US8046066B2 - Apparatus for reversal of myocardial remodeling with pre-excitation - Google Patents
Apparatus for reversal of myocardial remodeling with pre-excitation Download PDFInfo
- Publication number
- US8046066B2 US8046066B2 US12/484,882 US48488209A US8046066B2 US 8046066 B2 US8046066 B2 US 8046066B2 US 48488209 A US48488209 A US 48488209A US 8046066 B2 US8046066 B2 US 8046066B2
- Authority
- US
- United States
- Prior art keywords
- pacing
- programmed
- controller
- myocardium
- stressed region
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related, expires
Links
- 230000005284 excitation Effects 0.000 title claims description 28
- 238000007634 remodeling Methods 0.000 title claims description 18
- 230000002107 myocardial effect Effects 0.000 title claims description 17
- 210000004165 myocardium Anatomy 0.000 claims abstract description 39
- 238000002560 therapeutic procedure Methods 0.000 claims abstract description 7
- 230000002861 ventricular Effects 0.000 claims description 36
- 230000000747 cardiac effect Effects 0.000 claims description 30
- 230000008602 contraction Effects 0.000 claims description 19
- 210000002216 heart Anatomy 0.000 claims description 16
- 230000001746 atrial effect Effects 0.000 claims description 14
- 238000005259 measurement Methods 0.000 claims description 13
- 238000000034 method Methods 0.000 claims description 9
- 230000001934 delay Effects 0.000 claims description 7
- 238000002847 impedance measurement Methods 0.000 claims description 4
- 230000008569 process Effects 0.000 claims description 4
- 238000009423 ventilation Methods 0.000 claims description 3
- 238000012886 linear function Methods 0.000 claims description 2
- 230000036316 preload Effects 0.000 abstract description 13
- 230000004936 stimulating effect Effects 0.000 abstract description 12
- 208000033774 Ventricular Remodeling Diseases 0.000 abstract description 7
- 230000001550 time effect Effects 0.000 abstract 1
- 230000000638 stimulation Effects 0.000 description 26
- 206010019280 Heart failures Diseases 0.000 description 11
- 230000000694 effects Effects 0.000 description 9
- 206010007559 Cardiac failure congestive Diseases 0.000 description 8
- 206010020880 Hypertrophy Diseases 0.000 description 8
- 230000002964 excitative effect Effects 0.000 description 7
- 230000002503 metabolic effect Effects 0.000 description 7
- 239000008280 blood Substances 0.000 description 6
- 210000004369 blood Anatomy 0.000 description 6
- 208000028867 ischemia Diseases 0.000 description 6
- 238000007726 management method Methods 0.000 description 6
- 230000033764 rhythmic process Effects 0.000 description 6
- 230000036471 bradycardia Effects 0.000 description 5
- 208000006218 bradycardia Diseases 0.000 description 5
- 210000005240 left ventricle Anatomy 0.000 description 5
- 230000005856 abnormality Effects 0.000 description 4
- 230000004913 activation Effects 0.000 description 4
- 210000001992 atrioventricular node Anatomy 0.000 description 4
- 210000005242 cardiac chamber Anatomy 0.000 description 4
- 230000007547 defect Effects 0.000 description 4
- 230000010339 dilation Effects 0.000 description 4
- 238000005086 pumping Methods 0.000 description 4
- 230000008859 change Effects 0.000 description 3
- 230000001447 compensatory effect Effects 0.000 description 3
- 208000027744 congestion Diseases 0.000 description 3
- 238000010586 diagram Methods 0.000 description 3
- 230000003205 diastolic effect Effects 0.000 description 3
- 210000002837 heart atrium Anatomy 0.000 description 3
- 230000028161 membrane depolarization Effects 0.000 description 3
- 210000001087 myotubule Anatomy 0.000 description 3
- 230000004044 response Effects 0.000 description 3
- 230000008901 benefit Effects 0.000 description 2
- 230000002999 depolarising effect Effects 0.000 description 2
- 230000000142 dyskinetic effect Effects 0.000 description 2
- 239000000835 fiber Substances 0.000 description 2
- 230000004217 heart function Effects 0.000 description 2
- 230000000004 hemodynamic effect Effects 0.000 description 2
- 230000001969 hypertrophic effect Effects 0.000 description 2
- 238000007914 intraventricular administration Methods 0.000 description 2
- 230000007246 mechanism Effects 0.000 description 2
- 230000004048 modification Effects 0.000 description 2
- 238000012986 modification Methods 0.000 description 2
- 230000002685 pulmonary effect Effects 0.000 description 2
- 230000009467 reduction Effects 0.000 description 2
- 210000005241 right ventricle Anatomy 0.000 description 2
- 230000009885 systemic effect Effects 0.000 description 2
- 230000035488 systolic blood pressure Effects 0.000 description 2
- 206010002329 Aneurysm Diseases 0.000 description 1
- 206010003671 Atrioventricular Block Diseases 0.000 description 1
- 206010006578 Bundle-Branch Block Diseases 0.000 description 1
- 206010052337 Diastolic dysfunction Diseases 0.000 description 1
- 206010061216 Infarction Diseases 0.000 description 1
- 206010040639 Sick sinus syndrome Diseases 0.000 description 1
- 206010071436 Systolic dysfunction Diseases 0.000 description 1
- 206010045545 Univentricular heart Diseases 0.000 description 1
- 208000009982 Ventricular Dysfunction Diseases 0.000 description 1
- 230000036982 action potential Effects 0.000 description 1
- 230000004075 alteration Effects 0.000 description 1
- 210000000709 aorta Anatomy 0.000 description 1
- 238000003782 apoptosis assay Methods 0.000 description 1
- 230000006907 apoptotic process Effects 0.000 description 1
- 230000002457 bidirectional effect Effects 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 230000017531 blood circulation Effects 0.000 description 1
- 238000009530 blood pressure measurement Methods 0.000 description 1
- 210000004375 bundle of his Anatomy 0.000 description 1
- 210000004413 cardiac myocyte Anatomy 0.000 description 1
- 238000013194 cardioversion Methods 0.000 description 1
- 210000003850 cellular structure Anatomy 0.000 description 1
- 208000035850 clinical syndrome Diseases 0.000 description 1
- 230000009989 contractile response Effects 0.000 description 1
- 230000001276 controlling effect Effects 0.000 description 1
- 230000002596 correlated effect Effects 0.000 description 1
- 230000000875 corresponding effect Effects 0.000 description 1
- 238000013500 data storage Methods 0.000 description 1
- 230000007423 decrease Effects 0.000 description 1
- 238000001514 detection method Methods 0.000 description 1
- 230000006866 deterioration Effects 0.000 description 1
- 238000009826 distribution Methods 0.000 description 1
- 238000012377 drug delivery Methods 0.000 description 1
- 230000004064 dysfunction Effects 0.000 description 1
- 238000002592 echocardiography Methods 0.000 description 1
- 230000006870 function Effects 0.000 description 1
- 230000035876 healing Effects 0.000 description 1
- 238000003384 imaging method Methods 0.000 description 1
- 230000001771 impaired effect Effects 0.000 description 1
- 230000007574 infarction Effects 0.000 description 1
- 230000000302 ischemic effect Effects 0.000 description 1
- 210000004072 lung Anatomy 0.000 description 1
- 238000002595 magnetic resonance imaging Methods 0.000 description 1
- 210000003205 muscle Anatomy 0.000 description 1
- 230000004118 muscle contraction Effects 0.000 description 1
- 208000031225 myocardial ischemia Diseases 0.000 description 1
- 230000037361 pathway Effects 0.000 description 1
- 230000010412 perfusion Effects 0.000 description 1
- 230000002093 peripheral effect Effects 0.000 description 1
- 230000006461 physiological response Effects 0.000 description 1
- 238000012545 processing Methods 0.000 description 1
- 230000005522 programmed cell death Effects 0.000 description 1
- 210000001147 pulmonary artery Anatomy 0.000 description 1
- 238000004904 shortening Methods 0.000 description 1
- 210000001013 sinoatrial node Anatomy 0.000 description 1
- 230000007480 spreading Effects 0.000 description 1
- 238000003892 spreading Methods 0.000 description 1
- 230000002459 sustained effect Effects 0.000 description 1
- 208000037905 systemic hypertension Diseases 0.000 description 1
- 210000001519 tissue Anatomy 0.000 description 1
- 230000001960 triggered effect Effects 0.000 description 1
- 210000003462 vein Anatomy 0.000 description 1
- 230000006815 ventricular dysfunction Effects 0.000 description 1
Images
Classifications
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61N—ELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
- A61N1/00—Electrotherapy; Circuits therefor
- A61N1/18—Applying electric currents by contact electrodes
- A61N1/32—Applying electric currents by contact electrodes alternating or intermittent currents
- A61N1/36—Applying electric currents by contact electrodes alternating or intermittent currents for stimulation
- A61N1/362—Heart stimulators
- A61N1/3627—Heart stimulators for treating a mechanical deficiency of the heart, e.g. congestive heart failure or cardiomyopathy
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61N—ELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
- A61N1/00—Electrotherapy; Circuits therefor
- A61N1/18—Applying electric currents by contact electrodes
- A61N1/32—Applying electric currents by contact electrodes alternating or intermittent currents
- A61N1/36—Applying electric currents by contact electrodes alternating or intermittent currents for stimulation
- A61N1/362—Heart stimulators
- A61N1/365—Heart stimulators controlled by a physiological parameter, e.g. heart potential
- A61N1/368—Heart stimulators controlled by a physiological parameter, e.g. heart potential comprising more than one electrode co-operating with different heart regions
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61N—ELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
- A61N1/00—Electrotherapy; Circuits therefor
- A61N1/18—Applying electric currents by contact electrodes
- A61N1/32—Applying electric currents by contact electrodes alternating or intermittent currents
- A61N1/36—Applying electric currents by contact electrodes alternating or intermittent currents for stimulation
- A61N1/362—Heart stimulators
- A61N1/365—Heart stimulators controlled by a physiological parameter, e.g. heart potential
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61N—ELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
- A61N1/00—Electrotherapy; Circuits therefor
- A61N1/18—Applying electric currents by contact electrodes
- A61N1/32—Applying electric currents by contact electrodes alternating or intermittent currents
- A61N1/36—Applying electric currents by contact electrodes alternating or intermittent currents for stimulation
- A61N1/362—Heart stimulators
- A61N1/365—Heart stimulators controlled by a physiological parameter, e.g. heart potential
- A61N1/36585—Heart stimulators controlled by a physiological parameter, e.g. heart potential controlled by two or more physical parameters
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61N—ELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
- A61N1/00—Electrotherapy; Circuits therefor
- A61N1/18—Applying electric currents by contact electrodes
- A61N1/32—Applying electric currents by contact electrodes alternating or intermittent currents
- A61N1/36—Applying electric currents by contact electrodes alternating or intermittent currents for stimulation
- A61N1/362—Heart stimulators
- A61N1/365—Heart stimulators controlled by a physiological parameter, e.g. heart potential
- A61N1/36514—Heart stimulators controlled by a physiological parameter, e.g. heart potential controlled by a physiological quantity other than heart potential, e.g. blood pressure
- A61N1/36542—Heart stimulators controlled by a physiological parameter, e.g. heart potential controlled by a physiological quantity other than heart potential, e.g. blood pressure controlled by body motion, e.g. acceleration
Definitions
- This invention pertains to apparatus and methods for electrostimulation of the heart including cardiac pacing with an artificial pacemaker.
- the invention relates to a method and apparatus for stimulating the heart in order to effect reversal of myocardial remodeling.
- Congestive heart failure is a clinical syndrome in which an abnormality of cardiac function causes cardiac output to fall below a level adequate to meet the metabolic demand of peripheral tissues. CHF can be due to a variety of etiologies with that due to ischemic heart disease being the most common. Inadequate pumping of blood into the arterial system by the heart is sometimes referred to as “forward failure,” with “backward failure” referring to the resulting elevated pressures in the lungs and systemic veins which lead to congestion. Backward failure is the natural consequence of forward failure as blood in the pulmonary and venous systems fails to be pumped out.
- Forward failure can be caused by impaired contractility of the ventricles or by an increased afterload (i.e., the forces resisting ejection of blood) due to, for example, systemic hypertension or valvular dysfunction.
- One physiological compensatory mechanism that acts to increase cardiac output is due to backward failure which increases the diastolic filling pressure of the ventricles and thereby increases the preload (i.e., the degree to which the ventricles are stretched by the volume of blood in the ventricles at the end of diastole).
- An increase in preload causes an increase in stroke volume during systole, a phenomena known as the Frank-Starling principle.
- heart failure can be at least partially compensated by this mechanism but at the expense of possible pulmonary and/or systemic congestion.
- the ventricles When the ventricles are stretched due to the increased preload over a period of time, the ventricles become dilated. The enlargement of the ventricular volume causes increased ventricular wall stress at a given systolic pressure. Along with the increased pressure-volume work done by the ventricle, this acts as a stimulus for hypertrophy of the ventricular myocardium which leads to alterations in cellular structure, a process referred to as ventricular remodeling. Hypertrophy can increase systolic pressures but also decreases the compliance of the ventricles and hence increases diastolic filling pressure to result in even more congestion.
