US7873070B2 - Determining a number of automatic request retransmissions based on block size - Google Patents
Determining a number of automatic request retransmissions based on block size Download PDFInfo
- Publication number
- US7873070B2 US7873070B2 US10/942,618 US94261804A US7873070B2 US 7873070 B2 US7873070 B2 US 7873070B2 US 94261804 A US94261804 A US 94261804A US 7873070 B2 US7873070 B2 US 7873070B2
- Authority
- US
- United States
- Prior art keywords
- block size
- retransmissions
- determining
- packet including
- autonomous message
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active, expires
Links
Images
Classifications
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L1/00—Arrangements for detecting or preventing errors in the information received
- H04L1/12—Arrangements for detecting or preventing errors in the information received by using return channel
- H04L1/16—Arrangements for detecting or preventing errors in the information received by using return channel in which the return channel carries supervisory signals, e.g. repetition request signals
- H04L1/18—Automatic repetition systems, e.g. Van Duuren systems
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L1/00—Arrangements for detecting or preventing errors in the information received
- H04L1/0001—Systems modifying transmission characteristics according to link quality, e.g. power backoff
- H04L1/0015—Systems modifying transmission characteristics according to link quality, e.g. power backoff characterised by the adaptation strategy
- H04L1/0017—Systems modifying transmission characteristics according to link quality, e.g. power backoff characterised by the adaptation strategy where the mode-switching is based on Quality of Service requirement
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L1/00—Arrangements for detecting or preventing errors in the information received
- H04L1/12—Arrangements for detecting or preventing errors in the information received by using return channel
- H04L1/16—Arrangements for detecting or preventing errors in the information received by using return channel in which the return channel carries supervisory signals, e.g. repetition request signals
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L1/00—Arrangements for detecting or preventing errors in the information received
- H04L1/12—Arrangements for detecting or preventing errors in the information received by using return channel
- H04L1/16—Arrangements for detecting or preventing errors in the information received by using return channel in which the return channel carries supervisory signals, e.g. repetition request signals
- H04L1/18—Automatic repetition systems, e.g. Van Duuren systems
- H04L1/1803—Stop-and-wait protocols
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L1/00—Arrangements for detecting or preventing errors in the information received
- H04L1/12—Arrangements for detecting or preventing errors in the information received by using return channel
- H04L1/16—Arrangements for detecting or preventing errors in the information received by using return channel in which the return channel carries supervisory signals, e.g. repetition request signals
- H04L1/18—Automatic repetition systems, e.g. Van Duuren systems
- H04L1/1867—Arrangements specially adapted for the transmitter end
- H04L1/1874—Buffer management
- H04L1/1877—Buffer management for semi-reliable protocols, e.g. for less sensitive applications like streaming video
Definitions
- This invention relates generally to telecommunication systems, and, more particularly, to wireless telecommunication systems.
- UMTS Universal Mobile Telecommunication System
- UE user equipment
- DCH dedicated channel
- Most transmissions from the mobile unit are scheduled by the base station, which may result in scheduling gain.
- the mobile unit can autonomously transmit messages at any time without being scheduled by the base station.
- the autonomous transmission may cause interference to other channels associated with other mobile units, thus increasing the rise-over-thermal at the base station, as well as other undesirable effects that may offset a portion of the scheduling gain.
- the autonomous transmissions are typically limited to certain rates, at least in part to limit the potential interference and control the rise-over-thermal.
- each mobile unit may transmit in autonomous mode at a minimum transmission rate of at least 8 kbps.
- the transmission power required of the mobile units may also be limited.
- the potential interference and rise-over-thermal may be kept with a desired range.
- the mobile unit may also transmit autonomously at higher bit rates with correspondingly higher channel power, such as a transmission power, if it is determined that the potential interference and/or rise-over-thermal are not above some threshold level.
- Future generations of mobile telecommunications standards may include an “enhanced” dedicated channel (EDCH).
