US7850681B2 - Cryoplasty device and method - Google Patents

Cryoplasty device and method Download PDF

Info

Publication number
US7850681B2
US7850681B2 US11357938 US35793806A US7850681B2 US 7850681 B2 US7850681 B2 US 7850681B2 US 11357938 US11357938 US 11357938 US 35793806 A US35793806 A US 35793806A US 7850681 B2 US7850681 B2 US 7850681B2
Authority
US
Grant status
Grant
Patent type
Prior art keywords
lesion
balloon
lumen
catheter
cryoplasty
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active, expires
Application number
US11357938
Other versions
US20060178663A1 (en )
Inventor
Daniel M. Lafontaine
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Boston Scientific Scimed Inc
Original Assignee
Boston Scientific Scimed Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Grant date

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B18/00Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
    • A61B18/02Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by cooling, e.g. cryogenic techniques
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21BMANUFACTURE OF IRON OR STEEL
    • C21B13/00Making spongy iron or liquid steel, by direct processes
    • C21B13/0033In fluidised bed furnaces or apparatus containing a dispersion of the material
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B23/00Obtaining nickel or cobalt
    • C22B23/02Obtaining nickel or cobalt by dry processes
    • C22B23/021Obtaining nickel or cobalt by dry processes by reduction in solid state, e.g. by segregation processes
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B5/00General methods of reducing to metals
    • C22B5/02Dry methods smelting of sulfides or formation of mattes
    • C22B5/12Dry methods smelting of sulfides or formation of mattes by gases
    • C22B5/14Dry methods smelting of sulfides or formation of mattes by gases fluidised material
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B2017/00017Electrical control of surgical instruments
    • A61B2017/00022Sensing or detecting at the treatment site
    • A61B2017/00084Temperature
    • A61B2017/00088Temperature using thermistors
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B17/00234Surgical instruments, devices or methods, e.g. tourniquets for minimally invasive surgery
    • A61B2017/00292Surgical instruments, devices or methods, e.g. tourniquets for minimally invasive surgery mounted on or guided by flexible, e.g. catheter-like, means
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B2017/00535Surgical instruments, devices or methods, e.g. tourniquets pneumatically or hydraulically operated
    • A61B2017/00557Surgical instruments, devices or methods, e.g. tourniquets pneumatically or hydraulically operated inflatable
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B17/22Implements for squeezing-off ulcers or the like on the inside of inner organs of the body; Implements for scraping-out cavities of body organs, e.g. bones; Calculus removers; Calculus smashing apparatus; Apparatus for removing obstructions in blood vessels, not otherwise provided for
    • A61B2017/22001Angioplasty, e.g. PCTA
    • A61B2017/22002Angioplasty, e.g. PCTA preventing restenosis
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B18/00Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
    • A61B2018/00053Mechanical features of the instrument of device
    • A61B2018/00059Material properties
    • A61B2018/00089Thermal conductivity
    • A61B2018/00101Thermal conductivity low, i.e. thermally insulating
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B18/00Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
    • A61B2018/00053Mechanical features of the instrument of device
    • A61B2018/00214Expandable means emitting energy, e.g. by elements carried thereon
    • A61B2018/0022Balloons
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B18/00Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
    • A61B18/02Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by cooling, e.g. cryogenic techniques
    • A61B2018/0212Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by cooling, e.g. cryogenic techniques using an instrument inserted into a body lumen, e.g. catheter
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M25/00Catheters; Hollow probes
    • A61M25/10Balloon catheters
    • A61M25/104Balloon catheters used for angioplasty

Abstract

A cryoplasty catheter and method for preventing or slowing reclosure of a lesion following angioplasty. The cryoplasty catheter includes a shaft having proximal and distal ends and a dilatation balloon disposed at the distal end. An intake lumen and exhaust lumen are defined by the shaft to deliver coolant to the balloon and to exhaust or drain coolant from the balloon. The method in accordance with the present invention includes cooling a lesion to aid in remodeling the lesion through dilatation and/or freezing a portion of the lesion adjacent the dilatation balloon to kill cells within the lesion to prevent or retard restenosis.

Description

CROSS REFERENCE TO RELATED APPLICATIONS

This application is a continuation of U.S. application Ser. No. 10/659,116, filed Sep. 10, 2003 now U.S. Pat. No. 7,022,120; which is a continuation of U.S. application Ser. No. 09/916,147, filed Jul. 25, 2001 and issued as U.S. Pat. No. 6,648,878 on Nov. 18, 2003; which is a continuation of U.S. application Ser. No. 09/229,080, filed Jan. 12, 1999 and issued as U.S. Pat. No. 6,290,696 on Sep. 18, 2001; which is a divisional of U.S. application Ser. No. 08/812,804, filed Mar. 6, 1997 and issued as U.S. Pat. No. 5,868,735 on Feb. 9, 1999, the contents of which are hereby incorporated by reference.

FIELD OF THE INVENTION

The present invention pertains generally to the field of angioplasty and, in particular, to a form of angioplasty involving lesion cooling.

BACKGROUND

Conventional angioplasty has been preformed for several decades, prolonging the lives of an ever increasing number of patients. Angioplasty procedures involves the dilatation of a balloon placed across a lesion in a coronary artery. Dilatation of the balloon in turn dilates the lesion, opening the artery for increased blood flow. In some cases, however, the goal of the angioplasty procedure is, in whole or in part, frustrated by complete or partial reclosure of the artery at the lesion. Two mechanisms are believed to be principally responsible for reclosure of the artery, these are restenosis and recoil. Restenosis is believed to be caused by continued growth or regrowth of the smooth muscle cells associated with the lesion. Recoil is in part a mechanical process involving elastic rebound of the dilated lesion.

Several means have been disclosed for addressing the problem of restenosis. These include, among others, radiation treatments to slow or prevent smooth muscle cell proliferation associated with the restenotic process. Certain drug therapies have been proposed to prevent or slow restenosis.

Several means have also been developed to address the issue or recoil. One of the more significant developments in this area has been stents, which can be permanently deployed to mechanically hold open lesions. Although stents have been found to be highly effective, they may irritate the wall of a artery in which they are implanted. Some believe that this may encourage limited restenosis. Warming of the lesion during dilatation has also be disclosed to prevent or slow recoil. Warming the lesion is believed to soften the lesions such that it may be “remodeled” that is, thinned under low pressure. Heating of the lesion, however, is believed to cause an injury response which may cause some restenosis.

SUMMARY OF THE INVENTION

The present invention is directed at an apparatus and method for performing angioplasty and preventing or slowing the post-procedure reclosure of dilated lesion. The present invention cools the lesion to prevent or slow reclosure by the mechanisms of restenosis or recoil. A cryoplasty catheter is provided to cool the lesion to aid in remodeling the lesion to prevent or slow recoil. The present invention can also be used to cool the lesion to freeze a portion of the lesion tissue. This is believed to kill cells within the lesion which would promote restenosis.

A preferred embodiment of the cryoplasty catheter in accordance with the present invention includes a shaft having proximal and distal ends. The shaft defines an inflation lumen, coolant intake lumen and exhaust lumen therethrough. Each lumen has a proximal and distal end proximate the proximal and distal ends of the shaft respectively. A dilatation balloon is disposed at the distal end of the shaft and is in fluid communication with the inflation lumen. A chamber is disposed within the balloon and is in fluid communication with the intake and exhaust lumens. A source of coolant is connected to the proximal end of the shaft in fluid communication with the coolant intake lumen.

A thermo-resistive sensor can be disposed on the dilatation balloon to monitor the temperature of the lesion. A second thermo-resistive sensor can be disposed on the shaft to provide a control temperature reading.

In another preferred embodiment of the cryoplasty catheter in accordance with the present invention, the cryoplasty catheter includes a shaft having proximal and distal ends. The shaft defines an inflation lumen and a drain lumen therethrough. Each lumen has a proximal and a distal end proximate the proximal and distal ends of the shaft respectively. A dilatation balloon is disposed at the distal end of the shaft and is in fluid communication with the inflation and drain lumens. The cryoplasty catheter also includes a coolant source connected to the proximal end of the shaft in fluid communication with the inflation lumen.

This embodiment of the cryoplasty catheter can also include a thermo-resistive sensor disposed on the dilatation balloon. As well as the thermo-resistive sensor disposed on the balloon, a control sensor can be disposed on the catheter shaft.

A method of performing cryoplasty is also provided which includes the steps of advancing the cryoplasty catheter across a lesion, inflating the dilatation balloon to dilate the lesion, and delivering coolant to the balloon to cool the lesion. To aid in remodeling, the lesion adjacent the balloon can be cooled to between 10° C. and −10° C. A portion of the lesion adjacent the balloon can also be frozen to kill cells within the lesion which would otherwise promote restenosis. For enhanced effectiveness, freezing may be done by flash freezing the tissue for 20 to 60 seconds. The cells are preferably frozen at a temperature of between −20° C. and to −40° C.

The details of one or more embodiments of the invention are set forth in the accompanying drawings and the description below. Other features, objects, and advantages of the invention will be apparent from the description and drawings, and from the claims.

DESCRIPTION OF DRAWINGS

FIG. 1 is a side view of a cryoplasty catheter in accordance with the present invention;

FIG. 2 is a longitudinal cross-sectional view of the distal end of the cryoplasty catheter of FIG. 1;

FIG. 3 is an alternate embodiment of a cryoplasty catheter in accordance with the present invention; and

FIG. 4 is an alternative embodiment of a cryoplasty catheter in accordance with the present invention including a surrounding vacuum lumen.

Like reference symbols in the various drawings indicate like elements.

DETAILED DESCRIPTION OF THE INVENTION

Referring now the drawings wherein like reference numerals refer to like elements throughout the several views, FIG. 1 is a side view of a cryoplasty catheter 10 in accordance with the present invention. Shaft 12 has a proximal end and a distal end. A dilatation balloon 14 is disposed at the distal end of shaft 12. At the proximal end of shaft 12 is a manifold 16. Connected to manifold 16 is a pump 18, which can be hand pumped for inflating balloon 14. A coolant source 20 is also connected to manifold 16 which, as explained below, provides a supply of coolant to balloon 14. Catheter 10 can be provided with a thermo-resistive temperature sensor 22 for monitoring the temperature of a lesion and a thermo-resistive control sensor 24 connected to a monitor 26.