- ventricular dilation and hypertrophy may at first be compensatory and increase cardiac output, the process ultimately results in both systolic and diastolic dysfunction. It has been shown that the extent of ventricular remodeling is positively correlated with increased mortality in CHF patients. It is with reversing such ventricular remodeling that the present invention is primarily concerned.
- the present invention relates to an apparatus and method for reversing ventricular remodeling with electro-stimulatory therapy.
- a ventricle is paced by delivering one or more stimulatory pulses in a manner such that a previously stressed and remodeled region of the myocardium is pre-excited relative to other regions in order to subject the region to a lessened preload and afterload during systole.
- Pre-excitation may also be applied to stressed regions of the myocardium that have been weakened by ischemia or other causes in order to prevent further dilation and/or promote healing.
- the ventricular stimulatory pulse or pulses may be delivered in accordance with a programmed bradycardia pacing mode in response to sensed cardiac activity and lapsed time intervals.
- a stimulating/sensing electrode is disposed in the ventricle at a selected site in proximity to a stressed region. Pacing that pre-excites the ventricle at this site results in the stressed region being excited before other regions of the ventricular myocardium as the wave of excitation spreads from the paced site.
- Other embodiments involve multi-site pacing in which a plurality of stimulating/sensing electrodes are disposed in the ventricles. Pacing the ventricles during a cardiac cycle then involves outputting pulses to the electrodes in a specified sequence.
- the pulse output sequence may be specified such that a stressed region of the ventricular myocardium is excited before other regions as the wave of excitation spreads from the multiple pacing sites.
- a plurality of stimulating/sensing electrodes are provided for a single ventricle. Stimulatory pulses are then delivered through each electrode in a specified pulse output sequence in order to pace the ventricle during a cardiac cycle.
- stimulating/sensing electrodes are provided for both the left and right ventricles such that the ventricles are then paced during a cardiac cycle by the delivery of both right and left ventricular stimulatory pulses if not inhibited by intrinsic activity.
- the timing of the right and left ventricular stimulatory pulses may be specified by a pulse output sequence that includes an interventricular delay interval defining in what order the ventricles are paced and the time delay between the paces.
- the pulse output sequence can be specified so as to excite a stressed region of the myocardium earlier than other regions by a pre-excitation time interval.
- the pulse output sequence of a multi-site pacemaker may be initially specified by a clinician in accordance with regional measurements of myocardial mass so that stressed regions are excited first during a paced cardiac cycle.
- an implanted device may automatically adjust the pulse output sequence in accordance with measurements of conduction delays or impedance measurements that reflect regional variations in myocardial mass or intrinsic conduction sequence.
- the pulse output sequence best suited for reversal of remodeling may not be the optimum pulse output sequence for maximizing hemodynamic performance.
- the pulse output sequence is adjusted automatically in accordance with activity level measurements reflective of metabolic demand. The pulse output sequence is then alternated between one designed to produce hemodynamically more effective contractions when metabolic needs of the body are great to one designed for remodeling reversal when metabolic needs are less.
- FIG. 1 is a block diagram of an exemplary cardiac rhythm management device for practicing the present invention.
- FIGS. 2A-B are diagrams showing exemplary placements of sensing/pacing electrodes.
- pacemaker Conventional cardiac pacing with implanted pacemakers involves excitatory electrical stimulation of the heart by an electrode in electrical contact with the myocardium.
- excitatory stimulation refers to stimulation sufficient to cause contraction of muscle fibers, which is also commonly referred to as pacing.
- pacemaker should be taken to mean any cardiac rhythm management device with a pacing functionality, regardless of any other functions it may perform such as cardioversion/defibrillation or drug delivery.
- the pacemaker is usually implanted subcutaneously on the patient's chest, and is connected to an electrode for each paced heart chamber by leads threaded through the vessels of the upper venous system into the heart.
- the pacemaker In response to sensed electrical cardiac events and elapsed time intervals, the pacemaker delivers to the myocardium a depolarizing voltage pulse of sufficient magnitude and duration to cause an action potential. A wave of depolarizing excitation then propagates through the myocardium, resulting in a heartbeat.
- cardiac pacing can often benefit CHF patients.
- sinus node dysfunction resulting in bradycardia can contribute to heart failure which can be corrected with conventional bradycardia pacing.
- some CHF patients suffer from some degree of AV block such that their cardiac output is improved by synchronizing atrial and ventricular contractions with dual-chamber pacing using a programmed AV delay time (i.e., atrial triggered ventricular pacing or AV sequential pacing).
- CHF patients may also suffer from conduction defects of the specialized conduction system of the heart (a.k.a. bundle branch blocks) so that a depolarization impulse from the AV node reaches one ventricle before the other.
- Stretching of the ventricular wall brought about by CHF can also cause slowed conduction of depolarization impulses through the ventricle. If conduction velocity is slowed in the left ventricle more than the right, for example, the contraction of the two ventricles during ventricular systole becomes uncoordinated which lessens pumping efficiency. In both of these situations, cardiac output can be increased by improving the synchronization of right and left ventricular contractions. Cardiac pacemakers have therefore been developed which provide pacing to both ventricles. (See, e.g., U.S. Pat. No. 4,928,688, issued to Mower and hereby incorporated by reference.)
- the specialized His-Purkinje conduction network of the heart rapidly conducts excitatory impulses from the sino-atrial node to the atrio-ventricular node, and thence to the ventricular myocardium to result in a coordinated contraction of both ventricles.
- Artificial pacing with an electrode fixed into an area of the myocardium does not take advantage of the heart's normal specialized conduction system for conducting excitation throughout the ventricles. This is because the specialized conduction system can only be entered by impulses emanating from the atrio-ventricular node.
- the atria or ventricles are paced at more than one site in order to effect a spread of excitation that results in a more coordinated contraction.
- Biventricular pacing as described above, is one example of multi-site pacing in which both ventricles are paced in order to synchronize their respective contractions.
- Multi-site pacing may also be applied to only one chamber.
- a ventricle may be paced at multiple sites with excitatory stimulation pulses in order to produce multiple waves of depolarization that emanate from the pacing sites. This may produce a more coordinated contraction of the ventricle and thereby compensate for intraventricular conduction defects that may exist. Stimulating one or both ventricles with multi-site pacing in order to improve the coordination of the contractions and overcome interventricular or intraventricular conduction defects is termed resynchronization therapy.
- Altering the coordination of ventricular contractions with multi-site pacing can also be used to deliberately change the distribution of wall stress experienced by the ventricle during the cardiac pumping cycle.
- the degree to which a heart muscle fiber is stretched before it contracts is termed the preload.
- the maximum tension and velocity of shortening of a muscle fiber increases with increasing preload.
- the increase in contractile response of the heart with increasing preload is known as the Frank-Starling principle.
- the degree of tension or stress on a heart muscle fiber as it contracts is termed the afterload.
- the heart's initial physiological response to the uneven stress resulting from an increased preload and afterload is compensatory hypertrophy in those later contracting regions of the myocardium.
- the regions may undergo atrophic changes with wall thinning due to the increased stress.
- the parts of the myocardium that contract earlier in the cycle are subjected to less stress and are less likely to undergo hypertrophic remodeling.
- the present invention makes use of this phenomena in order to effect reversal of remodeling by pacing one or more sites in a ventricle (or an atrium) with one or more excitatory stimulation pulses during a cardiac cycle with a specified pulse output sequence.
- the pace or paces are delivered in a manner that excites a previously stressed and remodeled region of the myocardium earlier during systole so that it experiences less afterload and preload. This pre-excitation of the remodeled region relative to other regions unloads the region from mechanical stress and allows reversal of remodeling to occur.
- pre-excitation stimulation may be used to unload a stressed myocardial region that has been weakened by ischemia or other causes. Such regions of the myocardium may be particularly vulnerable to dilation and formation of aneurysms. An increased preload and afterload also requires an increased energy expenditure by the muscle which, in turn, increases its perfusion requirements and may result in further ischemia. Pre-excitation of an ischemic region may thus reduce the region's need for blood as well as reduce the mechanical stress to which the region is subjected during systole to reduce the likelihood of further dilation.
- FIG. 1 A block diagram of a cardiac rhythm management device suitable for practicing the present invention is shown in FIG. 1 .
- the controller of the device is made up of a microprocessor 10 communicating with a memory 12 via a bidirectional data bus, where the memory 12 typically comprises a ROM (read-only memory) for program storage and a RAM (random-access memory) for data storage.
- the controller could also include dedicated circuitry either instead of, or in addition to, the programmed microprocessor for controlling the operation of the device.
- the device has atrial sensing/stimulation channels comprising electrode 34 , lead 33 , sensing amplifier 31 , pulse generator 32 , and an atrial channel interface 30 which communicates bidirectionally with a port of microprocessor 10 .
- the device also has multiple ventricular sensing/stimulation channels for delivering multi-site univentricular or biventricular pacing.
- Two such ventricular channels are shown in the figure that include electrodes 24 a - b , leads 23 a - b, sensing amplifiers 21 a - b , pulse generators 22 a - b , and ventricular channel interfaces 20 a - b where “a” designates one ventricular channel and “b” designates the other.
- the same lead and electrode may be used for both sensing and stimulation.
- the channel interfaces 20 a - b and 30 may include analog-to-digital converters for digitizing sensing signal inputs from the sensing amplifiers and registers which can be written to by the microprocessor in order to output stimulation pulses, change the stimulation pulse amplitude, and adjust the gain and threshold values for the sensing amplifiers.
- a telemetry interface 40 is provided for communicating with an external programmer.
- the controller is capable of operating the device in a number of programmed pacing modes which define how pulses are output in response to sensed events and expiration of time intervals.
- Most pacemakers for treating bradycardia are programmed to operate synchronously in a so-called demand mode where sensed cardiac events occurring within a defined interval either trigger or inhibit a pacing pulse.
- Inhibited demand pacing modes utilize escape intervals to control pacing in accordance with sensed intrinsic activity such that a pacing pulse is delivered to a heart chamber during a cardiac cycle only after expiration of a defined escape interval during which no intrinsic beat by the chamber is detected. Escape intervals for ventricular pacing can be restarted by ventricular or atrial events, the latter allowing the pacing to track intrinsic atrial beats.
- Rate-adaptive pacing modes can also be employed where the ventricular and/or atrial escape intervals are modulated based upon measurements corresponding to the patient's exertion level.
- an activity level sensor 52 e.g., a minute ventilation sensor or accelerometer
- Multiple excitatory stimulation pulses can also be delivered to multiple sites during a cardiac cycle in order to both pace the heart in accordance with a bradycardia mode and provide resynchronization of contractions to compensate for conduction defects.
- the controller may also be programmed to deliver stimulation pulses in a specified pulse output sequence in order to effect reduction of stress to a selected myocardial region.
- FIG. 2A depicts a left ventricle 200 with pacing sites 210 and 220 to which may be fixed epicardial stimulation/sensing electrodes.
- the myocardium at pacing site 210 is shown as being hypertrophied as compared to the myocardium at pacing site 220 .
- a cardiac rhythm management device such as shown in FIG. 1 may deliver stimulation pulses to both sites in accordance with a pacing mode through its ventricular stimulation/sensing channels.
- FIG. 2B shows a left ventricle 200 in which the pacing site 240 is relatively normal while the site 230 is a myocardial region that has been thinned due to late state remodeling or other stresses such as ischemia.
- pacing of the ventricle with pre-excitation stimulation of site 230 relative to the site 240 unloads the thinned region and subjects it to less mechanical stress during systole.
- the result is either reversal of the remodeling or reduction of further wall thinning.
- a pre-excitation stimulation pulse is applied to a stressed region either alone or in a timed relation to the delivery of a stimulation pulse applied elsewhere to the myocardium.
- both the right and left ventricles can be paced at separate sites by stimulation pulses delivered with a specified interventricular delay between the pulses delivered to each ventricle.
- the interventricular delay By adjusting the interventricular delay so that one of the ventricular pacing sites is pre-excited relative to the other, the spread of activation between the two pacing sites can be modified to change the wall stresses developed near these sites during systolic contraction.
- a multi-site pacemaker may also switch the output of pacing pulses between selected electrodes or groups of electrodes during different cardiac cycles. Pacing is then delivered to a heart chamber through a switchable configuration of pacing electrodes, wherein a pulse output configuration is defined as a specific subset of a plurality of electrodes fixed to the paced chamber and to which pacing pulses are applied as well as the timing relations between the pulses.
- a plurality of different pulse output configurations may be defined as subsets of electrodes that can be selected for pacing.
- pacing to the heart chamber is thereby temporally distributed among the total number of fixed electrodes.
- the principle remains the same in these embodiments, however, of unloading a stressed myocardial site by pre-exciting it relative to other regions of the myocardium.
- a stressed region of the ventricular myocardium is pre-excited in a timed relation to a triggering event that indicates an intrinsic beat has either occurred or is imminent.
- a pre-excitation stimulation pulse may be applied to a stressed region immediately following the earliest detection of intrinsic activation elsewhere in the ventricle. Such activation may be detected from an electrogram with a conventional ventricular sensing electrode. An earlier occurring trigger event may be detected by extracting the His bundle conduction potential from a special ventricular sensing electrode using signal processing techniques.
- the stimulus can be applied after a specified AV delay interval following an atrial sense or atrial pace.