- the enhanced dedicated channel may support one or more Transmission Time Intervals (TTIs), which may also be referred to as frame sizes.
- TTIs Transmission Time Intervals
- UMTS release 6 may support both a 10 ms TTI and a 2 ms TTI, although the 2 ms TTI is not mandatory.
- the reduced frame sizes supported by future generations of mobile telecommunication standards may require a higher data transmission rate and, consequently, higher mobile unit transmission powers. For example, using typical assumed values for the size of a Radio Link Control (RLC) Packet Data Unit (PDU) and associated transmission overhead, the minimum data transfer rate necessary to transmit a data packet in a 2 ms TTI would be about 176 kbps. At this rate, the required channel power, or E c , may be higher than what could be supported by the mobile unit without causing unacceptably high levels of interference and/or rise-over-thermal at a
- the present invention is directed to addressing the effects of one or more of the problems set forth above.
- a method for wireless telecommunication of a message having a block size. The method includes determining a number of retransmissions of the message based upon the block size.
- FIG. 1 conceptually illustrates one embodiment of a wireless telecommunication system, in accordance with the present invention
- FIG. 2A conceptually illustrates a first embodiment of an uplink channel and a downlink channel, such as may be used to transmit packets in the wireless telecommunication system shown in FIG. 1 , in accordance with the present invention
- FIG. 2B conceptually illustrates a second embodiment of an uplink channel and a downlink channel, such as may be used to transmit packets in the wireless telecommunication system shown in FIG. 1 , in accordance with the present invention
- FIG. 3 conceptually illustrates a method 300 of transmitting and/or retransmitting messages based on block size, in accordance with the present invention.
- the software implemented aspects of the invention are typically encoded on some form of program storage medium or implemented over some type of transmission medium.
- the program storage medium may be magnetic (e.g., a floppy disk or a hard drive) or optical (e.g., a compact disk read only memory, or “CD ROM”), and may be read only or random access.
- the transmission medium may be twisted wire pairs, coaxial cable, optical fiber, or some other suitable transmission medium known to the art. The invention is not limited by these aspects of any given implementation.
- FIG. 1 conceptually illustrates one embodiment of a wireless telecommunication system 100 .
- a mobile unit 105 and a base station 110 in a cell 115 are communicatively coupled by a wireless telecommunication link 120 .
- a wireless telecommunication link 120 Although only a single mobile unit 105 and a single base station 110 are depicted in FIG. 1 , persons, of ordinary skill in the art should appreciate that the present invention is not limited to one mobile unit 105 and one base station 110 .
- additional mobile units 105 and/or base stations 110 may be included in the wireless telecommunication system 100 .
- the wireless telecommunication system 100 may include a radio network controller, a mobile switching center, as well as various routers, switches, hubs, and the like.
- the wireless telecommunication link 120 supports one or more channels that may be used to transmit messages between the mobile unit 105 and the base station 110 .
- the channels may be defined in any desirable manner.
- the channels may be determined according to protocols such as Universal Mobile Telecommunication System (UMTS), Code Division Multiple Access (CDMA), Time Division Multiple Access (TDMA), Personal Communication System (PCS), Global System for Mobile telecommunications (GSM), and the like.
- UMTS Universal Mobile Telecommunication System
- CDMA Code Division Multiple Access
- TDMA Time Division Multiple Access
- PCS Personal Communication System
- GSM Global System for Mobile telecommunications
- the wireless telecommunication link 120 may also support one or more packet retransmission and/or error recovery protocols.
- the wireless telecommunication link 120 may support an Automatic Repeat Request (ARQ) protocol, a Hybrid Automatic Repeat Request (HARQ) protocol, and the like.
- ARQ Automatic Repeat Request
- HARQ Hybrid Automatic Repeat Request
- FIG. 2A conceptually illustrates a first embodiment of an uplink channel 200 and a downlink channel 205 , such as may be used to transmit packets between the mobile unit 105 and the base station 110 shown in FIG. 1 .
