet, and features a second pallet frame including third and fourth openings positioned for receiving the first and second interface fittings, respectively, a second pallet platform supported by the second pallet frame, third and fourth interface fittings, third and fourth locking components operatively connected to one another, and a second actuator for moving concomitantly the third and fourth locking components into and out of the third and fourth openings. When the second pallet is stacked on the first pallet, the concomitant movement causes the third and fourth locking components to move into and out of engagement with the first and second interface fittings, respectively, for selectively interlocking the first and second pallets to one another.
Yet a further aspect of the invention is directed to stackable, inter-lockable first and second pallets. The first pallet features a first pallet frame including first, second, third, and fourth openings; a first pallet platform supported by the first pallet frame; first, second, third, and fourth interface fittings, respectively; first and second locking components operatively connected to one another; a first actuator for moving concomitantly the first and second locking components into and out of the first and second openings, respectively; third and fourth locking components operatively connected to one another; and a second actuator moving concomitantly the third and fourth locking components into and out of the third and fourth openings, respectively. The second pallet is stackable on the first pallet, and features a second pallet frame including fifth, sixth, seventh, and eighth openings positioned for receiving the first, second, third, and fourth interface fittings, respectively, when the second pallet is stacked on the first pallet; a second pallet platform supported by the second pallet frame; fifth, sixth, seventh, and eighth interface fittings; fifth and sixth locking components operatively connected to one another; a third actuator for moving concomitantly the fifth and sixth locking components into and out of the fifth and sixth openings and, when the second pallet is stacked on the first pallet, for permitting concomitant movement of the fifth and sixth locking components into and out of engagement with the first and second interface fittings, respectively, for selectively interlocking the first and second pallets to one another; seventh and eighth locking components operatively connected to one another; and a fourth actuator for moving concomitantly the seventh and eighth locking components into and out of the seventh and eighth openings and, when the second pallet is stacked on the first pallet, for further permitting concomitant movement of the seventh and eighth locking components into and out of engagement with the third and fourth interface fittings, respectively, for selectively interlocking the first and second pallets to one another.
Yet another aspect of the invention provides a pallet featuring first and second openings, first and second interface fittings aligned with the first and second openings, respectively, first and second locking components, and an actuator. The first and second interface fittings are sized to fit into openings of identical sizes and configurations as the first and second openings, respectively. The first and second locking components are operatively connected to one another to permit their concomitant movement into and out of the first and second openings, respectively.
Yet still another aspect of the invention to provide storage assemblies capable of interlocking with one another in a convenient and efficient manner, and to provide methods of making and using the interlocking storage assemblies.
Yet a further aspect of the invention is directed to a plurality of stackable, inter-lockable storage assemblies. A first storage assembly features a first pallet, first and second structural support members extending above the first pallet, and first and second interface fittings on the first and second structural support members, respectively. A second storage assembly features a second pallet, first and second locking components operatively connected to one another, and an actuator for moving concomitantly the first and second locking components into and out of engagement with the first and second interface fittings, respectively, for selectively interlocking the first and second storage assemblies to one another.
Yet another aspect of the invention provides a storage assembly including a pallet, first and second structural support members extending above the pallet, first and second interface fittings on the first and second structural support members, respectively, first and second locking components, and an actuator. The pallet includes first and second openings. The first and second interface fittings are sized to fit into openings of identical sizes and configurations as the first and second openings, respectively. The first and second locking components are operatively connected to one another. The actuator permits concomitant movement of the first and second locking components into and out of the first and second openings, respectively.
Other aspects of the invention relate to the making and use of stackable pallets and shipping and storage systems described herein. (HERE)
The accompanying drawings are incorporated in and constitute a part of the specification. The drawings, together with the general description given above and the detailed description of the preferred embodiments and methods given below, serve to explain the principles of the invention. In such drawings:
Reference will now be made in detail to the present embodiments and methods of the invention as illustrated in the accompanying drawings, in which like reference characters designate like or corresponding parts throughout the drawings. It should be noted, however, that the invention in its broader aspects is not limited to the specific details, representative devices and methods, and illustrative examples shown and described in this section in connection with the embodiments and methods. The invention according to its various aspects is particularly pointed out and distinctly claimed in the attached claims read in view of this specification, and appropriate equivalents.
It is to be noted that, as used in the specification and the appended claims, the singular forms “a,” “an,” and “the” include plural referents unless the context clearly dictates otherwise.
The terms “left,” “right,” “front,” “rear,” “horizontal,” “vertical,” and the like are used herein to assist in and facilitate the description of the invention. For the purposes of the detailed description, the reference for each of these terms is the arrangement and orientation of the pallet as it is depicted in FIG. 1 , in which the pallet platform is horizontally oriented and the front frame member faces forward. The ability to move and rotate the pallet into other orientations and positions makes the designations of these terms to the various parts of the pallet dependent upon view of reference. Accordingly, it should be understood that these terms are not to be considered limitations of the invention as the invention is defined in the claims and by equivalents of the claims, unless the context clearly dictates otherwise.
A pallet according to a first embodiment of the invention is shown in FIG. 1 , where the pallet is generally designated by reference numeral 50. Pallet 50 features a pallet frame 52 supporting a pallet platform 54. Pallet frame 52 is quadrilateral, and more particularly rectangular or square. Pallet frame 52 includes four vertical corner posts 58 joined to one another with four elongate beams 60 a-60 d defining the outer edges of pallet frame 52. In FIG. 1 , each beam 60 a-60 d includes side-by-side entryway openings 62 sized and positioned for receiving a forklift truck tines and pallet jack forks from either side or either end of pallet 50. It should be understood that four-way entry pallet frame 52 embodied in the figures may be replaced with a one-way, two-way, or three-way forklift entry design. Optionally, the forklift-entry features may be omitted entirely. Pallet frame 52 and pallet platform 54 may be made of the same or different materials, such as, for example, wood, metal, composite, or other suitable materials.
The locking mechanisms of pallet 50 according to an embodiment of the invention will now be described in greater detail with reference to FIGS. 2-4 . Each corner post 58 is embedded with, integrally formed with, or otherwise securely joined to a respective interface fitting 66 extending above the top surface of post 58. Interface fitting 66 defines an eyelet opening exposed above post 58. Each corner post 58 possesses a cavity 68 immediately below interface fitting 66, and a bottom opening for accessing cavity 68.
