US8050526B2 - Micro-optical device and method of making same - Google Patents
Micro-optical device and method of making same Download PDFInfo
- Publication number
- US8050526B2 US8050526B2 US11/335,722 US33572206A US8050526B2 US 8050526 B2 US8050526 B2 US 8050526B2 US 33572206 A US33572206 A US 33572206A US 8050526 B2 US8050526 B2 US 8050526B2
- Authority
- US
- United States
- Prior art keywords
- optical element
- optical
- substrate
- glass preform
- micro
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
- 238000004519 manufacturing process Methods 0.000 title description 7
- 230000003287 optical effect Effects 0.000 claims abstract description 174
- 239000011521 glass Substances 0.000 claims abstract description 123
- 239000000758 substrate Substances 0.000 claims abstract description 95
- 238000000034 method Methods 0.000 claims abstract description 29
- 239000000203 mixture Substances 0.000 claims description 11
- 239000000835 fiber Substances 0.000 claims description 7
- 239000006260 foam Substances 0.000 claims description 7
- 230000005693 optoelectronics Effects 0.000 claims description 6
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 claims description 5
- 229910052710 silicon Inorganic materials 0.000 claims description 5
- 239000010703 silicon Substances 0.000 claims description 5
- 244000248349 Citrus limon Species 0.000 claims description 2
- 235000005979 Citrus limon Nutrition 0.000 claims description 2
- 230000001747 exhibiting effect Effects 0.000 claims 1
- 239000003607 modifier Substances 0.000 description 10
- DLYUQMMRRRQYAE-UHFFFAOYSA-N tetraphosphorus decaoxide Chemical compound O1P(O2)(=O)OP3(=O)OP1(=O)OP2(=O)O3 DLYUQMMRRRQYAE-UHFFFAOYSA-N 0.000 description 8
- 239000000945 filler Substances 0.000 description 7
- 229910052751 metal Inorganic materials 0.000 description 7
- 239000002184 metal Substances 0.000 description 7
- 239000004065 semiconductor Substances 0.000 description 6
- 239000000463 material Substances 0.000 description 5
- 150000002739 metals Chemical class 0.000 description 5
- 239000011324 bead Substances 0.000 description 4
- WMWLMWRWZQELOS-UHFFFAOYSA-N bismuth(iii) oxide Chemical compound O=[Bi]O[Bi]=O WMWLMWRWZQELOS-UHFFFAOYSA-N 0.000 description 4
- 239000000919 ceramic Substances 0.000 description 4
- 239000000470 constituent Substances 0.000 description 4
- YEXPOXQUZXUXJW-UHFFFAOYSA-N lead(II) oxide Inorganic materials [Pb]=O YEXPOXQUZXUXJW-UHFFFAOYSA-N 0.000 description 4
- 238000002844 melting Methods 0.000 description 4
- 230000008018 melting Effects 0.000 description 4
- 229910011255 B2O3 Inorganic materials 0.000 description 3
- 239000000853 adhesive Substances 0.000 description 3
- 230000001070 adhesive effect Effects 0.000 description 3
- 230000008901 benefit Effects 0.000 description 3
- 239000007767 bonding agent Substances 0.000 description 3
- JKWMSGQKBLHBQQ-UHFFFAOYSA-N diboron trioxide Chemical compound O=BOB=O JKWMSGQKBLHBQQ-UHFFFAOYSA-N 0.000 description 3
- 229920006332 epoxy adhesive Polymers 0.000 description 3
- 239000003292 glue Substances 0.000 description 3
- 238000010943 off-gassing Methods 0.000 description 3
- XLOMVQKBTHCTTD-UHFFFAOYSA-N zinc oxide Inorganic materials [Zn]=O XLOMVQKBTHCTTD-UHFFFAOYSA-N 0.000 description 3
- GOLCXWYRSKYTSP-UHFFFAOYSA-N Arsenious Acid Chemical compound O1[As]2O[As]1O2 GOLCXWYRSKYTSP-UHFFFAOYSA-N 0.000 description 2
- QPLDLSVMHZLSFG-UHFFFAOYSA-N Copper oxide Chemical compound [Cu]=O QPLDLSVMHZLSFG-UHFFFAOYSA-N 0.000 description 2
- 239000004593 Epoxy Substances 0.000 description 2
- 229920000106 Liquid crystal polymer Polymers 0.000 description 2
- 229910003069 TeO2 Inorganic materials 0.000 description 2
- 238000010521 absorption reaction Methods 0.000 description 2
- 239000012298 atmosphere Substances 0.000 description 2
- BJQHLKABXJIVAM-UHFFFAOYSA-N bis(2-ethylhexyl) phthalate Chemical compound CCCCC(CC)COC(=O)C1=CC=CC=C1C(=O)OCC(CC)CCCC BJQHLKABXJIVAM-UHFFFAOYSA-N 0.000 description 2
- 229910021419 crystalline silicon Inorganic materials 0.000 description 2
- 230000000593 degrading effect Effects 0.000 description 2
- 230000009477 glass transition Effects 0.000 description 2
- 239000011213 glass-filled polymer Substances 0.000 description 2
- 238000010438 heat treatment Methods 0.000 description 2
- 238000004093 laser heating Methods 0.000 description 2
- 229910044991 metal oxide Inorganic materials 0.000 description 2
- JKQOBWVOAYFWKG-UHFFFAOYSA-N molybdenum trioxide Chemical compound O=[Mo](=O)=O JKQOBWVOAYFWKG-UHFFFAOYSA-N 0.000 description 2
- 229910021421 monocrystalline silicon Inorganic materials 0.000 description 2
- 238000004806 packaging method and process Methods 0.000 description 2
- 230000008569 process Effects 0.000 description 2
- 239000000523 sample Substances 0.000 description 2
- NDVLTYZPCACLMA-UHFFFAOYSA-N silver oxide Chemical compound [O-2].[Ag+].[Ag+] NDVLTYZPCACLMA-UHFFFAOYSA-N 0.000 description 2
- 229910000679 solder Inorganic materials 0.000 description 2
- 239000000126 substance Substances 0.000 description 2
- LAJZODKXOMJMPK-UHFFFAOYSA-N tellurium dioxide Chemical compound O=[Te]=O LAJZODKXOMJMPK-UHFFFAOYSA-N 0.000 description 2
- QHGNHLZPVBIIPX-UHFFFAOYSA-N tin(II) oxide Inorganic materials [Sn]=O QHGNHLZPVBIIPX-UHFFFAOYSA-N 0.000 description 2
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 1
- KOPBYBDAPCDYFK-UHFFFAOYSA-N Cs2O Inorganic materials [O-2].[Cs+].[Cs+] KOPBYBDAPCDYFK-UHFFFAOYSA-N 0.000 description 1
- PXGOKWXKJXAPGV-UHFFFAOYSA-N Fluorine Chemical compound FF PXGOKWXKJXAPGV-UHFFFAOYSA-N 0.000 description 1
- 229910001218 Gallium arsenide Inorganic materials 0.000 description 1
- FUJCRWPEOMXPAD-UHFFFAOYSA-N Li2O Inorganic materials [Li+].[Li+].[O-2] FUJCRWPEOMXPAD-UHFFFAOYSA-N 0.000 description 1
- KKCBUQHMOMHUOY-UHFFFAOYSA-N Na2O Inorganic materials [O-2].[Na+].[Na+] KKCBUQHMOMHUOY-UHFFFAOYSA-N 0.000 description 1
- 229910008310 Si—Ge Inorganic materials 0.000 description 1
- QCWXUUIWCKQGHC-UHFFFAOYSA-N Zirconium Chemical compound [Zr] QCWXUUIWCKQGHC-UHFFFAOYSA-N 0.000 description 1
- CNLWCVNCHLKFHK-UHFFFAOYSA-N aluminum;lithium;dioxido(oxo)silane Chemical compound [Li+].[Al+3].[O-][Si]([O-])=O.[O-][Si]([O-])=O CNLWCVNCHLKFHK-UHFFFAOYSA-N 0.000 description 1
- 229910052787 antimony Inorganic materials 0.000 description 1
- GHPGOEFPKIHBNM-UHFFFAOYSA-N antimony(3+);oxygen(2-) Chemical compound [O-2].[O-2].[O-2].[Sb+3].[Sb+3] GHPGOEFPKIHBNM-UHFFFAOYSA-N 0.000 description 1
- 229910052785 arsenic Inorganic materials 0.000 description 1
- QVQLCTNNEUAWMS-UHFFFAOYSA-N barium oxide Inorganic materials [Ba]=O QVQLCTNNEUAWMS-UHFFFAOYSA-N 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- CXKCTMHTOKXKQT-UHFFFAOYSA-N cadmium oxide Inorganic materials [Cd]=O CXKCTMHTOKXKQT-UHFFFAOYSA-N 0.000 description 1
- 239000006229 carbon black Substances 0.000 description 1
- 230000015556 catabolic process Effects 0.000 description 1
- 230000008859 change Effects 0.000 description 1
- 230000008602 contraction Effects 0.000 description 1
- 229910052878 cordierite Inorganic materials 0.000 description 1
- 230000008878 coupling Effects 0.000 description 1
- 238000010168 coupling process Methods 0.000 description 1