- the uplink channel may be an enhanced dedicated channel (E-DCH), such as defined by UMTS release 6 .
- E-DCH enhanced dedicated channel
- a first packet 210 is transmitted on the uplink channel 200 , but the receiving device is unable to detect and/or decode the first packet 210 , so a negative acknowledgement (NAK) 215 is transmitted on the downlink channel 205 .
- NAK negative acknowledgement
- the first packet 210 is retransmitted on the uplink channel 205 .
- the retransmitted first packet 210 is successfully detected and decoded, and so an acknowledgement (ACK) 220 is transmitted on the downlink channel 205 .
- ACK acknowledgement
- a second packet 225 may be transmitted on the uplink channel 205 in response to receiving the ACK 220 .
- the signals received in the transmitted and retransmitted first packets 210 are stored in the receiving device and combined to improve the likelihood of the successful decoding of the first packet 210 .
- the number of retransmissions may also be limited.
- the first packet 210 may be retransmitted at most one time. If the first packet 210 is not successfully received after one retransmission, the first packet may be dropped.
- transmissions on the wireless telecommunication link 120 are typically scheduled by the base station 110 .
- the mobile unit 105 may also transmit messages that are not scheduled by the base station 110 .
- Unscheduled transmissions from the mobile unit 105 will be referred to hereinafter as “autonomous” transmissions, in accordance with common usage in the art.
- the mobile unit 105 may autonomously transmit messages having a block size that is approximately equal to a minimum block size for a particular Transport Format Combination (TFC), as defined by the relevant standard(s).
- TFC Transport Format Combination
- the messages sent via autonomous transmissions may contain information that is used to maintain the wireless telecommunication link 120 while the mobile unit 105 is in an idle state.
- a number of message retransmissions is determined based upon the block size of the message.
- messages having a block size about equal to a minimum transport block size may be retransmitted for a first number of times and messages having a block size greater than the minimum transport block size may be retransmitted for a second number of times, where the second number is smaller than the first number.
- an autonomous transmission having a block size about equal to the minimum block size may be retransmitted up to three times by the mobile unit 105 , whereas another transmission having a block size that is greater than the minimum block size may only be retransmitted once by the mobile unit 105 .
- a threshold block size may be determined such that messages having a block size less than or about equal to the threshold transport block size may be retransmitted for a first number of times and messages having a block size greater than the threshold transport block size may be retransmitted for a second number of times, where the second number is smaller than the first number.
- the additional retransmissions of messages having a block size less than or about equal to the threshold transport block size may increase delay times associated with these messages.
- the threshold size may be determined such that the threshold transport block size corresponds approximately to an expected minimum size of blocks that contain delay-sensitive information, such as voice packets.
- a power for the transmitted and/or retransmitted messages may also be determined based on the number of retransmissions and the block size.
- the transmission power of the messages having a block size about equal to a minimum transport block size (or equal to or below a threshold block size) may be lower than the power used to transmit messages having a block size above the minimum transport block size (or the threshold block size).
- a message having a block size above the minimum transport block size (or the threshold block size) may be transmitted with the power of one Watt, which should be sufficient to allow the message to be decoded after one transmission.
- messages having a block size about equal to a minimum transport block size (or equal to or below a threshold block size) may be transmitted with the power of approximately 0.25 Watts during each try, which should allow these messages to be decoded after one transmission followed by three retransmissions.
- a minimum transport block size or equal to or below a threshold block size
- known effects, such as time diversity gain achieved by message retransmissions, may also permit somewhat lower channel (or transmission) power so that messages can be decoded successfully after one transmission and three retransmissions.
- the number of retransmissions and/or the transmission power may be determined at any desirable location. In one embodiment, the number of retransmissions and/or the transmission power is determined at a central location such as a radio network controller (not shown). Information indicative of the number of retransmissions and/or the channel power is then transmitted to the mobile unit 105 and/or the base station 110 . For example, information indicative of the number of retransmissions and/or the transmission power may be sent to the base station 110 via a wired network and then the base stations may send information indicative of the number of retransmissions and/or the transmission power to the mobile unit 105 via the wireless telecommunication link 120 .