Locking mechanisms are integrated in opposite ends of front beam (as viewed in FIG. 1 ) 60 a. The locking mechanism on the right side of front beam 60 a (as shown in FIG. 1 ) is depicted in greater detail in FIGS. 2-4 . The locking mechanism includes a lock slider 70 slidably housed in a channel of front beam 60 a. Lock slider 70 is fixedly joined to a cylindrical locking bolt 72 also housed in front beam 60 a. An outward-facing access opening 73 in beam 60 a exposes a keyhole 74 of lock slider 70 for accessing and actuating the locking mechanism. A key (not shown) is insertable into keyhole 74 for translating lock slider 70 back and forth along the end portion of front beam 60 a. Alternatively, keyhole 74 may include a graspable recess that is hand or finger operated without use of a key. Translational movement of lock slider 70 causes joined cylindrical locking lt 72 to move in tandem with lock slider 70 axially into and out of corner post cavity 68. It should be understood that the locking mechanism on the left side of front beam 60 a, while not described in the interest of brevity, is the substantial mirror image of the locking mechanism on the right side of front beam 60 a.
Although not shown, rear beam 60 b has substantially identical rear locking mechanisms including locking bolts axially movable into and out of corner post cavities of the right and left rear corner posts, respectively. Optionally, additional keyholes are provided in rear beam 60 b for permitting actuation of the rear locking mechanisms from the far side of pallet 50.
The locking mechanisms of front and rear beam 60 a, 60 b are operatively connected to one another to permit their concomitant movement via actuation of keyhole 74 of either the front or rear beam 60 a, 60 b. Operative connection between the locking mechanisms is accomplished using a coupling shaft 76 and devises 78, which establish a pivot joint. A first coupling shaft 76 is housed in or positioned along far side beam 60 c. Bearings and the like may be used to facilitate rotation of shaft 76 about its longitudinal axis. Each end of first coupling shaft 76 is joined to an upper end of a respective clevis 78, whereby rotational movement of shaft 76 pivots devises 78 about their upper ends. Clevis pins 80 received in oblong slots of devises 78 secure the opposite lower ends of devises 78 to locking bolts 72. Rotational movement of first coupling shaft 76 concomitantly pivots devises 78 and linearly slides locking bolts 72 at the opposite ends of beam 60 b into and out of corner post cavities 68, where bolts 72 lockingly engage interface fittings of another pallet, storage structure, and related structures.
It should be understood that substantially identical locking mechanisms are situated in front left and rear left corner posts 58. A second coupling shaft and a second set of devises housed in or adjacent near side beam 60 d cooperate with the second coupling shaft for permitting concomitant movement of the locking mechanisms at the opposite ends of beam 60 d into and out of locking arrangements.
In operation, pallet 50 is rested or stacked on a structure (e.g., another pallet, container, rack system, trailer deck, etc., as described in greater detail below) having interface fittings substantially identical to interface fittings 66. In FIGS. 2-4 , the separate, substantially identical interface fittings of the other structure are designated by reference numeral 90. Interface fittings 90 are sized and arranged to be received through the bottom openings of corner post cavities 68 so that eyelets of interface fittings 90 align axially with locking bolts 72. A key or other actuator is inserted through the outward-facing access opening 73 of front beam 60 a (or rear beam 60 b) into keyhole 74. Lock slider 70 is manually translated, i.e., slid, from an unlocked position to a locked position so that locking bolt 72 attached to lock slider 70 travels linearly into corner post cavity 68 to engage the eyelet of interface fitting 90. The translational movement of lock slider 70 and locking bolt 72 causes clevis 78 to pivot about coupling shaft 76, thereby causing attached coupling shaft 76 to rotate synchronously about its longitudinal axis. The rotational movement of coupling shaft 76 pivots clevis 78 at the opposite end of coupling shaft 76, moving locking bolt 72 at the opposite end of rear beam 60 b into its respective rear corner post cavity 68. As two locking bolts 72 are attached to opposite ends of a common coupling shaft 76, clevises 78 and locking bolts 72 move in unison with one another into locking engagement with interface fittings 90. To move locking bolts 72 out of locking engagement, the lock slider 70 is slid in the opposite direction to rotate shaft 76 axially back to its original position.
The locking mechanisms at the opposite ends of beam 60 d operate in substantially the same manner, moving concomitantly into and out of locking arrangements to engage and disengage respective interface fittings. It should be understood that the locking mechanisms at each corner of pallet 50 may be operatively connected to one another so that all move in unison, e.g., by employing constructions similar to those described below.
Optionally, another storage container having a second pallet which is substantially identical to pallet 50 may be stacked on container 120. Openings and associated cavities 68 in the bottom of the upper second pallet receive interface fittings 130 from below. The upper second pallet features locking mechanisms substantially identical to those locking mechanisms of pallet 50 for selectively engaging and disengaging interface fittings 130 of panels 122, 124.
An automatic locking pallet according to another embodiment of the invention will now be described in detail with reference to FIGS. 7-12 . Generally, the pallet includes a pallet frame having a forklift tine opening, a pallet platform supported by the pallet frame, a locking component movable into and out of a locking arrangement for respectively engaging and disengaging an interface fitting of another pallet when the automatically locking pallet and the other pallet are stacked, and an actuator operatively connected to the locking component, and constructed and arranged for activation by a forklift tine entering the forklift tine opening to move the operatively connected locking component out of the locking arrangement.
An interface fitting 166 is embedded in, integrally formed with, or otherwise joined to and extends above each corner post 158. Each interface fitting 166 defines an eyelet opening. The lower end of each corner post 158 includes an opening leading to a cavity 168 aligned below the interface fitting 166.
The opposite ends of front and rear beams 160 a, 160 b each house a respective pair of locking mechanisms. As shown in FIG. 12 , each locking mechanism includes a cylindrical locking bolt 172 including first and second holes 172 a, 172 b. First hole 172 a is closer to the distal end of locking bolt 172 than second hole 172 b. Hairpin 174 is depicted in FIGS. 9-11 as inserted in first hole 172 a, and in FIG. 12 as inserted in second hole 172 b. As will become evident from the description below, insertion of hairpin 174 in first hole 172 a places the locking mechanism in automatic locking mode, whereas insertion of hairpin 174 in second hole 172 b retains the locking mechanism in non-locking mode, effectively overriding the automatic locking function of the mechanism.
A spring 170 is fitted over locking bolt 172 and compressed between stationary block 175 fixedly joined to the bottom surface of pallet platform 154 and a slidable plate 176 fixedly joined to locking bolt 172. Spring 170 urges plate 176 and locking bolt 172 towards corner post 158. The proximal end portion of locking bolt 172 is sized to fit within an aperture of corner post 158, so that locking bolt 172 may penetrate into corner post cavity 168 where bolt 172 may interlock with an interface fitting of another pallet, rack post, container wall, or similar structure received in opening 168.