FIG. 2 is a longitudinal, cross-sectional view of the distal end of catheter 10 including the distal end of shaft 12 and balloon 14. Shaft 12 includes an outer tube 28 which defines an inflation lumen 30 in fluid communication with the interior balloon 14. A guidewire tube 32 defining a guidewire lumen 34 can extend through at least a portion of shaft 12 to distal of balloon 14. A marker ban 36 can be disposed on guidewire tube 32 within balloon 14.

Shaft 12 also includes a coolant intake tube 38 defining a coolant lumen 40 in fluid communication with a cooling a chamber 42 disposed within balloon 14. Shaft 12 also includes an exhaust or drain tube 44 which defines an exhaust or drain lumen 46 in fluid communication with chamber 42. At the distal end of tube 38 is an orifice 48 which preferably has a diameter smaller than that of an orifice 50 at the distal end of tube 44. The diameter of orifice 48 could be, for example, about 0.004 inches, or larger or smaller depending upon the diameter of orifice 50.

Those skilled in the art will recognize the various materials which can be advantageously used to make the catheter of the present invention. Those elements not found in conventional angioplasty catheter such as coolant intake tube 38, chamber 42 and exhaust tube 44 can also be made from materials known to those skilled in the art. For example, inlet tube 38 can be a hypotube or polyimide tube having an inside diameter of, for example, between 0.002 and 0.010 inches, but preferably between 0.002 and 0.10 inches. Exhaust tube 44 can be made from polyimide and have an inside diameter which is preferably greater than the inside diameter of inlet tube 38. The chamber 42 can be made from polyimide. These materials and dimensions should be viewed as exemplary only, as those skilled in the art would appreciate the applicability of alternative dimensions and materials for these elements.

FIG. 3 is a schematic view of another embodiment of a cryoplasty catheter in accordance with the present invention referred to by the numeral 100. Cryoplasty catheter 100 includes a shaft 112 having a proximal distal end and a distal end. A balloon dilatation balloon 114 is disposed at the distal end of shaft 112. Proximate the proximal end of shaft 112 is a pump 118 connected to a coolant source 120 which can include refrigeration for controlling the temperature of the coolant.

A guidewire tube 132 defines a guidewire lumen 134 extending through at least a portion of shaft 112 to the distal end of catheter 100. A coolant intake/inflation tube 138 having a proximal end and a distal end proximate the proximal and distal ends of shaft 112 defines a coolant/inflation lumen 140. Lumen 140 is in fluid communication with pump 118 proximate its proximal end and balloon 114 proximate its distal end. Shaft 112 also includes an exhaust/drain tube 144 defining a lumen 146 and having a proximal and distal end proximate the proximal and distal ends of shaft 112, respectively. The distal end of lumen 146 is in fluid communication with balloon 114. The proximal end of lumen 146 can be in fluid communication with the coolant source 120 for recycling of coolant, or may be discharged for disposal. Lumen 140 has a distal orifice 148 which is preferably smaller than a distal orifice 150 of lumen 146.

Those skilled in the art will recognize that there are numerous materials and methods of manufacture which would be suitable for production of catheter 100. Those elements of catheter 100 which are not typical of angioplasty catheters such as inflation/intake tube 138 and exhaust/drain tube 144 can be made as described above with respect to the corresponding elements of catheter 10. It should be noted however that tube 138 should be sized appropriately to serve its dual purpose as an inflation tube and coolant intake tube. Additionally, the sizes of tubes 138 and 144, as well as the corresponding elements of catheter 10 should be sized to take into account the physical properties of a particular coolant medium for example, the relative rate of heat transfer to the coolant medium from a lesion.

Another alternate embodiment 212 of a cryoplasty catheter in accordance with the present invention is shown in FIG. 4. The cryoplasty catheter 212 is essentially similar to catheter 12 shown in FIG. 2 except that a sheath 260 surrounds tube 28 to define an annular lumen 262 between sheath 260 and tube 28. Sheath 260 preferably extends from balloon 14 proximally to manifold 16. Manifold 16 for this embodiment can include an additional port in fluid communication with lumen 262. Except for the additional port, lumen 262 should be completely sealed such that a vacuum may be maintained within lumen 262 when a vacuum source is applied to the port. A vacuum can be created in lumen 262 during the procedure to provide insulation between the coolant and the patient. Sheath 262 can be made from biocompatible materials knows to those skilled in the art of catheter construction which are sufficiently rigid to prevent lumen 262 from collapsing when a vacuum is crated therein.

In use, dilatation balloon 14 of catheter 10 is advanced across a lesion in a conventional manner. Balloon 14 is dilated by forcing fluid into balloon 14 through inflation lumen 30 with pump 18. Coolant is then released into chamber 42 from a pressurized container or pump (not shown) to cool the adjacent lesion at a rate appropriate to the treatment goals described in more detail below. The coolant is discharged from chamber 42 through exhaust or drain lumen 46. The arrow in FIG. 1 proximate the manifold 16 shows coolant being discharged to the atmosphere from lumen 46. Coolant may be collected for recycling or disposal as desired.

In a preferred embodiment of the invention, the inflation fluid is a low freezing point liquid such as an ethanol mixture. The coolant is one which will provide with appropriate heat transfer characteristics consistent with the goals of treatment. Liquid N2 can be used as a general purpose coolant with catheter 10 and is particularly useful when freezing of cells within the lesion is desired. When liquid N2 is used in catheter 10, it can be transported to chamber 42 in the liquid phase where it evaporates at orifice 48 and exits through lumen 46 as a gas. Freon, N2O gas and CO2 gas can also be used as coolants. Other coolants could be used such as cold saline solution which would enter and exit chamber 42 as a liquid, Fluisol or a mixture of saline solution and ethanol. It is anticipated that coolants such as saline solution could be used with catheter 10 when rapid freezing of cells within a lesion is not a treatment goal. One skilled in the art would appreciate that other coolants could be used in a similar manner to achieve one or more of the treatment goals.

Temperature can be monitored by thermo-resistive sensors 22 and 24 either absolutely with pre-calibrated sensors and/or relatively between sensors 22 and 24. Depending on the treatment goals and temperature level monitored, the flow rate of the coolant into the catheter can be adjusted to raise or lower the temperature of the lesion.

The goal of cryoplasty treatment is to prevent or retard the reclosure of a dilated lesion by preventing or retarding restenosis and/or recoil of the lesion. Cooling the lesion to the near 0° C. is believed to change the characteristics of the lesions in such a way as to enhance remodeling by low pressure dilatation to prevent or retard recoil of the lesion. Further cooling to freeze the lesion is believed to create apoptosis of the lesion tissue, i.e., killing cells within the lesion.

In a preferred embodiment of the method in accordance with the present invention, a cryoplasty catheter such as one described above is used to dilate the lesion and slowly cool (for example, over a 1-5 minute period) it to reduce injury to healthy tissue while altering the plaque to be more susceptible to permanent, mechanical remodeling. The temperature of the lesion during dilatation is preferred to be about 0° C. to 20° C. such that the plaque characteristics are significantly altered, but normal healthy tissue has been injury preserved.

Alternatively or in addition to slow cooling to approximately 0° C. to 20° C. for enhanced remodeling, the lesion can be flash frozen to 0° C. to −40° C. for between 20 to 30 seconds while the balloon is still inflated. Saline or contrast injections may be utilized pre, or during freeze to prevent adjacent blood freezing from creating occlusive thrombus.

The mechanisms of restenosis and recoil are not fully understood. It is believed in the case of restenosis, that freezing and thrombus tissue injures the capillaries that supply the lesion tissue and promote muscle cell proliferation. With respect to recoil, it is believed that cooling the plaque makes it relatively very stiff and crystallized, thus being more susceptible to permanent remodeling.

Numerous characteristics and advantages of the invention covered by this document have been set fort in the foregoing description. It will be understood, however, that this disclosure is, in many respects, only illustrative. Changes may be made in details, particularly in matters of shape, size and arrangement of parts without exceeding the scope of the invention. The inventions's scope is, of course, defined in the language in which the appended claims are expressed.

A number of embodiments of the invention have been described. Nevertheless, it will be understood that various modifications may be made without departing from the spirit and scope of the invention.

Claims (15)