- FIG. 2B conceptually illustrates a second embodiment of an uplink channel 250 and a downlink channel 255 , such as may be used to transmit packets between the mobile unit 105 and the base station 110 shown in FIG. 1 .
- the uplink channel may be an enhanced dedicated channel (E-DCH), such as defined by UMTS release 6 .
- E-DCH enhanced dedicated channel
- a packet 260 ( 1 ) is transmitted on the uplink channel 250 , but the receiving device is unable to detect and/or decode the packet 260 ( 1 ), so a negative acknowledgement (NAK) 265 ( 1 ) is transmitted on the downlink channel 255 .
- NAK negative acknowledgement
- the packet 260 ( 1 ) may be transmitted at a reduced power that may make it difficult for the packet 260 ( 1 ) to be decoded.
- the information provided by the signal associated with the transmitted packet 260 ( 1 ) is stored.
- the packet 260 ( 2 ) Upon receipt of the NAK 265 ( 1 ), the packet 260 ( 2 ) is retransmitted on the uplink channel 255 .
- the stored information provided by the signal associated with the transmitted packet 260 ( 1 ) is combined with information provided by the signal associated with the retransmitted packet 260 ( 2 ).
- the receiving device is unable to detect and/or decode the packet 260 ( 1 - 2 ), so a NAK 265 ( 2 ) is transmitted on the downlink channel 255 .
- the information provided by the signal associated with the retransmitted packet 260 ( 2 ) is stored.
- the packet 260 ( 3 ) Upon receipt of the NAK 265 ( 2 ), the packet 260 ( 3 ) is retransmitted on the uplink channel 255 .
- the stored information provided by the signal associated with the transmitted packet 260 ( 1 ) is combined with information provided by the signal associated with the retransmitted packets 260 ( 2 - 3 ).
- the receiving device is unable to detect and/or decode the packet 260 ( 1 - 3 ), so a NAK 265 ( 3 ) is transmitted on the downlink channel 255 .
- the information provided by the signal associated with the retransmitted packet 260 ( 3 ) is stored.
- the packet 260 ( 4 ) Upon receipt of the NAK 265 ( 3 ), the packet 260 ( 4 ) is retransmitted on the uplink channel 255 .
- the stored information provided by the signal associated with the transmitted packet 260 ( 1 ) is combined with information provided by the signal associated with the retransmitted packets 260 ( 2 - 4 ).
- the receiving device is able to detect and decode the packet 260 ( 1 - 4 ), so an ACK 270 is transmitted on the downlink channel 255 .
- the accumulated channel energy associated with the transmitted and retransmitted packets 260 ( 1 - 4 ) may be sufficient to allow the packets 260 ( 1 - 4 ) to be detected and decoded.
- FIG. 3 conceptually illustrates a method 300 of transmitting and/or retransmitting messages based on block size.
- the number of retransmissions (N ret ) is determined (at 310 ) based on a block size of a message, as discussed in detail above.
- a power associated with transmission of the message may also be determined (at 320 ).
- the message is then transmitted (at 330 ) at the determined transmission power. If an acknowledgement (ACK) is received (at 340 ), the method 300 ends (at 350 ).
- ACK acknowledgement
- NAK negative acknowledgement
- the effective data transport rate for messages having a block size about equal to a minimum transport block size (or equal to or below a threshold block size) may be reduced.
- a minimum transport block size or equal to or below a threshold block size
- the effective data transfer rate to transmit a data packet in a 2 ms Transmission Time Interval (TTI) would be reduced to about 44 kbps when one transmission and three retransmissions are used.
- the effective data transfer rate to transmit a data packet in a 2 ms TTI would be reduced to about 11 kbps when one transmission and five retransmissions are used.