The locking mechanisms positioned at opposite ends of right side beam 160 c are operatively connected to one another to permit their concomitant movement into and out of locking arrangements. Operative connection between the locking mechanisms is accomplished using a first coupling shaft 180 and devises 182. First coupling shaft 180 is housed in or adjacent side beam 160 c. Bearings and the like may be used to facilitate rotation of first coupling shaft 180 about its longitudinal axis. A first rocker arm 188 is fixed at the midpoint of first coupling shaft 180. Rocker arm 188 has symmetrical inner and outer wings. Each end of first coupling shaft 180 is joined to an upper end of a respective clevis 182. Clevis pins 184 secure the lower ends of devises 182 to locking bolts 172. Rotational movement of first coupling shaft 180 pivots devises 182 about their upper ends, thereby concomitantly moving locking bolts 172 at the opposite ends of beam 160 c into and out of locking arrangements. In an alternate embodiment, the rocker arm 188 need not be symmetric and thus only require one wing for operation though additional wings may be added for optional modes of operating the locking mechanism and can be oriented accordingly.
Substantially identical locking mechanisms are situated in left front and rear corner posts 158, i.e., at the opposite ends of beam 160 d. A second coupling shaft 181 and a second set of devises 183 housed in or adjacent side beam 160 d permit concomitant movement of the locking mechanisms at the opposite ends of beam 160 d into locking arrangements and out of locking arrangements. A second rocker arm 189 is fixed at the midpoint of second coupling shaft 181. First and second coupling shafts 180, 181 and devises 182, 183 are operatively connected to one another and to actuators 194, 202, also referenced to as a primary actuator paddle 194 and a secondary actuator paddle 202, as follows.
The opposite ends of primary actuator shaft 192 are fitted with cam bearings 199, which are disposed immediately below the inner wings of rocker arms 188, 189. In a non-actuated mode in which paddles 194, 202 extend vertically downward, cam bearings 199 are situated side-by-side. In an actuated mode brought about by forklift-tine activation of either of paddles 194, 202, cam bearings 199 rotate about the axis of primary actuator shaft 192 so that one of the cam bearings is positioned above the other. The raised cam bearing pushes the inner wings of rocker arms 188, 189 upward from below, pivoting rocker arms 188, 189 and thereby rotating first and second coupling shafts 180, 181 fixed thereto.
Operation of the automatic locking mechanisms will now be described. Forklift tines of a forklift are inserted into entryway openings of pallet frame 152 in accordance with normal pallet lifting and moving operations. Depending upon the direction in which the forklift tines enter pallet frame 152, the forklift tines will contact either primary actuator paddle 194 or secondary actuator paddle 202. Intermeshing miter gears 196, 206 will cause primary and secondary actuator shafts 192, 200 about their respective axes to rotate (and both paddles 194, 202 to pivot upward) synchronously upon forklift-tine activation of either of paddles 194, 202. The rotational movement of primary actuator shaft 192 rotates cam bearings 199 affixed at the ends thereof ninety degrees into a vertical position. Referring to FIG. 10 , whichever cam bearings 199 are raised lift the inner wings of rocker arms 188, 189, which in turn rotates first and second coupling shafts 180, 181 about their respective axes. Rotation of first coupling shaft 180 causes devises 182 at the opposite ends of first coupling shaft 180 to pivot, translating their attached locking bolts 172 away from respective corner posts 158. Simultaneously, rotation of second coupling shaft 181 causes devises 183 at opposite ends of second coupling shaft 181 to pivot, translating their attached locking bolts 172 away from respective corner posts 158. The translational movement of locking bolts 172 away from their respective corner posts disengages locking bolts 172 from interface fittings of another pallet, rack post, container wall, trailer bed, etc., on which pallet 150 rests.
As indicated from the above description and the accompanying drawings, the automatic locking feature of this embodiment of the invention permits locking mechanisms at each of the four comers of pallet 150 to automatically and concomitantly engage and disengage respective interface fittings at the comers of another pallet, rack, container, trailer bed, etc., on which pallet 150 rests. It should be understood that the embodiment may be modified to permit automatic and concomitant locking to one, two, three, or more interface fittings.
First and second side panels 216, 218 rest on first and second skirt members 220, 222, respectively. Skirt members 220, 222 both have skirt corner posts 224 at their opposite ends, and a skirt interface fitting 226 extending above each skirt corner post 224. When side panels 216, 218 are in their upright position, barrel pins 221 are received in skirt interface fittings 226 for reinforcement of side panels 216, 218. As shown in FIG. 19B , inward folding movement of side panels 216, 218 disengages barrel pins 221 from skirt interface fittings 226 as container 210 is converted to its collapsed position.
The construction of collapsible container 210 features the vertical alignment of interface fittings, which is instrumental in enhancing system modularity, as described in greater detail below. Each of the skirt interface fittings 226 is positioned directly below a corresponding upper interface fitting 225. Accordingly, the collapsible container 210 includes a plurality of parallel upper interface fittings. Further, interface fittings 166 of pallet 150, which are received through openings in the bottom surfaces of skirt corner posts 224, are vertically aligned with interface fittings 225, 226. Locking bolts (not shown) may be employed to connect skirt corner posts 224 to interface fittings 166. Alternatively, for example, skirt corner posts 224 may be permanently connected with pallet 150, thereby permitting interface fittings 166 to be eliminated from pallet 150.
Each of the skirt corner posts 224 possesses a respective inward-facing guide track 232. As best shown in FIG. 16B , guide track 232 includes a substantially vertical oblong channel portion and an associated horizontal channel opening portion terminating at the edge of skirt corner post 224. Lateral tracking pins protrude outwardly from opposite edges of front panel 212. The tracking pins are inserted into the horizontal channel opening portions of guide tracks 232, then slid downward to the bottom of the vertical oblong channel portion of guide track 232 to set panel 212 in its erect position. Similarly, rear panel 214 has lateral tracking pins protruding outwardly from its opposite side edges for slidingly engaging guide tracks 232 of rear skirt corner posts 224.
From the erect position shown in FIG. 13 , front panel 212 is pivotal about its tracking pins outwardly or inwardly by disengaging latches 240 securing front panel 212 to side walls 216, 218, pallet 150, and top cover 228. As shown in FIG. 15 , front panel 212 may be pivoted outwardly to permit access to the compartment of container 210. Outward pivotal movement may be continued until the top edge of front panel 212 comes to rest on the ground, so that front panel 212 establishes a ramp for loading and unloading goods into pallet 150. Alternatively, once front panel 212 is pivoted outwardly to an angled state, such as shown in FIG. 15 , front panel 212 may be detached from skirt corner posts 224 by sliding the tracking pins along guide tracks 232 and through the channel opening portions of guide tracks 232. Detachment of front panel 212 from the remainder of container 210 permits unobstructed front access to the container compartment, as shown in FIG. 16A . It should be noted that front panel 212 is detachable without requiring the removal of top cover 228 or another pallet (not shown in FIG. 13 ) resting on corner posts 224. Rear panel 214 may be similarly angled and detached.
