US7834073B2 - Stable solutions of N-substituted aminopolysiloxanes, their preparation and use - Google Patents

Stable solutions of N-substituted aminopolysiloxanes, their preparation and use Download PDF

Info

Publication number
US7834073B2
US7834073B2 US11569363 US56936305A US7834073B2 US 7834073 B2 US7834073 B2 US 7834073B2 US 11569363 US11569363 US 11569363 US 56936305 A US56936305 A US 56936305A US 7834073 B2 US7834073 B2 US 7834073B2
Authority
US
Grant status
Grant
Patent type
Prior art keywords
acid
organic
solution
weight
substituted
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active, expires
Application number
US11569363
Other versions
US20080003448A1 (en )
Inventor
Burkhard Standke
Peter Jenkner
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Evonik Degussa GmbH
Original Assignee
Evonik Degussa GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Grant date

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G
    • C08J3/00Processes of treating or compounding macromolecular substances
    • C08J3/02Making solutions, dispersions or lattices by other methods than by solution, emulsion or suspension polymerisation techniques
    • C08J3/09Making solutions, dispersions or lattices by other methods than by solution, emulsion or suspension polymerisation techniques in organic liquids
    • C08J3/091Making solutions, dispersions or lattices by other methods than by solution, emulsion or suspension polymerisation techniques in organic liquids characterised by the chemical constitution of the organic liquid
    • C08J3/095Oxygen containing compounds
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07FACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
    • C07F7/00Compounds containing elements of Groups 4 or 14 of the Periodic System
    • C07F7/02Silicon compounds
    • C07F7/21Cyclic compounds having at least one ring containing silicon, but no carbon in the ring
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G
    • C08J2383/00Characterised by the use of macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing silicon with or without sulfur, nitrogen, oxygen, or carbon only; Derivatives of such polymers
    • C08J2383/04Polysiloxanes
    • C08J2383/08Polysiloxanes containing silicon bound to organic groups containing atoms other than carbon, hydrogen, and oxygen
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/12All metal or with adjacent metals
    • Y10T428/12493Composite; i.e., plural, adjacent, spatially distinct metal components [e.g., layers, joint, etc.]
    • Y10T428/12535Composite; i.e., plural, adjacent, spatially distinct metal components [e.g., layers, joint, etc.] with additional, spatially distinct nonmetal component
    • Y10T428/12556Organic component
    • Y10T428/12569Synthetic resin
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/31504Composite [nonstructural laminate]
    • Y10T428/31551Of polyamidoester [polyurethane, polyisocyanate, polycarbamate, etc.]
    • Y10T428/31609Particulate metal or metal compound-containing
    • Y10T428/31612As silicone, silane or siloxane
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/31504Composite [nonstructural laminate]
    • Y10T428/31652Of asbestos
    • Y10T428/31663As siloxane, silicone or silane

Abstract

Stable low chloride solutions of hydrosalts of an organic acid with a N-substituted aminopolysiloxane in the form of a T structural unit contain at least one lower alcohol, and at least one stabilizer. Methods to prepare the stable low-chloride solutions are also provided.

Description

CROSS REFERENCE TO RELATED APPLICATIONS

This application is the National Stage of PCT/EP05/052168, filed May 12, 2005. The parent application claims priority to German Application No. 10 2004-025 767.1 filed May 26, 2004. The disclosures of both applications are incorporated herein by reference in their entireties.

BACKGROUND OF THE INVENTION

The present invention relates to stable, low-chloride solutions of hydrosalts of organic acids with cationic N-substituted aminopolysiloxanes, present substantially in the form of T structural units, in a lower alcohol, to the preparation of these solutions, and to their use as adhesion promoters and for coating various substrate materials.

Solutions of organosilane polycondensates and their preparation and use are described in a host of publications.

The promotion of adhesion by functionalized aminopropyltrimethoxysilanes in the coating of metals, copper and iron for example, with polyolefins or epoxy resins is reported in U.S. Pat. No. 4,902,556, EP-A-0 353 766 and U.S. Pat. No. 4,849,294. Adhesion is promoted on glass surfaces in accordance with EP-A-0 338 128, WO 88/00527, U.S. Pat. No. 4,499,152, U.S. Pat. No. 4,382,991, U.S. Pat. No. 4,330,444, DE-A-28 02 242 and EP-A-0 845 040. Adhesion promoters for oxidic fillers in various organic polymers are described in JP-A-01/259369 and EP-A-0 176 062.

Aqueous formulations of such substances with low concentrations of active substance, below 1%, are described in JP-A-62/243624, U.S. Pat. No. 4,499,152, U.S. Pat. No. 4,382,991, U.S. Pat. No. 4,330,444 and DE-A-28 02 242.

DE-A-26 48 240 describes water-soluble silylalkylamine chlorides which are suitable for use as coupling agents between inorganic substrates.

U.S. Pat. No. 5,591,818 and EP-A-0 590 270 disclose organosilanes and their poly-condensation products, which are prepared by hydrolyzing a functional aminosilane hydrosalt or by hydrolytically polymerizing an aminosilane with subsequent functionalization by reaction with a functional alkyl halide. The compounds can be formulated as stable aqueous emulsions and used as adhesion promoters between organic and inorganic materials.

U.S. Pat. No. 5,073,195 discloses compositions for treating porous surfaces to make them water repellent, these compositions being aqueous solutions of a silane coupling agent and an alkyltrialkoxysilane having C1-C6 alkyl groups on the silicon atom. The solutions are used for treating substrate materials such as wood, concrete, lime sandstone or other unreactive surfaces of building materials.