- 238000005859 coupling reaction Methods 0.000 description 1
- 238000013500 data storage Methods 0.000 description 1
- 238000006731 degradation reaction Methods 0.000 description 1
- 238000000151 deposition Methods 0.000 description 1
- AKUNKIJLSDQFLS-UHFFFAOYSA-M dicesium;hydroxide Chemical compound [OH-].[Cs+].[Cs+] AKUNKIJLSDQFLS-UHFFFAOYSA-M 0.000 description 1
- XUCJHNOBJLKZNU-UHFFFAOYSA-M dilithium;hydroxide Chemical compound [Li+].[Li+].[OH-] XUCJHNOBJLKZNU-UHFFFAOYSA-M 0.000 description 1
- JSKIRARMQDRGJZ-UHFFFAOYSA-N dimagnesium dioxido-bis[(1-oxido-3-oxo-2,4,6,8,9-pentaoxa-1,3-disila-5,7-dialuminabicyclo[3.3.1]nonan-7-yl)oxy]silane Chemical compound [Mg++].[Mg++].[O-][Si]([O-])(O[Al]1O[Al]2O[Si](=O)O[Si]([O-])(O1)O2)O[Al]1O[Al]2O[Si](=O)O[Si]([O-])(O1)O2 JSKIRARMQDRGJZ-UHFFFAOYSA-N 0.000 description 1
- NKZSPGSOXYXWQA-UHFFFAOYSA-N dioxido(oxo)titanium;lead(2+) Chemical compound [Pb+2].[O-][Ti]([O-])=O NKZSPGSOXYXWQA-UHFFFAOYSA-N 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 230000007613 environmental effect Effects 0.000 description 1
- 238000005530 etching Methods 0.000 description 1
- 229910000174 eucryptite Inorganic materials 0.000 description 1
- 230000003203 everyday effect Effects 0.000 description 1
- 229910052731 fluorine Inorganic materials 0.000 description 1
- 239000011737 fluorine Substances 0.000 description 1
- 229910002804 graphite Inorganic materials 0.000 description 1
- 239000010439 graphite Substances 0.000 description 1
- 238000003384 imaging method Methods 0.000 description 1
- 230000006698 induction Effects 0.000 description 1
- 230000002452 interceptive effect Effects 0.000 description 1
- JEIPFZHSYJVQDO-UHFFFAOYSA-N iron(III) oxide Inorganic materials O=[Fe]O[Fe]=O JEIPFZHSYJVQDO-UHFFFAOYSA-N 0.000 description 1
- HTUMBQDCCIXGCV-UHFFFAOYSA-N lead oxide Chemical compound [O-2].[Pb+2] HTUMBQDCCIXGCV-UHFFFAOYSA-N 0.000 description 1
- 230000007774 longterm Effects 0.000 description 1
- 230000007257 malfunction Effects 0.000 description 1
- 230000000873 masking effect Effects 0.000 description 1
- 238000007567 mass-production technique Methods 0.000 description 1
- 150000004706 metal oxides Chemical class 0.000 description 1
- 229910052758 niobium Inorganic materials 0.000 description 1
- 239000013307 optical fiber Substances 0.000 description 1
- 229910052698 phosphorus Inorganic materials 0.000 description 1
- 239000004038 photonic crystal Substances 0.000 description 1
- 229920000642 polymer Polymers 0.000 description 1
- 230000005855 radiation Effects 0.000 description 1
- 239000011214 refractory ceramic Substances 0.000 description 1
- 238000007789 sealing Methods 0.000 description 1
- 238000007493 shaping process Methods 0.000 description 1
- 230000035939 shock Effects 0.000 description 1
- 150000004760 silicates Chemical class 0.000 description 1
- 229910001923 silver oxide Inorganic materials 0.000 description 1
- 239000007787 solid Substances 0.000 description 1
- 229910052642 spodumene Inorganic materials 0.000 description 1
- 229910052715 tantalum Inorganic materials 0.000 description 1
- PBCFLUZVCVVTBY-UHFFFAOYSA-N tantalum pentoxide Inorganic materials O=[Ta](=O)O[Ta](=O)=O PBCFLUZVCVVTBY-UHFFFAOYSA-N 0.000 description 1
- 230000008646 thermal stress Effects 0.000 description 1
- ZNOKGRXACCSDPY-UHFFFAOYSA-N tungsten(VI) oxide Inorganic materials O=[W](=O)=O ZNOKGRXACCSDPY-UHFFFAOYSA-N 0.000 description 1
- 229910052720 vanadium Inorganic materials 0.000 description 1
- 229910052726 zirconium Inorganic materials 0.000 description 1
- LEHFSLREWWMLPU-UHFFFAOYSA-B zirconium(4+);tetraphosphate Chemical class [Zr+4].[Zr+4].[Zr+4].[O-]P([O-])([O-])=O.[O-]P([O-])([O-])=O.[O-]P([O-])([O-])=O.[O-]P([O-])([O-])=O LEHFSLREWWMLPU-UHFFFAOYSA-B 0.000 description 1
- GFQYVLUOOAAOGM-UHFFFAOYSA-N zirconium(iv) silicate Chemical compound [Zr+4].[O-][Si]([O-])([O-])[O-] GFQYVLUOOAAOGM-UHFFFAOYSA-N 0.000 description 1
Classifications
-
- C—CHEMISTRY; METALLURGY
- C03—GLASS; MINERAL OR SLAG WOOL
- C03C—CHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
- C03C12/00—Powdered glass; Bead compositions
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61H—PHYSICAL THERAPY APPARATUS, e.g. DEVICES FOR LOCATING OR STIMULATING REFLEX POINTS IN THE BODY; ARTIFICIAL RESPIRATION; MASSAGE; BATHING DEVICES FOR SPECIAL THERAPEUTIC OR HYGIENIC PURPOSES OR SPECIFIC PARTS OF THE BODY
- A61H39/00—Devices for locating or stimulating specific reflex points of the body for physical therapy, e.g. acupuncture
- A61H39/04—Devices for pressing such points, e.g. Shiatsu or Acupressure
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61H—PHYSICAL THERAPY APPARATUS, e.g. DEVICES FOR LOCATING OR STIMULATING REFLEX POINTS IN THE BODY; ARTIFICIAL RESPIRATION; MASSAGE; BATHING DEVICES FOR SPECIAL THERAPEUTIC OR HYGIENIC PURPOSES OR SPECIFIC PARTS OF THE BODY
- A61H7/00—Devices for suction-kneading massage; Devices for massaging the skin by rubbing or brushing not otherwise provided for
- A61H7/002—Devices for suction-kneading massage; Devices for massaging the skin by rubbing or brushing not otherwise provided for by rubbing or brushing
- A61H7/003—Hand-held or hand-driven devices
-
- C—CHEMISTRY; METALLURGY
- C03—GLASS; MINERAL OR SLAG WOOL
- C03C—CHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
- C03C8/00—Enamels; Glazes; Fusion seal compositions being frit compositions having non-frit additions
- C03C8/02—Frit compositions, i.e. in a powdered or comminuted form
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B6/00—Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
- G02B6/24—Coupling light guides
- G02B6/42—Coupling light guides with opto-electronic elements
- G02B6/4201—Packages, e.g. shape, construction, internal or external details
- G02B6/4219—Mechanical fixtures for holding or positioning the elements relative to each other in the couplings; Alignment methods for the elements, e.g. measuring or observing methods especially used therefor
- G02B6/4228—Passive alignment, i.e. without a detection of the degree of coupling or the position of the elements
- G02B6/423—Passive alignment, i.e. without a detection of the degree of coupling or the position of the elements using guiding surfaces for the alignment
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B6/00—Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
- G02B6/24—Coupling light guides
- G02B6/42—Coupling light guides with opto-electronic elements
- G02B6/4201—Packages, e.g. shape, construction, internal or external details
- G02B6/4219—Mechanical fixtures for holding or positioning the elements relative to each other in the couplings; Alignment methods for the elements, e.g. measuring or observing methods especially used therefor
- G02B6/4236—Fixing or mounting methods of the aligned elements
- G02B6/4238—Soldering
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61H—PHYSICAL THERAPY APPARATUS, e.g. DEVICES FOR LOCATING OR STIMULATING REFLEX POINTS IN THE BODY; ARTIFICIAL RESPIRATION; MASSAGE; BATHING DEVICES FOR SPECIAL THERAPEUTIC OR HYGIENIC PURPOSES OR SPECIFIC PARTS OF THE BODY
- A61H2201/00—Characteristics of apparatus not provided for in the preceding codes