- the objective in this situation is to deliver the pre-excitation stimulus before the excitation from the atrio-ventricular node reaches the ventricles via the specialized conduction pathway.
- the normal intrinsic atrio-ventricular delay e.g., the PR interval on an EKG or the equivalent electrogram interval recorded using implanted leads
- the AV pacing delay interval may be either fixed at some value (e.g., at 60 ms, with a variable range of 0-150 ms) or be made to vary dynamically with a measured variable such as heart rate or exertion level.
- the AV pacing delay interval for delivering a pre-excitation stimulus following an atrial sense or pace may also be set in accordance with a measured intrinsic conduction delay interval between the site to be pre-excited and another ventricular site, referred to as a V-V interval.
- the objective in this case is to reverse the intrinsic conduction delay existing between the two sites by pacing with a similar delay of opposite sign. For example, the intrinsic conduction delay between a stressed ventricular site and an earlier excited site is measured. The stressed site is then pre-excited after an AV pacing delay interval following an atrial sense or pace that is set in accordance with the measured V-V interval.
- a clinician may use various techniques in order to determine areas that have undergone remodeling or are otherwise stressed. For example, ventricular wall thickness abnormalities and regional variations in myocardial mass may be observed with echocardiography or magnetic resonance imaging. Observation of akinetic or dyskinetic regions of the ventricle during contraction with an appropriate imaging modality may also be used to indicate stressed regions. Coronary angiograms indicating blood flow abnormalities and electrophysiological studies indicating regions of ischemia or infarction may be used to identify regions that have been stressed due to ischemia. Electrophysiological studies may also be used to determine regional conduction delays that can be reversed with pre-excitation stimulation. The pulse output sequence of a multi-site pacemaker or the interventricular delay of a biventricular pacemaker may then be initially specified in accordance with those findings so that stressed regions are excited first during a paced cardiac cycle.
- an implanted cardiac rhythm management device may automatically adjust the pulse output sequence in accordance with measurements of myocardial mass. Such measurements may be made by measuring the conduction delays of excitation spreading through the myocardium as sensed by multiple sensing/stimulation electrodes. Increased conductions delays through a region, for example, may be reflective of stress in the region that can be reduced by pre-excitation stimulation.
- impedance measurements may be made between electrodes in proximity to the heart that correlate with variations in myocardial mass and contraction sequence. Such measurements may be used to identify akinetic or dyskinetic regions of the myocardium as well as to indicate wall thickness abnormalities. The particular pre-excitation interval used by the device may also be automatically adjusted in accordance with detected changes in the remodeling process.
- remodeling changes can be detected by, for example, measuring changes or trends in conduction delays, contraction sequences, end-diastolic volume, stroke volume, ejection fraction, wall thickness, or pressure measurements.
- the pulse output sequence used by a cardiac rhythm management may be alternated between one designed to produce hemodynamically more effective contractions when metabolic needs of the body are great to one designed to promote reverse remodeling when metabolic needs are less.
- a pulse output sequence that unloads a hypertrophic region may not be the optimum pulse output sequence for maximizing hemodynamic performance.
- a more hemodynamically effective contraction may be obtained by exciting all areas of the myocardium simultaneously, which may not effectively promote reversal of the hypertrophy or remodeling.
- the pulse output sequence may therefore be adjusted automatically in accordance with exertion level measurements reflective of metabolic demand so that pulse output sequences that unload hypertrophied or stressed regions are not used during periods of increased exertion.
Landscapes
- Health & Medical Sciences (AREA)
- Cardiology (AREA)
- Heart & Thoracic Surgery (AREA)
- Life Sciences & Earth Sciences (AREA)
- Public Health (AREA)
- Engineering & Computer Science (AREA)
- Biomedical Technology (AREA)
- Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
- Radiology & Medical Imaging (AREA)
- Animal Behavior & Ethology (AREA)
- General Health & Medical Sciences (AREA)
- Veterinary Medicine (AREA)
- Physiology (AREA)
- Biophysics (AREA)
- Hospice & Palliative Care (AREA)
- Electrotherapy Devices (AREA)
Abstract
Description
Pre-excitation interval=(a)(V-V interval)+b
The AV pacing delay interval is then computed by subtracting the pre-excitation interval from the measured intrinsic AV delay interval.
Claims (20)
Priority Applications (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US12/484,882 US8046066B2 (en) | 2001-04-27 | 2009-06-15 | Apparatus for reversal of myocardial remodeling with pre-excitation |
US13/279,493 US8369948B2 (en) | 2001-04-27 | 2011-10-24 | Apparatus for reversal of myocardial remodeling with pre-excitation |
US13/757,972 US8634913B2 (en) | 2001-04-27 | 2013-02-04 | Apparatus for reversal of myocardial remodeling with pre-excitation |
Applications Claiming Priority (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US09/844,256 US6628988B2 (en) | 2001-04-27 | 2001-04-27 | Apparatus and method for reversal of myocardial remodeling with electrical stimulation |
US10/649,468 US7103410B2 (en) | 2001-04-27 | 2003-08-27 | Apparatus and method for reversal of myocardial remodeling with electrical stimulation |
US11/469,620 US7548782B2 (en) | 2001-04-27 | 2006-09-01 | Method for reversal of myocardial remodeling with electrical stimulation |
US12/484,882 US8046066B2 (en) | 2001-04-27 | 2009-06-15 | Apparatus for reversal of myocardial remodeling with pre-excitation |
Related Parent Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US11/469,620 Continuation US7548782B2 (en) | 2001-04-27 | 2006-09-01 | Method for reversal of myocardial remodeling with electrical stimulation |
Related Child Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US13/279,493 Continuation US8369948B2 (en) | 2001-04-27 | 2011-10-24 | Apparatus for reversal of myocardial remodeling with pre-excitation |
Publications (2)
Publication Number | Publication Date |
---|---|
US20090254141A1 US20090254141A1 (en) | 2009-10-08 |
US8046066B2 true US8046066B2 (en) | 2011-10-25 |
Family
ID=25292233
Family Applications (6)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US09/844,256 Expired - Lifetime US6628988B2 (en) | 2001-04-27 | 2001-04-27 | Apparatus and method for reversal of myocardial remodeling with electrical stimulation |
US10/649,468 Expired - Lifetime US7103410B2 (en) | 2001-04-27 | 2003-08-27 | Apparatus and method for reversal of myocardial remodeling with electrical stimulation |
US11/469,620 Expired - Fee Related US7548782B2 (en) | 2001-04-27 | 2006-09-01 | Method for reversal of myocardial remodeling with electrical stimulation |
US12/484,882 Expired - Fee Related US8046066B2 (en) | 2001-04-27 | 2009-06-15 | Apparatus for reversal of myocardial remodeling with pre-excitation |
US13/279,493 Expired - Fee Related US8369948B2 (en) | 2001-04-27 | 2011-10-24 | Apparatus for reversal of myocardial remodeling with pre-excitation |
US13/757,972 Expired - Fee Related US8634913B2 (en) | 2001-04-27 | 2013-02-04 | Apparatus for reversal of myocardial remodeling with pre-excitation |
Family Applications Before (3)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US09/844,256 Expired - Lifetime US6628988B2 (en) | 2001-04-27 | 2001-04-27 | Apparatus and method for reversal of myocardial remodeling with electrical stimulation |
US10/649,468 Expired - Lifetime US7103410B2 (en) | 2001-04-27 | 2003-08-27 | Apparatus and method for reversal of myocardial remodeling with electrical stimulation |
US11/469,620 Expired - Fee Related US7548782B2 (en) | 2001-04-27 | 2006-09-01 | Method for reversal of myocardial remodeling with electrical stimulation |
Family Applications After (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US13/279,493 Expired - Fee Related US8369948B2 (en) | 2001-04-27 | 2011-10-24 | Apparatus for reversal of myocardial remodeling with pre-excitation |
US13/757,972 Expired - Fee Related US8634913B2 (en) | 2001-04-27 | 2013-02-04 | Apparatus for reversal of myocardial remodeling with pre-excitation |
Country Status (3)
Country | Link |
---|---|
US (6) | US6628988B2 (en) |
EP (1) | EP1381426A1 (en) |
WO (1) | WO2002087694A1 (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20080097538A1 (en) * | 2000-04-06 | 2008-04-24 | Cardiac Pacemakers, Inc. | Apparatus and method for spatially and temporally distributing cardiac electrical stimulation |
US8369948B2 (en) | 2001-04-27 | 2013-02-05 | Cardiac Pacemakers, Inc. | Apparatus for reversal of myocardial remodeling with pre-excitation |
Families Citing this family (209)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US8447399B2 (en) | 1996-08-19 | 2013-05-21 | Mr3 Medical, Llc | System and method for managing detrimental cardiac remodeling |
US7440800B2 (en) * | 1996-08-19 | 2008-10-21 | Mr3 Medical, Llc | System and method for managing detrimental cardiac remodeling |
US6144880A (en) * | 1998-05-08 | 2000-11-07 | Cardiac Pacemakers, Inc. | Cardiac pacing using adjustable atrio-ventricular delays |
US7069070B2 (en) * | 2003-05-12 | 2006-06-27 | Cardiac Pacemakers, Inc. | Statistical method for assessing autonomic balance |
US6829505B2 (en) | 2000-12-26 | 2004-12-07 | Cardiac Pacemakers, Inc. | System and method for cardiac rhythm management with synchronized pacing protection period |
US6512952B2 (en) * | 2000-12-26 | 2003-01-28 | Cardiac Pacemakers, Inc. | Method and apparatus for maintaining synchronized pacing |
US7346394B2 (en) * | 2001-04-27 | 2008-03-18 | Cardiac Pacemakers, Inc. | Cardiac stimulation at high ventricular wall stress areas |
US6702744B2 (en) | 2001-06-20 | 2004-03-09 | Advanced Cardiovascular Systems, Inc. | Agents that stimulate therapeutic angiogenesis and techniques and devices that enable their delivery |
US8608661B1 (en) | 2001-11-30 | 2013-12-17 | Advanced Cardiovascular Systems, Inc. | Method for intravascular delivery of a treatment agent beyond a blood vessel wall |
US6973349B2 (en) * | 2001-12-05 | 2005-12-06 | Cardiac Pacemakers, Inc. | Method and apparatus for minimizing post-infarct ventricular remodeling |
US6666826B2 (en) * | 2002-01-04 | 2003-12-23 | Cardiac Pacemakers, Inc. | Method and apparatus for measuring left ventricular pressure |
US6915160B2 (en) * | 2002-02-08 | 2005-07-05 | Cardiac Pacemakers, Inc. | Dynamically optimized multisite cardiac resynchronization device |
US7361368B2 (en) | 2002-06-28 | 2008-04-22 | Advanced Cardiovascular Systems, Inc. | Device and method for combining a treatment agent and a gel |
US6965797B2 (en) * | 2002-09-13 | 2005-11-15 | Cardiac Pacemakers, Inc. | Method and apparatus for assessing and treating myocardial wall stress |
US7065405B2 (en) * | 2002-11-15 | 2006-06-20 | Cardiac Pacemakers, Inc. | Stress reduction pacing mode for arrhythmia prevention |
US7189204B2 (en) | 2002-12-04 | 2007-03-13 | Cardiac Pacemakers, Inc. | Sleep detection using an adjustable threshold |
US8821473B2 (en) | 2003-04-15 | 2014-09-02 | Abbott Cardiovascular Systems Inc. | Methods and compositions to treat myocardial conditions |