EP-A-0 538 551 is directed to emulsions which contain organosilicon compounds and are intended for impregnating inorganic materials, especially building materials. The emulsions comprise water, at least one alkoxysilane with or without oligomers thereof, one or more anionic surfactants, and also silicon-functional surfactants and customary auxiliaries. The surfactant group is introduced into alkylalkoxysilanes in the form of the hydrochloride salt by reaction with the surfactant radical, in the form of the Na alkoxide, in an organic solvent. Stable emulsions are obtained by using high-pressure homogenizers with two passes at pressures of from 8 to 50 MPa and from 10 to 70 MPa, the pressure reduction in the second pressure stage amounting to 20%. Droplet sizes <1 μm are obtained.

At the 39th annual conference of the Institut für verstarkte Kunststoffe/Verbundwerkstoffe [Institute for Reinforced Plastics/Composites] of the Gesellschaft der Kunststoffindustrie [German Plastics Industry Association] from Jan. 16 through 19, 1984, E. P. Plueddemann reported on silanols and siloxanes as coupling agents and primers.

In U.S. Pat. No. 3,734,763 Plueddemann describes cationic unsaturated amino-functional silane coupling agents. (CH3O)3Si(CH2)3NHCH2CH2NH2 and (CH3O)3Si(CH2)3NHCH2CH2NHCH2C6H4—CH═CH2 were subjected to controlled hydrolysis. The hydrolysate may undergo partial condensation. The patent describes the reaction of numerous organofunctional amines and aminosilanes with organofunctional alkyl halides in organic solvents. The products can be used as adhesion promoters between organic and inorganic surfaces and also as primers.

DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS

This object is achieved by means of a stable solution comprising:

at least one lower alcohol;

at least one stabilizer; and

at least one hydrosalt of an organic acid with a N-substituted aminopolysiloxane comprising a T structural unit of the formula:

Figure US07834073-20101116-C00001

wherein

the R′ groups are independently of each other, represented by formulae (Ia), (Ib), (Ic) or (Id):

Figure US07834073-20101116-C00002

wherein a is 0, 1 or 2, and b is 0 or 1;

Figure US07834073-20101116-C00003

wherein a is 0,1, 2, or 3, and b is 0 or 1;

Figure US07834073-20101116-C00004

wherein a is 0, 1, or 2, and b is 0 or 1;

Figure US07834073-20101116-C00005

wherein a is 0, 1, 2, or 3, and b is 0, 1, or 2; and

wherein

the R groups independently of each other are benzyl or vinylbenzyl,

A is an anion of the organic carboxylic acid, and

a ratio of R′ having formulae (Ib), (Ic) and (Id) to total R′ is at least 0.125,

a % by weight of chloride based on the total weight of the solution is less than 1%.

The at least one stabilizer is selected from the group consisting of 3,5-di-tert-butylcatechol, 2,5-di-tert-butylhydroquinone, 4-tert-butylpyrocatechol, 2,4-di-tert-butylphenol, hydroquinone monomethyl ether, 2,6-di-tert-butyl-p-cresol and a mixture thereof.

The object is also achieved by a process to prepare the above described stable solution by (i) reacting a hydrochloride salt of a N-substituted aminopolysiloxane to be obtained as a hydrosalt of an organic acid with NaOH, in solution in a lower alcohol, to obtain the N-substituted aminopolysiloxane as a free amine; separating off precipitated NaCl; and

reacting the obtained free amine with the organic acid A;

or

(ii) reacting a hydrochloride salt of a N-substituted aminopolysiloxane to be obtained as a hydrosalt of an organic acid, in solution in the lower alcohol, with a sodium salt of the organic acid A; and

separating off precipitated NaCl;

or

(iii) reacting a hydrochloride salt of a N-substituted aminopolysiloxane to be obtained as a hydrosalt of an organic acid, in solution in the lower alcohol, with a sodium alkoxide of the lower alcohol, to obtain the N-substituted aminopolysiloxane as a free amine;

separating off precipitated NaCl; and reacting the resultant free amine with the organic acid A;

and recovering a solution of the hydrosalt of the organic acid A of the N-substituted aminopolysiloxane in the lower alcohol.

The solutions contain <1.0% by weight, preferably <0.5% by weight, of chloride, based on the total weight of the solution.

The amount of cationic N-substituted aminopolysiloxanes in the solutions can be from 0.1 to 80% by weight, preferably from 30% to 60%, more preferably 40% to 50% by weight, based on the total weight of the solution.

A solution according to the invention may further have an alcohol content of from 14% to 99.9% by weight, preferably from 19% to 99.8% by weight, based on the total weight of the solution.

The components or constituents of a solution here in each case total 100% by weight.

The concentration can be adjusted by removing or adding lower alcohol.

The structure of the compounds of the invention is complex, since they comprise mixtures of siloxanes with T structure and also, where appropriate, with different N substitution.

The degree of oligomerization [x, cf. formula (I)] of the cationic N-substituted amino-polysiloxanes is generally ≧2, in particular between 3 and 20. Three-dimensional structures, such as pyramids or cubes, with degrees of oligomerization of 6, 8, 10 and 12 are particularly preferred; however, corresponding transition forms may also occur and be found.

The products generally contain more than 90% of such T structural units. This is apparent from 29Si NMR spectroscopic analyses.

The distribution of the substituents on the aminic nitrogen atoms can be determined by means of GC/MS analyses.