1. A cryoplasty catheter, comprising:
a shaft having proximal and distal ends, the shaft defining an inflation lumen, coolant intake lumen and exhaust lumen therethrough, each lumen having a proximal and distal end proximate the proximal and distal ends of the shaft respectively;
a dilatation balloon disposed at the distal end of the shaft and in fluid communication with the inflation lumen; and
a chamber disposed within the balloon and in fluid communication with the intake and exhaust lumens.
2. The cryoplasty catheter in accordance with claim 1, wherein the source of coolant connected to the proximal end of the shaft in fluid communication with the intake lumen.
3. The cryoplasty catheter in accordance with claim 2, wherein the coolant source contains liquid N2.
4. The cryoplasty catheter in accordance with claim 1, further comprising a thermo-resistive sensor disposed on the dilatation balloon.
5. The cryoplasty catheter in accordance with claim 4, further comprising a second thermo-resistive sensor disposed on the shaft.
6. The cryoplasty catheter in accordance with claim 1, wherein the shaft further defines a guidewire lumen.
7. The cryoplasty catheter in accordance with claim 1, wherein the shaft is at least in part surrounded by an insulating sheath which in part defines a vacuum lumen.
8. A method of performing cryoplasty, comprising the steps of:
advancing a dilatation balloon catheter across a lesion, the dilatation balloon catheter including a shaft having a proximal end and a distal end, the dilation balloon catheter also including a dilatation balloon disposed adjacent the distal end of the shaft;
inflating the dilation balloon to dilate the lesion;
delivering a coolant to the dilation balloon to cool the lesion to aid in mechanical remodeling of the lesion by dilatation; and
freezing a portion of the lesion adjacent to the dilation balloon to kill cells within the lesion, wherein the freezing is by flash freezing for 20 to 60 seconds to enhance the effectiveness of the freezing step.
9. The cryoplasty method in accordance with claim 8, wherein the lesion adjacent the balloon is cooled to between 20° C. and 0° C. for aiding in remodeling of the lesion.
10. The cryoplasty method in accordance with claim 8, wherein the cells are frozen at a temperature of between 0° C. to −40° C.
11. The cryoplasty method in accordance with claim 8, wherein the dilatation catheter further includes a coolant intake lumen, an inflation lumen, exhaust lumen and a separate coolant chamber within the balloon to contain coolant separately from balloon inflation fluid, the chamber in fluid communication with the intake lumen and exhaust lumen.
12. A method of performing cryoplasty, comprising the steps of:
advancing a dilatation balloon catheter across a lesion, the dilatation balloon catheter including a shaft having a proximal end and a distal end, the shaft defining a coolant intake lumen, the dilation balloon catheter having a dilatation balloon in fluid communication with the coolant inlet lumen;
inflating the dilation balloon to dilate the lesion; and
delivering a coolant to the dilation balloon to freeze a portion of the lesion adjacent to the dilation balloon to kill cells within the lesion, wherein the cells are frozen at a temperature of between −20° C. to −40° C.
13. The cryoplasty method in accordance with claim 12, wherein the dilatation catheter further includes an inflation lumen, exhaust lumen and a separate coolant chamber within the balloon to contain coolant separately from balloon inflation fluid, the chamber in fluid communication with the intake lumen and exhaust lumen.
14. The cryoplasty method in accordance with claim 12, further comprising the step of: delivering coolant to the balloon to cool the lesion to aid in mechanical remodeling of the lesion by dilatation.
15. The cryoplasty method in accordance with claim 14, wherein the lesion adjacent the balloon is cooled to between 10° C. and −10° C. for aiding in remodeling of the lesion.
US11357938 1997-03-06 2006-02-17 Cryoplasty device and method Active 2020-10-01 US7850681B2 (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
US08812804 US5868735A (en) 1997-03-06 1997-03-06 Cryoplasty device and method
US09229080 US6290696B1 (en) 1997-03-06 1999-01-12 Cryoplasty device and method
US09916147 US6648878B2 (en) 1997-03-06 2001-07-25 Cryoplasty device and method
US10659116 US7022120B2 (en) 1997-03-06 2003-09-10 Cryoplasty device and method
US11357938 US7850681B2 (en) 1997-03-06 2006-02-17 Cryoplasty device and method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US11357938 US7850681B2 (en) 1997-03-06 2006-02-17 Cryoplasty device and method
US12968049 US8088125B2 (en) 1997-03-06 2010-12-14 Cryoplasty device and method

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
US10659116 Continuation US7022120B2 (en) 1997-03-06 2003-09-10 Cryoplasty device and method

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US12968049 Continuation US8088125B2 (en) 1997-03-06 2010-12-14 Cryoplasty device and method

Publications (2)

Publication Number Publication Date
US20060178663A1 true US20060178663A1 (en) 2006-08-10
US7850681B2 true US7850681B2 (en) 2010-12-14

Family

ID=25210676

Family Applications (6)

Application Number Title Priority Date Filing Date
US08812804 Expired - Lifetime US5868735A (en) 1997-03-06 1997-03-06 Cryoplasty device and method
US09229080 Expired - Lifetime US6290696B1 (en) 1997-03-06 1999-01-12 Cryoplasty device and method
US09916147 Expired - Lifetime US6648878B2 (en) 1997-03-06 2001-07-25 Cryoplasty device and method
US10659116 Expired - Fee Related US7022120B2 (en) 1997-03-06 2003-09-10 Cryoplasty device and method
US11357938 Active 2020-10-01 US7850681B2 (en) 1997-03-06 2006-02-17 Cryoplasty device and method
US12968049 Expired - Lifetime US8088125B2 (en) 1997-03-06 2010-12-14 Cryoplasty device and method

Family Applications Before (4)

Application Number Title Priority Date Filing Date
US08812804 Expired - Lifetime US5868735A (en) 1997-03-06 1997-03-06 Cryoplasty device and method
US09229080 Expired - Lifetime US6290696B1 (en) 1997-03-06 1999-01-12 Cryoplasty device and method
US09916147 Expired - Lifetime US6648878B2 (en) 1997-03-06 2001-07-25 Cryoplasty device and method
US10659116 Expired - Fee Related US7022120B2 (en) 1997-03-06 2003-09-10 Cryoplasty device and method

Family Applications After (1)

Application Number Title Priority Date Filing Date
US12968049 Expired - Lifetime US8088125B2 (en) 1997-03-06 2010-12-14 Cryoplasty device and method

Country Status (5)

Country Link
US (6) US5868735A (en)
EP (1) EP0910295B1 (en)
DE (1) DE69841970D1 (en)
ES (1) ES2354597T3 (en)
WO (1) WO1998038934A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015079322A2 (en) 2013-11-26 2015-06-04 Newuro, B.V. Bladder tissue modification for overactive bladder disorders
US9277952B2 (en) 2011-02-01 2016-03-08 Channel Medsystems, Inc. Cryogenic treatment systems