US8038991B1 (en) | 2003-04-15 | 2011-10-18 | Abbott Cardiovascular Systems Inc. | High-viscosity hyaluronic acid compositions to treat myocardial conditions |
US7641643B2 (en) | 2003-04-15 | 2010-01-05 | Abbott Cardiovascular Systems Inc. | Methods and compositions to treat myocardial conditions |
US7231249B2 (en) * | 2003-07-24 | 2007-06-12 | Mirowski Family Ventures, L.L.C. | Methods, apparatus, and systems for multiple stimulation from a single stimulator |
US8606356B2 (en) | 2003-09-18 | 2013-12-10 | Cardiac Pacemakers, Inc. | Autonomic arousal detection system and method |
US7887493B2 (en) * | 2003-09-18 | 2011-02-15 | Cardiac Pacemakers, Inc. | Implantable device employing movement sensing for detecting sleep-related disorders |
US8002553B2 (en) | 2003-08-18 | 2011-08-23 | Cardiac Pacemakers, Inc. | Sleep quality data collection and evaluation |
ATE413902T1 (en) | 2003-08-18 | 2008-11-15 | Cardiac Pacemakers Inc | PATIENT MONITORING SYSTEM |
US7592909B2 (en) * | 2006-01-19 | 2009-09-22 | Board Of Regents, The University Of Texas System | Location and tracking system using wireless technology |
US7010347B2 (en) * | 2004-02-14 | 2006-03-07 | Pacesetter, Inc. | Optimization of impedance signals for closed loop programming of cardiac resynchronization therapy devices |
US7065400B2 (en) * | 2003-08-20 | 2006-06-20 | Pacesetter, Inc. | Method and apparatus for automatically programming CRT devices |
US7320675B2 (en) | 2003-08-21 | 2008-01-22 | Cardiac Pacemakers, Inc. | Method and apparatus for modulating cellular metabolism during post-ischemia or heart failure |
US7392084B2 (en) * | 2003-09-23 | 2008-06-24 | Cardiac Pacemakers, Inc. | Demand-based cardiac function therapy |
US7572226B2 (en) | 2003-10-28 | 2009-08-11 | Cardiac Pacemakers, Inc. | System and method for monitoring autonomic balance and physical activity |
US7657312B2 (en) | 2003-11-03 | 2010-02-02 | Cardiac Pacemakers, Inc. | Multi-site ventricular pacing therapy with parasympathetic stimulation |
EP1529551A1 (en) * | 2003-11-05 | 2005-05-11 | Pacesetter, Inc. | Systems for ventricular pacing |
US20050125041A1 (en) | 2003-11-05 | 2005-06-09 | Xiaoyi Min | Methods for ventricular pacing |
US9002452B2 (en) * | 2003-11-07 | 2015-04-07 | Cardiac Pacemakers, Inc. | Electrical therapy for diastolic dysfunction |
US7684861B2 (en) | 2003-11-13 | 2010-03-23 | Cardiac Pacemakers, Inc. | Implantable cardiac monitor upgradeable to pacemaker or cardiac resynchronization device |
US7783353B2 (en) | 2003-12-24 | 2010-08-24 | Cardiac Pacemakers, Inc. | Automatic neural stimulation modulation based on activity and circadian rhythm |
US7869881B2 (en) | 2003-12-24 | 2011-01-11 | Cardiac Pacemakers, Inc. | Baroreflex stimulator with integrated pressure sensor |
US7668594B2 (en) | 2005-08-19 | 2010-02-23 | Cardiac Pacemakers, Inc. | Method and apparatus for delivering chronic and post-ischemia cardiac therapies |
US20050149132A1 (en) | 2003-12-24 | 2005-07-07 | Imad Libbus | Automatic baroreflex modulation based on cardiac activity |
US9020595B2 (en) | 2003-12-24 | 2015-04-28 | Cardiac Pacemakers, Inc. | Baroreflex activation therapy with conditional shut off |
US7486991B2 (en) | 2003-12-24 | 2009-02-03 | Cardiac Pacemakers, Inc. | Baroreflex modulation to gradually decrease blood pressure |
US7706884B2 (en) | 2003-12-24 | 2010-04-27 | Cardiac Pacemakers, Inc. | Baroreflex stimulation synchronized to circadian rhythm |
US8024050B2 (en) | 2003-12-24 | 2011-09-20 | Cardiac Pacemakers, Inc. | Lead for stimulating the baroreceptors in the pulmonary artery |
US7509166B2 (en) | 2003-12-24 | 2009-03-24 | Cardiac Pacemakers, Inc. | Automatic baroreflex modulation responsive to adverse event |
US7643875B2 (en) | 2003-12-24 | 2010-01-05 | Cardiac Pacemakers, Inc. | Baroreflex stimulation system to reduce hypertension |
US20050149133A1 (en) * | 2003-12-24 | 2005-07-07 | Imad Libbus | Sensing with compensation for neural stimulator |
US8126560B2 (en) | 2003-12-24 | 2012-02-28 | Cardiac Pacemakers, Inc. | Stimulation lead for stimulating the baroreceptors in the pulmonary artery |
US7460906B2 (en) | 2003-12-24 | 2008-12-02 | Cardiac Pacemakers, Inc. | Baroreflex stimulation to treat acute myocardial infarction |
US8086315B2 (en) | 2004-02-12 | 2011-12-27 | Asap Medical, Inc. | Cardiac stimulation apparatus and method for the control of hypertension |
US7840263B2 (en) | 2004-02-27 | 2010-11-23 | Cardiac Pacemakers, Inc. | Method and apparatus for device controlled gene expression |
US7070568B1 (en) | 2004-03-02 | 2006-07-04 | Pacesetter, Inc. | System and method for diagnosing and tracking congestive heart failure based on the periodicity of Cheyne-Stokes Respiration using an implantable medical device |
US7094207B1 (en) | 2004-03-02 | 2006-08-22 | Pacesetter, Inc. | System and method for diagnosing and tracking congestive heart failure based on the periodicity of cheyne-stokes respiration using an implantable medical device |
US7299086B2 (en) | 2004-03-05 | 2007-11-20 | Cardiac Pacemakers, Inc. | Wireless ECG in implantable devices |
US7272443B2 (en) * | 2004-03-26 | 2007-09-18 | Pacesetter, Inc. | System and method for predicting a heart condition based on impedance values using an implantable medical device |
US7505814B2 (en) * | 2004-03-26 | 2009-03-17 | Pacesetter, Inc. | System and method for evaluating heart failure based on ventricular end-diastolic volume using an implantable medical device |
US7171271B2 (en) * | 2004-05-11 | 2007-01-30 | Pacesetter, Inc. | System and method for evaluating heart failure using an implantable medical device based on heart rate during patient activity |
US7260431B2 (en) * | 2004-05-20 | 2007-08-21 | Cardiac Pacemakers, Inc. | Combined remodeling control therapy and anti-remodeling therapy by implantable cardiac device |
MXPA06013845A (en) * | 2004-05-28 | 2007-04-16 | Morton M Mower | A system and method for managing detrimental cardiac remodeling. |
US7450988B2 (en) * | 2004-06-04 | 2008-11-11 | Cardiac Pacemakers, Inc. | Method and apparatus for minimizing post-infarct ventricular remodeling |
US20070191901A1 (en) * | 2004-06-04 | 2007-08-16 | Pacesetter, Inc. | Quantifying systolic and diastolic cardiac performance from dynamic impedance waveforms |
US7764995B2 (en) * | 2004-06-07 | 2010-07-27 | Cardiac Pacemakers, Inc. | Method and apparatus to modulate cellular regeneration post myocardial infarct |
US7747323B2 (en) | 2004-06-08 | 2010-06-29 | Cardiac Pacemakers, Inc. | Adaptive baroreflex stimulation therapy for disordered breathing |
US7630767B1 (en) | 2004-07-14 | 2009-12-08 | Pacesetter, Inc. | System and method for communicating information using encoded pacing pulses within an implantable medical system |
US7729761B2 (en) | 2004-07-14 | 2010-06-01 | Cardiac Pacemakers, Inc. | Method and apparatus for controlled gene or protein delivery |
FR2873930B1 (en) * | 2004-08-04 | 2006-09-29 | Ela Medical Sa | ACTIVE IMPLANTABLE MEDICAL DEVICE COMPRISING A RESYNCHRONIZATION MODE OF VENTRICULAR CONTRACTS FOR THE TREATMENT OF HEART FAILURE |
US7828711B2 (en) | 2004-08-16 | 2010-11-09 | Cardiac Pacemakers, Inc. | Method and apparatus for modulating cellular growth and regeneration using ventricular assist device |
US7567841B2 (en) * | 2004-08-20 | 2009-07-28 | Cardiac Pacemakers, Inc. | Method and apparatus for delivering combined electrical and drug therapies |
US7272438B2 (en) * | 2004-10-12 | 2007-09-18 | Pacesetter, Inc. | Mode switching heart stimulation apparatus and method |
US7414534B1 (en) * | 2004-11-09 | 2008-08-19 | Pacesetter, Inc. | Method and apparatus for monitoring ingestion of medications using an implantable medical device |
US7632235B1 (en) | 2004-11-22 | 2009-12-15 | Pacesetter, Inc. | System and method for measuring cardiac output via thermal dilution using an implantable medical device with an external ultrasound power delivery system |
US7435221B1 (en) | 2004-11-24 | 2008-10-14 | Pacesetter, Inc. | System and method for detecting abnormal respiration based on intracardiac electrogram signals using a pattern recognition device |
US8262578B1 (en) | 2004-11-24 | 2012-09-11 | Pacesetter, Inc. | System and method for detecting physiologic states based on intracardiac electrogram signals while distinguishing cardiac rhythm types |
US7361146B1 (en) | 2004-11-24 | 2008-04-22 | Pacesetter, Inc. | System and method for detecting abnormal respiration via respiratory parameters derived from intracardiac electrogram signals |
CA2490858A1 (en) * | 2004-12-07 | 2006-06-07 | Ignis Innovation Inc. | Driving method for compensated voltage-programming of amoled displays |
US8060219B2 (en) | 2004-12-20 | 2011-11-15 | Cardiac Pacemakers, Inc. | Epicardial patch including isolated extracellular matrix with pacing electrodes |
US7981065B2 (en) | 2004-12-20 | 2011-07-19 | Cardiac Pacemakers, Inc. | Lead electrode incorporating extracellular matrix |
US7440804B1 (en) | 2004-12-28 | 2008-10-21 | Pacesetter, Inc. | System and method for measuring ventricular evoked response using an implantable medical device |
US7295874B2 (en) | 2005-01-06 | 2007-11-13 | Cardiac Pacemakers, Inc. | Intermittent stress augmentation pacing for cardioprotective effect |
US7580745B2 (en) | 2005-01-18 | 2009-08-25 | Cardiac Pacemakers, Inc. | Method and apparatus for using heart rate variability to control maximum tracking rate in pacing therapy |
US7672724B2 (en) * | 2005-01-18 | 2010-03-02 | Cardiac Pacemakers, Inc. | Method and apparatus for optimizing electrical stimulation parameters using heart rate variability |
US7672725B2 (en) * | 2005-01-18 | 2010-03-02 | Cardiac Pacemakers, Inc. | Method and apparatus for using heart rate variability as a safety check in electrical therapies |
US20060167529A1 (en) | 2005-01-26 | 2006-07-27 | Schecter Stuart O | Method and algorithm for defining the pathologic state from a plurality of intrinsically and extrinsically derived signals |
US20100312129A1 (en) * | 2005-01-26 | 2010-12-09 | Schecter Stuart O | Cardiovascular haptic handle system |
US20090030332A1 (en) * | 2005-01-26 | 2009-01-29 | Schecter Stuart O | microfabricated cardiac sensor with tactile feedback and method and apparatus for calibrating the same using a plurality of signals |
JP5028404B2 (en) * | 2005-03-11 | 2012-09-19 | カーディアック ペースメイカーズ, インコーポレイテッド | Neural stimulation and cardiac resynchronization therapy |
US7587238B2 (en) | 2005-03-11 | 2009-09-08 | Cardiac Pacemakers, Inc. | Combined neural stimulation and cardiac resynchronization therapy |
US7366567B2 (en) * | 2005-03-23 | 2008-04-29 | Cardiac Pacemakers, Inc. | Method for treating myocardial infarction |
WO2006102577A2 (en) * | 2005-03-23 | 2006-09-28 | Pacesetter, Inc. | System for optimizing biventricular stimulation |
US7660628B2 (en) | 2005-03-23 | 2010-02-09 | Cardiac Pacemakers, Inc. | System to provide myocardial and neural stimulation |
US7404799B1 (en) | 2005-04-05 | 2008-07-29 | Pacesetter, Inc. | System and method for detection of respiration patterns via integration of intracardiac electrogram signals |
US7555341B2 (en) | 2005-04-05 | 2009-06-30 | Cardiac Pacemakers, Inc. | System to treat AV-conducted ventricular tachyarrhythmia |
US7437192B2 (en) | 2005-04-05 | 2008-10-14 | Pacesetter, Inc. | System and method for detecting heart failure and pulmonary edema based on ventricular end-diastolic pressure using an implantable medical device |
US7493161B2 (en) | 2005-05-10 | 2009-02-17 | Cardiac Pacemakers, Inc. | System and method to deliver therapy in presence of another therapy |
US7499748B2 (en) * | 2005-04-11 | 2009-03-03 | Cardiac Pacemakers, Inc. | Transvascular neural stimulation device |
US8828433B2 (en) | 2005-04-19 | 2014-09-09 | Advanced Cardiovascular Systems, Inc. | Hydrogel bioscaffoldings and biomedical device coatings |
US20080125745A1 (en) | 2005-04-19 | 2008-05-29 | Shubhayu Basu | Methods and compositions for treating post-cardial infarction damage |