Surprisingly it has additionally been found that the benzyl group tends toward three-fold substitution but that disubstituted products, with substitution on the primary and secondary amino group, also occur. In the case of substitution with the vinylbenzyl group no threefold substitution was found.

Through the choice of the substituents R and the selected reaction partners and reaction conditions (temperature, reaction time, and pH) during the preparation of the cationic aminopolysiloxanes it is possible to control the distribution of the substituents on the available nitrogen atoms and to ensure that substitution takes place not only terminally on the primary amino groups but also on the secondary amino groups.

The preparation of hydrochloride salts of functionalized aminopolysiloxanes by hydrolytic polymerization of an appropriately functionalized aminosilane hydrohalide by hydrolytic polymerization or by hydrolytic polymerization of an aminosilane and subsequent functionalization by reaction of a functional alkyl halide to form oligomeric and polymeric siloxanes is described in EP-A-0 590 270.

In order to ensure substitution on secondary nitrogen atoms, controlled oligomerization is carried out of the organosilane monomer with water, the reaction taking place at elevated temperature, by means of active heating, over a time of at least 2 hours. Suitable stabilizers are used specifically in defined concentrations. This is followed by reaction with sodium methoxide and subsequent neutralization with acid.

The organic acid (A) for forming the hydrosalts is selected from, for example, formic acid, acetic acid, propionic acid, citric acid, oxalic acid, lactic acid and mixtures thereof. Acetic acid is particularly preferred.

A solution according to the invention preferably has a pH of less than 10, more preferably a pH of from 6 to 9.

The lower alcohol used even when preparing the hydrochloride salts is preferably also used as solvent for preparing the hydrosalts of organic carboxylic acids according to the invention.

The lower alcohol is selected from methanol, ethanol, isopropanol, n-propanol, isobutanol, n-butanol and t-butanol and mixtures thereof.

In addition to the stabilization of the cationic N-substituted aminopolysiloxanes by formation of a hydrosalt with an organic carboxylic acid it is possible with advantage to use further stabilizers in amounts of from 0.01% to 6%, preferably from 0.05% to 4%, more preferably from 0.1% to 1% by weight, based on the total weight of the solution.

Examples of suitable stabilizers include 3,5-di-tert-butylcatechol, 2,5-di-tert-butyl-hydroquinone, 4-tert-butylpyrocatechol, 2,4-di-tert-butylphenol, hydroquinone mono-methyl ether, and 2,6-di-tert-butyl-p-cresol.

The stabilized solutions according to the invention are suitable with advantage for coating different substrate materials, where appropriate following dilution with water.

Thus, for example, from 0.1 to 100 parts by weight, preferably from 2 to 20 parts by weight, of a solution according to the invention, with an active substance content of about 40% by weight in particular, can be mixed with 300 parts by weights of water, the mixture giving rise, advantageously within less than 2 minutes, to a clear preparation which is ready for application.

Substrate materials used may be glass, glass fibers, metals and their oxides, such as aluminum, copper and steel, galvanized surfaces, titanium, zirconium, mixed oxides of titanium and zirconium, silicon, inorganic fillers, such as Al(OH)3, Mg(OH)2, mica, Al2O3, and synthetic polymers, especially polar and functional polymers, such as polyamide and polyesters, and polar polymers, such as polyolefins, which where appropriate may have been functionalized by physical pretreatment, and natural substances which have corresponding functional groups, such as paper, cotton, silk and leather.

The solutions of cationic N-substituted aminopolysiloxanes according to the invention can be used as adhesion promoters between organic and inorganic surfaces. They can also be used in connection with the reinforcement of organic polymers with inorganic fillers, glass fibers or metallic particles or in connection with the reinforcement of organic polymers with inorganic oxidic fillers. They also find use in the coating of inorganic surfaces with organic polymers or in the coating of metal, metal oxides or glass with organic polymers.

Entirely surprisingly it has been found that the T structures break up on application to substrate materials and produce a substantially more homogeneous, and thicker, coat than coats applied from monomeric functionalized silanes.

When using monomeric silanes it is possible to obtain coats of only from 10 to 50 nm, preferably about 20 nm. With the oligomeric aminopolysiloxanes according to the invention, however, coat thicknesses of up to 800 nm, in particular from 20 to 200 nm, are possible.

The coat thicknesses can be determined from the time taken for the coat to wear away under cathode ray atomization.

Without being tied to any one theory it is assumed that a coat is formed from a network in which the organic radicals R have undergone upward orientation and accumulation at the surface of the coat.

This concentration gradient can be determined by means of Auger spectroscopy, measuring the elements Si, O and C.

The invention is illustrated with reference to the following examples, without restriction of its subject-matter.

EXAMPLES

The examples are carried out using 4-necked flasks with a capacity of 1 liter or 2 liters, respectively, fitted in each case with an intensive condenser, stirrer, dropping funnel, thermometer, temperature-regulated oil bath, nitrogen atmosphere, ice-bath cooling and pressure filters or suction filters.