Families Citing this family (256)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6464697B1 (en) * 1998-02-19 2002-10-15 Curon Medical, Inc. Stomach and adjoining tissue regions in the esophagus
US5868735A (en) * 1997-03-06 1999-02-09 Scimed Life Systems, Inc. Cryoplasty device and method
US5902299A (en) 1997-07-29 1999-05-11 Jayaraman; Swaminathan Cryotherapy method for reducing tissue injury after balloon angioplasty or stent implantation
US5971979A (en) 1997-12-02 1999-10-26 Odyssey Technologies, Inc. Method for cryogenic inhibition of hyperplasia
US6551349B2 (en) 1998-03-24 2003-04-22 Innercool Therapies, Inc. Selective organ cooling apparatus
US6830581B2 (en) * 1999-02-09 2004-12-14 Innercool Therspies, Inc. Method and device for patient temperature control employing optimized rewarming
US6991645B2 (en) * 1998-01-23 2006-01-31 Innercool Therapies, Inc. Patient temperature regulation method and apparatus
US6471717B1 (en) * 1998-03-24 2002-10-29 Innercool Therapies, Inc. Selective organ cooling apparatus and method
US20040220559A1 (en) * 2000-03-01 2004-11-04 Kramer Hans W. Preparation of working fluid for use in cryotherapies
US6312452B1 (en) 1998-01-23 2001-11-06 Innercool Therapies, Inc. Selective organ cooling catheter with guidewire apparatus and temperature-monitoring device
US6576002B2 (en) 1998-03-24 2003-06-10 Innercool Therapies, Inc. Isolated selective organ cooling method and apparatus
WO2003015672A1 (en) * 2001-08-15 2003-02-27 Innercool Therapies, Inc. Method and apparatus for patient temperature control employing administration of anti-shivering
US6491039B1 (en) 1998-01-23 2002-12-10 Innercool Therapies, Inc. Medical procedure
US6599312B2 (en) 1998-03-24 2003-07-29 Innercool Therapies, Inc. Isolated selective organ cooling apparatus
US6096068A (en) 1998-01-23 2000-08-01 Innercool Therapies, Inc. Selective organ cooling catheter and method of using the same
US6051019A (en) 1998-01-23 2000-04-18 Del Mar Medical Technologies, Inc. Selective organ hypothermia method and apparatus
US6869440B2 (en) * 1999-02-09 2005-03-22 Innercool Therapies, Inc. Method and apparatus for patient temperature control employing administration of anti-shivering agents
US6261312B1 (en) 1998-06-23 2001-07-17 Innercool Therapies, Inc. Inflatable catheter for selective organ heating and cooling and method of using the same
US6585752B2 (en) * 1998-06-23 2003-07-01 Innercool Therapies, Inc. Fever regulation method and apparatus
US6558412B2 (en) 1998-01-23 2003-05-06 Innercool Therapies, Inc. Selective organ hypothermia method and apparatus
US7371254B2 (en) * 1998-01-23 2008-05-13 Innercool Therapies, Inc. Medical procedure
US6464716B1 (en) 1998-01-23 2002-10-15 Innercool Therapies, Inc. Selective organ cooling apparatus and method
US6231595B1 (en) * 1998-03-31 2001-05-15 Innercool Therapies, Inc. Circulating fluid hypothermia method and apparatus
US6685732B2 (en) * 1998-03-31 2004-02-03 Innercool Therapies, Inc. Method and device for performing cooling- or cryo-therapies for, e.g., angioplasty with reduced restenosis or pulmonary vein cell necrosis to inhibit atrial fibrillation employing microporous balloon
US6905494B2 (en) 1998-03-31 2005-06-14 Innercool Therapies, Inc. Method and device for performing cooling- or cryo-therapies for, e.g., angioplasty with reduced restenosis or pulmonary vein cell necrosis to inhibit atrial fibrillation employing tissue protection
US7291144B2 (en) 1998-03-31 2007-11-06 Innercool Therapies, Inc. Method and device for performing cooling- or cryo-therapies for, e.g., angioplasty with reduced restenosis or pulmonary vein cell necrosis to inhibit atrial fibrillation
US6602276B2 (en) 1998-03-31 2003-08-05 Innercool Therapies, Inc. Method and device for performing cooling- or cryo-therapies for, e.g., angioplasty with reduced restenosis or pulmonary vein cell necrosis to inhibit atrial fibrillation
US7001378B2 (en) * 1998-03-31 2006-02-21 Innercool Therapies, Inc. Method and device for performing cooling or cryo-therapies, for, e.g., angioplasty with reduced restenosis or pulmonary vein cell necrosis to inhibit atrial fibrillation employing tissue protection
WO2003028524A3 (en) * 2001-08-17 2003-10-09 Innercool Therapies Inc Preparation of working fluid for use in cryotherapies
US6106518A (en) * 1998-04-09 2000-08-22 Cryocath Technologies, Inc. Variable geometry tip for a cryosurgical ablation device
US6645234B2 (en) * 1998-04-21 2003-11-11 Alsius Corporation Cardiovascular guiding catheter with heat exchange properties and methods of use
US7255709B2 (en) * 1998-04-21 2007-08-14 Alsius Corporation Intravascular heat exchange catheter with temperature sensor
US6419643B1 (en) 1998-04-21 2002-07-16 Alsius Corporation Central venous catheter with heat exchange properties
US6126684A (en) 1998-04-21 2000-10-03 The Regents Of The University Of California Indwelling heat exchange catheter and method of using same
US6716236B1 (en) 1998-04-21 2004-04-06 Alsius Corporation Intravascular catheter with heat exchange element having inner inflation element and methods of use
US6338727B1 (en) 1998-08-13 2002-01-15 Alsius Corporation Indwelling heat exchange catheter and method of using same
US6241718B1 (en) 1998-11-30 2001-06-05 Cryocath Technologies, Inc. Method for inhibiting restenosis
US6575933B1 (en) * 1998-11-30 2003-06-10 Cryocath Technologies Inc. Mechanical support for an expandable membrane
US20050228367A1 (en) * 1999-01-25 2005-10-13 Marwan Abboud Leak detection system for catheter based medical device
EP1158906B1 (en) * 1999-02-10 2008-08-13 Swaminathan Jayaraman Balloon catheter for cryotherapy
US6368304B1 (en) 1999-02-19 2002-04-09 Alsius Corporation Central venous catheter with heat exchange membrane
US6582398B1 (en) 1999-02-19 2003-06-24 Alsius Corporation Method of managing patient temperature with a heat exchange catheter
US6648879B2 (en) 1999-02-24 2003-11-18 Cryovascular Systems, Inc. Safety cryotherapy catheter
US6428534B1 (en) 1999-02-24 2002-08-06 Cryovascular Systems, Inc. Cryogenic angioplasty catheter
US6468297B1 (en) * 1999-02-24 2002-10-22 Cryovascular Systems, Inc. Cryogenically enhanced intravascular interventions
US6514245B1 (en) * 1999-03-15 2003-02-04 Cryovascular Systems, Inc. Safety cryotherapy catheter
US6432102B2 (en) 1999-03-15 2002-08-13 Cryovascular Systems, Inc. Cryosurgical fluid supply
US6280439B1 (en) 1999-07-12 2001-08-28 Cryocath Technologies, Inc. Adjustable position injection tubing
US7527622B2 (en) * 1999-08-23 2009-05-05 Cryocath Technologies Inc. Endovascular cryotreatment catheter
US6283959B1 (en) * 1999-08-23 2001-09-04 Cyrocath Technologies, Inc. Endovascular cryotreatment catheter
US6575966B2 (en) * 1999-08-23 2003-06-10 Cryocath Technologies Inc. Endovascular cryotreatment catheter
US6325818B1 (en) 1999-10-07 2001-12-04 Innercool Therapies, Inc. Inflatable cooling apparatus for selective organ hypothermia
US6551274B2 (en) * 2000-02-29 2003-04-22 Biosense Webster, Inc. Cryoablation catheter with an expandable cooling chamber
US6443947B1 (en) 2000-03-01 2002-09-03 Alexei Marko Device for thermal ablation of a cavity
CA2400753A1 (en) * 2000-03-01 2001-09-07 Hans W. Kramer Cooling therapies/device for angioplasty with restenosis
US6379378B1 (en) 2000-03-03 2002-04-30 Innercool Therapies, Inc. Lumen design for catheter
US6632223B1 (en) * 2000-03-30 2003-10-14 The General Hospital Corporation Pulmonary vein ablation stent and method
US6648906B2 (en) 2000-04-06 2003-11-18 Innercool Therapies, Inc. Method and apparatus for regulating patient temperature by irrigating the bladder with a fluid
EP1274377A2 (en) * 2000-04-07 2003-01-15 The General Hospital Corporation doing business as Massachusetts General Hospital Methods and apparatus for thermally affecting tissue
US6383210B1 (en) * 2000-06-02 2002-05-07 Innercool Therapies, Inc. Method for determining the effective thermal mass of a body or organ using cooling catheter
US6726708B2 (en) * 2000-06-14 2004-04-27 Innercool Therapies, Inc. Therapeutic heating and cooling via temperature management of a colon-inserted balloon
CA2413529C (en) * 2000-06-23 2008-12-02 Cryocath Technologies Inc. Cryotreatment device and method
US6547784B1 (en) * 2000-06-23 2003-04-15 Ethicon, Inc. System and method for placement of a surgical instrument in a body cavity
US6537271B1 (en) * 2000-07-06 2003-03-25 Cryogen, Inc. Balloon cryogenic catheter
US7220257B1 (en) 2000-07-25 2007-05-22 Scimed Life Systems, Inc. Cryotreatment device and method
US7004936B2 (en) * 2000-08-09 2006-02-28 Cryocor, Inc. Refrigeration source for a cryoablation catheter
US6471694B1 (en) 2000-08-09 2002-10-29 Cryogen, Inc. Control system for cryosurgery
US6955174B2 (en) * 2000-08-18 2005-10-18 Uryovascular Systems, Inc. Cryotherapy method for detecting and treating vulnerable plaque
US6602246B1 (en) * 2000-08-18 2003-08-05 Cryovascular Systems, Inc. Cryotherapy method for detecting and treating vulnerable plaque
US20030149368A1 (en) * 2000-10-24 2003-08-07 Hennemann Willard W. Method and apparatus for locating and detecting vascular plaque via impedence and conductivity measurements, and for cryogenically passivating vascular plaque and inhibiting vascular plaque progression and rupture
US6673066B2 (en) * 2000-11-10 2004-01-06 Cardiostream, Inc. Apparatus and method to diagnose and treat vulnerable plaque
US6719723B2 (en) * 2000-12-06 2004-04-13 Innercool Therapies, Inc. Multipurpose catheter assembly
US6951569B2 (en) * 2000-12-27 2005-10-04 Ethicon, Inc. Surgical balloon having varying wall thickness
US6450987B1 (en) 2001-02-01 2002-09-17 Innercool Therapies, Inc. Collapsible guidewire lumen
WO2002069797A3 (en) 2001-03-01 2003-11-06 Scimed Life Systems Inc Catheters with fluorescent temperature sensors
US6666858B2 (en) * 2001-04-12 2003-12-23 Scimed Life Systems, Inc. Cryo balloon for atrial ablation
US6786900B2 (en) * 2001-08-13 2004-09-07 Cryovascular Systems, Inc. Cryotherapy methods for treating vessel dissections and side branch occlusion
US6953469B2 (en) 2001-08-30 2005-10-11 Ethicon, Inc, Device and method for treating intraluminal tissue
US6929656B1 (en) 2001-09-14 2005-08-16 Medcool, Inc. Method and device for reducing secondary brain injury
US6758831B2 (en) 2001-09-24 2004-07-06 Ethicon, Inc. Device and method for aligning with the tubal ostium
US20040249372A1 (en) * 2001-09-26 2004-12-09 Leonilda Capuano Method for treatment of aneurysms
US6736809B2 (en) 2001-09-26 2004-05-18 Cryocath Technologies Inc. Method and device for treatment of aneurysms
US7912554B2 (en) * 2001-09-26 2011-03-22 Medtronic Cryocath Lp Method for treatment of aneurysms
JP2005503227A (en) * 2001-09-27 2005-02-03 ガリル メディカル リミテッド Apparatus and method for cryosurgical treatment of tumors of the breast
WO2003026719A3 (en) * 2001-09-27 2004-04-08 Uri Amir Cryoplasty apparatus and method
US7144418B1 (en) * 2001-11-02 2006-12-05 Medcool, Inc. Method, and system for selective cerebral hypothermia
US6709431B2 (en) 2001-12-18 2004-03-23 Scimed Life Systems, Inc. Cryo-temperature monitoring
US7156867B2 (en) * 2001-12-31 2007-01-02 Medcool, Inc. Uniform selective cerebral hypothermia
US8347891B2 (en) 2002-04-08 2013-01-08 Medtronic Ardian Luxembourg S.A.R.L. Methods and apparatus for performing a non-continuous circumferential treatment of a body lumen
US7756583B2 (en) 2002-04-08 2010-07-13 Ardian, Inc. Methods and apparatus for intravascularly-induced neuromodulation
US6989009B2 (en) * 2002-04-19 2006-01-24 Scimed Life Systems, Inc. Cryo balloon
CA2487515A1 (en) * 2002-06-13 2003-12-24 Regents Of The University Of Minnesota Cryosurgery compositions and methods
US6960203B2 (en) * 2002-06-26 2005-11-01 Ethicon, Inc. Thermal ablation with deployable cage
US6929639B2 (en) * 2002-08-30 2005-08-16 Scimed Life Systems, Inc. Cryo ablation coil
US20040106952A1 (en) * 2002-12-03 2004-06-03 Lafontaine Daniel M. Treating arrhythmias by altering properties of tissue
US7195625B2 (en) * 2002-12-11 2007-03-27 Cryocor, Inc. Catheter system for performing a single step cryoablation
US6893433B2 (en) * 2002-12-11 2005-05-17 Cryocor, Inc. System and method for performing a single step cryoablation
US6824543B2 (en) * 2002-12-11 2004-11-30 Cryocor, Inc. Guidance system for a cryocatheter
US6796979B2 (en) * 2002-12-11 2004-09-28 Cryocor, Inc. Coaxial catheter system for performing a single step cryoablation
US7278984B2 (en) * 2002-12-31 2007-10-09 Alsius Corporation System and method for controlling rate of heat exchange with patient
WO2004064622A3 (en) * 2003-01-15 2006-05-04 Medcool Inc Method and apparatus for managing temperature in a patient
US20040167467A1 (en) * 2003-02-21 2004-08-26 Kent Harrison Delivering cooled fluid to sites inside the body
US7758623B2 (en) * 2003-03-17 2010-07-20 The Board Of Trustees Of The Leland Stanford Junior University Transesophageal heat exchange catheter for cooling of the heart
WO2004088233A3 (en) * 2003-03-26 2005-03-31 Univ Minnesota Thermal surgical procedures and compositions
US20040204705A1 (en) 2003-04-10 2004-10-14 Scimed Life Systems, Inc. Cryotreatment devices and methods of forming conduction blocks
US20040215177A1 (en) 2003-04-24 2004-10-28 Scimed Life Systems, Inc. Therapeutic apparatus having insulated region at the insertion area
US7072460B2 (en) * 2003-05-27 2006-07-04 Vtech Telecommunications Limited System and method for retrieving telephone numbers
US7060062B2 (en) * 2003-06-04 2006-06-13 Cryo Vascular Systems, Inc. Controllable pressure cryogenic balloon treatment system and method
US8177779B2 (en) * 2004-06-02 2012-05-15 Boston Scientific Scimed, Inc. Controllable pressure cryogenic balloon treatment system and method
US20040267338A1 (en) * 2003-06-25 2004-12-30 Kent Harrison Targeted tissue cooling within a body
US7794454B2 (en) * 2003-07-11 2010-09-14 Medtronic Cryocath Lp Method and device for epicardial ablation
US6926711B2 (en) * 2003-07-30 2005-08-09 Cryocor, Inc. Articulating catheter for cryoablation with reduced diameter section
JP2007504910A (en) 2003-09-12 2007-03-08 ミノウ・メディカル・エルエルシイ Selectable biasing of atherosclerotic material remodeling and / or ablation
US9713730B2 (en) 2004-09-10 2017-07-25 Boston Scientific Scimed, Inc. Apparatus and method for treatment of in-stent restenosis
US7326195B2 (en) * 2003-11-18 2008-02-05 Boston Scientific Scimed, Inc. Targeted cooling of tissue within a body
WO2005063137A3 (en) 2003-12-22 2008-02-14 Ams Res Corp Cryosurgical devices for endometrial ablation
US7157213B2 (en) * 2004-03-01 2007-01-02 Think Laboratory Co., Ltd. Developer agent for positive type photosensitive compound
US9555223B2 (en) 2004-03-23 2017-01-31 Medtronic Cryocath Lp Method and apparatus for inflating and deflating balloon catheters
US8491636B2 (en) * 2004-03-23 2013-07-23 Medtronic Cryopath LP Method and apparatus for inflating and deflating balloon catheters
US7727228B2 (en) * 2004-03-23 2010-06-01 Medtronic Cryocath Lp Method and apparatus for inflating and deflating balloon catheters
US7582083B2 (en) * 2004-05-10 2009-09-01 Boston Scientific Scimed, Inc. Probe based low temperature lesion formation apparatus, systems and methods
US7288088B2 (en) * 2004-05-10 2007-10-30 Boston Scientific Scimed, Inc. Clamp based low temperature lesion formation apparatus, systems and methods
US7291142B2 (en) * 2004-05-10 2007-11-06 Boston Scientific Scimed, Inc. Low temperature lesion formation apparatus, systems and methods
US7758572B2 (en) 2004-05-20 2010-07-20 Boston Scientific Scimed, Inc. Medical devices and methods including cooling balloons having nanotubes
US7537580B2 (en) * 2004-06-23 2009-05-26 Boston Scientific Scimed, Inc. Intravascular dilatation infusion catheter
US20060025840A1 (en) * 2004-08-02 2006-02-02 Martin Willard Cooling tissue inside the body
US20060136023A1 (en) * 2004-08-26 2006-06-22 Dobak John D Iii Method and apparatus for patient temperature control employing administration of anti-shivering agents