Landscapes
- Engineering & Computer Science (AREA)
- Computer Networks & Wireless Communication (AREA)
- Signal Processing (AREA)
- Quality & Reliability (AREA)
- Multimedia (AREA)
- Mobile Radio Communication Systems (AREA)
- Detection And Prevention Of Errors In Transmission (AREA)
Abstract
Description
Claims (12)
Priority Applications (6)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US10/942,618 US7873070B2 (en) | 2004-09-16 | 2004-09-16 | Determining a number of automatic request retransmissions based on block size |
DE602005005755T DE602005005755T2 (en) | 2004-09-16 | 2005-09-14 | Determination of a hybrid repeat request number depending on the block size |
EP05255603A EP1638241B1 (en) | 2004-09-16 | 2005-09-14 | Determining a number of automatic request retransmissions based on block size |
CN200510104086.3A CN1750438B (en) | 2004-09-16 | 2005-09-15 | Wireless communication method of automatic request retransmissions based on block size |
JP2005270425A JP5242008B2 (en) | 2004-09-16 | 2005-09-16 | Determining the number of automatic request retransmissions based on block size |
KR1020050086917A KR101148015B1 (en) | 2004-09-16 | 2005-09-16 | Determining a number of automatic request retransmissions based on block size |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US10/942,618 US7873070B2 (en) | 2004-09-16 | 2004-09-16 | Determining a number of automatic request retransmissions based on block size |
Publications (2)
Publication Number | Publication Date |
---|---|
US20060059399A1 US20060059399A1 (en) | 2006-03-16 |
US7873070B2 true US7873070B2 (en) | 2011-01-18 |
Family
ID=35276056
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US10/942,618 Active 2028-04-29 US7873070B2 (en) | 2004-09-16 | 2004-09-16 | Determining a number of automatic request retransmissions based on block size |
Country Status (6)
Country | Link |
---|---|
US (1) | US7873070B2 (en) |
EP (1) | EP1638241B1 (en) |
JP (1) | JP5242008B2 (en) |
KR (1) | KR101148015B1 (en) |
CN (1) | CN1750438B (en) |
DE (1) | DE602005005755T2 (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20110143804A1 (en) * | 2009-12-16 | 2011-06-16 | Mats Blomgren | Power Loop Control Method and Apparatus |
Families Citing this family (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US8010115B2 (en) * | 2005-12-14 | 2011-08-30 | Telefonaktiebolaget Lm Ericsson (Publ) | Method for reducing uplink traffic load on transport network at basestation during soft handover |
US20070189304A1 (en) * | 2006-01-27 | 2007-08-16 | Nokia Corporation | MAC-driven transport block size selection at a physical layer |
JP4886849B2 (en) * | 2006-06-22 | 2012-02-29 | エルジー エレクトロニクス インコーポレイティド | Data retransmission method in a mobile communication system |
CN101272612A (en) * | 2007-03-23 | 2008-09-24 | 中兴通讯股份有限公司 | Method for drifting wireless network controller reporting transmission time spacing nonsupport ability |
US8179915B2 (en) | 2007-06-28 | 2012-05-15 | Lantiq Deutschland Gmbh | System and method for transmitting and retransmitting data |
JP5199350B2 (en) * | 2007-07-04 | 2013-05-15 | テレフオンアクチーボラゲット エル エム エリクソン(パブル) | User terminal power shortage display |
US8441981B2 (en) * | 2008-02-14 | 2013-05-14 | Qualcomm Incorporated | Exploiting known rate matching information in blind decoding of downlink wireless data transmissions |
US9345573B2 (en) | 2012-05-30 | 2016-05-24 | Neovasc Tiara Inc. | Methods and apparatus for loading a prosthesis onto a delivery system |