Example 1 Preparation of essentially N′-aminoethyl-N-vinylbenzyl-N-aminopropylpolysiloxane hydroacetate

145 g of N′-aminoethyl-N-aminopropyltrimethoxysilane and 84.7 g of methanol are mixed. Subsequently 17.5 g of water are added. The reaction mixture is thereafter stirred for 1 hour. The oil bath is set to a temperature of 50° C. When this temperature has been reached 99.5 g of vinylbenzyl chloride are metered in over the course of one hour. The liquid phase reaches a temperature of 64° C. The subsequent reaction time amounts to 2 hours. Subsequently 120.3 g of a 30% strength by weight solution of sodium methoxide in methanol are added rapidly dropwise. The reaction mixture is cooled by means of an ice bath during this dropwise addition. The resultant sodium chloride salt is filtered off on a pressure suction filter. The NaCl is washed with 52 g of methanol. The methanol used for rinsing is combined with the filtrate and stabilized and neutralized with 0.5 g of 4-(tert-butyl)pyrocatechol in solution in 39 g of acetic acid. This gives 500 g of product solution in methanol (100% of theory). 58.5 g of NaCl are isolated. The practical yield of target product amounts to 440 g (88%). Losses arise as a result of contamination of the separated salt.

Physical data: pH 7.0 Flash point
approx. 11° C.
Si content 3.5% by weight Density 0.94 g/ml
N content 3.4% by weight Viscosity 19 mPa s
Hydrol. chloride 0.34% by weight

Example 2 Preparation of essentially N′-aminoethyl-N-vinylbenzyl-N-aminopropylpolysiloxane hydroacetate

312 g of N′-aminoethyl-N-aminopropyltrimethoxysilane and 158 g of methanol are mixed. Subsequently 158 g of water are added. The reaction mixture is thereafter stirred for 1 hour. The oil bath is set to a temperature of 50° C. When this temperature has been reached 177 g of vinylbenzyl chloride are metered in over the course of one hour. The liquid phase reaches a temperature of 64° C. The subsequent reaction time amounts to 2 hours. Subsequently 252 g of a 30% strength by weight solution of sodium methoxide in methanol are added rapidly dropwise. The reaction mixture is cooled by means of an ice bath during this dropwise addition. The resultant sodium chloride salt is filtered off on a pressure suction filter. The NaCl is washed with 104 g of methanol. The methanol used for rinsing is combined with the filtrate and stabilized and neutralized with 0.25 g of 2,6-di-tert-butyl-p-cresol in solution in 88 g of acetic acid. This gives 1000 g of product solution in methanol (100% of theory). 129 g of NaCl are isolated. The practical yield of target product amounts to 940 g (94%). Losses arise as a result of contamination of the separated salt.

Physical data: pH 7.0 Flash point
approx. 10° C.
Si content 3.7% by weight Density 0.944 g/ml
N content 3.7% by weight Viscosity 11 mPa s
Hydrol. chloride 0.30% by weight

Claims (17)

1. A stable solution comprising:
at least one lower alcohol;
at least one stabilizer; and
at least one hydrosalt of an organic acid with a N-substituted aminopolysiloxane of formula (I)
Figure US07834073-20101116-C00006
wherein
each R is independently benzyl or vinylbenzyl,
each Y is independently alkoxy, hydroxyl or O1/2,
A is an organic carboxylic acid,
a is 0, 1 or 2,
b is 0 or 1,
c is greater than or equal to 0.125,
(a+b) is from 0.125 to 3, and
x is equal to or greater than 2; and
the at least one hydrosalt of an organic acid with a N-substituted aminopolysiloxane of formula (I) comprises a T structural unit of the formula:
Figure US07834073-20101116-C00007
wherein
R′ is [Ra-NH(2-a)(CH2)2NH(1-b)Rb—(CH2)3-] or is of formula (II), with the proviso that at least one of the R′ groups is of formula (II):
Figure US07834073-20101116-C00008
wherein
z≧1,
a is 0, 1 or 2, and
b is 0 or 1;
a % by weight of chloride based on the total weight of the solution is less than 1%, and
the at least one stabilizer is selected from the group consisting of 3,5-di-tert-butylcatechol, 2,5-di-tert-butylhydroquinone, 4-tert-butylpyrocatechol, 2,4-di-tert-butylphenol, hydroquinone monomethyl ether, 2,6-di-tert-butyl-p-cresol and a mixture thereof.
2. The stable solution as claimed in claim 1, wherein the organic carboxylic acid A is selected from the group consisting of formic acid, acetic acid, propionic acid, citric acid, oxalic acid, lactic acid and mixtures thereof.
3. The stable solution as claimed in claim 1, wherein the lower alcohol is selected from the group consisting of methanol, ethanol, isopropanol, n-propanol, isobutanol, n-butanol, t-butanol and mixtures thereof.
4. The stable solution as claimed in claim 1, wherein an amount of the at least one hydrosalt of an organic acid with a N-substituted aminopolysiloxane is from 0.1% to 80% by weight, based on the total weight of the solution.
5. The stable solution as claimed in claim 1, wherein the amount of chloride is <0.5% by weight, based on the total weight of the solution.
6. The stable solution as claimed in claim 1, wherein an amount of alcohol is from 14% to 99.9% by weight, based on the total weight of the solution.
7. The stable solution as claimed in claim 1, wherein a pH is less than 10.
8. An adhesion promoter between organic and inorganic surfaces, comprising the stable solution of claim 1.
9. An organic polymer comprising:
inorganic fillers, glass fibers or metallic particles and
the stable solution of claim 1 as materials for reinforcement.
10. The organic polymer of claim 9, wherein the polymer is reinforced with inorganic oxidic fillers.
11. An inorganic surface coated with an organic polymer and the stable solution of claim 1.
12. The coated inorganic surface in claim 11 wherein the inorganic surface is metal, metal oxides or glass.
13. The coated inorganic surface in claim 11, wherein a thickness of the coating is in the range of from greater than 20 to 800 nm.
14. A process for preparing the stable solution according to claim 1, comprising:
(i) reacting a hydrochloride salt of a N-substituted aminopolysiloxane to be obtained as a hydrosalt of an organic acid with NaOH, in solution in a lower alcohol, to obtain the N-substituted aminopolysiloxane as a free amine;
separating off precipitated NaCl; and
reacting the obtained free amine with the organic acid A;
or
(ii) reacting a hydrochloride salt of a N-substituted aminopolysiloxane to be obtained as a hydrosalt of an organic acid, in solution in the lower alcohol, with a sodium salt of the organic acid A; and
separating off precipitated NaCl;
or
(iii) reacting a hydrochloride salt of a N-substituted aminopolysiloxane to be obtained as a hydrosalt of an organic acid, in solution in the lower alcohol, with a sodium alkoxide of the lower alcohol, to obtain the N-substituted aminopolysiloxane as a free amine;
separating off precipitated NaCl; and
reacting the resultant free amine with the organic acid A;
and
recovering a solution of the hydrosalt of the organic acid A of the N-substituted aminopolysiloxane in the lower alcohol.
15. The process as claimed in claim 14, wherein the organic carboxylic acid A is selected from formic acid, acetic acid, propionic acid, citric acid, oxalic acid, lactic acid and mixtures thereof.
16. The process as claimed in claim 14, wherein the lower alcohol is selected from the group consisting of methanol, ethanol, isopropanol, n-propanol, isobutanol, n-butanol, t-butanol and mixtures thereof.
17. The process as claimed in claim 14, further comprising:
dissolving an additional stabilizer in the organic acid A and adding the solution of the additional stabilizer to the hydrosalt solution.
US11569363 2004-05-26 2005-05-12 Stable solutions of N-substituted aminopolysiloxanes, their preparation and use Active 2026-02-20 US7834073B2 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
DE102004025767 2004-05-26
DE200410025767 DE102004025767A1 (en) 2004-05-26 2004-05-26 Stable solutions of N-substituted aminopolysiloxanes, their preparation and use
DE102004025767.1 2004-05-26
PCT/EP2005/052168 WO2005118599A1 (en) 2004-05-26 2005-05-12 Stable solutions of n-substituted aminopolysiloxanes, their preparation and use