US7604631B2 (en) * 2004-12-15 2009-10-20 Boston Scientific Scimed, Inc. Efficient controlled cryogenic fluid delivery into a balloon catheter and other treatment devices
US20060178662A1 (en) * 2005-02-04 2006-08-10 Ripley Kenneth L Warming gradient control for a cryoablation applicator
US8206345B2 (en) 2005-03-07 2012-06-26 Medtronic Cryocath Lp Fluid control system for a medical device
US7674256B2 (en) * 2005-03-17 2010-03-09 Boston Scientific Scimed, Inc. Treating internal body tissue
JP2008188029A (en) * 2005-04-27 2008-08-21 Univ Kurume Zygomatic arch stabilizer after reposition
US20060258981A1 (en) * 2005-04-27 2006-11-16 Tracee Eidenschink Balloon catheter with perfusion lumen
US7740627B2 (en) 2005-04-29 2010-06-22 Medtronic Cryocath Lp Surgical method and apparatus for treating atrial fibrillation
US7794455B2 (en) * 2005-04-29 2010-09-14 Medtronic Cryocath Lp Wide area ablation of myocardial tissue
US7727191B2 (en) * 2005-05-13 2010-06-01 Medtronic Cryocath Lp Compliant balloon catheter
US7963940B2 (en) * 2005-08-22 2011-06-21 Boston Scientific Scimed, Inc. Local perfusion device
US20070129682A1 (en) * 2005-12-02 2007-06-07 Tracee Eidenschink Guidewire with perfusion capability
CA2634683C (en) * 2005-12-22 2016-02-02 The Trustees Of Columbia University In The City Of New York Systems and methods for intravascular cooling
US9937332B2 (en) * 2006-02-06 2018-04-10 Medtronic Cryocath Lp Cryo-perfusion balloon device
US8019435B2 (en) 2006-05-02 2011-09-13 Boston Scientific Scimed, Inc. Control of arterial smooth muscle tone
US9211393B2 (en) * 2006-06-05 2015-12-15 Medtronic Cryocath Lp Distal cooling distribution system for a medical device
US20070282316A1 (en) * 2006-06-05 2007-12-06 Cryocath Technologies Inc. Method of prophylactically treating an artery to make it resistant to the subsequent development of atherosclerosis
US20080097251A1 (en) * 2006-06-15 2008-04-24 Eilaz Babaev Method and apparatus for treating vascular obstructions
US20070299433A1 (en) * 2006-06-27 2007-12-27 C2 Therapeutics Barrett's Esophagus Cryogenic Ablation System
US20090221955A1 (en) * 2006-08-08 2009-09-03 Bacoustics, Llc Ablative ultrasonic-cryogenic methods
US8617149B2 (en) * 2006-10-02 2013-12-31 Boston Scientific Scimed, Inc. Common bond, double-balloon catheter
JP5559539B2 (en) 2006-10-18 2014-07-23 べシックス・バスキュラー・インコーポレイテッド System to induce the temperature desired effect on the body tissue
EP2076198A4 (en) 2006-10-18 2009-12-09 Minnow Medical Inc Inducing desirable temperature effects on body tissue
JP5312337B2 (en) 2006-10-18 2013-10-09 べシックス・バスキュラー・インコーポレイテッド Adjusted characterization of rf energy and electrical organization for selective treatment of target tissues
US20080161890A1 (en) * 2007-01-03 2008-07-03 Boston Scientific Scimed, Inc. Methods, systems, and apparatuses for protecting esophageal tissue during ablation
US20080312644A1 (en) * 2007-06-14 2008-12-18 Boston Scientific Scimed, Inc. Cryogenic balloon ablation instruments and systems
WO2009007963A1 (en) * 2007-07-09 2009-01-15 Arbel Medical Ltd. Cryosheath
WO2009067517A1 (en) * 2007-11-21 2009-05-28 Endocare, Inc. Expandable multi-tubular cryoprobe
US8579889B2 (en) * 2008-01-11 2013-11-12 Boston Scientific Scimed Inc. Linear ablation devices and methods of use
KR20100110790A (en) 2008-01-11 2010-10-13 보스톤 싸이엔티픽 싸이메드 인코포레이티드 Ablation devices and methods of use
EP2265205B1 (en) * 2008-03-13 2016-04-27 Boston Scientific Scimed, Inc. Cryo-ablation refrigerant distribution catheter
US8814850B2 (en) * 2008-04-24 2014-08-26 Cryomedix, Llc Method and system for cryoablation treatment
US9028445B2 (en) * 2008-05-12 2015-05-12 Frank W. Ingle Apparatus and method for chilling cryo-ablation coolant and resulting cryo-ablation system
US9050069B2 (en) 2008-05-16 2015-06-09 Medtronic Cryocath Lp Thermocouple-controlled catheter cooling system
US8939991B2 (en) 2008-06-08 2015-01-27 Hotspur Technologies, Inc. Apparatus and methods for removing obstructive material from body lumens
US20120109057A1 (en) 2009-02-18 2012-05-03 Hotspur Technologies, Inc. Apparatus and methods for treating obstructions within body lumens
US9101382B2 (en) 2009-02-18 2015-08-11 Hotspur Technologies, Inc. Apparatus and methods for treating obstructions within body lumens
US8945160B2 (en) * 2008-07-03 2015-02-03 Hotspur Technologies, Inc. Apparatus and methods for treating obstructions within body lumens
US8845627B2 (en) 2008-08-22 2014-09-30 Boston Scientific Scimed, Inc. Regulating pressure to lower temperature in a cryotherapy balloon catheter
US8465481B2 (en) * 2008-10-20 2013-06-18 Boston Scientific Scimed, Inc. Providing cryotherapy with a balloon catheter having a non-uniform thermal profile
US8396548B2 (en) 2008-11-14 2013-03-12 Vessix Vascular, Inc. Selective drug delivery in a lumen
EP2355737A4 (en) 2008-11-17 2013-01-16 Vessix Vascular Inc Selective accumulation of energy with or without knowledge of tissue topography
US20100125266A1 (en) * 2008-11-17 2010-05-20 The Foundry, Llc Methods and devices to treat compressive neuropathy and other diseases
US8382746B2 (en) 2008-11-21 2013-02-26 C2 Therapeutics, Inc. Cryogenic ablation system and method
US8475441B2 (en) 2008-12-23 2013-07-02 Cryomedix, Llc Isotherm-based tissue ablation control system
WO2010083281A1 (en) * 2009-01-15 2010-07-22 Boston Scientific Scimed, Inc. Controlling depth of cryoablation
US20100241113A1 (en) * 2009-03-20 2010-09-23 Boston Scientific Scimed, Inc. Protecting the phrenic nerve while ablating cardiac tissue
US8888768B2 (en) * 2009-04-30 2014-11-18 Cryomedix, Llc Cryoablation system having docking station for charging cryogen containers and related method
EP3106116B1 (en) 2009-06-30 2018-08-01 Boston Scientific Scimed, Inc. Map and ablate open irrigated hybrid catheter
US20110263921A1 (en) 2009-12-31 2011-10-27 Anthony Vrba Patterned Denervation Therapy for Innervated Renal Vasculature
US20110270238A1 (en) 2009-12-31 2011-11-03 Raed Rizq Compliant Cryoballoon Apparatus for Denervating Ostia of the Renal Arteries
US9089314B2 (en) * 2010-01-27 2015-07-28 Medtronic Cryocath Lp Partially compliant balloon device
US8926602B2 (en) * 2010-01-28 2015-01-06 Medtronic Cryocath Lp Triple balloon catheter
KR20130108067A (en) 2010-04-09 2013-10-02 베식스 바스큘라 인코포레이티드 Power generating and control apparatus for the treatment of tissue
US9192790B2 (en) 2010-04-14 2015-11-24 Boston Scientific Scimed, Inc. Focused ultrasonic renal denervation
US8473067B2 (en) 2010-06-11 2013-06-25 Boston Scientific Scimed, Inc. Renal denervation and stimulation employing wireless vascular energy transfer arrangement
US8647336B2 (en) * 2010-06-16 2014-02-11 Medtronic Ablation Frontiers Llc Cryogenic medical device with thermal guard and method
US20130218149A1 (en) * 2010-07-08 2013-08-22 Given Imaging Ltd. Cryo-therapy spray device
US8979863B2 (en) * 2010-07-22 2015-03-17 Kyphon Sarl Expandable surgical instruments and methods of use and fabrication
US9463062B2 (en) 2010-07-30 2016-10-11 Boston Scientific Scimed, Inc. Cooled conductive balloon RF catheter for renal nerve ablation
US20120029512A1 (en) 2010-07-30 2012-02-02 Willard Martin R Balloon with surface electrodes and integral cooling for renal nerve ablation
US9408661B2 (en) 2010-07-30 2016-08-09 Patrick A. Haverkost RF electrodes on multiple flexible wires for renal nerve ablation
US9155589B2 (en) 2010-07-30 2015-10-13 Boston Scientific Scimed, Inc. Sequential activation RF electrode set for renal nerve ablation
US9358365B2 (en) 2010-07-30 2016-06-07 Boston Scientific Scimed, Inc. Precision electrode movement control for renal nerve ablation
US9084609B2 (en) 2010-07-30 2015-07-21 Boston Scientific Scime, Inc. Spiral balloon catheter for renal nerve ablation
US20120089047A1 (en) 2010-08-05 2012-04-12 Medtronic Vascular, Inc. Cryoablation apparatuses, systems, and methods for renal neuromodulation
US9402676B2 (en) * 2010-08-26 2016-08-02 Cryomedix, Llc Cryoablation balloon catheter and related method
US8974451B2 (en) 2010-10-25 2015-03-10 Boston Scientific Scimed, Inc. Renal nerve ablation using conductive fluid jet and RF energy
US9060754B2 (en) 2010-10-26 2015-06-23 Medtronic Ardian Luxembourg S.A.R.L. Neuromodulation cryotherapeutic devices and associated systems and methods
US20120130458A1 (en) 2010-10-26 2012-05-24 Medtronic Ardian Luxembourg S.A.R.L. Neuromodulation cryotherapeutic devices and associated systems and methods
US9220558B2 (en) 2010-10-27 2015-12-29 Boston Scientific Scimed, Inc. RF renal denervation catheter with multiple independent electrodes
EP2632372A4 (en) 2010-10-27 2015-04-01 Cryomedix Llc Cryoablation apparatus with enhanced heat exchange area and related method
US9028485B2 (en) 2010-11-15 2015-05-12 Boston Scientific Scimed, Inc. Self-expanding cooling electrode for renal nerve ablation
US9089350B2 (en) 2010-11-16 2015-07-28 Boston Scientific Scimed, Inc. Renal denervation catheter with RF electrode and integral contrast dye injection arrangement
US9668811B2 (en) 2010-11-16 2017-06-06 Boston Scientific Scimed, Inc. Minimally invasive access for renal nerve ablation
US9326751B2 (en) 2010-11-17 2016-05-03 Boston Scientific Scimed, Inc. Catheter guidance of external energy for renal denervation
US9060761B2 (en) 2010-11-18 2015-06-23 Boston Scientific Scime, Inc. Catheter-focused magnetic field induced renal nerve ablation
US9192435B2 (en) 2010-11-22 2015-11-24 Boston Scientific Scimed, Inc. Renal denervation catheter with cooled RF electrode
US9023034B2 (en) 2010-11-22 2015-05-05 Boston Scientific Scimed, Inc. Renal ablation electrode with force-activatable conduction apparatus
US20120157993A1 (en) 2010-12-15 2012-06-21 Jenson Mark L Bipolar Off-Wall Electrode Device for Renal Nerve Ablation
WO2012100095A1 (en) 2011-01-19 2012-07-26 Boston Scientific Scimed, Inc. Guide-compatible large-electrode catheter for renal nerve ablation with reduced arterial injury
EP2694150A1 (en) 2011-04-08 2014-02-12 Covidien LP Iontophoresis drug delivery system and method for denervation of the renal sympathetic nerve and iontophoretic drug delivery
EP2734259B1 (en) 2011-07-20 2016-11-23 Boston Scientific Scimed, Inc. Percutaneous device to visualize, target and ablate nerves
US9186209B2 (en) 2011-07-22 2015-11-17 Boston Scientific Scimed, Inc. Nerve modulation system having helical guide
US9387031B2 (en) 2011-07-29 2016-07-12 Medtronic Ablation Frontiers Llc Mesh-overlayed ablation and mapping device
CN103917185A (en) 2011-09-14 2014-07-09 波士顿科学西美德公司 Ablation device with ionically conductive balloon
WO2013040201A3 (en) 2011-09-14 2013-05-10 Boston Scientific Scimed, Inc. Ablation device with multiple ablation modes
US9283110B2 (en) * 2011-09-20 2016-03-15 Zoll Circulation, Inc. Patient temperature control catheter with outer sleeve cooled by inner sleeve
EP2765942B1 (en) 2011-10-10 2016-02-24 Boston Scientific Scimed, Inc. Medical devices including ablation electrodes
US9420955B2 (en) 2011-10-11 2016-08-23 Boston Scientific Scimed, Inc. Intravascular temperature monitoring system and method
US10085799B2 (en) 2011-10-11 2018-10-02 Boston Scientific Scimed, Inc. Off-wall electrode device and methods for nerve modulation
US9364284B2 (en) 2011-10-12 2016-06-14 Boston Scientific Scimed, Inc. Method of making an off-wall spacer cage
WO2013059202A1 (en) 2011-10-18 2013-04-25 Boston Scientific Scimed, Inc. Integrated crossing balloon catheter
EP2768563B1 (en) 2011-10-18 2016-11-09 Boston Scientific Scimed, Inc. Deflectable medical devices
WO2013070724A1 (en) 2011-11-08 2013-05-16 Boston Scientific Scimed, Inc. Ostial renal nerve ablation
US9119600B2 (en) 2011-11-15 2015-09-01 Boston Scientific Scimed, Inc. Device and methods for renal nerve modulation monitoring
US9119632B2 (en) 2011-11-21 2015-09-01 Boston Scientific Scimed, Inc. Deflectable renal nerve ablation catheter
US9265969B2 (en) 2011-12-21 2016-02-23 Cardiac Pacemakers, Inc. Methods for modulating cell function
WO2013096913A3 (en) 2011-12-23 2013-10-10 Vessix Vascular, Inc. Tissue remodeling systems and a method for delivering energy to maintain predetermined target temperature
EP2797536B1 (en) 2011-12-28 2016-04-13 Boston Scientific Scimed, Inc. Ablation probe with ultrasonic imaging capability
CN104135958B (en) 2011-12-28 2017-05-03 波士顿科学西美德公司 There are new methods and apparatus with an ablation catheter ablation element becomes transferred polymer nerve
US9050106B2 (en) 2011-12-29 2015-06-09 Boston Scientific Scimed, Inc. Off-wall electrode device and methods for nerve modulation
EP2802282A1 (en) 2012-01-10 2014-11-19 Boston Scientific Scimed, Inc. Electrophysiology system
US9241752B2 (en) 2012-04-27 2016-01-26 Medtronic Ardian Luxembourg S.A.R.L. Shafts with pressure relief in cryotherapeutic catheters and associated devices, systems, and methods
US9113911B2 (en) 2012-09-06 2015-08-25 Medtronic Ablation Frontiers Llc Ablation device and method for electroporating tissue cells
US9173696B2 (en) 2012-09-17 2015-11-03 Boston Scientific Scimed, Inc. Self-positioning electrode system and method for renal nerve modulation
WO2014047071A1 (en) 2012-09-18 2014-03-27 Boston Scientific Scimed, Inc. Map and ablate closed-loop cooled ablation catheter with flat tip
EP2897544A1 (en) 2012-09-18 2015-07-29 Boston Scientific Scimed, Inc. Map and ablate closed-loop cooled ablation catheter
WO2014055514A3 (en) 2012-10-01 2014-07-31 C.R. Bard, Inc. Balloon catheter having multiple inflation lumens and related methods
US9095321B2 (en) 2012-11-21 2015-08-04 Medtronic Ardian Luxembourg S.A.R.L. Cryotherapeutic devices having integral multi-helical balloons and methods of making the same
US9017317B2 (en) 2012-12-06 2015-04-28 Medtronic Ardian Luxembourg S.A.R.L. Refrigerant supply system for cryotherapy including refrigerant recompression and associated devices, systems, and methods
US9956033B2 (en) 2013-03-11 2018-05-01 Boston Scientific Scimed, Inc. Medical devices for modulating nerves
US9693821B2 (en) 2013-03-11 2017-07-04 Boston Scientific Scimed, Inc. Medical devices for modulating nerves
US9808311B2 (en) 2013-03-13 2017-11-07 Boston Scientific Scimed, Inc. Deflectable medical devices
US9381055B2 (en) * 2013-03-13 2016-07-05 Cryofocus Medtech (Shanghai) Co. Ltd. Therapeutic cryoablation system
EP2967734A1 (en) 2013-03-15 2016-01-20 Boston Scientific Scimed, Inc. Methods and apparatuses for remodeling tissue of or adjacent to a body passage
CN105473091A (en) 2013-06-21 2016-04-06 波士顿科学国际有限公司 Renal denervation balloon catheter with ride along electrode support
US10022182B2 (en) 2013-06-21 2018-07-17 Boston Scientific Scimed, Inc. Medical devices for renal nerve ablation having rotatable shafts
US9707036B2 (en) 2013-06-25 2017-07-18 Boston Scientific Scimed, Inc. Devices and methods for nerve modulation using localized indifferent electrodes
CN105358084A (en) 2013-07-01 2016-02-24 波士顿科学国际有限公司 Medical devices for renal nerve ablation
EP3049007A1 (en) 2013-07-19 2016-08-03 Boston Scientific Scimed, Inc. Spiral bipolar electrode renal denervation balloon
US20150031946A1 (en) * 2013-07-24 2015-01-29 Nidus Medical, Llc Direct vision cryosurgical probe and methods of use
EP3041425A1 (en) 2013-09-04 2016-07-13 Boston Scientific Scimed, Inc. Radio frequency (rf) balloon catheter having flushing and cooling capability
CN105592778A (en) 2013-10-14 2016-05-18 波士顿科学医学有限公司 High resolution cardiac mapping electrode array catheter
CN105636537B (en) 2013-10-15 2018-08-17 波士顿科学国际有限公司 Medical Devices balloon
US9770606B2 (en) 2013-10-15 2017-09-26 Boston Scientific Scimed, Inc. Ultrasound ablation catheter with cooling infusion and centering basket
WO2015119890A1 (en) 2014-02-04 2015-08-13 Boston Scientific Scimed, Inc. Alternative placement of thermal sensors on bipolar electrode
US9925359B2 (en) * 2014-03-21 2018-03-27 Medtronic Cryocath Lp Balloon design to reduce distal length
US9743854B2 (en) 2014-12-18 2017-08-29 Boston Scientific Scimed, Inc. Real-time morphology analysis for lesion assessment
US9414878B1 (en) 2015-05-15 2016-08-16 C2 Therapeutics, Inc. Cryogenic balloon ablation system