- A61H2201/10—Characteristics of apparatus not provided for in the preceding codes with further special therapeutic means, e.g. electrotherapy, magneto therapy or radiation therapy, chromo therapy, infrared or ultraviolet therapy
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61H—PHYSICAL THERAPY APPARATUS, e.g. DEVICES FOR LOCATING OR STIMULATING REFLEX POINTS IN THE BODY; ARTIFICIAL RESPIRATION; MASSAGE; BATHING DEVICES FOR SPECIAL THERAPEUTIC OR HYGIENIC PURPOSES OR SPECIFIC PARTS OF THE BODY
- A61H2201/00—Characteristics of apparatus not provided for in the preceding codes
- A61H2201/12—Driving means
- A61H2201/1253—Driving means driven by a human being, e.g. hand driven
- A61H2201/1261—Driving means driven by a human being, e.g. hand driven combined with active exercising of the patient
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61H—PHYSICAL THERAPY APPARATUS, e.g. DEVICES FOR LOCATING OR STIMULATING REFLEX POINTS IN THE BODY; ARTIFICIAL RESPIRATION; MASSAGE; BATHING DEVICES FOR SPECIAL THERAPEUTIC OR HYGIENIC PURPOSES OR SPECIFIC PARTS OF THE BODY
- A61H2201/00—Characteristics of apparatus not provided for in the preceding codes
- A61H2201/16—Physical interface with patient
- A61H2201/1683—Surface of interface
- A61H2201/169—Physical characteristics of the surface, e.g. material, relief, texture or indicia
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61N—ELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
- A61N5/00—Radiation therapy
- A61N5/06—Radiation therapy using light
- A61N2005/0658—Radiation therapy using light characterised by the wavelength of light used
- A61N2005/0659—Radiation therapy using light characterised by the wavelength of light used infrared
- A61N2005/066—Radiation therapy using light characterised by the wavelength of light used infrared far infrared
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B6/00—Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
- G02B6/24—Coupling light guides
- G02B6/42—Coupling light guides with opto-electronic elements
- G02B6/4201—Packages, e.g. shape, construction, internal or external details
- G02B6/4219—Mechanical fixtures for holding or positioning the elements relative to each other in the couplings; Alignment methods for the elements, e.g. measuring or observing methods especially used therefor
- G02B6/4236—Fixing or mounting methods of the aligned elements
- G02B6/4237—Welding
Definitions
- the present invention relates to micro-optical devices and methods of making the same. More particularly, the present invention relates to micro-optical devices including passive alignment features and methods of making the same.
- micro-optical devices Every day, more and more applications use micro-optical devices to enhance performance, reduce size, or reduce cost. The demand for volume deployment of micro-optical devices continues to soar.
- micro-optical device designs tend to be costly to fabricate because they require active alignment to achieve the requisite high precision.
- Another disadvantage is that it is time consuming to assemble components of the micro-optical devices with the requisite alignment tolerances, thus causing low throughput. Considerable time and care may be needed for alignment and adjustment during assembly of the micro-optical devices. This prevents mass production of the micro-optical devices by operators having a moderate level of skill while maintaining the required alignment criteria. These factors limit the cost effectiveness of such micro-optical devices.
- micro-optical devices Yet to advance the adoption and use of such devices, the ability to manufacture micro-optical devices efficiently is important. Of particular importance is reducing the cost of micro-optical devices, a large portion of which (up to 75%) may be attributable to packaging costs.
- Trott discloses an optical submount and a method of making the same comprising:
- Trott further teaches bonding of the spherical lens in the pyramidal cavity subsequent to seating of the lens in the cavity. By adding the bonding agent subsequent to the seating of the lens, Trott ensures that the bonding agent does not interfere with the mechanical contact between the spherical lens and the pyramidal cavity required to facilitate the passive alignment of the spherical lens on the substrate.
- the bonding agents taught by Trott include glue and epoxy.
- epoxy adhesives may move or deform during subsequent processing of the substrate. Epoxy adhesives may also move or deform due to temperature excursions or other environmental factors experienced during normal operation of the product. For example, when making a solder connection to the substrate, the cured adhesive can be raised to a temperature of 320° C. to 350° C. This may cause the position of the secured optical element to shift, thus degrading the performance of the device.
- glue and epoxy adhesives tend to evolve gasses during and after the curing process. Such evolved gasses can cause degradation in the performance of the device.
- a micro-optical device comprising:
- a method for making a micro-optical device comprising:
- a method for making a micro-optical device comprising:
- active alignment means aligning of components with some feedback indication whether adjustment is needed.
- the term “not substantially disposed within the optical path” as used herein and in the appended claims means that the glass preform occupies less than a 100% cross section of the optical path between optical elements; alternatively, less than a 75% cross section of the optical path between the optical elements; alternatively, less than a 50% cross section of the optical path between the optical elements; alternatively, less than a 40% cross section of the optical path between the optical elements; alternatively, less than a 30% cross section of the optical path between the optical elements; alternatively, less than a 25% cross section of the optical path between the optical elements; alternatively, less than a 10% cross section of the optical path between the optical elements; alternatively, less than a 5% cross section of the optical path between the optical elements; alternatively, wherein the glass preform is completely absent from the optical path.
- the micro-optical device of the present invention may be an active photonics device.
- the micro-optical device may be an active photonics device selected from a transmitter, a receiver, a modulator, an attenuator, a switch, an amplifier pump and a semiconductor optical amplifier.
- the micro-optical device of the present invention may be a passive photonics device.
- the micro-optical device may be a passive photonics device selected from a wavelength division multiplexer, a wavelength division demultiplexer, a filter, a polarizer, an isolator, a coupler, a power splitter, a waveguide and a fiber bragg grating.
- the micro-optical device of the present invention may be a photonics device selected from a semiconductor laser, a semiconductor photo detector, an amplifier, a tunable laser, an etalon, a tunable etalon, a modulator, a compensator, a filter and a switch.