Front and rear panels 212, 214 are collapsible inward onto pallet 150 as shown in FIGS. 17 and 18 . Top cover 228 generally is removed prior to collapse of front and rear panels 212, 214, and latches 240 on both front and rear panels 212, 214 are disengaged. An aspect of collapsible container 210 is that front and rear panels 212, 214 may be collapsed flat onto pallet 150 irrespective of the sequence in which panels 212, 214 are folded inward. The vertical oblong channel portions of guide tracks 232 permit the base of the subsequently folded panel 212 or 214 to be raised upward while tracking pins remain engaged in the vertical oblong channel portions of guide tracks 232, thereby placing the base of the subsequently folded, raised panel 212 or 214 above the body of the previously folded panel 212 or 214. The raised panel 212 or 214 is permitted to fold down into a horizontal orientation on top of the other panel 212 or 214. In this manner, both panels 212, 214 are arranged in a compact horizontal position to minimize the storage area consumed by the collapsed container.
As shown in FIGS. 19A and 19B , folding of side panels 216, 218 onto front and rear panels 212, 214 also is sequence independent. Opposite edges of each of side panels 216, 218 have track pins (not shown) protruding outwardly into vertical oblong guide tracks 239. Either of side panels 216 or 218 may be folded inward prior to the other, coming to rest on panel 212 or 214. The remaining side panel 216 or 218 is raised upward as its outwardly protruding track pins move upward along guide tracks 239, thereby allowing the remaining side panel 216 or 218 to be subsequently folded inward to a flat, horizontal position on the previously folded panel.
An exemplary latch 240 is shown in FIGS. 20 and 21 . Latch 240 includes a handle 242 fixedly connected to a locking pin 244. A spring, e.g., a torsion spring or compression spring, 248 urges handle 242 into a locked position shown in FIGS. 20 and 21 . Latch 240 may be grasped by an operator and pivoted outward away from the face of front panel 212 to rotate locking pin 244 about ninety degrees. Radially protruding arms 246 of locking pin 244 are thereby disengaged from a counterpart receptacle (not shown) of side walls 216, 218, pallet 150, or top cover 228. Handle 242 is moved to retract locking pin 244 and protruding arms 246 from the counterpart receptacle. It should be understood that various latching mechanisms may be substituted for or used in combination with latch 240.
In operation, upper push rods 250 of side panels 216A, 218A each are depressed from above to unlock the locking bolts 172 of pallet 150 from another structure (e.g., container, rack, pallet, trailer bed, etc.) on which pallet 150 sits. For example, a top lifting frame 300 as shown in FIG. 40 may cause depression of the upper push rods 250. Depression of upper push rods 250 displace lower push rods 252 downward, which forces the outer wings of rocker arms 188, 189 downward so that rocker arms 188, 189 pivot. Pivotal movement of rocker arms 188, 189 causes first and second coupling shafts 180 fixed thereto to rotate about their axes. As described in detail above, devises 182 at the opposite ends of first coupling shaft 180 and devises 183 at the opposite ends of second coupling shaft 181 are pivoted and translate their attached locking bolts 172 away from respective corner posts 158. The translational movement of locking bolts 172 away from their respective corner posts disengages locking bolts 172 from interface fittings of another pallet, rack post, container wall, trailer bed, etc., on which pallet 150 rests.
First and second side frame members 266, 268 rest on skirt corner posts 274 at their opposite ends, and a skirt interface fitting 276 extending above each skirt corner post 274. When side frame members 266, 268 are in their upright position, barrel pins 271 are received in skirt interface fittings 276 for reinforcement of side frame members 266, 268. As shown in FIG. 33B , inward folding movement of side frame members 266, 268 causes the removal of barrel pins 271 from skirt interface fittings 276 as rack system 260 is converted to its collapsed position.
The construction of collapsible rack system 260 features the vertical alignment of interface fittings, which is instrumental in enhancing system modularity, as described in greater detail below. Each of the skirt interface fittings 276 is positioned directly below a corresponding upper interface fitting 275. Further, interface fittings 166 of pallet 150 received in openings in the bottom surfaces of skirt corner posts 274 are in vertical alignment with interface fittings 275, 276. Locking bolts (not shown) may be employed to connect skirt corner posts 274 to interface fittings 166. Alternatively, skirt corner posts 274 may be permanently attached to pallet 150, thereby permitting the exclusion of interface fittings 166 from pallet 150.
Each of the skirt corner posts 274 possesses a respective inward-facing guide track 282. As best shown in FIG. 28 , guide track 282 comprises a substantially vertical oblong channel portion and an associated horizontal channel opening portion terminating at the edge of skirt corner post 274. Lateral tracking pins (not shown) protrude outwardly from opposite edges of front frame member 262. The tracking pins are inserted into the horizontal channel opening portions of guide tracks 282, then slid downward to the bottom of the vertical oblong channel portion of guide track 282 to set front frame member 262 in its upright position. Similarly, rear frame member 264 has lateral tracking pins protruding outwardly from its opposite side edges for slidingly engaging guide tracks 282 of rear skirt corner posts 274.
From the erect position shown in FIG. 25 , front frame members 262 is pivotal about its tracking pins outwardly or inwardly by disengaging latches 290 securing front frame member 262 to side walls 266 and 268. As shown in FIG. 27 , front frame member 262 may be pivoted outwardly to permit access to the compartment of rack 260. Outward pivotal movement may be continued until the top edge of front frame member 262 comes to rest on the ground. Alternatively, front frame member 262 may be detached from skirt corner posts 274 by sliding the tracking pins along guide tracks 282 and through the channel opening portions of guide tracks 282. Detachment of front frame member 262 from the remainder of rack 260 permits unobstructed front access to the rack compartment, as shown in FIG. 28 . It should be noted that front frame member 262 is detachable without requiring the removal of an optional top cover or upper pallet (not shown) resting on corner posts 274 by first angling front frame member 262 forward. Rear frame member 264 may be similarly detached.
Front and rear frame members 262, 264 are collapsible inward onto pallet 150 as shown in FIGS. 29 and 30 . Latches 290 attaching front and rear frame members 262, 264 to side frame members 266, 268 are disengaged. An advantageous feature of collapsible rack system 260 is that front and rear frame members 262, 264 may be collapsed flat onto pallet 150 irrespective of the sequence in which frame members 262, 264 are folded inward. The vertical oblong channel portions of guide tracks 282 permit the base of the subsequently folded front or rear frame member 262 or 264 to be raised upward while tracking pins remain engaged in the vertical oblong channel portions of guide tracks 282, thereby placing the base of the raised frame member 262 or 264 above the body of the previously folded frame member 262 or 264. The raised frame member 262 or 264 is permitted to fold down into a horizontal orientation on top of the other frame member 262 or 264 which had been previously folded inward onto pallet 150. In this manner, both frame members 262, 264 are arranged in a compact horizontal position to minimize the storage area consumed by the collapsed container.