Citations (42)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3125096A (en) 1964-03-17 Compressor
US3712306A (en) 1971-11-09 1973-01-23 Brymill Corp Cryogenic application chamber and method
US4278090A (en) 1978-07-15 1981-07-14 Erbe Elektromedizin Kg Cryosurgical device
US4280499A (en) 1978-06-23 1981-07-28 Dario Bracco Oryotherapy apparatus
US4784133A (en) 1987-01-28 1988-11-15 Mackin Robert A Working well balloon angioscope and method
US4860744A (en) 1987-11-02 1989-08-29 Raj K. Anand Thermoelectrically controlled heat medical catheter
US5019042A (en) 1988-11-23 1991-05-28 Harvinder Sahota Balloon catheters
US5078713A (en) 1988-12-01 1992-01-07 Spembly Medical Limited Cryosurgical probe
US5108390A (en) 1988-11-14 1992-04-28 Frigitronics, Inc. Flexible cryoprobe
US5139496A (en) 1990-12-20 1992-08-18 Hed Aharon Z Ultrasonic freeze ablation catheters and probes
US5147355A (en) 1988-09-23 1992-09-15 Brigham And Womens Hospital Cryoablation catheter and method of performing cryoablation
US5190540A (en) 1990-06-08 1993-03-02 Cardiovascular & Interventional Research Consultants, Inc. Thermal balloon angioplasty
US5281215A (en) 1992-04-16 1994-01-25 Implemed, Inc. Cryogenic catheter
US5334181A (en) 1990-09-26 1994-08-02 Cryomedical Sciences, Inc. Cryosurgical system for destroying tumors by freezing
US5334193A (en) 1992-11-13 1994-08-02 American Cardiac Ablation Co., Inc. Fluid cooled ablation catheter
US5335669A (en) 1993-04-21 1994-08-09 American Medical Systems, Inc. Rectal probe with temperature sensor
US5342301A (en) 1992-08-13 1994-08-30 Advanced Polymers Incorporated Multi-lumen balloons and catheters made therewith
US5417689A (en) 1994-01-18 1995-05-23 Cordis Corporation Thermal balloon catheter and method
US5417653A (en) * 1993-01-21 1995-05-23 Sahota; Harvinder Method for minimizing restenosis
US5423807A (en) 1992-04-16 1995-06-13 Implemed, Inc. Cryogenic mapping and ablation catheter
US5443470A (en) 1992-05-01 1995-08-22 Vesta Medical, Inc. Method and apparatus for endometrial ablation
US5454807A (en) 1993-05-14 1995-10-03 Boston Scientific Corporation Medical treatment of deeply seated tissue using optical radiation
US5501681A (en) 1993-11-12 1996-03-26 Neuwirth; Robert S. Intrauterine cryoablation cauterizing apparatus and method
US5520682A (en) 1991-09-06 1996-05-28 Cryomedical Sciences, Inc. Cryosurgical instrument with vent means and method using same
US5536252A (en) 1994-10-28 1996-07-16 Intelliwire, Inc. Angioplasty catheter with multiple coaxial balloons
US5624392A (en) 1990-05-11 1997-04-29 Saab; Mark A. Heat transfer catheters and methods of making and using same
US5957917A (en) 1995-01-20 1999-09-28 Miravant Systems, Inc. Transluminal hyperthermia catheter and method for use
US5971979A (en) 1997-12-02 1999-10-26 Odyssey Technologies, Inc. Method for cryogenic inhibition of hyperplasia
US6012457A (en) 1997-07-08 2000-01-11 The Regents Of The University Of California Device and method for forming a circumferential conduction block in a pulmonary vein
US6024740A (en) 1997-07-08 2000-02-15 The Regents Of The University Of California Circumferential ablation device assembly
EP1019028A1 (en) 1997-10-02 2000-07-19 Antex Biologics, Inc. $i(CHLAMYDIA) PROTEIN, GENE SEQUENCE AND USES THEREOF
WO2000047118A1 (en) 1999-02-10 2000-08-17 Swaminathan Jayaraman Balloon catheter for cryotherapy and method of using same
US6428534B1 (en) 1999-02-24 2002-08-06 Cryovascular Systems, Inc. Cryogenic angioplasty catheter
US6432102B2 (en) 1999-03-15 2002-08-13 Cryovascular Systems, Inc. Cryosurgical fluid supply
US6468297B1 (en) 1999-02-24 2002-10-22 Cryovascular Systems, Inc. Cryogenically enhanced intravascular interventions
US20030088240A1 (en) 2001-11-02 2003-05-08 Vahid Saadat Methods and apparatus for cryo-therapy
US6595988B2 (en) 2000-06-23 2003-07-22 Cryocath Technologies Inc. Cryotreatment device and method
US6706037B2 (en) 2000-10-24 2004-03-16 Galil Medical Ltd. Multiple cryoprobe apparatus and method
US6755823B2 (en) 2001-02-28 2004-06-29 Cryocath Technologies Inc. Medical device with enhanced cooling power
US6796979B2 (en) 2002-12-11 2004-09-28 Cryocor, Inc. Coaxial catheter system for performing a single step cryoablation
US6893433B2 (en) 2002-12-11 2005-05-17 Cryocor, Inc. System and method for performing a single step cryoablation
US6981382B2 (en) 2003-07-24 2006-01-03 Cryocor, Inc. Distal end for cryoablation catheters