- the micro-optical device may be a CCD, an imaging system, a silicon photonic integrated circuit, an optical scanner, an endoscopic probe or system, an optical data storage subassembly and an optical probe for biological, chemical or medical applications.
- the micro-optical device of the present invention may be a microoptelectromechanical system (MOEMS) device.
- MOEMS microoptelectromechanical system
- the micro-optical device may be a MOEMS actuator or optical switch.
- the micro-optical device of the present invention may comprise a substrate that passively aligns one or more optical lenses with a hybridly integrated active or passive optical waveguide such as a photonic integrated circuit, active gain medium, SOI waveguide, laser, photodetector or similar device.
- a hybridly integrated active or passive optical waveguide such as a photonic integrated circuit, active gain medium, SOI waveguide, laser, photodetector or similar device.
- the substrate may be an optical platform or an optical bench.
- the substrate may contain one or more regions of integrated optical waveguides or photonic crystals.
- the substrate may be a chip. In some aspects, the substrate may be an integrated chip. In some aspects, the substrate may be an integrated optical chip.
- Substrates suitable for use with the present invention may be produced from a variety of materials including, for example, polymers, ceramics, metals, dielectric coated metals, glass filled plastics and combinations thereof; alternatively, ceramics, metals, dielectric coated metals, glass filled plastics and liquid crystalline polymers (LCPs).
- materials including, for example, polymers, ceramics, metals, dielectric coated metals, glass filled plastics and combinations thereof; alternatively, ceramics, metals, dielectric coated metals, glass filled plastics and liquid crystalline polymers (LCPs).
- the substrate of the present invention may be produced from a semiconductor including, for example, GaAs, InP, Si—Ge, silicon, and doped and alloyed forms thereof.
- the substrate may be produced from crystalline silicon.
- the substrate be produced from micro-molded or micro-machined ceramics.
- the substrate of the present invention may be produced from a metal or a ceramic coated metal.
- the substrate of the present invention may be produced from glass. In some aspects of this embodiment, the substrate may be produced from transparent glass.
- the substrates of the present invention may, for example, be molded; micro-machined with tolerances of 0.1 ⁇ m to 25 ⁇ m, alternatively with tolerances of 0.1 ⁇ m to 5 ⁇ m; chemically etched; photonically etched, e.g., using lithographic techniques and/or stamped using known techniques.
- the substrates of the present invention may be produced from monocrystalline silicon.
- monocrystalline silicon for the substrate may enable the exploitation of many well-known techniques for shaping semiconductor pieceparts and for depositing metals thereon. Also, there is a variety of commercial equipment in existence that may be utilized to produce the devices of the present invention using such techniques.
- the precision formed features created in or on the substrates of the present invention provide a high degree of alignment precision between the optical element seated in or on the substrate and the substrate.
- the precision formed features provide a high degree of alignment precision and optical coupling efficiency between two or more optical elements seated in or on the substrate.
- the optical element(s) may be seated in a precise three dimensional location on the substrate without the need for active alignment. This enables passive alignment of the optical elements to the substrate (and in certain embodiments to each other) with a great deal of accuracy and precision. It also enables the production of a large number of the micro-optical devices using batch processing techniques, thus significantly reducing the costs of fabrication. Accordingly, given the teachings provided herein, one skilled in the art will recognize that the instant invention permits the assembly of micro-optical devices to extremely close tolerances by relatively unskilled operators in a manner that is consistent with, and amenable to, mass production techniques.
- Precision formed features suitable for use with the present invention include, for example, cavities, pits, vias, through holes, grooves, channels, trenches, ledges, mesas, pedestals, cups and combinations thereof.
- the substrate of the present invention exhibits a precision formed feature, wherein the precision formed feature is a cavity.
- the substrate may exhibit a precision formed feature, wherein the precision formed feature is a cavity selected from a quadrilateral pyramidal cavity, a truncated quadrilateral pyramidal cavity, a conical cavity, a truncated conical cavity and a cylindrical cavity.
- the substrate may exhibit a precision formed feature, wherein the precision formed feature is a truncated quadrilateral pyramidal cavity.
- the substrate of the present invention exhibits a precision formed feature, wherein the precision formed feature is a cavity.
- the substrate may exhibit a precision formed feature, wherein the precision formed feature is a cavity selected from at least a portion of a quadrilateral pyramidal cavity, at least a portion of a truncated quadrilateral pyramidal cavity, at least a portion of a conical cavity, at least a portion of a truncated conical cavity and at least a portion of a cylindrical cavity.
- a portion of a precision formed feature may be formed by dicing off a portion of the substrate.
- the substrate may exhibit a precision formed feature, wherein the precision formed feature is at least a portion of a truncated quadrilateral pyramidal cavity with at least two sloping side walls.
- the precision formed feature may be a portion of a truncated quadrilateral pyramidal cavity which exhibits at least two sloping side walls; alternatively which exhibits at least three sloping side walls.
- the substrate of the present invention exhibits a precision formed feature, wherein the precision formed feature is selected from at least one groove, at least one channel and a combination of at least one groove and at least one channel.
- the substrate of the present invention may be made of crystalline silicon with a precision formed cavity that is a pyramidal cavity with sloping side walls formed by masking and anisotropicly etching a predefined area so as to have the side walls of the pyramidal cavity predominantly located along the crystallographic planes of the substrate.
- the glass composition used to prepare the glass preform may exhibit a melting point temperature of less than 500° C.; alternatively less than 480° C.; alternatively less than 450° C.; alternatively less than 425° C.; alternatively less than 400° C.; alternatively less than 375° C.; alternatively less than 350° C.; alternatively less than 325° C.; alternatively less than 300° C.; alternatively less than 250° C.; alternatively less than 200° C.; alternatively less than 150° C.; alternatively between 120° C. and 400° C.
- the glass composition used to prepare the glass preform may exhibit a softening point temperature of 100° C. to 350° C.; alternatively 150° C. to 300° C.; alternatively 200° C. to 250° C. In some embodiments of the present invention, the glass composition used to prepare the glass preform may exhibit a glass transition temperature of between 85° C. and 320° C.; alternatively 150° C. to 300° C.; alternatively 175° C. to 275° C.; alternatively 200° C. to 250° C.
- the glass preform provides a relatively strong bond between the optical element and the substrate.
- the glass composition for use in preparing the glass preform to provide a thermal expansion coefficient, viscosity, adhesive characteristics and melting point within a desired range for a given device application.
- the selection of softening and melting points of a given glass preform may enable a series of bonds to be formed in relatively close proximity to each other on a given substrate, provided the melting point of each successive bond is sufficiently below the temperature at which the earlier bond(s) soften.
- the formation of a series of bonds in the vicinity of each other is further enhanced when localized heating is used to melt the glass preforms forming the bonds.
- localized heating of the glass preforms may result in less thermal stress on earlier bonds formed on the substrate. This results in an increased ability of the bonds to withstand subsequent shock and vibration.
- the glass preforms of the present invention may comprise:
- the glass preforms may comprise a mixture of network formers.
- Mixtures of network formers suitable for use with the present invention may include, for example, binary and ternary glass systems.
- Binary and ternary glass systems suitable for use with the present invention include, for example, PbO/Bi 2 O 3 /B 2 O 3 ; PbO/ZnO/B 2 O 3 ; PbO/V 2 O 5 ; TeO 2 /V 2 O 5 /(AgO 2 /P 2 O 5 ); SnO/P 2 O 5 and AgO/P 2 O 5 .
- Network modifiers suitable for use with the present invention may be soluble or partially soluble in the one or more network formers.
- Network modifiers may function to alter various properties of the glass preform, for example, its adhesive strength and/or its flowability.
- Network modifiers suitable for use with the present invention may include, for example, WO 3 , fluorine, silver oxide, Bi 2 O 3 , PbO, ZnO, SnO, B 2 O 3 , MoO 3 , Li 2 O, BaO, TeO 2 , Ta 2 O 5 , Na 2 O, P 2 O 5 , Fe 2 O 3 , CuO, Cs 2 O, Sb 2 O 3 , As 2 O 3 and CdO.