CA2877000C (en) | 2012-06-22 | 2019-08-06 | Huawei Technologies Co., Ltd. | System and method for uplink mimo transmission |
US10678637B2 (en) * | 2017-01-10 | 2020-06-09 | Qualcomm Incorporated | Techniques to improve data transfer reliability |
US11817958B2 (en) * | 2019-09-05 | 2023-11-14 | Apple Inc. | MAC-based hybrid automatic repeat request (HARQ) |
CN111082901B (en) * | 2019-11-21 | 2022-05-13 | 深圳前海环融联易信息科技服务有限公司 | Intelligent message sending method and device, computer equipment and storage medium |
Citations (13)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP0820167A2 (en) | 1996-07-18 | 1998-01-21 | Matsushita Electric Industrial Co., Ltd. | Control method for selective repeat retransmission protocols |
US20020019965A1 (en) * | 1997-09-30 | 2002-02-14 | Harry Bims | Arq method for wireless communication |
US20020172192A1 (en) * | 2001-03-09 | 2002-11-21 | Denso Corporation | ARQ parameter retransmission control for variable data rate channels |
WO2003096150A2 (en) | 2002-05-06 | 2003-11-20 | Qualcomm, Incorporated | Method and apparatus for augmenting physical layer arq in a wireless data communication system |
US20040085934A1 (en) * | 2002-11-01 | 2004-05-06 | Krishna Balachandran | Flexible transmission method for wireless communications |
US20040162083A1 (en) | 2003-02-18 | 2004-08-19 | Tao Chen | Scheduled and autonomous transmission and acknowledgement |
US20040160924A1 (en) * | 2001-11-19 | 2004-08-19 | Narayan Anand P. | Systems and methods for parallel signal cancellation |
US20040190540A1 (en) * | 2002-12-27 | 2004-09-30 | Motoharu Miyake | Transmission control method and system |
US20040228313A1 (en) * | 2003-05-16 | 2004-11-18 | Fang-Chen Cheng | Method of mapping data for uplink transmission in communication systems |
US20040240424A1 (en) * | 2003-03-06 | 2004-12-02 | Mo-Han Fong | Reverse link enhancement for CDMA 2000 release D |
US20050002363A1 (en) * | 2003-07-02 | 2005-01-06 | Cheng Mark W. | Apparatus, and associated method, for facilitating retransmission of data packets in a packet radio communication system that utilizes a feedback acknowledgment scheme |
US20060092972A1 (en) * | 2002-08-13 | 2006-05-04 | Matsushita Electric Indutrial Co | Multiple harq processes hangling method |
US20070111747A1 (en) * | 2003-09-08 | 2007-05-17 | Qualcomm Incorporated | Apparatus, system, and method for managing reverse link communication |
Family Cites Families (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE3377176D1 (en) * | 1983-01-31 | 1988-07-28 | Nihon Sanmo Dyeing Co | Electrically conducting material and method of preparing same |
US5146455A (en) * | 1990-12-17 | 1992-09-08 | At&T Bell Laboratories | Wide range mixed rate TDM bus using a multiple of time slot interchange circuit switches |
JP2772206B2 (en) * | 1992-09-25 | 1998-07-02 | エヌ・ティ・ティ移動通信網株式会社 | Data transmission method using automatic repeat request |
JPH10190734A (en) * | 1996-12-25 | 1998-07-21 | Fuji Xerox Co Ltd | Packet transfer device/method |
US6907005B1 (en) * | 2000-07-24 | 2005-06-14 | Telefonaktiebolaget L M Ericsson (Publ) | Flexible ARQ for packet data transmission |
KR100876765B1 (en) * | 2002-05-10 | 2009-01-07 | 삼성전자주식회사 | Apparatus for retransmitting data in mobile communication system and method thereof |
US6987780B2 (en) * | 2002-06-10 | 2006-01-17 | Qualcomm, Incorporated | RLP retransmission for CDMA communication systems |