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB1019028A (en) * 1963-10-02 1966-02-02 Edward Thomas Armstrong Hypothermia apparatus
US4785133A (en) 1987-10-05 1988-11-15 Eastman Kodak Company Process for the preparation of alkyl 3-alkoxypropionates
US5868735A (en) 1997-03-06 1999-02-09 Scimed Life Systems, Inc. Cryoplasty device and method
DE19958966A1 (en) * 1999-12-07 2001-06-13 Infineon Technologies Ag Production of resist structures
EP1330215A2 (en) * 2000-11-03 2003-07-30 Osteotech, Inc. Spinal intervertebral implant and method of making

Patent Citations (43)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3125096A (en) 1964-03-17 Compressor
US3712306A (en) 1971-11-09 1973-01-23 Brymill Corp Cryogenic application chamber and method
US4280499A (en) 1978-06-23 1981-07-28 Dario Bracco Oryotherapy apparatus
US4278090A (en) 1978-07-15 1981-07-14 Erbe Elektromedizin Kg Cryosurgical device
US4784133A (en) 1987-01-28 1988-11-15 Mackin Robert A Working well balloon angioscope and method
US4860744A (en) 1987-11-02 1989-08-29 Raj K. Anand Thermoelectrically controlled heat medical catheter
US5147355A (en) 1988-09-23 1992-09-15 Brigham And Womens Hospital Cryoablation catheter and method of performing cryoablation
US5108390A (en) 1988-11-14 1992-04-28 Frigitronics, Inc. Flexible cryoprobe
US5019042A (en) 1988-11-23 1991-05-28 Harvinder Sahota Balloon catheters
US5078713A (en) 1988-12-01 1992-01-07 Spembly Medical Limited Cryosurgical probe
US5624392A (en) 1990-05-11 1997-04-29 Saab; Mark A. Heat transfer catheters and methods of making and using same
US5190540A (en) 1990-06-08 1993-03-02 Cardiovascular & Interventional Research Consultants, Inc. Thermal balloon angioplasty
US5334181A (en) 1990-09-26 1994-08-02 Cryomedical Sciences, Inc. Cryosurgical system for destroying tumors by freezing
US5139496A (en) 1990-12-20 1992-08-18 Hed Aharon Z Ultrasonic freeze ablation catheters and probes
US5520682A (en) 1991-09-06 1996-05-28 Cryomedical Sciences, Inc. Cryosurgical instrument with vent means and method using same
US5281215A (en) 1992-04-16 1994-01-25 Implemed, Inc. Cryogenic catheter
US5423807A (en) 1992-04-16 1995-06-13 Implemed, Inc. Cryogenic mapping and ablation catheter
US5443470A (en) 1992-05-01 1995-08-22 Vesta Medical, Inc. Method and apparatus for endometrial ablation
US5342301A (en) 1992-08-13 1994-08-30 Advanced Polymers Incorporated Multi-lumen balloons and catheters made therewith
US5334193A (en) 1992-11-13 1994-08-02 American Cardiac Ablation Co., Inc. Fluid cooled ablation catheter
US5417653A (en) * 1993-01-21 1995-05-23 Sahota; Harvinder Method for minimizing restenosis
US5335669A (en) 1993-04-21 1994-08-09 American Medical Systems, Inc. Rectal probe with temperature sensor
US5454807A (en) 1993-05-14 1995-10-03 Boston Scientific Corporation Medical treatment of deeply seated tissue using optical radiation
US5501681A (en) 1993-11-12 1996-03-26 Neuwirth; Robert S. Intrauterine cryoablation cauterizing apparatus and method
US5417689A (en) 1994-01-18 1995-05-23 Cordis Corporation Thermal balloon catheter and method
US5536252A (en) 1994-10-28 1996-07-16 Intelliwire, Inc. Angioplasty catheter with multiple coaxial balloons
US5957917A (en) 1995-01-20 1999-09-28 Miravant Systems, Inc. Transluminal hyperthermia catheter and method for use
US6024740A (en) 1997-07-08 2000-02-15 The Regents Of The University Of California Circumferential ablation device assembly
US6012457A (en) 1997-07-08 2000-01-11 The Regents Of The University Of California Device and method for forming a circumferential conduction block in a pulmonary vein
EP1019028A1 (en) 1997-10-02 2000-07-19 Antex Biologics, Inc. $i(CHLAMYDIA) PROTEIN, GENE SEQUENCE AND USES THEREOF
US6355029B1 (en) 1997-12-02 2002-03-12 Cryovascular Systems, Inc. Apparatus and method for cryogenic inhibition of hyperplasia
US5971979A (en) 1997-12-02 1999-10-26 Odyssey Technologies, Inc. Method for cryogenic inhibition of hyperplasia
WO2000047118A1 (en) 1999-02-10 2000-08-17 Swaminathan Jayaraman Balloon catheter for cryotherapy and method of using same
US6468297B1 (en) 1999-02-24 2002-10-22 Cryovascular Systems, Inc. Cryogenically enhanced intravascular interventions
US6428534B1 (en) 1999-02-24 2002-08-06 Cryovascular Systems, Inc. Cryogenic angioplasty catheter
US6432102B2 (en) 1999-03-15 2002-08-13 Cryovascular Systems, Inc. Cryosurgical fluid supply
US6595988B2 (en) 2000-06-23 2003-07-22 Cryocath Technologies Inc. Cryotreatment device and method
US6706037B2 (en) 2000-10-24 2004-03-16 Galil Medical Ltd. Multiple cryoprobe apparatus and method
US6755823B2 (en) 2001-02-28 2004-06-29 Cryocath Technologies Inc. Medical device with enhanced cooling power
US20030088240A1 (en) 2001-11-02 2003-05-08 Vahid Saadat Methods and apparatus for cryo-therapy
US6796979B2 (en) 2002-12-11 2004-09-28 Cryocor, Inc. Coaxial catheter system for performing a single step cryoablation
US6893433B2 (en) 2002-12-11 2005-05-17 Cryocor, Inc. System and method for performing a single step cryoablation
US6981382B2 (en) 2003-07-24 2006-01-03 Cryocor, Inc. Distal end for cryoablation catheters