An exemplary latch 290 is shown in FIG. 34 . Latch 290 includes a handle 292 fixedly connected to a locking pin 294. A torsion spring or compression spring (not shown) urges handle 292 into a locked position shown in FIG. 34 . Latch 290 may be grasped and operated to pivot outward away from the face of front frame member 262 to rotate locking pin 284 about ninety degrees. Radially protruding arms 296 of locking pin 294 are thereby disengaged and may be retracted from a counterpart receptacle (not shown) of side wall 266, 268. It should be understood that various latching mechanisms may be substituted for or used in combination with latch 290.
It should be understood that pallet 50 of the first embodiment of the invention may be substituted for automatically locking pallet 150 in relation to the collapsible container of FIGS. 13-21 and the collapsible rack system of FIGS. 22-34 . Similarly, pallet 150 may be substituted into the rack and container systems of FIGS. 4 and 5 .
An advantage of the above-described and illustrated embodiments is the capability of converting between container structure 210 and rack system 260 while retaining pallets 50, 150 as a common support base. Pallets 50, 150 do not require any modification, other than the substitution of panels 212, 214, 216, 218 for frame members 262, 264, 266, 268, and vice versa.
Another advantage of the above-described and illustrated embodiments is the modularity of storage assemblies, i.e., container 210 and rack system 260. As shown in FIG. 35 , containers 210 are stackable on and interlockable with one another. FIG. 35 shows a lower first container including a first pallet, structural support members (e.g., panels) extending above the first pallet, and interface fittings on the structural support members. A substantially identical, upper second container rests on the first container. The second container includes a second pallet with locking components (e.g., locking bolts 72, 172) selectively engaged with the interface fittings of the first container. In the event pallet 50 is used as the upper, second pallet, locking bolts 72 are operatively connected to one another to permit concomitant movement of locking bolts 72 into and out of engagement with the interface fittings of the first container for selectively interlocking the first and second containers to one another. In the event that automatically locking pallet 150 is used as the upper, second pallet, insertion of forklift tines through the forklift tine openings of pallet 150 activates actuators 194, 202, causing the operatively connected locking bolts 172 to move out of locking arrangement with the interface fittings of the lower first container so that the upper container may be lifted away from the lower container. It should be understood that three or more containers may be stacked on one another.
As yet another advantage, collapsible containers 210 and collapsible racks 260 may be stacked and interconnected to one another while in their collapsed state, as shown in FIG. 38 . Skirt interface fittings 226, 276 are received in corner posts 58, 158 and engaged by locking mechanisms of pallet 50, 150 stacked thereon.
Additional advantages and modifications will readily occur to those skilled in the art. Therefore, the invention in its broader aspects is not limited to the specific details, representative devices and methods, and illustrative examples shown and described. Accordingly, departures may be made from such details without departing from the spirit or scope of the general inventive concept as defined by the appended claims and their equivalents.
Finally, any numerical parameters set forth in the specification and attached claims are approximations (for example, by using the term “about”) that may vary depending upon the desired properties sought to be obtained by the present invention. At the very least, and not as an attempt to limit the application of the doctrine of equivalents to the scope of the claims, each numerical parameter should at least be construed in light of the number of significant digits and by applying ordinary rounding.
Claims (6)
1. A pallet, comprising:
first and second openings;
first and second interface fittings aligning with the first and second openings, respectively, the first and second interface fittings sized to fit into respective openings of another pallet, the openings of said another pallet including identical sizes and configurations as the first and second openings, respectively;
first and second locking components operatively connecting to one another; and
an actuator for moving concomitantly the first and second locking components into and out of the first and second openings, respectively.
2. The pallet of claim 1 , further comprising a pallet frame including the first and second openings; and
a pallet platform being supported by the pallet frame,
wherein the first and second interface fittings extend above the pallet frame, and
wherein the first and second locking components are at least partially integrated in the pallet frame.
3. The pallet of claim 2 , wherein the pallet frame comprises third and fourth openings,
wherein the pallet further comprises third and fourth interface fittings extending above the pallet frame and the third and fourth interface fittings are aligned with the third and fourth openings, respectively,
wherein the third and fourth interface fittings are sized to fit into respective openings of another pallet, the openings of said another pallet including identical sizes and configurations as the third and fourth openings, respectively, and
wherein the pallet frame comprises third and fourth locking components, said third and fourth locking components are at least partially integrated in the pallet frame where the third and fourth locking components are operatively connected to one another to permit concomitant movement of the third and fourth locking components into and out of the third and fourth openings, respectively.
4. The pallet of claim 1 , further comprising a pallet frame and third and fourth interface fittings extending about the pallet frame,
wherein the first, second, third, and fourth interface fittings are positioned at respective corners of the pallet frame.
5. The pallet of claim 1 , wherein the first and second interface fittings comprise first and second eyelets, respectively, and
wherein the first and second locking components comprise first and second locking bolts, respectively.