- the glass preforms of the present invention may comprise 0 to 10 wt % network modifiers; alternatively 0.1 to 10 wt % network modifiers.
- Insoluble particulate fillers suitable for use with the present invention may include, for example, refractory silicates, refractory titanates and refractory ceramics made from Group V metal oxides (P, As, Sb, V, Nb, Ta).
- the one or more insoluble particulate fillers may be selected from beta-eucryptite, zirconium silicate, cordierite, spodumene, lead titanate.
- Insoluble particulate fillers may function to alter various properties of the glass preform, for example, its thermal expansion and contraction properties, which may operate to minimize the potential for crack propagation in a solder joint formed using the glass preform.
- the glass preforms of the present invention may comprise 0 to 50 wt % insoluble fillers; alternatively, 0.5 to 50 wt % insoluble fillers.
- Negative thermal expansion modifiers suitable for use with the present invention may include, for example, zirconium tungstates, zirconium phosphates, and NEX-1 (available from O-Hara Corporation).
- the glass preforms of the present invention are heterogeneous systems. That is, in some embodiments, the glass preforms (both pre- and post-bonded) exhibit (a) micro-domains of (i) one or more at least partially insoluble network modifiers, and/or (ii) one or more insoluble particulate fillers, and/or (iii) one or more negative thermal expansion modifiers; disposed within, (b) one or more network formers.
- the glass preform may be selected from a fused frit glass and a glass bead. In some aspects of this embodiment, the glass preform may be selected from a binderless, fused frit glass and a binderless glass bead. In some aspects of this embodiment, the glass preform is a binderless glass bead. Binderless glass beads suitable for use with the present invention may be obtained from a glass composition using processes known in the art such as those disclosed in, for example, U.S. Pat. Nos. 3,493,403 and 4,192,576.
- Glass preforms suitable for use with the present invention may exhibit a variety of shapes, including, for example, a polyhedron, an ellipsoid, a torus, a Goursat's surface, a lemon and an amorphous shape.
- the glass preform may exhibit a shape selected from an ellipsoid, a torus and an amorphous shape.
- the glass preform may exhibit a shape selected from an ellipsoid and an amorphous shape.
- the glass preform may exhibit an ellipsoidic shape.
- the glass preform may exhibit a spherical shape.
- the glass preforms may be solid. In some embodiments of the present invention, the glass preforms may contain voids. In some aspects of this embodiment, the glass preforms may be hollow comprising a gas encapsulated by the glass composition of which the glass preform is comprised. In some aspects of this embodiment, the glass preforms may be in the form of an open or closed cell foam.
- the glass preform may be of a shape and size such that after bonding, the glass preform does not interfere with the mechanical contact between the optical element and the substrate at the points which operate to precisely position the optical element on the substrate. Ideally, after bonding, no glass preform material should be present at these contact points. Notwithstanding, one skilled in the art will recognize that in some micro-optical devices a minimal amount of glass bonding material may be interposed between an optical element and the substrate at one or more contact points without critically degrading the passive alignment features of the device.
- multiple glass preforms may be used to adhere an optical element to the substrate.
- a single glass preform may be used to adhere an optical element to the substrate.
- the micro-optical device may further comprise a cap and at least one groove in the substrate, wherein the at least one groove is adapted to receive the cap.
- the cap may be bonded to the substrate to form a hermetically sealed space containing at least one optical element, wherein the at least one optical element is passively aligned with the substrate and wherein the at least one optical element is bonded to the substrate with at least one glass preform.
- the glass preform exhibits a minimal tendency to off-gas. In some aspects of this embodiment, the glass preform exhibits essentially no tendency to off-gas. In some aspects of this embodiment, the glass preform exhibits no tendency to off-gas.
- This feature of the glass preforms of the present invention is particularly important for at least some embodiments. For instance, in some embodiments the design of the precision formed feature and the shape of the optical element to be seated therein or thereon make the lack of off-gassing tendency a significant advantage.
- the precision formed feature comprises a conical or cylindrical shape with a circular top edge and the optical element is a spherical lens
- the optical element is a spherical lens
- hermetic sealing requirements make the lack of off-gassing an advantage.
- a constituent of the device vibrates during use. The frequency of the constituent's vibration depends on the atmosphere within the device surrounding the vibrating constituent. Off-gassing from a bonding material could alter the atmosphere within the device causing the frequency of the constituent's vibration to change, potentially resulting in a malfunction of the device.
- the micro-optical device of the present invention comprises:
- the micro-optical device of the present invention comprises:
- Optical elements suitable for use with the present invention include, for example, opto electrical elements, opto mechanical elements and optics.
- Opto electrical elements and opto mechanical elements suitable for use with the present invention include, for example, lasers (e.g., diode lasers and tunable lasers), light emitting diodes, photodiodes, photodetectors, amplifiers, tunable etalons, modulators, compensators, filters, switches, wavelength division multiplexers, wavelength division demultiplexers, isolators, power splitters, waveguides, fiber bragg gratings and polarizers.
- lasers e.g., diode lasers and tunable lasers
- light emitting diodes e.g., photodiodes, photodetectors, amplifiers, tunable etalons, modulators, compensators, filters, switches, wavelength division multiplexers, wavelength division demultiplexers, isolators, power splitters, waveguides, fiber bragg gratings and polarizers.
- Optics suitable for use with the present invention include, for example, optical lens, filters, etalons, couplers, prisms, wavelength division multiplexers, wavelength division demultiplexers and optical fibers.
- Optical lens suitable for use with the present invention include, for example, cylindrical lens, GRIN lenses, aspheric lens and ball lens.
- one or more of the optical elements may comprise a ball lens.
- Ball lens suitable for use with the present invention may be in the shape of an ellipsoid or any portion of an ellipsoid.
- the ball lens may exhibit an ellipsoidic shape selected from, for example, a spheroid and a sphere.
- the ball lens may exhibit an ellipsoidic shape selected from, for example, an oblate spheroid and a prolate spheroid.
- the ball lens may be an anamorphic lens.
- ball lens suitable for use with the present invention may, for example, exhibit a mean average diameter of 25 ⁇ m to 5 mm; alternatively 100 ⁇ m to 2 mm; alternatively 100 ⁇ m to 1 mm; alternatively 100 ⁇ m to 800 ⁇ m; alternatively 100 ⁇ m to 500 ⁇ m; alternatively 100 ⁇ m to 400 ⁇ m; alternatively less than 400 ⁇ m; alternatively less than 300 ⁇ m; alternatively less than 250 ⁇ m; alternatively less than 225 ⁇ m; alternatively less than 200 ⁇ m.
- the micro-optical device comprises a ball lens and the substrate exhibits a precision formed feature, wherein the precision formed feature is a portion of a truncated quadrilateral pyramidal cavity with at least two sloping side walls and wherein the ball lens is in direct contact with at least two of the sloping side walls.
- the micro-optical device of the present invention may comprise multiple optical elements.
- the micro-optical device of the present invention may comprise a first optical element and a second optical element.
- the first optical element and the second optical element may be the same or different.
- the micro-optical device of the present invention may comprise a first optical element and a second optical element, wherein the first optical element is not a fiber optic.
- the first optical element and the second optical element are in optical alignment with an optical path optically connecting the first optical element with the second optical element.
- the at least one glass preform is not substantially disposed within the optical path.
- the micro-optical device may include an optical element, wherein the optical element is a fiber optic.
- the at least one precision formed feature may be selected to receive the fiber optic.
- the at least one precision formed feature may be selected from, for example, a groove, a channel, a slot and a trench.
- the at least one precision formed feature may be selected from, for example, a “v”-groove and a “u”-groove.