US9539410B2 (en) | 2005-04-19 | 2017-01-10 | Abbott Cardiovascular Systems Inc. | Methods and compositions for treating post-cardial infarction damage |
US8187621B2 (en) | 2005-04-19 | 2012-05-29 | Advanced Cardiovascular Systems, Inc. | Methods and compositions for treating post-myocardial infarction damage |
US8303972B2 (en) | 2005-04-19 | 2012-11-06 | Advanced Cardiovascular Systems, Inc. | Hydrogel bioscaffoldings and biomedical device coatings |
US7881782B2 (en) * | 2005-04-20 | 2011-02-01 | Cardiac Pacemakers, Inc. | Neural stimulation system to prevent simultaneous energy discharges |
US7366568B2 (en) | 2005-05-06 | 2008-04-29 | Cardiac Pacemakers, Inc. | Controlled delivery of intermittent stress augmentation pacing for cardioprotective effect |
US7742813B2 (en) * | 2005-05-06 | 2010-06-22 | Cardiac Pacemakers, Inc. | Minimizing hemodynamic compromise during post-mi remodeling control pacing |
US7966066B2 (en) * | 2005-05-11 | 2011-06-21 | Cardiac Pacemakers, Inc. | Apparatus and method for optimizing atrioventricular delay |
US7894896B2 (en) * | 2005-05-13 | 2011-02-22 | Cardiac Pacemakers, Inc. | Method and apparatus for initiating and delivering cardiac protection pacing |
US7917210B2 (en) | 2005-05-13 | 2011-03-29 | Cardiac Pacemakers, Inc. | Method and apparatus for cardiac protection pacing |
US7617003B2 (en) * | 2005-05-16 | 2009-11-10 | Cardiac Pacemakers, Inc. | System for selective activation of a nerve trunk using a transvascular reshaping lead |
US7628757B1 (en) | 2005-05-25 | 2009-12-08 | Pacesetter, Inc. | System and method for impedance-based detection of pulmonary edema and reduced respiration using an implantable medical system |
US9265949B2 (en) * | 2005-06-28 | 2016-02-23 | Cardiac Pacemakers, Inc. | Method and apparatus for controlling cardiac therapy based on electromechanical timing |
US7877140B2 (en) * | 2005-09-06 | 2011-01-25 | Cardiac Pacemakers, Inc. | Pressure sensing for feedback control of post-MI remodeling control pacing |
US7774057B2 (en) * | 2005-09-06 | 2010-08-10 | Cardiac Pacemakers, Inc. | Method and apparatus for device controlled gene expression for cardiac protection |
US7616990B2 (en) | 2005-10-24 | 2009-11-10 | Cardiac Pacemakers, Inc. | Implantable and rechargeable neural stimulator |
US20070100383A1 (en) * | 2005-10-28 | 2007-05-03 | Cardiac Pacemakers, Inc. | Lead and delivery system to detect and treat a myocardial infarction region |
US7630761B2 (en) * | 2005-11-04 | 2009-12-08 | Cardiac Pacemakers, Inc. | Method and apparatus for modifying tissue to improve electrical stimulation efficacy |
US20090306454A1 (en) * | 2005-11-08 | 2009-12-10 | Stanford University | Devices and Methods for Stimulation of Tissue |
US8108034B2 (en) | 2005-11-28 | 2012-01-31 | Cardiac Pacemakers, Inc. | Systems and methods for valvular regurgitation detection |
US7570999B2 (en) | 2005-12-20 | 2009-08-04 | Cardiac Pacemakers, Inc. | Implantable device for treating epilepsy and cardiac rhythm disorders |
US20090210020A1 (en) * | 2005-12-22 | 2009-08-20 | Feldman Marc D | Method and Apparatus for Determining Cardiac Performance in a Patient |
US7885710B2 (en) * | 2005-12-23 | 2011-02-08 | Cardiac Pacemakers, Inc. | Method and apparatus for tissue protection against ischemia using remote conditioning |
US7567836B2 (en) | 2006-01-30 | 2009-07-28 | Cardiac Pacemakers, Inc. | ECG signal power vector detection of ischemia or infarction |
US20070191892A1 (en) * | 2006-02-03 | 2007-08-16 | Mullen Thomas J | Apparatus and methods for automatic adjustment of av interval to ensure delivery of cardiac resynchronization therapy |
US8712519B1 (en) | 2006-03-31 | 2014-04-29 | Pacesetter, Inc. | Closed-loop adaptive adjustment of pacing therapy based on cardiogenic impedance signals detected by an implantable medical device |
US7869871B2 (en) * | 2006-03-31 | 2011-01-11 | Cardiac Pacemakers, Inc. | Pacing therapy for diastolic heart failure |
US9295845B2 (en) * | 2006-06-29 | 2016-03-29 | Cardiac Pacemakers, Inc. | Post-MI pacing with autocapture function |
US7917216B1 (en) * | 2006-07-19 | 2011-03-29 | Pacesetter, Inc. | Multi-site pacing for atrial tachyarrhythmias |
US7732190B2 (en) | 2006-07-31 | 2010-06-08 | Advanced Cardiovascular Systems, Inc. | Modified two-component gelation systems, methods of use and methods of manufacture |
US8226570B2 (en) | 2006-08-08 | 2012-07-24 | Cardiac Pacemakers, Inc. | Respiration monitoring for heart failure using implantable device |
US9242005B1 (en) | 2006-08-21 | 2016-01-26 | Abbott Cardiovascular Systems Inc. | Pro-healing agent formulation compositions, methods and treatments |
US7751888B1 (en) | 2006-08-28 | 2010-07-06 | Pacesetter, Inc. | Systems and methods for delivering stimulation pulses using an implantable cardiac stimulation device |
US7848793B1 (en) | 2006-09-29 | 2010-12-07 | Pacesetter, Inc. | Monitoring for mitral valve regurgitation |
US8219210B2 (en) * | 2006-10-02 | 2012-07-10 | Cardiac Pacemakers, Inc. | Method and apparatus for identification of ischemic/infarcted regions and therapy optimization |
US7899522B1 (en) | 2006-10-13 | 2011-03-01 | Pacesetter, Inc. | System and method for discriminating acute and chronic heart failure using an implantable medical device |
US7787950B1 (en) * | 2006-11-03 | 2010-08-31 | Pacesetter, Inc. | Techniques for delivery of stem cell and related therapies to treat cardiac conditions |
US8046070B2 (en) | 2006-11-07 | 2011-10-25 | Cardiac Pacemakers, Inc. | Pre-excitation pacing for treatment of hypertension |
US8016764B1 (en) | 2006-11-08 | 2011-09-13 | Pacesetter, Inc. | Systems and methods for evaluating ventricular dyssynchrony using atrial and ventricular pressure measurements obtained by an implantable medical device |
US20080114408A1 (en) * | 2006-11-13 | 2008-05-15 | Shuros Allan C | Method and device for simulated exercise |
US7941216B2 (en) * | 2006-11-17 | 2011-05-10 | Cardiac Pacemakers, Inc. | Method and device for treating myocardial ischemia |
US8202224B2 (en) * | 2006-11-13 | 2012-06-19 | Pacesetter, Inc. | System and method for calibrating cardiac pressure measurements derived from signals detected by an implantable medical device |
US8019416B2 (en) * | 2006-11-13 | 2011-09-13 | Cardiac Pacemakers, Inc. | Reduction of AV delay for treatment of cardiac disease |
US8741326B2 (en) | 2006-11-17 | 2014-06-03 | Abbott Cardiovascular Systems Inc. | Modified two-component gelation systems, methods of use and methods of manufacture |
US9005672B2 (en) | 2006-11-17 | 2015-04-14 | Abbott Cardiovascular Systems Inc. | Methods of modifying myocardial infarction expansion |
US8192760B2 (en) | 2006-12-04 | 2012-06-05 | Abbott Cardiovascular Systems Inc. | Methods and compositions for treating tissue using silk proteins |
US8600499B2 (en) * | 2006-12-05 | 2013-12-03 | Cardiac Pacemakers, Inc. | Method and device for cardiac vasoactive therapy |
US7702390B1 (en) | 2006-12-13 | 2010-04-20 | Pacesetter, Inc. | Rate adaptive biventricular and cardiac resynchronization therapy |
US7778706B1 (en) | 2006-12-13 | 2010-08-17 | Pacesetter, Inc. | Rate adaptive biventricular and cardiac resynchronization therapy |
US7881787B1 (en) | 2006-12-18 | 2011-02-01 | Pacesetter, Inc. | Capture detection system and method CRT therapy |
US8615296B2 (en) | 2007-03-06 | 2013-12-24 | Cardiac Pacemakers, Inc. | Method and apparatus for closed-loop intermittent cardiac stress augmentation pacing |
US8504153B2 (en) * | 2007-04-04 | 2013-08-06 | Pacesetter, Inc. | System and method for estimating cardiac pressure based on cardiac electrical conduction delays using an implantable medical device |
US8208999B2 (en) * | 2007-04-04 | 2012-06-26 | Pacesetter, Inc. | System and method for estimating electrical conduction delays from immittance values measured using an implantable medical device |
US7676264B1 (en) | 2007-04-13 | 2010-03-09 | Pacesetter, Inc. | Systems and methods for use by an implantable medical device for evaluating ventricular dyssynchrony based on T-wave morphology |
US20080287818A1 (en) * | 2007-04-19 | 2008-11-20 | Pacesetter, Inc. | Pressure measurement-based ischemia detection |
US7912544B1 (en) | 2007-04-20 | 2011-03-22 | Pacesetter, Inc. | CRT responder model using EGM information |
US7970462B2 (en) * | 2007-05-29 | 2011-06-28 | Biotronik Crm Patent Ag | Implantable medical devices evaluating thorax impedance |
US7908004B1 (en) | 2007-08-30 | 2011-03-15 | Pacesetter, Inc. | Considering cardiac ischemia in electrode selection |
US8972007B2 (en) * | 2007-09-25 | 2015-03-03 | Cardiac Pacemakers, Inc. | Variable shortening of AV delay for treatment of cardiac disease |
JP2010540073A (en) * | 2007-09-27 | 2010-12-24 | カーディアック ペースメイカーズ, インコーポレイテッド | Embedded lead wire with electrical stimulation capacitor |
DE102007054178A1 (en) * | 2007-11-14 | 2009-05-20 | Biotronik Crm Patent Ag | Biventricular cardiac stimulator |
US9149631B2 (en) | 2007-12-13 | 2015-10-06 | Cardiac Pacemakers, Inc. | Cardiac lead placement using multiple spatially distributed sensors |
CN101925381B (en) | 2008-01-29 | 2014-02-26 | 心脏起搏器股份公司 | Configurable intermittent pacing therapy |
US8140155B2 (en) | 2008-03-11 | 2012-03-20 | Cardiac Pacemakers, Inc. | Intermittent pacing therapy delivery statistics |
US8483826B2 (en) | 2008-03-17 | 2013-07-09 | Cardiac Pacemakers, Inc. | Deactivation of intermittent pacing therapy |
US7941217B1 (en) | 2008-03-25 | 2011-05-10 | Pacesetter, Inc. | Techniques for promoting biventricular synchrony and stimulation device efficiency using intentional fusion |
US20090270936A1 (en) * | 2008-04-29 | 2009-10-29 | Pacesetter, Inc. | Implantable medical device with coordinated ventricular overdrive and trigger mode pacing |
EP2291222B1 (en) * | 2008-05-07 | 2015-11-25 | Cardiac Pacemakers, Inc. | Apparatus to ensure consistent left ventricular pacing |
US8521278B2 (en) * | 2008-05-08 | 2013-08-27 | Cardiac Pacemakers, Inc. | Smart delay for intermittent stress therapy |
US20090299423A1 (en) * | 2008-06-03 | 2009-12-03 | Pacesetter, Inc. | Systems and methods for determining inter-atrial conduction delays using multi-pole left ventricular pacing/sensing leads |
US8280511B2 (en) * | 2008-07-07 | 2012-10-02 | Pacesetter, Inc. | Systems and methods for use by an implantable medical device for detecting heart failure based on the independent information content of immittance vectors |
US8126549B2 (en) * | 2008-07-15 | 2012-02-28 | Medtronic, Inc. | Cardiac protection system and method |
US8032212B2 (en) | 2008-09-15 | 2011-10-04 | Pacesetter, Inc. | System and method for monitoring thoracic fluid levels based on impedance using an implantable medical device |
US20100100148A1 (en) * | 2008-10-21 | 2010-04-22 | Pacesetter, Inc. | Capture assessment and optimization of timing for cardiac resynchronization therapy |
US8050760B2 (en) * | 2008-11-13 | 2011-11-01 | Pacesetter, Inc. | System and method for evaluating mechanical cardiac dyssynchrony based on multiple impedance vectors using an implantable medical device |
US8442634B2 (en) * | 2008-12-04 | 2013-05-14 | Pacesetter, Inc. | Systems and methods for controlling ventricular pacing in patients with long inter-atrial conduction delays |
US8280523B2 (en) | 2008-12-22 | 2012-10-02 | Pacesetter, Inc. | System and method for monitoring diastolic function using an implantable medical device |
US8423141B2 (en) * | 2009-01-30 | 2013-04-16 | Medtronic, Inc. | Pre-excitation stimulus timing based on mechanical event |
US8340765B2 (en) * | 2009-03-24 | 2012-12-25 | Pacesetter, Inc. | System and method for controlling ventricular pacing during AF based on underlying ventricular rates using an implantable medical device |
US8282562B2 (en) * | 2009-03-25 | 2012-10-09 | Pacesetter, Inc. | System and method for monitoring cardiopulmonary fluid transfer rates using an implantable medical device |