6. The pallet of claim 5 , further comprising a first pivot joint for moving the first locking bolt into and out of the first opening;
a second pivot joint for moving the second locking bolt into and out of the second opening; and
a coupling shaft operative connecting the first pivot joint and the second pivot joint to one another for moving the first locking bolt and the second locking bolt in unison.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US12/287,166 US8083448B2 (en) | 2006-03-20 | 2008-09-30 | Interlocking pallets, and shipping and storage systems employing the same |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US11/387,082 US7491024B2 (en) | 2006-03-20 | 2006-03-20 | Interlocking pallets, and shipping and storage systems employing the same |
US12/287,166 US8083448B2 (en) | 2006-03-20 | 2008-09-30 | Interlocking pallets, and shipping and storage systems employing the same |
Related Parent Applications (1)
Application Number | Title | Priority Date | Filing Date | |
---|---|---|---|---|
US11/387,082 Division US7491024B2 (en) | 2006-03-20 | 2006-03-20 | Interlocking pallets, and shipping and storage systems employing the same |
Publications (2)
Publication Number | Publication Date |
---|---|
US20090120332A1 US20090120332A1 (en) | 2009-05-14 |
US8083448B2 true US8083448B2 (en) | 2011-12-27 |
Family
ID=38518005
Family Applications (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US11/387,082 Expired - Fee Related US7491024B2 (en) | 2006-03-20 | 2006-03-20 | Interlocking pallets, and shipping and storage systems employing the same |
US12/287,166 Expired - Fee Related US8083448B2 (en) | 2006-03-20 | 2008-09-30 | Interlocking pallets, and shipping and storage systems employing the same |
Family Applications Before (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US11/387,082 Expired - Fee Related US7491024B2 (en) | 2006-03-20 | 2006-03-20 | Interlocking pallets, and shipping and storage systems employing the same |
Country Status (2)
Country | Link |
---|---|
US (2) | US7491024B2 (en) |
WO (1) | WO2007111617A2 (en) |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20110220033A1 (en) * | 2010-03-12 | 2011-09-15 | Roto Mold, L.L.C. | Pet crate |
US20120060725A1 (en) * | 2010-09-09 | 2012-03-15 | Edwards Robert A | Apparatus and method for packing concentrated mass loads for transport by container, box truck and van trailer |
US10336356B2 (en) * | 2016-06-22 | 2019-07-02 | Globe Composite Solutions, Ltd. | Wheeled shipping cart with stackable trays |
US10589924B2 (en) | 2016-10-26 | 2020-03-17 | Revolutionary Truck Systems | Cargo bin |
WO2022061131A1 (en) * | 2020-09-18 | 2022-03-24 | Ufp Industries, Inc. | Knock-down crate for durable goods |
Families Citing this family (33)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US7874435B2 (en) * | 2005-08-23 | 2011-01-25 | Integris Rentals, L.L.C. | Pipeline pig storage rack apparatus |
US8915684B2 (en) | 2005-09-27 | 2014-12-23 | Fontaine Trailer Company, Inc. | Cargo deck |
US7507061B2 (en) * | 2005-11-09 | 2009-03-24 | The Boeing Company | Modular inter-modal platform (MIP) |
US7988211B2 (en) * | 2006-04-20 | 2011-08-02 | Roderick Duncan Anderson | Automatic-locking-device |
JP4669827B2 (en) * | 2006-09-11 | 2011-04-13 | Necインフロンティア株式会社 | Adjacent expansion structure of equipment |
DE102007009393B4 (en) * | 2007-02-21 | 2009-04-30 | Kärcher Futuretech GmbH | Mobile container module for military and / or humanitarian field operations |
US7802526B2 (en) * | 2007-03-05 | 2010-09-28 | Paccar Inc | Modular and customizable returnable rack system |
US7651305B1 (en) | 2009-06-10 | 2010-01-26 | The United States Of America As Represented By The Secretary Of The Navy | Retractable fitting |
US8418630B2 (en) * | 2010-06-23 | 2013-04-16 | Novelis Inc. | Metal pallet and method of making same |
RU2562789C2 (en) * | 2010-11-12 | 2015-09-10 | @Вансе Б.В. | Auxiliary vehicle and its application |
US8701570B2 (en) | 2011-05-27 | 2014-04-22 | Capstone Innovations, Llc | Expandable modular interlocking pallet system |
US8864080B2 (en) * | 2012-01-31 | 2014-10-21 | Roy L Fox, Jr. | Expendable aerial delivery system |
WO2014074994A1 (en) | 2012-11-09 | 2014-05-15 | Fontaine Engineered Products, Inc. | Collapsible intermodal flat rack |
AU2014203159B2 (en) * | 2013-11-07 | 2017-08-31 | Sea Box International | Container roll out warehousing system |
EP2930120A1 (en) * | 2014-04-09 | 2015-10-14 | Swisslog AG | Stackable pallet cage |
US11084622B2 (en) * | 2014-12-09 | 2021-08-10 | Swisslog Logistics, Inc. | Structure for automated pallet storage and retrieval |
US20160278516A1 (en) * | 2015-03-26 | 2016-09-29 | James Lawrence | Product shipping system |
WO2017069697A1 (en) * | 2015-10-21 | 2017-04-27 | Imh Equipment Pte Ltd | Lifting pallet |
CN105398652A (en) * | 2015-11-19 | 2016-03-16 | 中国人民解放军空军勤务学院 | Limiting device for air transportation containerized pallet |
US9764897B1 (en) * | 2016-02-08 | 2017-09-19 | Randy W. Kinney | Pallet having posts and stacking bells to allow stacking while loaded with steel sheets |
CN107687296B (en) * | 2016-08-05 | 2020-05-12 | 大连中集特种物流装备有限公司 | Lockset, pallet box with lockset and method for carrying out surface treatment on pallet box |
EP3612346B1 (en) | 2017-04-20 | 2021-02-24 | Amomatic Oy | Modular machine and method of assembly |
US10954033B2 (en) * | 2017-09-29 | 2021-03-23 | Mtd Products Inc | Foldable crate for a lawn maintenance vehicle |
GB201806264D0 (en) * | 2018-04-17 | 2018-05-30 | Chep Technology Pty Ltd | Pallet |
EP3906196A1 (en) * | 2019-01-05 | 2021-11-10 | Ponera Group Sagl | Assortment of pallet modules, and pallet assembly built of the same |
HUE059199T2 (en) * | 2019-04-04 | 2022-10-28 | Unipas Spol S R O | Transport folding container |
WO2021051161A1 (en) * | 2019-09-17 | 2021-03-25 | Spanlift Investments Pty Ltd | Wine barrel or stillage rack locking mechanism |
US10934053B1 (en) * | 2019-12-09 | 2021-03-02 | FreightWeb Services, Inc. | Adjustable pallet rack |
US11180283B1 (en) * | 2020-06-18 | 2021-11-23 | Michele Marie Schoof | Lifting tool support apparatus for air cargo pallets |