Publications (2)

Publication Number Publication Date
US20080003448A1 true US20080003448A1 (en) 2008-01-03
US7834073B2 true US7834073B2 (en) 2010-11-16

Family

ID=35044635

Family Applications (1)

Application Number Title Priority Date Filing Date
US11569363 Active 2026-02-20 US7834073B2 (en) 2004-05-26 2005-05-12 Stable solutions of N-substituted aminopolysiloxanes, their preparation and use

Country Status (8)

Country Link
US (1) US7834073B2 (en)
EP (1) EP1761546B1 (en)
JP (1) JP4773429B2 (en)
KR (2) KR100992703B1 (en)
CN (1) CN100506890C (en)
DE (1) DE102004025767A1 (en)
ES (1) ES2442676T3 (en)
WO (1) WO2005118599A1 (en)

Cited By (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20080221318A1 (en) * 2005-08-26 2008-09-11 Evonik Degussa Gmbh Cellulose- or Lignocellulose-Containing Composite Materials Based on a Silane-Based Composite as a Binder
US20080249237A1 (en) * 2005-11-04 2008-10-09 Evonik Degussa Gmbh Process for Producing Ultrafine Powders Based on Polyamides, Ultrafine Polyamide Powders and Their Use
US20080264299A1 (en) * 2005-07-12 2008-10-30 Evonik Degussa Gmbh Aluminium Oxide Dispersion
US20090007818A1 (en) * 2006-03-20 2009-01-08 Evonik Degussa Gmbh Silanization of Wood Turnings and Fibers for Producing Wood-Plastic Composite Materials
US20090131694A1 (en) * 2006-04-15 2009-05-21 Evonik Degussa Gmbh Silicon-titanium mixed oxide powder, dispersion thereof and titanium-containing zeolite prepared therefrom
US20090261309A1 (en) * 2004-07-01 2009-10-22 Degussa Ag Silicon dioxide dispersion comprising polyol
US20100209339A1 (en) * 2007-10-16 2010-08-19 Evonik Degussa Silicon-titanium mixed oxide powder, dispersion thereof and titanium-containing zeolite prepared therefrom
US20100233392A1 (en) * 2006-08-22 2010-09-16 Evonik Degussa Gmbh Dispersion of aluminium oxide, coating composition and ink-absorbing medium
US20110144226A1 (en) * 2007-08-25 2011-06-16 Evonik Degussa Gmbh Radiation-curable formulations
US8298679B2 (en) 2007-08-28 2012-10-30 Evonik Degussa Gmbh Aqueous silane systems based on bis(trialkoxysilylalkyl)amines
US8394972B2 (en) 2007-08-14 2013-03-12 Evonik Degussa Gmbh Process for controlled hydrolysis and condensation of epoxy-functional organosilanes and the cocondensation thereof with further organofunctional alkoxysilanes
US8481165B2 (en) 2004-07-29 2013-07-09 Evonik Degussa Gmbh Agent for providing substrates based on cellulose and/or starch with water repellent and simultaneously antifungal, antibacterial insect-repellent and antialgal properties
US8728225B2 (en) 2009-04-20 2014-05-20 Evonik Degussa Gmbh Composition containing quaternary amino-functional organosilicon compounds and production and use thereof
US8747541B2 (en) 2009-04-20 2014-06-10 Evonik Degussa Gmbh Dispersion containing silica particles surface-modified with quaternary, aminofunctional organosilicon compounds
US8980960B2 (en) 2010-07-09 2015-03-17 Evonik Degussa Gmbh Methods for producing a dispersion containing silicon dioxide particles and cationization agent
US9012538B2 (en) 2005-08-26 2015-04-21 Evonik Degussa Gmbh Silane-containing binder for composite materials
US9090503B2 (en) 2012-12-28 2015-07-28 Owens-Brockway Glass Container Inc. Coatings for enhancing glass strength
US9353136B2 (en) 2012-04-20 2016-05-31 Evonik Degussa Gmbh Process for preparing (meth)acrylamido-functional silanes by the reaction of aminoalkyl alkoxysilanes with acrylic acid anhydride
US9409930B2 (en) 2012-04-20 2016-08-09 Evonik Degussa Gmbh Easily synthesizable, spontaneously water-soluble, essentially VOC-free, environmentally friendly (meth)acrylamido-functional siloxanol systems, process for preparation thereof and use
US9441094B2 (en) 2012-04-20 2016-09-13 Evonik Degussa Gmbh Easily preparable, reduced-VOC, environmentally friendly (meth)acrylamido-functional siloxane systems, process for preparation thereof and use
US9796738B2 (en) 2010-07-09 2017-10-24 Evonik Degussa Gmbh Quaternary amino alcohol functional organosilicon compounds, composition containing the latter and their production and use