- a source of heat localized to the vicinity of the desired bond between the optical element and the substrate may be provided to raise the temperature of the glass preform.
- the temperature of the glass preform may be raised above the glass transition temperature thereof.
- the temperature of the glass preform may be raised above the softening point temperature thereof.
- the temperature of the glass preform may be raised to a point where the glass preform melt flows.
- the temperature of the glass preform may be raised using a laser heater.
- the laser heating effects may be enhanced by incorporating substances into the glass preform that enhance the absorption of the lasing radiation.
- carbon black, graphite, black metallic oxides may increase the absorption of CO 2 , Nd/YAG and semiconductor laser heating sources.
- the temperature of the glass preform may be raised using an induction heater positioned in the vicinity of the desired bond between the optical element and the substrate.
- the glass preform may be heated to a temperature in the range of 120° C. to 480° C. In some embodiments, the glass preform may be heated to a temperature in excess of 200° C. In some embodiments, the glass preform may be heated to a temperature of less than 400° C. In some embodiments, the glass preform may be heated to a temperature of less than 375° C. In some embodiments, the glass preform may be heated to a temperature of less than 350° C. In some embodiments, the glass preform may be heated to a temperature of less than 320° C. In some embodiments, the glass preform may be heated to a temperature of less than 300° C.
- the glass preform is located on or in the precision formed feature before the optical element is located on or in the precision formed feature.
- the temperature of the glass preform may be raised before and/or after the optical element is located on or in the precision formed feature.
- a method of making a micro-optical device comprising:
Landscapes
- Chemical & Material Sciences (AREA)
- Physics & Mathematics (AREA)
- Life Sciences & Earth Sciences (AREA)
- Health & Medical Sciences (AREA)
- Engineering & Computer Science (AREA)
- Chemical Kinetics & Catalysis (AREA)
- General Chemical & Material Sciences (AREA)
- Geochemistry & Mineralogy (AREA)
- Materials Engineering (AREA)
- Organic Chemistry (AREA)
- General Physics & Mathematics (AREA)
- Optics & Photonics (AREA)
- Rehabilitation Therapy (AREA)
- Epidemiology (AREA)
- Pain & Pain Management (AREA)
- Physical Education & Sports Medicine (AREA)
- Animal Behavior & Ethology (AREA)
- General Health & Medical Sciences (AREA)
- Public Health (AREA)
- Veterinary Medicine (AREA)
- Dermatology (AREA)
- Optical Couplings Of Light Guides (AREA)
- Optical Integrated Circuits (AREA)
- Mechanical Coupling Of Light Guides (AREA)
Abstract
Description
-
- a substrate;
- a precision-formed cavity with sloping walls in the substrate, wherein the cavity is a substantially pyramidal cavity;
- a photonics device mounted on the substrate at a predefined distance from the cavity with its optical axis aligned with a diagonal of the cavity; and,
- a spherical lens confined by the side walls of the cavity in a predefined relationship with the photonics device without light beam obstruction.
-
- a first optical element,
- a second optical element,
- a substrate having at least one precision formed feature designed to passively align the first optical element with the second optical element,
- at least one glass preform at least partially disposed between the first optical element and the substrate;
wherein the first optical element is in optical alignment with the second optical element and wherein the at least one glass preform is not substantially disposed within an optical path optically connecting the first optical element with the second optical element.
-
- providing an optical element;
- providing a glass preform;
- providing a substrate having a precision formed feature designed to passively position the optical element relative to the substrate;
- optionally, raising the temperature of the glass preform; and,
- bonding the optical element to the substrate using the glass preform;
wherein the optical element is passively located in a predefined relationship with the substrate and wherein the optical element is not a fiber optic.
-
- providing a first optical element;
- providing a second optical element;
- providing a glass preform;
- providing a substrate with at least one precision formed feature designed to passively align the first optical element and the second optical element;
- raising the temperature of the glass preform; and,
- bonding the first optical element and the second optical element to the substrate, wherein at least the first optical element is bonded to the substrate using the glass preform.
-
- one or more network formers;
- optionally, one or more network modifiers;
- optionally, one or more insoluble particulate fillers; and,
- optionally, one or more negative thermal expansion modifiers.
-
- a first optical element;
- a second optical element;
- a substrate having at least one precision formed feature designed to passively align the first optical element with the second optical element, wherein the precision formed feature is at least a portion of a truncated quadrilateral pyramidal cavity with at least two sloping side walls, alternatively at least three sloping side walls, alternatively with four sloping side walls;
- at least one glass preform at least partially disposed between the first optical element and the substrate;
wherein the first optical element is a ball lens; wherein the ball lens is in direct contact with at least two sloping side walls of the precision formed feature, alternatively, wherein the ball lens is in direct contact with at least three sloping side walls of the precision formed feature, alternatively, wherein the ball lens is in direct contact with four sloping side walls of the precision formed feature; wherein the ball lens is in optical alignment with the second optical element and wherein the at least one glass preform is not substantially disposed within an optical path optically connecting the first optical element with the second optical element.
-
- a first optical element;
- a second optical element;
- a substrate having at least one precision formed feature designed to passively align the first optical element with the second optical element, wherein the precision formed feature is at least a portion of a truncated conical cavity or at least a portion of a cylindrical cavity, wherein the precision formed feature has at least a portion of a circular top edge or surface;
- at least one glass preform at least partially disposed between the first optical element and the substrate;
wherein the first optical element is a ball lens, wherein the ball lens is in direct contact with at least two distinct points on the at least a portion of the circular top edge or surface, wherein the ball lens is in optical alignment with the second optical element and wherein the at least one glass preform is not substantially disposed within an optical path optically connecting the first optical element with the second optical element.
-
- providing a first optical element,
- providing a second optical element, wherein the first optical element and the second optical element may be the same or different (for example, both optical elements may be ball lens; one optical element may be a ball lens and the other a laser; etc.);
- providing a glass preform;
- providing a substrate with at least one precision formed feature designed to passively align the first optical element and the second optical element;
- raising the temperature of the glass preform; and,
- bonding the first optical element and the second optical element to the substrate, wherein at least the first optical element is bonded to the substrate using the glass preform.