CN111792155A (en) * | 2020-07-13 | 2020-10-20 | 上海秝德实业有限公司 | SQ (Square-Wood) pallet for logistics packaging of automobile parts |
KR102250718B1 (en) * | 2020-12-15 | 2021-05-11 | 노대훈 | Structure of packing pallet |
DE102021001115A1 (en) * | 2021-03-02 | 2022-09-08 | Werbetechnik Hilker GmbH | Transport system with a modular container |
US11427381B1 (en) * | 2021-06-12 | 2022-08-30 | David A Jacobson | Self-stacking strategically packed and collated enclosure (space) platform |
Citations (39)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US2673700A (en) | 1951-10-22 | 1954-03-30 | Daniel A Eberhardt | Pallet |
US3015407A (en) | 1960-01-25 | 1962-01-02 | Budd Co | Stacking cargo containers |
US3401814A (en) | 1967-03-07 | 1968-09-17 | Collapsible Container Corp | Collapsible shipping container |
US3718218A (en) | 1971-10-13 | 1973-02-27 | States Steamship Co | Shipping and storage container interlock |
US3782579A (en) | 1970-10-01 | 1974-01-01 | W Zarges | Collapsible receptacle |
US3797691A (en) | 1972-05-10 | 1974-03-19 | Lockheed Aircraft Corp | Modular cargo container for transport vehicles |
US3857494A (en) | 1973-07-16 | 1974-12-31 | Rockwell International Corp | Modular rack assembly |
US3941271A (en) | 1971-09-11 | 1976-03-02 | Walther Zarges | Collapsible receptacle |
US3980185A (en) | 1973-08-06 | 1976-09-14 | Cain Clyde R | Cargo container interlock system |
US4062300A (en) | 1975-10-24 | 1977-12-13 | Rank Xerox Ltd. | Multipurpose pallet system |
US4163495A (en) | 1977-09-21 | 1979-08-07 | Drader Clarence H | Plastic bread carrier having folding end walls |
US4186841A (en) | 1977-09-29 | 1980-02-05 | Federal Reserve Bank Of Boston | Pallet |
US4287997A (en) | 1980-01-29 | 1981-09-08 | Rolfe Keith O | Container for transported goods |
US4344368A (en) | 1980-07-02 | 1982-08-17 | The Stanley Works | Universal pallet |
US4626155A (en) | 1986-01-13 | 1986-12-02 | Maclean-Fogg Company | Automatic container securement device with a spring biased, cam surfaced head |
US4735330A (en) | 1987-03-02 | 1988-04-05 | Chrysler Motors Corporation | Collapsible bin |
US4741449A (en) | 1980-04-15 | 1988-05-03 | Parteurosa S.A. | Container shaped structural element and structure obtained from a plurality of components from such containers |
US4988003A (en) | 1990-02-14 | 1991-01-29 | A-Bee Syndicate, Inc. | Stackable tray carrying units |
US5275302A (en) | 1982-06-18 | 1994-01-04 | Uitz Mark O | Plastic container and pallet system |
US5289933A (en) | 1991-04-25 | 1994-03-01 | Roland Streich | Collapsible cargo container |
US5467885A (en) | 1993-11-29 | 1995-11-21 | Blinstrub; Robert M. | Collapsible material handling container |
US5524760A (en) | 1994-04-21 | 1996-06-11 | Laminations Corporation | Interlocking apparatus for stacked cartons and method for using the same |
US5598787A (en) | 1993-02-12 | 1997-02-04 | Pronk; Mattheus A. J. | Pallet/spacer assembly |
US5806701A (en) | 1997-03-06 | 1998-09-15 | Hyundai Precision & Ind. Co., Ltd. | Container with anticontact cutout at each corner |
US5918551A (en) | 1998-02-04 | 1999-07-06 | Liu; Ching Rong | Trestle stage |
US6250490B1 (en) | 1996-06-28 | 2001-06-26 | Mckechnie Uk Limited | Container |
US6415938B1 (en) | 1998-07-07 | 2002-07-09 | Ladislav Stephan Karpisek | Containers |
US6460717B1 (en) | 2001-08-29 | 2002-10-08 | Rehrig Pacific Company | Inwardly folding container |
US6602032B2 (en) | 1999-12-20 | 2003-08-05 | Ricoh Company, Ltd. | Method for handling goods |
US6675723B2 (en) | 2001-06-06 | 2004-01-13 | Modularbox Oy | Pallet cage |
US6722515B2 (en) | 2002-01-23 | 2004-04-20 | Donald Rumpel | Folding crate |
US6749070B2 (en) | 2001-07-27 | 2004-06-15 | International Business Machines Corporation | Modular stacking equipment rack |
US20040206656A1 (en) | 2001-07-14 | 2004-10-21 | Jean-Marc Dubois | Interlocking container |
US6811048B2 (en) | 2002-02-12 | 2004-11-02 | David M. K. Lau | Fold-up storage container |
US6832580B2 (en) | 2000-06-23 | 2004-12-21 | Marchioro S.P.A. Stampaggio Materie Plastiche | Modular cage |
US6840378B2 (en) | 2001-03-23 | 2005-01-11 | Yoshiaki Toguchi | Connection structure of storage compartment |
US6863180B2 (en) | 2002-02-15 | 2005-03-08 | Rehrig Pacific Company | Collapsible container |
US6925943B2 (en) | 1997-05-23 | 2005-08-09 | E-Z Shipper Racks, Llc | Modular low cost pallet and shelf assembly |
US7131803B2 (en) * | 2003-10-02 | 2006-11-07 | Paragon Industries, Inc. | Multilength tubular transporter |
Family Cites Families (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6067913A (en) * | 1998-10-30 | 2000-05-30 | Bennett; Richard C. | Stackable pallet system for transporting gas containers |
EP1088552B1 (en) * | 1999-09-30 | 2006-04-19 | Loders Croklaan B.V. | Compositions containing pinolenic acid and its use a health component |
-
2006
- 2006-03-20 US US11/387,082 patent/US7491024B2/en not_active Expired - Fee Related
- 2006-05-02 WO PCT/US2006/017199 patent/WO2007111617A2/en active Application Filing
-
2008
- 2008-09-30 US US12/287,166 patent/US8083448B2/en not_active Expired - Fee Related
Patent Citations (39)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US2673700A (en) | 1951-10-22 | 1954-03-30 | Daniel A Eberhardt | Pallet |
US3015407A (en) | 1960-01-25 | 1962-01-02 | Budd Co | Stacking cargo containers |
US3401814A (en) | 1967-03-07 | 1968-09-17 | Collapsible Container Corp | Collapsible shipping container |
US3782579A (en) | 1970-10-01 | 1974-01-01 | W Zarges | Collapsible receptacle |
US3941271A (en) | 1971-09-11 | 1976-03-02 | Walther Zarges | Collapsible receptacle |
US3718218A (en) | 1971-10-13 | 1973-02-27 | States Steamship Co | Shipping and storage container interlock |
US3797691A (en) | 1972-05-10 | 1974-03-19 | Lockheed Aircraft Corp | Modular cargo container for transport vehicles |
US3857494A (en) | 1973-07-16 | 1974-12-31 | Rockwell International Corp | Modular rack assembly |
US3980185A (en) | 1973-08-06 | 1976-09-14 | Cain Clyde R | Cargo container interlock system |
US4062300A (en) | 1975-10-24 | 1977-12-13 | Rank Xerox Ltd. | Multipurpose pallet system |
US4163495A (en) | 1977-09-21 | 1979-08-07 | Drader Clarence H | Plastic bread carrier having folding end walls |