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102004037045A1 (en) * 2004-07-29 2006-04-27 Degussa Ag Aqueous silane nanocomposites
DE102004053384A1 (en) * 2004-11-02 2006-05-04 Degussa Ag Liquid, viscous agent based on an organofunctional silane system for the production of weather-stable protective coatings to prevent contamination of surfaces
DE102006003956A1 (en) * 2006-01-26 2007-08-02 Degussa Gmbh Production of a corrosion protection layer on a metal surface e.g. vehicle structure comprises applying a sol-gel composition to the metal surface, drying and/or hardening and applying a further layer and drying and/or hardening
DE102006003957A1 (en) 2006-01-26 2007-08-02 Degussa Gmbh Water-dilutable sol-gel for coating paper, cardboard, wood, presspahn, plastics, lacquer, stone, ceramics, metal or alloy or as primer is obtained by reacting glycidyloxypropylalkoxysilane, aqueous silica sol, organic acid and crosslinker
EP1982964A1 (en) * 2007-04-20 2008-10-22 Evonik Degussa GmbH Preparation containing organosilicium compound and its use

Citations (40)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4226793A (en) 1977-10-05 1980-10-07 Dynamit Nobel Aktiengesellschaft Process for the manufacture of monomeric and oligomeric silicic acid esters
US5591818A (en) 1992-10-01 1997-01-07 Huls Aktiengesellschaft Organosilane polycondensation products
US5629400A (en) 1994-12-09 1997-05-13 Huels Aktiengesellschaft Water-based organopolysiloxane-containing compositions, processes for their preparation and their use
US5679147A (en) 1994-12-09 1997-10-21 Huels Aktiengesellschaft Water-based organic polysiloxane-containing compositions, processes for their preparation and their use
US5808125A (en) 1996-12-03 1998-09-15 Huels Aktiengesellschaft Fluoroalkyl-functional organopolysiloxane-containing compositions based on water, a process for their preparation and their use
US5817854A (en) 1996-11-27 1998-10-06 Huels Aktiengesellschaft Process for the preparation of organocarbonoyloxysilanes
US5849942A (en) 1996-12-03 1998-12-15 Huels Aktiengesellschaft Fluoroalkyl-functional organopolysiloxane-containing compositions
US5885341A (en) 1996-09-26 1999-03-23 Huels Aktiengesellschaft Organopolysiloxane-containing, water-based compositions containing glycidal ether, acrylic and/or methacrylic functional groups, process for their preparation, and their use
US5932757A (en) 1996-06-17 1999-08-03 Huls Aktiengesellschaft Mixture of oligomers of condensed alkylalkoxysilanes
US6118015A (en) 1995-08-24 2000-09-12 Huels Aktiengesellschaft Water-containing solutions of acrylic-functionalized organosilanes
US6133466A (en) 1998-08-03 2000-10-17 Degussa-Huels Aktiengesellschaft Acryloxypropyl- or methacryloxypropyl-functional siloxane oligomers
US6139622A (en) 1997-10-30 2000-10-31 Degussa-Huls Ag Process for the production of integrally waterproofed concrete
US6176918B1 (en) 1996-09-27 2001-01-23 Merck Patent Gesellschaft Mit Beschrankter Haftung And Huels Ag Modified nacreous luster pigments for water paint systems
US6177582B1 (en) 1996-12-03 2001-01-23 Huels Aktiengesellschaft Fluoroalkyl-functional organosiloxane-containing compositions based on alcohol, a process for their preparation and their use
US6239194B1 (en) 1998-04-28 2001-05-29 Huels Aktiengesellschaft Surface-modified fillers, process for their preparation and their use
US6251989B1 (en) 1998-05-26 2001-06-26 Degussa-Huels Aktiengesellschaft Oligomerized organopolysiloxane cocondensate, its production and its use for treatment of surfaces
US6255513B1 (en) 1998-04-28 2001-07-03 Huels Aktiengesellschaft Stable compositions of water-soluble amino-and alkenyl-functional organosiloxanes, process for their preparation and their use
US6255516B1 (en) 1996-10-26 2001-07-03 Huels Aktiengesellschaft Process for preparing fluoroalkyl-containing organosilicon compounds, and their use
US6361871B1 (en) 1999-02-03 2002-03-26 Degussa Ag Composition of organofluorine-functional silanes and/or siloxanes, process for preparing it and its use
US6395858B1 (en) 1998-10-27 2002-05-28 Degussa Ag Aminopropyl-functional siloxane oligomers
US6403228B1 (en) 1999-06-25 2002-06-11 Degussa Ag Functional organylorganyloxysilanes on a carrier in cable compounds
US6426150B1 (en) 1999-02-03 2002-07-30 Degussa Ag Surface-modified insulator and method of modifying the surface of an insulator
US20020127415A1 (en) 2001-01-05 2002-09-12 Degussa Ag Process for modifying functionality of organofunctional substrate surfaces
US6491838B1 (en) 1999-11-15 2002-12-10 Degussa Ag Triamino- and fluoroalkyl-functional organosiloxanes