Claims (20)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US11/335,722 US8050526B2 (en) | 2005-02-08 | 2006-01-19 | Micro-optical device and method of making same |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US65094805P | 2005-02-08 | 2005-02-08 | |
US11/335,722 US8050526B2 (en) | 2005-02-08 | 2006-01-19 | Micro-optical device and method of making same |
Publications (2)
Publication Number | Publication Date |
---|---|
US20060174652A1 US20060174652A1 (en) | 2006-08-10 |
US8050526B2 true US8050526B2 (en) | 2011-11-01 |
Family
ID=36087358
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US11/335,722 Expired - Fee Related US8050526B2 (en) | 2005-02-08 | 2006-01-19 | Micro-optical device and method of making same |
Country Status (7)
Country | Link |
---|---|
US (1) | US8050526B2 (en) |
EP (1) | EP1688772A1 (en) |
JP (1) | JP2006293313A (en) |
KR (1) | KR100823057B1 (en) |
CN (1) | CN1818733A (en) |
CA (1) | CA2533974A1 (en) |
TW (1) | TWI299093B (en) |
Families Citing this family (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP4979299B2 (en) * | 2006-08-03 | 2012-07-18 | 豊田合成株式会社 | Optical device and manufacturing method thereof |
JP5313143B2 (en) * | 2006-09-22 | 2013-10-09 | コーニンクレッカ フィリップス エヌ ヴェ | Light emitting device with tension relaxation |
US8103140B2 (en) * | 2009-06-01 | 2012-01-24 | Honeywell International Inc. | Interferometric fiber optic gyroscope with silicon optical bench front-end |
EP2558426B1 (en) * | 2010-04-15 | 2020-04-08 | Ferro Corporation | Low-melting lead-free bismuth sealing glasses |
US9272945B2 (en) * | 2012-10-25 | 2016-03-01 | Corning Incorporated | Thermo-electric method for texturing of glass surfaces |
CN104051286B (en) * | 2013-03-12 | 2018-01-05 | 台湾积体电路制造股份有限公司 | Encapsulating structure and forming method thereof |
US9041015B2 (en) | 2013-03-12 | 2015-05-26 | Taiwan Semiconductor Manufacturing Company, Ltd. | Package structure and methods of forming same |
US8976833B2 (en) | 2013-03-12 | 2015-03-10 | Taiwan Semiconductor Manufacturing Company, Ltd. | Light coupling device and methods of forming same |
GB2583450B (en) | 2019-04-01 | 2023-04-12 | Huber Suhner Polatis Ltd | Method and apparatus for suction alignment |
CN111285600B (en) * | 2020-03-31 | 2022-07-08 | 北方夜视技术股份有限公司 | Positioning device, slicing method and slicing detection device for fixing spatial position of MPO screen segment |
Citations (25)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4252415A (en) * | 1977-09-06 | 1981-02-24 | Bbc Brown, Boveri & Cie | Liquid crystal cell and process for its production |
US4789214A (en) | 1987-09-21 | 1988-12-06 | Tacan Corporation | Micro-optical building block system and method of making same |
US4875750A (en) | 1987-02-25 | 1989-10-24 | Siemens Aktiengesellschaft | Optoelectronic coupling element and method for its manufacture |
US4945400A (en) | 1988-03-03 | 1990-07-31 | At&T Bell Laboratories | Subassembly for optoelectronic devices |
US5066090A (en) | 1989-09-12 | 1991-11-19 | Siemens Aktiengesellschaft | Optical coupling element having a convex microlens and the method of manufacture |
US5181216A (en) | 1990-08-27 | 1993-01-19 | At&T Bell Laboratories | Photonics module apparatus |
JPH05217836A (en) | 1992-02-07 | 1993-08-27 | Nikon Corp | Member and method for alignment of micro optical element |
US5255333A (en) | 1989-08-09 | 1993-10-19 | Siemens Aktiengesellschaft | Opto-electronic transducer arrangement having a lens-type optical coupling |
JPH0667069A (en) | 1992-08-24 | 1994-03-11 | Nec Corp | Photosemiconductor device |
JPH07151940A (en) | 1993-11-29 | 1995-06-16 | Fujitsu Ltd | Optical coupling structure and its production |
JPH08211204A (en) | 1995-02-02 | 1996-08-20 | Ricoh Opt Ind Co Ltd | Ball lens with cell, lens with cell and their production |
US5737466A (en) | 1993-12-10 | 1998-04-07 | Siemens Aktiengesellschaft | Electro-optical module with simplified adjustment of the electro-optical elements |
US5771323A (en) | 1996-08-28 | 1998-06-23 | Hewlett-Packard Company | Micro-photonics module |
US6357098B1 (en) | 1998-12-04 | 2002-03-19 | Terastor Corporation | Methods and devices for positioning and bonding elements to substrates |
US6404942B1 (en) | 1998-10-23 | 2002-06-11 | Corning Incorporated | Fluid-encapsulated MEMS optical switch |
US6453090B1 (en) | 1997-03-04 | 2002-09-17 | Andromis S.A. | Method and device for assembling optical components or an optical component and a substrate |
JP2002289727A (en) | 2001-03-28 | 2002-10-04 | Kyocera Corp | Package for storing optical semiconductor element |
US6507446B2 (en) * | 2000-06-30 | 2003-01-14 | Hoya Corporation | Positioning method of optical element, positioning member of optical element and optical unit, and manufacturing method thereof |
US6618118B2 (en) | 2001-05-08 | 2003-09-09 | Asml Netherlands B.V. | Optical exposure method, device manufacturing method and lithographic projection apparatus |
US20030174407A1 (en) | 2002-03-16 | 2003-09-18 | Agilent Technologies, Inc. | Integrated micro-optical elements |
JP2004354647A (en) | 2003-05-28 | 2004-12-16 | Kyocera Corp | Fixing structure and fixing method for optical element |
US20040264866A1 (en) | 2000-10-25 | 2004-12-30 | Sherrer David W. | Wafer level packaging for optoelectronic devices |
US20050111797A1 (en) | 2003-09-15 | 2005-05-26 | Rohm And Haas Electronic Materials, L.L.C. | Device package and methods for the fabrication and testing thereof |
US20060157274A1 (en) * | 2002-03-22 | 2006-07-20 | Stark David H | Wafer-level hermetic micro-device packages |
US7186659B2 (en) | 2004-10-25 | 2007-03-06 | Hitachi High-Technologies Corporation | Plasma etching method |
Family Cites Families (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5926599A (en) * | 1996-06-13 | 1999-07-20 | Corning Incorporated | Optical device and fusion seal |
JP3570869B2 (en) | 1997-09-26 | 2004-09-29 | 京セラ株式会社 | Optical isolator element and method of manufacturing the same |
US6445858B1 (en) | 2000-12-11 | 2002-09-03 | Jds Uniphase Inc. | Micro-alignment of optical components |
-
2006
- 2006-01-19 US US11/335,722 patent/US8050526B2/en not_active Expired - Fee Related
- 2006-01-25 CA CA002533974A patent/CA2533974A1/en not_active Abandoned
- 2006-01-26 TW TW095103015A patent/TWI299093B/en not_active IP Right Cessation
- 2006-01-26 KR KR1020060008225A patent/KR100823057B1/en not_active IP Right Cessation
- 2006-01-28 EP EP06250481A patent/EP1688772A1/en not_active Withdrawn
- 2006-02-07 JP JP2006029226A patent/JP2006293313A/en active Pending
- 2006-02-08 CN CNA2006100037618A patent/CN1818733A/en active Pending
Patent Citations (26)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4252415A (en) * | 1977-09-06 | 1981-02-24 | Bbc Brown, Boveri & Cie | Liquid crystal cell and process for its production |
US4875750A (en) | 1987-02-25 | 1989-10-24 | Siemens Aktiengesellschaft | Optoelectronic coupling element and method for its manufacture |
US4789214A (en) | 1987-09-21 | 1988-12-06 | Tacan Corporation | Micro-optical building block system and method of making same |
US4945400A (en) | 1988-03-03 | 1990-07-31 | At&T Bell Laboratories | Subassembly for optoelectronic devices |
US5255333A (en) | 1989-08-09 | 1993-10-19 | Siemens Aktiengesellschaft | Opto-electronic transducer arrangement having a lens-type optical coupling |
US5066090A (en) | 1989-09-12 | 1991-11-19 | Siemens Aktiengesellschaft | Optical coupling element having a convex microlens and the method of manufacture |
US5181216A (en) | 1990-08-27 | 1993-01-19 | At&T Bell Laboratories | Photonics module apparatus |
JPH05217836A (en) | 1992-02-07 | 1993-08-27 | Nikon Corp | Member and method for alignment of micro optical element |
JPH0667069A (en) | 1992-08-24 | 1994-03-11 | Nec Corp | Photosemiconductor device |
JPH07151940A (en) | 1993-11-29 | 1995-06-16 | Fujitsu Ltd | Optical coupling structure and its production |