JP2005244668A (en) * | 2004-02-26 | 2005-09-08 | Sanyo Electric Co Ltd | Communication apparatus and communication method |
-
2004
- 2004-09-16 US US10/942,618 patent/US7873070B2/en active Active
-
2005
- 2005-09-14 DE DE602005005755T patent/DE602005005755T2/en active Active
- 2005-09-14 EP EP05255603A patent/EP1638241B1/en not_active Ceased
- 2005-09-15 CN CN200510104086.3A patent/CN1750438B/en not_active Expired - Fee Related
- 2005-09-16 JP JP2005270425A patent/JP5242008B2/en active Active
- 2005-09-16 KR KR1020050086917A patent/KR101148015B1/en active IP Right Grant
Patent Citations (14)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP0820167A2 (en) | 1996-07-18 | 1998-01-21 | Matsushita Electric Industrial Co., Ltd. | Control method for selective repeat retransmission protocols |
US20020019965A1 (en) * | 1997-09-30 | 2002-02-14 | Harry Bims | Arq method for wireless communication |
US20020172192A1 (en) * | 2001-03-09 | 2002-11-21 | Denso Corporation | ARQ parameter retransmission control for variable data rate channels |
US20040160924A1 (en) * | 2001-11-19 | 2004-08-19 | Narayan Anand P. | Systems and methods for parallel signal cancellation |
WO2003096150A2 (en) | 2002-05-06 | 2003-11-20 | Qualcomm, Incorporated | Method and apparatus for augmenting physical layer arq in a wireless data communication system |
US20060092972A1 (en) * | 2002-08-13 | 2006-05-04 | Matsushita Electric Indutrial Co | Multiple harq processes hangling method |
US20040085934A1 (en) * | 2002-11-01 | 2004-05-06 | Krishna Balachandran | Flexible transmission method for wireless communications |
US20040190540A1 (en) * | 2002-12-27 | 2004-09-30 | Motoharu Miyake | Transmission control method and system |
US20040162083A1 (en) | 2003-02-18 | 2004-08-19 | Tao Chen | Scheduled and autonomous transmission and acknowledgement |
US7155236B2 (en) * | 2003-02-18 | 2006-12-26 | Qualcomm Incorporated | Scheduled and autonomous transmission and acknowledgement |
US20040240424A1 (en) * | 2003-03-06 | 2004-12-02 | Mo-Han Fong | Reverse link enhancement for CDMA 2000 release D |
US20040228313A1 (en) * | 2003-05-16 | 2004-11-18 | Fang-Chen Cheng | Method of mapping data for uplink transmission in communication systems |
US20050002363A1 (en) * | 2003-07-02 | 2005-01-06 | Cheng Mark W. | Apparatus, and associated method, for facilitating retransmission of data packets in a packet radio communication system that utilizes a feedback acknowledgment scheme |
US20070111747A1 (en) * | 2003-09-08 | 2007-05-17 | Qualcomm Incorporated | Apparatus, system, and method for managing reverse link communication |
Non-Patent Citations (1)
Title |
---|
European Search Report EP 05 25 5603 dated Nov. 16, 2005. |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20110143804A1 (en) * | 2009-12-16 | 2011-06-16 | Mats Blomgren | Power Loop Control Method and Apparatus |
US8588839B2 (en) * | 2009-12-16 | 2013-11-19 | Telefonaktiebolaget L M Ericsson (Publ) | Power loop control method and apparatus |
Also Published As
Publication number | Publication date |
---|---|
DE602005005755T2 (en) | 2009-04-30 |
KR101148015B1 (en) | 2012-05-25 |
CN1750438A (en) | 2006-03-22 |
DE602005005755D1 (en) | 2008-05-15 |
JP2006087121A (en) | 2006-03-30 |
KR20060051393A (en) | 2006-05-19 |
EP1638241B1 (en) | 2008-04-02 |
EP1638241A1 (en) | 2006-03-22 |
CN1750438B (en) | 2014-03-26 |
US20060059399A1 (en) | 2006-03-16 |
JP5242008B2 (en) | 2013-07-24 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP1638241B1 (en) | Determining a number of automatic request retransmissions based on block size | |