US20020192385A1 (en) 2001-01-05 2002-12-19 Degussa Ag Method of applying a fluoroalkyl-functional organopolysiloxane coationg having durable water and oil repellent properties to polymeric substrates
US6500883B1 (en) 1999-12-22 2002-12-31 Degussa Ag Organosilane-and/or organosiloxane-containing agent for filled polyamide
US6534667B1 (en) 1999-02-27 2003-03-18 Degussa- Ag Water-based composition of amino-functional silicon compounds
US6641870B2 (en) 2000-09-27 2003-11-04 Degussa Ag Ink, paint, pollutant, bioorganism, oil, water and/or dirt repellent coating
US6685766B2 (en) 2001-11-05 2004-02-03 Degussa Ag Corrosion inhibitor for steel-reinforced concrete
US6713186B1 (en) 1996-12-03 2004-03-30 Degussa Ag Fluoroalkyl-functional organosiloxane-containing compositions based on alcohol, a process for their preparation and their use
US20040138355A1 (en) 2001-01-24 2004-07-15 Hideo Saito Polyphentlene ether resin composition containing silicon compounds
US6767982B2 (en) 2000-11-14 2004-07-27 Degussa Ag Continuous manufacturing process for organoalkoxysiloxanes
US6770327B2 (en) 2001-10-17 2004-08-03 Degussa Ag Aminoalkylalkoxysiloxane mixtures
US6841197B2 (en) 2000-11-14 2005-01-11 Degussa Ag n-Propylethoxysiloxanes, their preparation and use
US20060185555A1 (en) 2003-08-05 2006-08-24 Degussa Ag Two-component coating system for equipping smooth surfaces with easy-to-clean properties
US20080058489A1 (en) 2004-07-29 2008-03-06 Degussa Gmbh Aqueous Silane Nanocomposites
US20080210130A1 (en) 2005-12-15 2008-09-04 Sabine Giessler-Blank Storage-Stable Coating Composition for Abrasion-Resistantly and Weathering-Stably Providing Smooth Inorganic Surfaces with Easy-To-Clean Properties
US20090011246A1 (en) 2005-12-15 2009-01-08 Evonik Degussa Gmbh Storage-Stable Coating Composition for Abrasion-Resistantly and Weathering-Stably Providing Smooth Inorganic Surfaces with Easy-to-Clean Properties
US20090022898A1 (en) 2006-01-26 2009-01-22 Evonik Degussa Gmbh Water-dilutable sol-gel composition
US7611753B2 (en) 2002-04-26 2009-11-03 Degussa Ag Process for impregnating porous mineral substrates

Family Cites Families (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US611015A (en) * 1898-09-20 Starghing-machine
US3734763A (en) 1969-05-15 1973-05-22 Dow Corning Cationic unsaturated amine-functional silane coupling agents
US3770327A (en) * 1971-04-21 1973-11-06 Goodyear Tire & Rubber Wheel speed transducer frequency doubling circuit
US4064155A (en) 1975-12-22 1977-12-20 Dow Corning Corporation Preparation of silylamine hydrochlorides
FR2377982B1 (en) 1977-01-19 1982-07-09 Saint Gobain
US4330444A (en) 1979-09-04 1982-05-18 Ppg Industries, Inc. Sizing composition and sized fibers with increased hardness
US4382991A (en) 1979-09-04 1983-05-10 Ppg Industries, Inc. Sizing composition and sized strand useful as reinforcement
US4499152A (en) 1982-08-09 1985-02-12 General Electric Company Metal-clad laminate construction
EP0176062A3 (en) 1984-09-27 1987-07-15 Dow Corning Corporation Silane bonding agents for high temperature applications and method therefor
US4749614A (en) 1986-04-10 1988-06-07 International Business Machines Corporation Process for coating fibers, use thereof, and product
US4849294A (en) 1986-05-09 1989-07-18 Dow Corning Corporation Coupling agent composition
WO1988000527A1 (en) 1986-07-24 1988-01-28 Clark-Schwebel, Fiberglass Corporation A method of treating glass surfaces with coupling agents and resins to provide an improved surface for bonding a final resin
JPH0757810B2 (en) 1988-04-15 1995-06-21 日本ゼオン株式会社 Glass fiber reinforced norbornene polymer and its preparation
US4910077A (en) 1988-08-04 1990-03-20 B.F. Goodrich Company Polynorbornene laminates and method of making the same
US4902556A (en) 1989-01-27 1990-02-20 The B. F. Goodrich Company Multi-layer polynorbornene and epoxy laminates and process for making the same
US5073195A (en) 1990-06-25 1991-12-17 Dow Corning Corporation Aqueous silane water repellent compositions
DE4122263C1 (en) 1991-07-05 1993-02-25 Degussa Ag, 6000 Frankfurt, De
US6641315B2 (en) * 1997-07-15 2003-11-04 Silverbrook Research Pty Ltd Keyboard
DE19802069A1 (en) 1998-01-21 1999-07-22 Huels Silicone Gmbh Amino-functional polyorganosiloxanes, their preparation and use
JP4748879B2 (en) * 2001-05-25 2011-08-17 旭化成イーマテリアルズ株式会社 Glass cloth and prepreg
DE10132942A1 (en) 2001-07-06 2003-01-23 Degussa Siloxane oligomers, processes for their preparation and their use
US7034070B2 (en) * 2002-09-27 2006-04-25 Vincent Chuang Arylalkyl aminofunctional silanes for epoxy laminates