US5737466A (en) | 1993-12-10 | 1998-04-07 | Siemens Aktiengesellschaft | Electro-optical module with simplified adjustment of the electro-optical elements |
JPH08211204A (en) | 1995-02-02 | 1996-08-20 | Ricoh Opt Ind Co Ltd | Ball lens with cell, lens with cell and their production |
US5771323A (en) | 1996-08-28 | 1998-06-23 | Hewlett-Packard Company | Micro-photonics module |
US6453090B1 (en) | 1997-03-04 | 2002-09-17 | Andromis S.A. | Method and device for assembling optical components or an optical component and a substrate |
US6404942B1 (en) | 1998-10-23 | 2002-06-11 | Corning Incorporated | Fluid-encapsulated MEMS optical switch |
US6357098B1 (en) | 1998-12-04 | 2002-03-19 | Terastor Corporation | Methods and devices for positioning and bonding elements to substrates |
US6507446B2 (en) * | 2000-06-30 | 2003-01-14 | Hoya Corporation | Positioning method of optical element, positioning member of optical element and optical unit, and manufacturing method thereof |
US20040264866A1 (en) | 2000-10-25 | 2004-12-30 | Sherrer David W. | Wafer level packaging for optoelectronic devices |
JP2002289727A (en) | 2001-03-28 | 2002-10-04 | Kyocera Corp | Package for storing optical semiconductor element |
US6618118B2 (en) | 2001-05-08 | 2003-09-09 | Asml Netherlands B.V. | Optical exposure method, device manufacturing method and lithographic projection apparatus |
US20030174407A1 (en) | 2002-03-16 | 2003-09-18 | Agilent Technologies, Inc. | Integrated micro-optical elements |
US20060157274A1 (en) * | 2002-03-22 | 2006-07-20 | Stark David H | Wafer-level hermetic micro-device packages |
JP2004354647A (en) | 2003-05-28 | 2004-12-16 | Kyocera Corp | Fixing structure and fixing method for optical element |
US20050111797A1 (en) | 2003-09-15 | 2005-05-26 | Rohm And Haas Electronic Materials, L.L.C. | Device package and methods for the fabrication and testing thereof |
US20050110157A1 (en) | 2003-09-15 | 2005-05-26 | Rohm And Haas Electronic Materials, L.L.C. | Device package and method for the fabrication and testing thereof |
US7186659B2 (en) | 2004-10-25 | 2007-03-06 | Hitachi High-Technologies Corporation | Plasma etching method |
Non-Patent Citations (4)
Title |
---|
Extended European Search Report of corresponding European Application No. 06 25 0481 dated Apr. 28, 2006. |
Patent Abstract of Taiwan Publication No. TW412649B; Publication Date: Nov. 21, 2000; English language Equivalent: U.S. Patent No. 6,404,942. |
Patent Abstract of Taiwan Publication No. TW530334B; Publication Date: May 1, 2003; English language Equivalent: U.S. Patent No. 6,618,118. |
Search Report for corresponding Taiwanese Patent Application No. 095103015 completed May 5, 2007. |
Also Published As
Publication number | Publication date |
---|---|
CA2533974A1 (en) | 2006-08-08 |
US20060174652A1 (en) | 2006-08-10 |
KR100823057B1 (en) | 2008-04-18 |
JP2006293313A (en) | 2006-10-26 |
CN1818733A (en) | 2006-08-16 |
TWI299093B (en) | 2008-07-21 |
KR20060090576A (en) | 2006-08-14 |
TW200636313A (en) | 2006-10-16 |
EP1688772A1 (en) | 2006-08-09 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US8050526B2 (en) | Micro-optical device and method of making same | |
EP3091380B1 (en) | Optical coupling arrangement | |
AU743494B2 (en) | Optical device and fusion seal | |
US7597488B2 (en) | Optical assembly | |
JP3566842B2 (en) | Semiconductor light receiving device, method of manufacturing semiconductor light receiving device, bidirectional optical semiconductor device, and optical transmission system | |
EP1228556B1 (en) | Low temperature joining of materials | |
US6628854B1 (en) | Connector-type optical transceiver using SOI optical waveguide | |
CN102754005A (en) | Channeled substrates for integrated optical devices employing optical fibers | |
CN101303439A (en) | Optical assemblies and their methods of formation | |
US7149399B2 (en) | Glass bonded fiber array and method for the fabrication thereof | |
JP2008262116A (en) | Optical waveguide circuit and method of manufacturing same | |
US6883975B2 (en) | Connector ferrule and method of sealing | |
US9592578B2 (en) | Method of manufacturing an assembly to couple an optical fiber to an opto-electronic component | |
KR100630804B1 (en) | Multi-wavelength optical tranceiver modules, multiplexer and demultiplexer using thin film filter | |
WO2003025642A1 (en) | Adhesive-free bonding method of fiber attachment for polymer optical waveguide on polymer substrate | |
Full | Automated optical packaging technology for 10 Gb/s transceivers and its application to a low-cost full C-band tunable transmitter | |
WO2004010115A1 (en) | Flowcell in a ferrule and method of sealing | |
Yoon et al. | Compact bidirectional optical module using ceramic blocks | |
JP2001094191A (en) | Optical semiconductor module and manufacturing method therefor | |
JPH10231131A (en) | Preform for molding and molded product | |
Martin et al. | Technical challenges for 100gb/s silicon photonics transceivers for data center applications | |
WO2023205875A1 (en) | Hybrid integration methods, devices, and systems exploiting active-passive photonic elements | |
Mireles et al. | Packaging investigation and study for optical interfacing of micro components with optical fibers-Part I | |
Mireles Jr et al. | Optical fiber packaging for MEMS interfacing | |
KR102535603B1 (en) | Optical module platform structure and fabrication method |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
AS | Assignment |
Owner name: NUVOTRONICS, LLC, VIRGINIA Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:ROHM AND HAAS COMPANY;REEL/FRAME:021900/0281 Effective date: 20080708 Owner name: ROHM AND HAAS COMPANY, PENNSYLVANIA Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:KHANARIAN, GARO;PAFFORD, MARGARET M.;SHERRER, DAVID;REEL/FRAME:021900/0391;SIGNING DATES FROM 20050822 TO 20050912 Owner name: ROHM AND HAAS COMPANY, PENNSYLVANIA Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:KHANARIAN, GARO;PAFFORD, MARGARET M.;SHERRER, DAVID;SIGNING DATES FROM 20050822 TO 20050912;REEL/FRAME:021900/0391 |
|
AS | Assignment |
Owner name: NUVOTRONICS, LLC, VIRGINIA Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:ROHM AND HAAS ELECTRONIC MATERIALS LLC;REEL/FRAME:025358/0819 Effective date: 20080708 |
|
AS | Assignment |
Owner name: IP CUBE PARTNERS CO. LTD., KOREA, REPUBLIC OF Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:NUVOTRONICS, LLC;REEL/FRAME:025873/0641 Effective date: 20100831 |
|
AS | Assignment |
Owner name: IP CUBE PARTNERS CO. LTD., KOREA, REPUBLIC OF Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:NUVOTRONICS, LLC;REEL/FRAME:025951/0377 Effective date: 20100831 |
|
AS | Assignment |
Owner name: SAMSUNG ELECTRONICS CO., LTD., KOREA, REPUBLIC OF Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:IP CUBE PARTNERS CO. LTD.;REEL/FRAME:026301/0460 Effective date: 20110512 |
|
AS | Assignment |
Owner name: SAMSUNG ELECTRONICS CO., LTD., KOREA, REPUBLIC OF Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:IP CUBE PARTNERS CO. LTD.;REEL/FRAME:026323/0506 Effective date: 20110512 |
|
STCF | Information on status: patent grant |
Free format text: PATENTED CASE |
|
FEPP | Fee payment procedure |
Free format text: PAYOR NUMBER ASSIGNED (ORIGINAL EVENT CODE: ASPN); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY |
|
FPAY | Fee payment |
Year of fee payment: 4 |
|
FEPP | Fee payment procedure |
Free format text: MAINTENANCE FEE REMINDER MAILED (ORIGINAL EVENT CODE: REM.); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY |
|
LAPS | Lapse for failure to pay maintenance fees |
Free format text: PATENT EXPIRED FOR FAILURE TO PAY MAINTENANCE FEES (ORIGINAL EVENT CODE: EXP.); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY |
|
STCH | Information on status: patent discontinuation |
Free format text: PATENT EXPIRED DUE TO NONPAYMENT OF MAINTENANCE FEES UNDER 37 CFR 1.362 |
|
FP | Lapsed due to failure to pay maintenance fee |
Effective date: 20191101 |