US8010194B2 (en) * | 2009-04-01 | 2011-08-30 | David Muller | Determining site-to-site pacing delay for multi-site anti-tachycardia pacing |
US8983600B2 (en) | 2009-05-15 | 2015-03-17 | Cardiac Pacemakers, Inc. | Method and apparatus for safety control during cardiac pacing mode transition |
US8958873B2 (en) | 2009-05-28 | 2015-02-17 | Cardiac Pacemakers, Inc. | Method and apparatus for safe and efficient delivery of cardiac stress augmentation pacing |
US8473054B2 (en) * | 2009-05-28 | 2013-06-25 | Pacesetter, Inc. | System and method for detecting pulmonary edema based on impedance measured using an implantable medical device during a lead maturation interval |
US8812104B2 (en) | 2009-09-23 | 2014-08-19 | Cardiac Pacemakers, Inc. | Method and apparatus for automated control of pacing post-conditioning |
WO2011053369A1 (en) | 2009-10-30 | 2011-05-05 | Cardiac Pacemakers, Inc. | Pacemaker with vagal surge monitoring and response |
US8600487B2 (en) * | 2010-02-25 | 2013-12-03 | Pacesetter, Inc. | System and method for exploiting atrial electrocardiac parameters in assessing left atrial pressure using an implantable medical device |
US8271081B2 (en) | 2010-05-12 | 2012-09-18 | Pacesetter, Inc. | Systems and methods for use with an implantable medical device for discriminating VT and SVT be selectively adjusting atrial channel sensing parameters |
US8447400B2 (en) | 2010-06-24 | 2013-05-21 | Pacesetter, Inc. | Systems and methods for use by an implantable medical device for controlling multi-site CRT pacing in the presence of atrial tachycardia |
US8332033B2 (en) | 2010-06-24 | 2012-12-11 | Pacesetter, Inc. | Systems and methods for use by an implantable medical device for controlling multi-site CRT pacing in the presence of atrial tachycardia |
US8135468B2 (en) | 2010-08-09 | 2012-03-13 | Pacesetter, Inc. | Systems and methods for estimating left atrial pressure (LAP) in patients with acute mitral valve regurgitation for use by an implantable medical device |
US8670820B2 (en) | 2010-08-09 | 2014-03-11 | Pacesetter, Inc. | Near field-based systems and methods for assessing impedance and admittance for use with an implantable medical device |
US8812093B2 (en) | 2010-08-09 | 2014-08-19 | Pacesetter, Inc. | Systems and methods for exploiting near-field impedance and admittance for use with implantable medical devices |
US9002450B2 (en) | 2010-12-21 | 2015-04-07 | Pacesetter, Inc. | Systems and methods for assessing the sphericity and dimensional extent of heart chambers for use with an implantable medical device |
US8583230B2 (en) | 2011-01-19 | 2013-11-12 | Pacesetter, Inc. | Systems and methods for selectively limiting multi-site ventricular pacing delays during optimization of cardiac resynchronization therapy parameters |
US8380303B2 (en) | 2011-02-25 | 2013-02-19 | Pacesetter, Inc. | Systems and methods for activating and controlling impedance-based detection systems of implantable medical devices |
US8295918B2 (en) | 2011-02-25 | 2012-10-23 | Pacesetter, Inc. | Systems and methods for activating and controlling impedance-based detection systems of implantable medical devices |
US8380308B2 (en) | 2011-03-29 | 2013-02-19 | Pacesetter, Inc. | Systems and methods for optimizing ventricular pacing based on left atrial electromechanical activation detected by an AV groove electrode |
EP2508227B1 (en) | 2011-04-06 | 2013-12-25 | Sorin CRM SAS | Implantable cardiac prosthesis for resynchronisation by bi-ventricular stimulation, including a reverse remodelling means |
US8942828B1 (en) | 2011-04-13 | 2015-01-27 | Stuart Schecter, LLC | Minimally invasive cardiovascular support system with true haptic coupling |
US9295405B2 (en) * | 2011-04-25 | 2016-03-29 | Cardiac Pacemakers, Inc. | SV/CO trending via intracardiac impedance |
US8989852B2 (en) | 2011-08-10 | 2015-03-24 | Pacesetter, Inc. | Systems and methods for use by implantable medical devices for detecting and discriminating stroke and cardiac ischemia using electrocardiac signals |
US8750981B2 (en) | 2011-08-25 | 2014-06-10 | Pacesetter, Inc. | Systems and methods for assessing heart failure and controlling cardiac resynchronization therapy using hybrid impedance measurement configurations |
US8768461B2 (en) * | 2011-09-06 | 2014-07-01 | Pacesetter, Inc. | Systems and methods for controlling paired pacing interpulse intervals to reduce contractility disequilibrium using an implantable medical device |
US9610447B2 (en) | 2012-03-30 | 2017-04-04 | Pacesetter, Inc. | Systems and methods for selecting pacing vectors based on site of latest activation for use with implantable cardiac rhythm management devices |
US10013082B2 (en) | 2012-06-05 | 2018-07-03 | Stuart Schecter, LLC | Operating system with haptic interface for minimally invasive, hand-held surgical instrument |
US9220434B2 (en) | 2012-08-16 | 2015-12-29 | Pacesetter, Inc. | Systems and methods for selectively updating cardiac morphology discrimination templates for use with implantable medical devices |
US9956413B2 (en) | 2012-10-11 | 2018-05-01 | Pacesetter, Inc. | Systems and methods for packed pacing using bifurcated pacing pulses of opposing polarity generated by an implantable medical device |
US9008769B2 (en) | 2012-12-21 | 2015-04-14 | Backbeat Medical, Inc. | Methods and systems for lowering blood pressure through reduction of ventricle filling |
US9370662B2 (en) | 2013-12-19 | 2016-06-21 | Backbeat Medical, Inc. | Methods and systems for controlling blood pressure by controlling atrial pressure |
US10342982B2 (en) | 2015-09-11 | 2019-07-09 | Backbeat Medical, Inc. | Methods and systems for treating cardiac malfunction |
US9855430B2 (en) * | 2015-10-29 | 2018-01-02 | Medtronic, Inc. | Far-field P-wave sensing in near real-time for timing delivery of pacng therapy in a cardiac medical device and medical device system |
WO2017087891A1 (en) | 2015-11-20 | 2017-05-26 | Cardiac Pacemakers, Inc. | Single pass coronary venous lead for multiple chamber sense and pace |
US10485658B2 (en) | 2016-04-22 | 2019-11-26 | Backbeat Medical, Inc. | Methods and systems for controlling blood pressure |
Citations (77)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3606882A (en) | 1968-05-20 | 1971-09-21 | Hitachi Ltd | Eog processing system for p-and qrswave characteristics |
US4354497A (en) | 1977-05-23 | 1982-10-19 | Medtronic, Inc. | Cardiac depolarization detection apparatus |
US4549548A (en) | 1983-09-14 | 1985-10-29 | Vitafin N.V. | Pacemaker system with automatic event-programmed switching between unipolar and bipolar operation |
US4554922A (en) | 1982-09-30 | 1985-11-26 | Prystowsky Eric N | Method of inhibiting cardiac arrhythmias |
US4628934A (en) | 1984-08-07 | 1986-12-16 | Cordis Corporation | Method and means of electrode selection for pacemaker with multielectrode leads |
US4674518A (en) | 1985-09-06 | 1987-06-23 | Cardiac Pacemakers, Inc. | Method and apparatus for measuring ventricular volume |
US4686987A (en) | 1981-06-18 | 1987-08-18 | Cardiac Pacemakers, Inc. | Biomedical method and apparatus for controlling the administration of therapy to a patient in response to changes in physiologic demand |
US4872459A (en) | 1985-08-12 | 1989-10-10 | Intermedics, Inc. | Pacemaker for detecting and terminating a tachycardia |
US4880005A (en) | 1985-08-12 | 1989-11-14 | Intermedics, Inc. | Pacemaker for detecting and terminating a tachycardia |
US4928688A (en) | 1989-01-23 | 1990-05-29 | Mieczyslaw Mirowski | Method and apparatus for treating hemodynamic disfunction |
US5003975A (en) | 1988-04-19 | 1991-04-02 | Siemens-Pacesetter, Inc. | Automatic electrode configuration of an implantable pacemaker |
US5014698A (en) | 1987-10-06 | 1991-05-14 | Leonard Bloom | Method of and system for monitoring and treating a malfunctioning heart |
US5058605A (en) | 1989-02-22 | 1991-10-22 | Ceske Vysoke Uceni Technicke | Method and device for the controlled local, non-invasive application of dc pulses to human and animal tissues |
US5109842A (en) | 1990-09-24 | 1992-05-05 | Siemens Pacesetter, Inc. | Implantable tachyarrhythmia control system having a patch electrode with an integrated cardiac activity system |
US5156149A (en) | 1990-08-10 | 1992-10-20 | Medtronic, Inc. | Sensor for detecting cardiac depolarizations particularly adapted for use in a cardiac pacemaker |
US5158079A (en) | 1991-02-25 | 1992-10-27 | Incontrol, Inc. | Implantable device for preventing tachyarrhythmias |
US5174289A (en) | 1990-09-07 | 1992-12-29 | Cohen Fred M | Pacing systems and methods for control of the ventricular activation sequence |
EP0522693A1 (en) | 1991-05-20 | 1993-01-13 | Telectronics N.V. | Apparatus and method for cardioversion of atrial fibrillation in an arrhythmia control system |
US5233985A (en) | 1990-08-10 | 1993-08-10 | Medtronic, Inc. | Cardiac pacemaker with operational amplifier output circuit |
US5267560A (en) | 1990-09-07 | 1993-12-07 | Cohen Fred M | Methods for control of the ventricular activation sequence |
US5340361A (en) | 1992-11-13 | 1994-08-23 | Siemens Pacesetter, Inc. | Implantable pacemaker having adaptive AV interval adoptively shortened to assure ventricular pacing |
US5344386A (en) | 1991-09-12 | 1994-09-06 | Biotronik Mess- und Therapiegerate GmbH & Co., Ingenierburo Berlin | Stimulation system for a skeletal muscle |
US5370665A (en) | 1990-08-10 | 1994-12-06 | Medtronic, Inc. | Medical stimulator with multiple operational amplifier output stimulation circuits |
US5507782A (en) | 1994-03-17 | 1996-04-16 | Medtronic, Inc. | Method and apparatus for dual chamber cardiac pacing |
US5514161A (en) | 1994-04-05 | 1996-05-07 | Ela Medical S.A. | Methods and apparatus for controlling atrial stimulation in a double atrial triple chamber cardiac pacemaker |
US5534016A (en) | 1995-02-21 | 1996-07-09 | Vitatron Medical, B.V. | Dual chamber pacing system and method utilizing detection of ventricular fusion for adjustment of the atrial-ventricular delay as therapy for hypertrophic obstructive cardiomyopathy |
US5584867A (en) | 1994-04-05 | 1996-12-17 | Ela Medical S.A. | Method and apparatus for controlling a double atrial triple chamber cardiac pacemaker having a fallback mode |
WO1997025098A1 (en) | 1996-01-08 | 1997-07-17 | New Technologies (Sa-Ysy) Ltd. | Electrical muscle controller |
US5674259A (en) | 1992-10-20 | 1997-10-07 | Gray; Noel Desmond | Multi-focal leadless apical cardiac pacemaker |
US5683429A (en) | 1996-04-30 | 1997-11-04 | Medtronic, Inc. | Method and apparatus for cardiac pacing to prevent atrial fibrillation |
US5707398A (en) | 1996-11-12 | 1998-01-13 | Pacesetter, Inc. | Automatic determination of optimum electrode configuration for a cardiac stimulator |
US5738096A (en) | 1993-07-20 | 1998-04-14 | Biosense, Inc. | Cardiac electromechanics |
US5749906A (en) | 1995-02-21 | 1998-05-12 | Medtronic, Inc. | Dual chamber pacing system and method with continual adjustment of the AV escape interval so as to maintain optimized ventricular pacing for treating cardiomyopathy |
US5782774A (en) | 1996-04-17 | 1998-07-21 | Imagyn Medical Technologies California, Inc. | Apparatus and method of bioelectrical impedance analysis of blood flow |
US5792203A (en) | 1997-08-18 | 1998-08-11 | Sulzer Intermedics Inc. | Universal programmable cardiac stimulation device |
US5797970A (en) | 1996-09-04 | 1998-08-25 | Medtronic, Inc. | System, adaptor and method to provide medical electrical stimulation |
US5800464A (en) | 1996-10-03 | 1998-09-01 | Medtronic, Inc. | System for providing hyperpolarization of cardiac to enhance cardiac function |
US5824019A (en) | 1996-10-11 | 1998-10-20 | Medtronic, Inc. | Pacing system with physiologically timed ventricular pacing |
US5851226A (en) | 1996-10-22 | 1998-12-22 | Medtronic, Inc. | Temporary transvenous endocardial lead |
WO1999010042A1 (en) | 1997-08-27 | 1999-03-04 | Pacesetter, Inc. | Dual chamber implantable pacemaker having negative av/pv hysteresis and ectopic discrimination |