Non-Patent Citations (18)

* Cited by examiner, † Cited by third party
Title
Abstract entitled "Argon Beam Coagulation Compared with Cryoablation of Ventricular Subendocardium," Annals of Thoracic Surgery, Jan. 1993, 1 page.
Abstract entitled "Cardiac Rhythm Disturbances due to Caval Occlusion During Hepatic Cryosurgery," Cryobiology, Oct. 1994, 1 page.
Abstract entitled "Cox Maze Operation Without Cryoablation for the Treatment of Chronic Atrial Fibrillation," Annals of Thoracic Surgery, Aug. 1995, 1 page.
Abstract entitled "Histologic Study of Chronic catheter Cryoablation of Atrioventricular Conduction in Swine," American Heart Journal, Jun. 1993, 1 page.
Abstract entitled "Intractable Chest Pain in Cardiomyopathy: Treatment by a Novel Technique of Cardiac . . . ," British Heart Journal, Dec. 1993, 1 page.
Abstract entitled "Renal Cryoablation in a Canine Model," Urology, May 1996, 1 page.
Abstract entitled Percutaneous Serial Catheterization in Swine: a Practical Approach,: Journal of Investigative Surgery, Mar.-Apr. 1995, 1 page.
Article entitled "Prostrate Cryosurgery now Reimbursable in Southern California," Healthcare Technology Management, published on date even with or prior to Jan. 12, 1999.
Cahan, "Five Years of Cryosurgical Experience: Benign and Malignant Tumors with Hemorrhagic Conditions," Cryosurgery, published on date even with or prior to Jan. 12, 1999, pp. 388-391.
Coger et al., "Preservation Techniques for Biomaterials," The Biomedical Engineering Handbook, 1995, pp. 1567-1577.
Fuller et al., "Clinical Applications of Cryobiology," 4 pages, published on date even with or prior to Jan. 12, 1999.
Hunt et al., "Fractures in Cry opreserved Arteries," Cryobiology, 1994, 31:506-515.
Mazur, Physical-Chemical Factors Underlying Cell Injury in Cryosurgical Freezing, Cryosurgery, published on date even with or prior to Jan. 12, 1999, pp. 32-51.
Morris et al., "Effects of Low Temperatures on Biological Membranes," 2 pages, published on date even with or prior to Jan. 12, 1999.
Nataf et al., "Effect of Cold Anoxia and Cryopreservation on Metabolic and Contractile Functions of Human Mammary Artery," Cryobiology, 1995, 32:327-333.
Schilling et al., "Nature of the Vehicle for Cryopreservation of Human Peripheral Veins: Preservation of Reactivity to Pharmacological Stimuli," Cryobiology, 1995, 32:109-113.
Stephenson et al., "Renal Cryoablation in a Canine Model," Urology, 1996, 47(5):772-776, Abstract only.
Zacarian, "Cryosurgery of Tumors of the Skin and Oral Cavity," 5 pages, published on date even with or prior to Jan. 12, 1999.

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9603650B2 (en) 2011-02-01 2017-03-28 Channel Medsystems, Inc. Cryogenic treatment systems
US9848933B2 (en) 2011-02-01 2017-12-26 Channel Medsystems, Inc. Liner for cryogenic treatment systems
US9277952B2 (en) 2011-02-01 2016-03-08 Channel Medsystems, Inc. Cryogenic treatment systems
US9283022B2 (en) 2011-02-01 2016-03-15 Channel Medsystems, Inc. Methods and apparatus for cryogenic treatment of a body cavity or lumen
US9408657B2 (en) 2011-02-01 2016-08-09 Channel Medsystems, Inc. Cryogenic treatment systems
US9445860B2 (en) 2011-02-01 2016-09-20 Channel Medsystems, Inc. Handheld cyrogenic treatment systems
US9486267B2 (en) 2011-02-01 2016-11-08 Channel Medsystems, Inc. Cryogenic treatment systems
US9492217B2 (en) 2011-02-01 2016-11-15 Channel Medsystems, Inc. Treatments using cryogenic ablation systems
US9492218B2 (en) 2011-02-01 2016-11-15 Channel Medsystems, Inc. Pressure monitoring systems
US9498274B2 (en) 2011-02-01 2016-11-22 Channel Medsystems, Inc. Liner extraction methods
US9510887B2 (en) 2011-02-01 2016-12-06 Channel Medsystems, Inc. Time-limited methods for cryogenic treatment systems
US9517100B2 (en) 2011-02-01 2016-12-13 Channel Medsystems, Inc. Cryogenic treatment methods
US9883906B2 (en) 2012-04-22 2018-02-06 Newuro, B.V. Bladder tissue modification for overactive bladder disorders
US9179963B2 (en) 2012-04-22 2015-11-10 Newuro, B.V. Bladder tissue modification for overactive bladder disorders
WO2015079322A2 (en) 2013-11-26 2015-06-04 Newuro, B.V. Bladder tissue modification for overactive bladder disorders

Also Published As

Publication number Publication date Type
ES2354597T3 (en) 2011-03-16 grant
EP0910295A1 (en) 1999-04-28 application
WO1998038934A1 (en) 1998-09-11 application
US5868735A (en) 1999-02-09 grant
US7022120B2 (en) 2006-04-04 grant
US20020032438A1 (en) 2002-03-14 application
US8088125B2 (en) 2012-01-03 grant
EP0910295A4 (en) 2000-08-30 application
US20040049176A1 (en) 2004-03-11 application
US20110087204A1 (en) 2011-04-14 application
US20060178663A1 (en) 2006-08-10 application
EP0910295B1 (en) 2010-10-27 grant
US6648878B2 (en) 2003-11-18 grant
US6290696B1 (en) 2001-09-18 grant
DE69841970D1 (en) 2010-12-09 grant

Similar Documents

Publication Publication Date Title
US6953469B2 (en) Device and method for treating intraluminal tissue
US5542928A (en) Method and device for thermal ablation having improved heat transfer
US6149677A (en) Circulating fluid hypothermia method
US6579287B2 (en) Cryosurgical ablation device having sequential injection and method therefor
US5087247A (en) Balloon perfusion catheter
US6517533B1 (en) Balloon catheter for controlling tissue remodeling and/or tissue proliferation
US5415635A (en) Balloon assembly with separately inflatable sections
US20050080374A1 (en) Method and apparatus for treating acute myocardial infarction with selective hypothermic perfusion
US6216041B1 (en) Thermotherapy probe
US20050182365A1 (en) Method and apparatus for locating and detecting vascular plaque via impedence and conductivity measurements, and for cryogenically passivating vascular plaque and inhibiting vascular plaque progression and rupture
US5344398A (en) Heated balloon catheter
US6716252B2 (en) Prostatic stent with localized tissue engaging anchoring means and methods for inhibiting obstruction of the prostatic urethra
US6666858B2 (en) Cryo balloon for atrial ablation
EP0540858A1 (en) Inflatable member having elastic expansion with limited range
US6077257A (en) Ablation of rectal and other internal body structures
US7785289B2 (en) Catheter with flexible, non-kinking elongate member
US20060258981A1 (en) Balloon catheter with perfusion lumen
US5433708A (en) Method and device for thermal ablation having improved heat transfer
US6425853B1 (en) Treating body tissue by applying energy and substances with a retractable catheter and contained cooling element
US6746465B2 (en) Catheter based balloon for therapy modification and positioning of tissue
US6623453B1 (en) Chemo-thermo applicator for cancer treatment
US6419673B1 (en) Ablation of rectal and other internal body structures
US4754752A (en) Vascular catheter
US7837720B2 (en) Apparatus for treatment of tissue adjacent a bodily conduit with a gene or drug-coated compression balloon
US20070135809A1 (en) Precision ablating device

Legal Events

Date Code Title Description
AS Assignment

Owner name: BOSTON SCIENTIFIC SCIMED, INC., MINNESOTA

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:LAFONTAINE, DANIEL M.;REEL/FRAME:017509/0321

Effective date: 20060410

FPAY Fee payment

Year of fee payment: 4

FEPP

Free format text: MAINTENANCE FEE REMINDER MAILED (ORIGINAL EVENT CODE: REM.)