US4186841A (en) | 1977-09-29 | 1980-02-05 | Federal Reserve Bank Of Boston | Pallet |
US4287997A (en) | 1980-01-29 | 1981-09-08 | Rolfe Keith O | Container for transported goods |
US4741449A (en) | 1980-04-15 | 1988-05-03 | Parteurosa S.A. | Container shaped structural element and structure obtained from a plurality of components from such containers |
US4344368A (en) | 1980-07-02 | 1982-08-17 | The Stanley Works | Universal pallet |
US5275302A (en) | 1982-06-18 | 1994-01-04 | Uitz Mark O | Plastic container and pallet system |
US4626155A (en) | 1986-01-13 | 1986-12-02 | Maclean-Fogg Company | Automatic container securement device with a spring biased, cam surfaced head |
US4735330A (en) | 1987-03-02 | 1988-04-05 | Chrysler Motors Corporation | Collapsible bin |
US4988003A (en) | 1990-02-14 | 1991-01-29 | A-Bee Syndicate, Inc. | Stackable tray carrying units |
US5289933A (en) | 1991-04-25 | 1994-03-01 | Roland Streich | Collapsible cargo container |
US5598787A (en) | 1993-02-12 | 1997-02-04 | Pronk; Mattheus A. J. | Pallet/spacer assembly |
US5467885A (en) | 1993-11-29 | 1995-11-21 | Blinstrub; Robert M. | Collapsible material handling container |
US5524760A (en) | 1994-04-21 | 1996-06-11 | Laminations Corporation | Interlocking apparatus for stacked cartons and method for using the same |
US6250490B1 (en) | 1996-06-28 | 2001-06-26 | Mckechnie Uk Limited | Container |
US5806701A (en) | 1997-03-06 | 1998-09-15 | Hyundai Precision & Ind. Co., Ltd. | Container with anticontact cutout at each corner |
US6925943B2 (en) | 1997-05-23 | 2005-08-09 | E-Z Shipper Racks, Llc | Modular low cost pallet and shelf assembly |
US5918551A (en) | 1998-02-04 | 1999-07-06 | Liu; Ching Rong | Trestle stage |
US6415938B1 (en) | 1998-07-07 | 2002-07-09 | Ladislav Stephan Karpisek | Containers |
US6602032B2 (en) | 1999-12-20 | 2003-08-05 | Ricoh Company, Ltd. | Method for handling goods |
US6832580B2 (en) | 2000-06-23 | 2004-12-21 | Marchioro S.P.A. Stampaggio Materie Plastiche | Modular cage |
US6840378B2 (en) | 2001-03-23 | 2005-01-11 | Yoshiaki Toguchi | Connection structure of storage compartment |
US6675723B2 (en) | 2001-06-06 | 2004-01-13 | Modularbox Oy | Pallet cage |
US20040206656A1 (en) | 2001-07-14 | 2004-10-21 | Jean-Marc Dubois | Interlocking container |
US6749070B2 (en) | 2001-07-27 | 2004-06-15 | International Business Machines Corporation | Modular stacking equipment rack |
US6460717B1 (en) | 2001-08-29 | 2002-10-08 | Rehrig Pacific Company | Inwardly folding container |
US6722515B2 (en) | 2002-01-23 | 2004-04-20 | Donald Rumpel | Folding crate |
US6811048B2 (en) | 2002-02-12 | 2004-11-02 | David M. K. Lau | Fold-up storage container |
US6863180B2 (en) | 2002-02-15 | 2005-03-08 | Rehrig Pacific Company | Collapsible container |
US7131803B2 (en) * | 2003-10-02 | 2006-11-07 | Paragon Industries, Inc. | Multilength tubular transporter |
Non-Patent Citations (1)
Title |
---|
U.S. Appl. No. 11/387,082, filed Mar. 20, 2006, Heinrichs et al. |
Cited By (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20110220033A1 (en) * | 2010-03-12 | 2011-09-15 | Roto Mold, L.L.C. | Pet crate |
US8544417B2 (en) * | 2010-03-12 | 2013-10-01 | Roto Mold L.L.C. | Pet crate |
US20120060725A1 (en) * | 2010-09-09 | 2012-03-15 | Edwards Robert A | Apparatus and method for packing concentrated mass loads for transport by container, box truck and van trailer |
US8534969B2 (en) * | 2010-09-09 | 2013-09-17 | Carego Innovative Solutions, Inc. | Apparatus and method for packing concentrated mass loads for transport by container, box truck and van trailer |
US10336356B2 (en) * | 2016-06-22 | 2019-07-02 | Globe Composite Solutions, Ltd. | Wheeled shipping cart with stackable trays |
US10589924B2 (en) | 2016-10-26 | 2020-03-17 | Revolutionary Truck Systems | Cargo bin |
WO2022061131A1 (en) * | 2020-09-18 | 2022-03-24 | Ufp Industries, Inc. | Knock-down crate for durable goods |
Also Published As
Publication number | Publication date |
---|---|
US7491024B2 (en) | 2009-02-17 |
WO2007111617A3 (en) | 2008-01-03 |
WO2007111617A2 (en) | 2007-10-04 |
US20090120332A1 (en) | 2009-05-14 |
US20070217883A1 (en) | 2007-09-20 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US8083448B2 (en) | Interlocking pallets, and shipping and storage systems employing the same | |
US7726496B2 (en) | Shipping and storage system | |
US7739965B2 (en) | Automatically interlocking pallets, and shipping and storage systems employing the same | |
US7753222B1 (en) | Container, and related methods | |
US5862931A (en) | Collapsible shipping container | |
US7281637B2 (en) | Knock-down crate with walls stored in base and method employing such a crate | |
EP0934208B1 (en) | Stackable pallet | |
US5865334A (en) | Collapsible container | |
US8356562B2 (en) | Pallet | |
US4856657A (en) | Container with sleeve interlocking latch | |
US20220144540A1 (en) | Cargo Unit | |
WO2003043911A1 (en) | Hinge and container | |
EP3730419A1 (en) | Container | |
JP2500245B2 (en) | Pallet container | |
US10556720B2 (en) | Foldable pallet deck | |
EP3590862B1 (en) | Folding container | |
EP3494071B1 (en) | Collapsible container, method of folding a container, method of unfolding a container | |
EP2785605A1 (en) | Pallet, pallet assembly and assembling method therefor | |
WO1999033711A1 (en) | Collapsible container | |
JPH09221129A (en) | Container | |
JP2500274Y2 (en) | Folding container | |
GB2333283A (en) | Collapsible bin storage system | |
CZ9904681A3 (en) | Container pallet | |
CZ9678U1 (en) | Container pallet |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
AS | Assignment |
Owner name: UNITED STATES OF AMERICA AS REPRESENTED BY THE SEC Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:HEINRICHS, MARK A.;FABULA, DONALD E.;BOYD, ERIC R.;REEL/FRAME:021798/0589 Effective date: 20060302 |
|
REMI | Maintenance fee reminder mailed | ||
LAPS | Lapse for failure to pay maintenance fees | ||
STCH | Information on status: patent discontinuation |
Free format text: PATENT EXPIRED DUE TO NONPAYMENT OF MAINTENANCE FEES UNDER 37 CFR 1.362 |
|
FP | Lapsed due to failure to pay maintenance fee |
Effective date: 20151227 |