US5935160A (en) | 1997-01-24 | 1999-08-10 | Cardiac Pacemakers, Inc. | Left ventricular access lead for heart failure pacing |
US5995871A (en) | 1997-10-29 | 1999-11-30 | Uab Research Foundation | System and method for cardioversion using scan stimulation |
US5995870A (en) | 1997-03-07 | 1999-11-30 | Ela Medical S.A. | Multi-site cardiac stimulator for the treatment of cardiac insufficiency by stimulation |
US6038483A (en) | 1992-11-24 | 2000-03-14 | Cardiac Pacemakers, Inc. | Implantable conformal coil patch electrode with multiple conductive elements for cardioversion and defibrillation |
US6058329A (en) | 1998-10-13 | 2000-05-02 | Cardiac Pacemakers, Inc. | Optimization of pacing parameters based on measurement of acoustic noise |
US6112117A (en) | 1997-05-06 | 2000-08-29 | Cardiac Pacemakers, Inc. | Method and apparatus for treating cardiac arrhythmia using electrogram features |
US6112116A (en) | 1999-02-22 | 2000-08-29 | Cathco, Inc. | Implantable responsive system for sensing and treating acute myocardial infarction |
US6151524A (en) | 1997-04-30 | 2000-11-21 | Cardiac Pacemakers, Inc. | Apparatus and method for treating ventricular tachyarrhythmias |
US6223082B1 (en) | 1997-12-15 | 2001-04-24 | Medtronic Inc. | Four-chamber pacing system for optimizing cardic output and determining heart condition |
US6285898B1 (en) | 1993-07-20 | 2001-09-04 | Biosense, Inc. | Cardiac electromechanics |
US6285906B1 (en) | 1999-05-26 | 2001-09-04 | Impulse Dynamics N. V. | Muscle contraction assist device |
US6292693B1 (en) | 1998-11-06 | 2001-09-18 | Impulse Dynamics N.V. | Contractility enhancement using excitable tissue control and multi-site pacing |
US6314322B1 (en) | 1998-03-02 | 2001-11-06 | Abiomed, Inc. | System and method for treating dilated cardiomyopathy using end diastolic volume (EDV) sensing |
US20020002389A1 (en) | 2000-05-15 | 2002-01-03 | Kerry Bradley | Cardiac stimulation devices and methods for measuring impedances associated with the left side of the heart |
US6363279B1 (en) | 1996-01-08 | 2002-03-26 | Impulse Dynamics N.V. | Electrical muscle controller |
US20020082647A1 (en) | 2000-12-22 | 2002-06-27 | Acorn Cardiovascular, Inc. | Cardiac disease treatment and device |
US6418343B1 (en) | 1999-10-01 | 2002-07-09 | Cardiac Pacemakers, Inc. | Method and apparatus for adjusting the sensing threshold of a cardiac rhythm management device |
US6418340B1 (en) | 1999-08-20 | 2002-07-09 | Cardiac Pacemakers, Inc. | Method and system for identifying and displaying groups of cardiac arrhythmic episodes |
US20020115081A1 (en) | 2000-08-22 | 2002-08-22 | Lee Richard T. | Diagnosis and treatment of cardiovascular conditions |
US6507756B1 (en) | 2000-04-03 | 2003-01-14 | Medtronic, Inc. | Dual chamber pacing system having time-adaptive AV delay |
US20030023278A1 (en) | 2001-07-25 | 2003-01-30 | Cardiac Pacemakers Inc. | Linear stimulation of the heart for improved hemodynamic benefit |
US6556872B2 (en) | 1999-08-24 | 2003-04-29 | Ev Vascular, Inc. | Therapeutic device and method for treating diseases of cardiac muscle |
US6574506B2 (en) | 2000-12-26 | 2003-06-03 | Cardiac Pacemakers, Inc. | System and method for timing synchronized pacing |
US20030105493A1 (en) | 2001-12-05 | 2003-06-05 | Salo Rodney W. | Method and apparatus for minimizing post-infarct ventricular remodeling |
US20030153952A1 (en) | 2002-02-08 | 2003-08-14 | Angelo Auricchio | Dynamically optimized multisite cardiac resynchronization device |
US6628988B2 (en) | 2001-04-27 | 2003-09-30 | Cardiac Pacemakers, Inc. | Apparatus and method for reversal of myocardial remodeling with electrical stimulation |
US6640135B1 (en) | 2000-04-06 | 2003-10-28 | Cardiac Pacemakers, Inc. | Apparatus and method for spatially and temporally distributing cardiac electrical stimulation |
US20030208240A1 (en) | 2002-05-03 | 2003-11-06 | Pastore Joseph M. | Method and apparatus for detecting acoustic oscillations in cardiac rhythm |
US20030233132A1 (en) | 2002-06-14 | 2003-12-18 | Pastore Joseph M. | Method and apparatus for detecting oscillations in cardiac rhythm |
US20040044374A1 (en) | 2002-08-30 | 2004-03-04 | Weinberg Lisa P. | System and method for treating abnormal ventricular activation-recovery time |
US20040054381A1 (en) | 2002-09-13 | 2004-03-18 | Pastore Joseph M. | Method and apparatus for assessing and treating myocardial wall stress |
US6868287B1 (en) | 1999-02-12 | 2005-03-15 | The Trustees Of Columbia University In The City Of New York | Cardiac remodeling |
US20050065568A1 (en) | 2001-04-27 | 2005-03-24 | Lili Liu | Cardiac stimulation at high ventricular wall stress areas |
US7065405B2 (en) | 2002-11-15 | 2006-06-20 | Cardiac Pacemakers, Inc. | Stress reduction pacing mode for arrhythmia prevention |
US7215997B2 (en) | 2003-12-22 | 2007-05-08 | Cardiac Pacemakers, Inc. | Dynamic device therapy control for treating post myocardial infarction patients |
US7295874B2 (en) | 2005-01-06 | 2007-11-13 | Cardiac Pacemakers, Inc. | Intermittent stress augmentation pacing for cardioprotective effect |
US7346397B2 (en) | 2000-06-30 | 2008-03-18 | Cochlear Limited | Cochlear implant |
Family Cites Families (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6059329A (en) * | 1998-03-13 | 2000-05-09 | Adac Plastics Inc. | Door handle assembly with self-actuated mounting |
CA2340911A1 (en) | 1998-08-17 | 2000-02-24 | Medtronic, Inc. | Method and apparatus for prevention of atrial tachyarrhythmias |
-
2001
- 2001-04-27 US US09/844,256 patent/US6628988B2/en not_active Expired - Lifetime
-
2002
- 2002-04-25 WO PCT/US2002/012950 patent/WO2002087694A1/en not_active Application Discontinuation
- 2002-04-25 EP EP02728965A patent/EP1381426A1/en not_active Withdrawn
-
2003
- 2003-08-27 US US10/649,468 patent/US7103410B2/en not_active Expired - Lifetime
-
2006
- 2006-09-01 US US11/469,620 patent/US7548782B2/en not_active Expired - Fee Related
-
2009
- 2009-06-15 US US12/484,882 patent/US8046066B2/en not_active Expired - Fee Related
-
2011
- 2011-10-24 US US13/279,493 patent/US8369948B2/en not_active Expired - Fee Related
-
2013
- 2013-02-04 US US13/757,972 patent/US8634913B2/en not_active Expired - Fee Related
Patent Citations (100)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3606882A (en) | 1968-05-20 | 1971-09-21 | Hitachi Ltd | Eog processing system for p-and qrswave characteristics |
US4354497A (en) | 1977-05-23 | 1982-10-19 | Medtronic, Inc. | Cardiac depolarization detection apparatus |
US4686987A (en) | 1981-06-18 | 1987-08-18 | Cardiac Pacemakers, Inc. | Biomedical method and apparatus for controlling the administration of therapy to a patient in response to changes in physiologic demand |
US4554922A (en) | 1982-09-30 | 1985-11-26 | Prystowsky Eric N | Method of inhibiting cardiac arrhythmias |
US4549548A (en) | 1983-09-14 | 1985-10-29 | Vitafin N.V. | Pacemaker system with automatic event-programmed switching between unipolar and bipolar operation |
US4628934A (en) | 1984-08-07 | 1986-12-16 | Cordis Corporation | Method and means of electrode selection for pacemaker with multielectrode leads |
US4880005A (en) | 1985-08-12 | 1989-11-14 | Intermedics, Inc. | Pacemaker for detecting and terminating a tachycardia |
US4880005B1 (en) | 1985-08-12 | 1996-10-29 | Intermedics Inc | Pacemaker for detecting and terminating a tachycardia |
US4872459A (en) | 1985-08-12 | 1989-10-10 | Intermedics, Inc. | Pacemaker for detecting and terminating a tachycardia |
US4674518A (en) | 1985-09-06 | 1987-06-23 | Cardiac Pacemakers, Inc. | Method and apparatus for measuring ventricular volume |
US5014698A (en) | 1987-10-06 | 1991-05-14 | Leonard Bloom | Method of and system for monitoring and treating a malfunctioning heart |
US5003975A (en) | 1988-04-19 | 1991-04-02 | Siemens-Pacesetter, Inc. | Automatic electrode configuration of an implantable pacemaker |
US4928688A (en) | 1989-01-23 | 1990-05-29 | Mieczyslaw Mirowski | Method and apparatus for treating hemodynamic disfunction |
US5058605A (en) | 1989-02-22 | 1991-10-22 | Ceske Vysoke Uceni Technicke | Method and device for the controlled local, non-invasive application of dc pulses to human and animal tissues |
US5156149A (en) | 1990-08-10 | 1992-10-20 | Medtronic, Inc. | Sensor for detecting cardiac depolarizations particularly adapted for use in a cardiac pacemaker |
US5370665A (en) | 1990-08-10 | 1994-12-06 | Medtronic, Inc. | Medical stimulator with multiple operational amplifier output stimulation circuits |
US5233985A (en) | 1990-08-10 | 1993-08-10 | Medtronic, Inc. | Cardiac pacemaker with operational amplifier output circuit |
US5267560A (en) | 1990-09-07 | 1993-12-07 | Cohen Fred M | Methods for control of the ventricular activation sequence |
US5174289A (en) | 1990-09-07 | 1992-12-29 | Cohen Fred M | Pacing systems and methods for control of the ventricular activation sequence |
US5109842A (en) | 1990-09-24 | 1992-05-05 | Siemens Pacesetter, Inc. | Implantable tachyarrhythmia control system having a patch electrode with an integrated cardiac activity system |
US5158079A (en) | 1991-02-25 | 1992-10-27 | Incontrol, Inc. | Implantable device for preventing tachyarrhythmias |
EP0522693A1 (en) | 1991-05-20 | 1993-01-13 | Telectronics N.V. | Apparatus and method for cardioversion of atrial fibrillation in an arrhythmia control system |
US5344386A (en) | 1991-09-12 | 1994-09-06 | Biotronik Mess- und Therapiegerate GmbH & Co., Ingenierburo Berlin | Stimulation system for a skeletal muscle |
US5674259A (en) | 1992-10-20 | 1997-10-07 | Gray; Noel Desmond | Multi-focal leadless apical cardiac pacemaker |
US5340361A (en) | 1992-11-13 | 1994-08-23 | Siemens Pacesetter, Inc. | Implantable pacemaker having adaptive AV interval adoptively shortened to assure ventricular pacing |
US6152955A (en) | 1992-11-24 | 2000-11-28 | Cardiac Pacemakers, Inc. | Implantable conformal coil patch electrode with multiple conductive elements for cardioversion and defibrillation |
US6038483A (en) | 1992-11-24 | 2000-03-14 | Cardiac Pacemakers, Inc. | Implantable conformal coil patch electrode with multiple conductive elements for cardioversion and defibrillation |
US5738096A (en) | 1993-07-20 | 1998-04-14 | Biosense, Inc. | Cardiac electromechanics |
US6066094A (en) | 1993-07-20 | 2000-05-23 | Biosense, Inc. | Cardiac electromechanics |
US6285898B1 (en) | 1993-07-20 | 2001-09-04 | Biosense, Inc. | Cardiac electromechanics |
US20020045809A1 (en) | 1993-07-20 | 2002-04-18 | Shlomo Ben-Haim | System for mapping a heart using catheters having ultrasonic position sensors |
US5507782A (en) | 1994-03-17 | 1996-04-16 | Medtronic, Inc. | Method and apparatus for dual chamber cardiac pacing |
US5514161A (en) | 1994-04-05 | 1996-05-07 | Ela Medical S.A. | Methods and apparatus for controlling atrial stimulation in a double atrial triple chamber cardiac pacemaker |
US5584867A (en) | 1994-04-05 | 1996-12-17 | Ela Medical S.A. | Method and apparatus for controlling a double atrial triple chamber cardiac pacemaker having a fallback mode |
US5534016A (en) | 1995-02-21 | 1996-07-09 | Vitatron Medical, B.V. | Dual chamber pacing system and method utilizing detection of ventricular fusion for adjustment of the atrial-ventricular delay as therapy for hypertrophic obstructive cardiomyopathy |
US5749906A (en) | 1995-02-21 | 1998-05-12 | Medtronic, Inc. | Dual chamber pacing system and method with continual adjustment of the AV escape interval so as to maintain optimized ventricular pacing for treating cardiomyopathy |
US6317631B1 (en) | 1996-01-08 | 2001-11-13 | Impulse Dynamics N.V. | Controlling heart performance using a non-excitatory electric field |
WO1997025098A1 (en) | 1996-01-08 | 1997-07-17 | New Technologies (Sa-Ysy) Ltd. | Electrical muscle controller |
US6363279B1 (en) | 1996-01-08 | 2002-03-26 | Impulse Dynamics N.V. | Electrical muscle controller |