EP1638240A1 (en) | Selecting a subset of automatic request retransmission processes | |
EP3413489B1 (en) | Fountain harq for reliable low latency communication | |
US9356739B2 (en) | Method and system for providing autonomous retransmissions in a wireless communication system | |
US9763231B2 (en) | Fixed HS-DSCH or E-DCH allocation for VOIP (or HS-DSCH without HS-SCCH/E-DCH without E-DPCCH) | |
JP4639237B2 (en) | Improvement of high-speed uplink packet access method | |
US8588200B2 (en) | Wireless communication system, wireless communication method, and wireless communication apparatus | |
RU2373649C2 (en) | Mobile telecommunication system, radio network controller, mobile system and base station of radio network | |
US20070109964A1 (en) | Method and apparatus for transmitting/receiving control information of user equipment for uplink data transmission | |
EP1363422B1 (en) | A method of managing negative acknowledgement responses | |
US20090137258A1 (en) | Provision of downlink packet access services to user equipment in spread spectrum communication network | |
US20060221885A1 (en) | Power de-boosting on the control channel | |
WO2005071875A1 (en) | Method of harq retransmission timing control | |
US7894845B2 (en) | Transmission power control method, mobile station, radio base station and radio network controller | |
US7664141B2 (en) | Method and device for decreasing a transmission delay in a multi-channel data transmission | |
US7561849B2 (en) | Method of power control and acknowledgement control for F-ACKCH | |
US9686048B2 (en) | Delayed automatic repeat request (ARQ) acknowledgment | |
US20070226491A1 (en) | Detecting a reverse rate indicator channel | |
KR20080045386A (en) | Apparatus and method for transmitting data in a communication system |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
AS | Assignment |
Owner name: LUCENT TECHNOLOGIES INC., NEW JERSEY Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:HU, TECK;YAN, YIFEI;SIGNING DATES FROM 20050107 TO 20050126;REEL/FRAME:016221/0080 Owner name: LUCENT TECHNOLOGIES INC., NEW JERSEY Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:HU, TECK;YAN, YIFEI;REEL/FRAME:016221/0080;SIGNING DATES FROM 20050107 TO 20050126 |
|
AS | Assignment |
Owner name: ALCATEL-LUCENT USA INC., NEW JERSEY Free format text: MERGER;ASSIGNOR:LUCENT TECHNOLOGIES INC.;REEL/FRAME:025404/0423 Effective date: 20081101 |
|
FEPP | Fee payment procedure |
Free format text: PAYOR NUMBER ASSIGNED (ORIGINAL EVENT CODE: ASPN); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY |
|
STCF | Information on status: patent grant |
Free format text: PATENTED CASE |
|
AS | Assignment |
Owner name: CREDIT SUISSE AG, NEW YORK Free format text: SECURITY INTEREST;ASSIGNOR:ALCATEL-LUCENT USA INC.;REEL/FRAME:030510/0627 Effective date: 20130130 |
|
FPAY | Fee payment |
Year of fee payment: 4 |
|
AS | Assignment |
Owner name: ALCATEL-LUCENT USA INC., NEW JERSEY Free format text: RELEASE BY SECURED PARTY;ASSIGNOR:CREDIT SUISSE AG;REEL/FRAME:033950/0001 Effective date: 20140819 |
|
MAFP | Maintenance fee payment |
Free format text: PAYMENT OF MAINTENANCE FEE, 8TH YEAR, LARGE ENTITY (ORIGINAL EVENT CODE: M1552) Year of fee payment: 8 |
|
MAFP | Maintenance fee payment |
Free format text: PAYMENT OF MAINTENANCE FEE, 12TH YEAR, LARGE ENTITY (ORIGINAL EVENT CODE: M1553); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY Year of fee payment: 12 |