US5782774A (en) | 1996-04-17 | 1998-07-21 | Imagyn Medical Technologies California, Inc. | Apparatus and method of bioelectrical impedance analysis of blood flow |
US5683429A (en) | 1996-04-30 | 1997-11-04 | Medtronic, Inc. | Method and apparatus for cardiac pacing to prevent atrial fibrillation |
US5797970A (en) | 1996-09-04 | 1998-08-25 | Medtronic, Inc. | System, adaptor and method to provide medical electrical stimulation |
US5800464A (en) | 1996-10-03 | 1998-09-01 | Medtronic, Inc. | System for providing hyperpolarization of cardiac to enhance cardiac function |
US5824019A (en) | 1996-10-11 | 1998-10-20 | Medtronic, Inc. | Pacing system with physiologically timed ventricular pacing |
US5851226A (en) | 1996-10-22 | 1998-12-22 | Medtronic, Inc. | Temporary transvenous endocardial lead |
US5707398A (en) | 1996-11-12 | 1998-01-13 | Pacesetter, Inc. | Automatic determination of optimum electrode configuration for a cardiac stimulator |
US5935160A (en) | 1997-01-24 | 1999-08-10 | Cardiac Pacemakers, Inc. | Left ventricular access lead for heart failure pacing |
US5995870A (en) | 1997-03-07 | 1999-11-30 | Ela Medical S.A. | Multi-site cardiac stimulator for the treatment of cardiac insufficiency by stimulation |
US6151524A (en) | 1997-04-30 | 2000-11-21 | Cardiac Pacemakers, Inc. | Apparatus and method for treating ventricular tachyarrhythmias |
US6112117A (en) | 1997-05-06 | 2000-08-29 | Cardiac Pacemakers, Inc. | Method and apparatus for treating cardiac arrhythmia using electrogram features |
US5792203A (en) | 1997-08-18 | 1998-08-11 | Sulzer Intermedics Inc. | Universal programmable cardiac stimulation device |
WO1999010042A1 (en) | 1997-08-27 | 1999-03-04 | Pacesetter, Inc. | Dual chamber implantable pacemaker having negative av/pv hysteresis and ectopic discrimination |
US5995871A (en) | 1997-10-29 | 1999-11-30 | Uab Research Foundation | System and method for cardioversion using scan stimulation |
US6223082B1 (en) | 1997-12-15 | 2001-04-24 | Medtronic Inc. | Four-chamber pacing system for optimizing cardic output and determining heart condition |
US6314322B1 (en) | 1998-03-02 | 2001-11-06 | Abiomed, Inc. | System and method for treating dilated cardiomyopathy using end diastolic volume (EDV) sensing |
US6058329A (en) | 1998-10-13 | 2000-05-02 | Cardiac Pacemakers, Inc. | Optimization of pacing parameters based on measurement of acoustic noise |
US6292693B1 (en) | 1998-11-06 | 2001-09-18 | Impulse Dynamics N.V. | Contractility enhancement using excitable tissue control and multi-site pacing |
US6868287B1 (en) | 1999-02-12 | 2005-03-15 | The Trustees Of Columbia University In The City Of New York | Cardiac remodeling |
US6112116A (en) | 1999-02-22 | 2000-08-29 | Cathco, Inc. | Implantable responsive system for sensing and treating acute myocardial infarction |
US6285906B1 (en) | 1999-05-26 | 2001-09-04 | Impulse Dynamics N. V. | Muscle contraction assist device |
US6418340B1 (en) | 1999-08-20 | 2002-07-09 | Cardiac Pacemakers, Inc. | Method and system for identifying and displaying groups of cardiac arrhythmic episodes |
US6556872B2 (en) | 1999-08-24 | 2003-04-29 | Ev Vascular, Inc. | Therapeutic device and method for treating diseases of cardiac muscle |
US6418343B1 (en) | 1999-10-01 | 2002-07-09 | Cardiac Pacemakers, Inc. | Method and apparatus for adjusting the sensing threshold of a cardiac rhythm management device |
US6507756B1 (en) | 2000-04-03 | 2003-01-14 | Medtronic, Inc. | Dual chamber pacing system having time-adaptive AV delay |
US7292887B2 (en) | 2000-04-06 | 2007-11-06 | Cardiac Pacemakers, Inc. | Apparatus and method for spatially and temporally distributing cardiac electrical stimulation |
US20040030357A1 (en) | 2000-04-06 | 2004-02-12 | Cardiac Pacemakers, Inc. | Apparatus and method for spatially and temporally distributing cardiac electrical stimulation |
US6640135B1 (en) | 2000-04-06 | 2003-10-28 | Cardiac Pacemakers, Inc. | Apparatus and method for spatially and temporally distributing cardiac electrical stimulation |
US20080097541A1 (en) | 2000-04-06 | 2008-04-24 | Cardiac Pacemakers, Inc. | Apparatus and method for spatially and temporally distributing cardiac electrical stimulation |
US20080097538A1 (en) | 2000-04-06 | 2008-04-24 | Cardiac Pacemakers, Inc. | Apparatus and method for spatially and temporally distributing cardiac electrical stimulation |
US20020002389A1 (en) | 2000-05-15 | 2002-01-03 | Kerry Bradley | Cardiac stimulation devices and methods for measuring impedances associated with the left side of the heart |
US7346397B2 (en) | 2000-06-30 | 2008-03-18 | Cochlear Limited | Cochlear implant |
US20020115081A1 (en) | 2000-08-22 | 2002-08-22 | Lee Richard T. | Diagnosis and treatment of cardiovascular conditions |
US20020082647A1 (en) | 2000-12-22 | 2002-06-27 | Acorn Cardiovascular, Inc. | Cardiac disease treatment and device |
US6574506B2 (en) | 2000-12-26 | 2003-06-03 | Cardiac Pacemakers, Inc. | System and method for timing synchronized pacing |
US6628988B2 (en) | 2001-04-27 | 2003-09-30 | Cardiac Pacemakers, Inc. | Apparatus and method for reversal of myocardial remodeling with electrical stimulation |
US7548782B2 (en) | 2001-04-27 | 2009-06-16 | Cardiac Pacemakers, Inc. | Method for reversal of myocardial remodeling with electrical stimulation |
US7346394B2 (en) | 2001-04-27 | 2008-03-18 | Cardiac Pacemakers, Inc. | Cardiac stimulation at high ventricular wall stress areas |
US20040049236A1 (en) | 2001-04-27 | 2004-03-11 | Cardiac Pacemakers, Inc. | Apparatus and method for reversal of myocardial remodeling with electrical stimulation |
US20050065568A1 (en) | 2001-04-27 | 2005-03-24 | Lili Liu | Cardiac stimulation at high ventricular wall stress areas |
US20060293716A1 (en) | 2001-04-27 | 2006-12-28 | Cardiac Pacemakers, Inc. | Apparatus and method for reversal of myocardial remodeling with electrical stimulation |
US7103410B2 (en) | 2001-04-27 | 2006-09-05 | Cardiac Pacemakers, Inc. | Apparatus and method for reversal of myocardial remodeling with electrical stimulation |
US20030023278A1 (en) | 2001-07-25 | 2003-01-30 | Cardiac Pacemakers Inc. | Linear stimulation of the heart for improved hemodynamic benefit |
US6973349B2 (en) | 2001-12-05 | 2005-12-06 | Cardiac Pacemakers, Inc. | Method and apparatus for minimizing post-infarct ventricular remodeling |
US20050177195A1 (en) | 2001-12-05 | 2005-08-11 | Cardiac Pacemakers, Inc. | Method and apparatus for minimizing post-infarct ventricular remodeling |
US20030105493A1 (en) | 2001-12-05 | 2003-06-05 | Salo Rodney W. | Method and apparatus for minimizing post-infarct ventricular remodeling |
US7499749B2 (en) | 2001-12-05 | 2009-03-03 | Cardiac Pacemakers, Inc. | Method and apparatus for minimizing post-infarct ventricular remodeling |
US20030153952A1 (en) | 2002-02-08 | 2003-08-14 | Angelo Auricchio | Dynamically optimized multisite cardiac resynchronization device |
US7676259B2 (en) | 2002-02-08 | 2010-03-09 | Cardiac Pacemakers, Inc. | Dynamically optimized multisite cardiac resynchronization device |
US20050216066A1 (en) | 2002-02-08 | 2005-09-29 | Cardiac Pacemakers, Inc. | Dynamically optimized multisite cardiac resynchronization device |
US6915160B2 (en) | 2002-02-08 | 2005-07-05 | Cardiac Pacemakers, Inc. | Dynamically optimized multisite cardiac resynchronization device |
US20030208240A1 (en) | 2002-05-03 | 2003-11-06 | Pastore Joseph M. | Method and apparatus for detecting acoustic oscillations in cardiac rhythm |
US20030233132A1 (en) | 2002-06-14 | 2003-12-18 | Pastore Joseph M. | Method and apparatus for detecting oscillations in cardiac rhythm |
US20040044374A1 (en) | 2002-08-30 | 2004-03-04 | Weinberg Lisa P. | System and method for treating abnormal ventricular activation-recovery time |
US20040054381A1 (en) | 2002-09-13 | 2004-03-18 | Pastore Joseph M. | Method and apparatus for assessing and treating myocardial wall stress |
US6965797B2 (en) | 2002-09-13 | 2005-11-15 | Cardiac Pacemakers, Inc. | Method and apparatus for assessing and treating myocardial wall stress |
US7065405B2 (en) | 2002-11-15 | 2006-06-20 | Cardiac Pacemakers, Inc. | Stress reduction pacing mode for arrhythmia prevention |
US7158824B2 (en) | 2002-11-15 | 2007-01-02 | Cardiac Pacemakers, Inc. | Stress reduction pacing for arterial plaque stabilization |
US7215997B2 (en) | 2003-12-22 | 2007-05-08 | Cardiac Pacemakers, Inc. | Dynamic device therapy control for treating post myocardial infarction patients |
US7295874B2 (en) | 2005-01-06 | 2007-11-13 | Cardiac Pacemakers, Inc. | Intermittent stress augmentation pacing for cardioprotective effect |
US7437191B2 (en) | 2005-01-06 | 2008-10-14 | Cardiac Pacemakers, Inc. | Intermittent stress augmentation pacing for cardioprotective effect |
Non-Patent Citations (68)
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20080097538A1 (en) * | 2000-04-06 | 2008-04-24 | Cardiac Pacemakers, Inc. | Apparatus and method for spatially and temporally distributing cardiac electrical stimulation |
US8560067B2 (en) | 2000-04-06 | 2013-10-15 | Cardiac Pacemakers, Inc. | Apparatus for spatially and temporally distributing cardiac electrical stimulation |
US8369948B2 (en) | 2001-04-27 | 2013-02-05 | Cardiac Pacemakers, Inc. | Apparatus for reversal of myocardial remodeling with pre-excitation |
US8634913B2 (en) | 2001-04-27 | 2014-01-21 | Cardiac Pacemakers, Inc. | Apparatus for reversal of myocardial remodeling with pre-excitation |
Also Published As
Publication number | Publication date |
---|---|
US20040049236A1 (en) | 2004-03-11 |
US8634913B2 (en) | 2014-01-21 |
US8369948B2 (en) | 2013-02-05 |
US20120041504A1 (en) | 2012-02-16 |
WO2002087694A1 (en) | 2002-11-07 |
US20130150910A1 (en) | 2013-06-13 |
US20020161410A1 (en) | 2002-10-31 |
US20060293716A1 (en) | 2006-12-28 |
EP1381426A1 (en) | 2004-01-21 |
US7103410B2 (en) | 2006-09-05 |
US6628988B2 (en) | 2003-09-30 |
US7548782B2 (en) | 2009-06-16 |
US20090254141A1 (en) | 2009-10-08 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US8369948B2 (en) | Apparatus for reversal of myocardial remodeling with pre-excitation | |
US7725185B2 (en) | Cardiac stimulation at high ventricular wall stress areas | |
US6965797B2 (en) | Method and apparatus for assessing and treating myocardial wall stress | |
US6973349B2 (en) | Method and apparatus for minimizing post-infarct ventricular remodeling | |
US6915160B2 (en) | Dynamically optimized multisite cardiac resynchronization device | |
US8406878B2 (en) | Method for treating myocardial infarction | |
US8731666B2 (en) | Minimizing hemodynamic compromise during post-MI remodeling control pacing |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
FEPP | Fee payment procedure |
Free format text: PAYOR NUMBER ASSIGNED (ORIGINAL EVENT CODE: ASPN); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY |
|
ZAAA | Notice of allowance and fees due |
Free format text: ORIGINAL CODE: NOA |
|
ZAAB | Notice of allowance mailed |
Free format text: ORIGINAL CODE: MN/=. |
|
STCF | Information on status: patent grant |
Free format text: PATENTED CASE |
|
FPAY | Fee payment |
Year of fee payment: 4 |
|
MAFP | Maintenance fee payment |
Free format text: PAYMENT OF MAINTENANCE FEE, 8TH YEAR, LARGE ENTITY (ORIGINAL EVENT CODE: M1552); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY Year of fee payment: 8 |
|
FEPP | Fee payment procedure |
Free format text: MAINTENANCE FEE REMINDER MAILED (ORIGINAL EVENT CODE: REM.); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY |
|
LAPS | Lapse for failure to pay maintenance fees |
Free format text: PATENT EXPIRED FOR FAILURE TO PAY MAINTENANCE FEES (ORIGINAL EVENT CODE: EXP.); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY |
|
STCH | Information on status: patent discontinuation |
Free format text: PATENT EXPIRED DUE TO NONPAYMENT OF MAINTENANCE FEES UNDER 37 CFR 1.362 |
|
FP | Lapsed due to failure to pay maintenance fee |
Effective date: 20231025 |