Patent Citations (44)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4226793A (en) 1977-10-05 1980-10-07 Dynamit Nobel Aktiengesellschaft Process for the manufacture of monomeric and oligomeric silicic acid esters
US5591818A (en) 1992-10-01 1997-01-07 Huls Aktiengesellschaft Organosilane polycondensation products
US5629400A (en) 1994-12-09 1997-05-13 Huels Aktiengesellschaft Water-based organopolysiloxane-containing compositions, processes for their preparation and their use
US5679147A (en) 1994-12-09 1997-10-21 Huels Aktiengesellschaft Water-based organic polysiloxane-containing compositions, processes for their preparation and their use
US6118015A (en) 1995-08-24 2000-09-12 Huels Aktiengesellschaft Water-containing solutions of acrylic-functionalized organosilanes
US5932757A (en) 1996-06-17 1999-08-03 Huls Aktiengesellschaft Mixture of oligomers of condensed alkylalkoxysilanes
US5885341A (en) 1996-09-26 1999-03-23 Huels Aktiengesellschaft Organopolysiloxane-containing, water-based compositions containing glycidal ether, acrylic and/or methacrylic functional groups, process for their preparation, and their use
US6176918B1 (en) 1996-09-27 2001-01-23 Merck Patent Gesellschaft Mit Beschrankter Haftung And Huels Ag Modified nacreous luster pigments for water paint systems
US6255516B1 (en) 1996-10-26 2001-07-03 Huels Aktiengesellschaft Process for preparing fluoroalkyl-containing organosilicon compounds, and their use
US5817854A (en) 1996-11-27 1998-10-06 Huels Aktiengesellschaft Process for the preparation of organocarbonoyloxysilanes
US6054601A (en) 1996-12-03 2000-04-25 Huels Aktiengesellschaft Fluoroalkyl-functional organopolysiloxane-containing compositions based on water, a process for their preparation and their use
US5863509A (en) 1996-12-03 1999-01-26 Huels Aktiengesellschaft Fluoroalkyl-functional organopolysiloxane-containing compositions
US6713186B1 (en) 1996-12-03 2004-03-30 Degussa Ag Fluoroalkyl-functional organosiloxane-containing compositions based on alcohol, a process for their preparation and their use
US5849942A (en) 1996-12-03 1998-12-15 Huels Aktiengesellschaft Fluoroalkyl-functional organopolysiloxane-containing compositions
US6177582B1 (en) 1996-12-03 2001-01-23 Huels Aktiengesellschaft Fluoroalkyl-functional organosiloxane-containing compositions based on alcohol, a process for their preparation and their use
US6228936B1 (en) 1996-12-03 2001-05-08 Huels Aktiengesellschaft Fluoroalkyl-functional organopolysiloxane-containing compositions
US5808125A (en) 1996-12-03 1998-09-15 Huels Aktiengesellschaft Fluoroalkyl-functional organopolysiloxane-containing compositions based on water, a process for their preparation and their use
US6288256B1 (en) 1996-12-03 2001-09-11 Degussa-Huels Aktiengesellschaft Fluoroalkyl-functional organopolysiloxane-containing compositions based on water, a process for their preparation and their use
US6139622A (en) 1997-10-30 2000-10-31 Degussa-Huls Ag Process for the production of integrally waterproofed concrete
US6239194B1 (en) 1998-04-28 2001-05-29 Huels Aktiengesellschaft Surface-modified fillers, process for their preparation and their use
US6255513B1 (en) 1998-04-28 2001-07-03 Huels Aktiengesellschaft Stable compositions of water-soluble amino-and alkenyl-functional organosiloxanes, process for their preparation and their use
US6251989B1 (en) 1998-05-26 2001-06-26 Degussa-Huels Aktiengesellschaft Oligomerized organopolysiloxane cocondensate, its production and its use for treatment of surfaces
US6133466A (en) 1998-08-03 2000-10-17 Degussa-Huels Aktiengesellschaft Acryloxypropyl- or methacryloxypropyl-functional siloxane oligomers
US6395858B1 (en) 1998-10-27 2002-05-28 Degussa Ag Aminopropyl-functional siloxane oligomers
US6426150B1 (en) 1999-02-03 2002-07-30 Degussa Ag Surface-modified insulator and method of modifying the surface of an insulator
US6361871B1 (en) 1999-02-03 2002-03-26 Degussa Ag Composition of organofluorine-functional silanes and/or siloxanes, process for preparing it and its use
US6534667B1 (en) 1999-02-27 2003-03-18 Degussa- Ag Water-based composition of amino-functional silicon compounds
US6403228B1 (en) 1999-06-25 2002-06-11 Degussa Ag Functional organylorganyloxysilanes on a carrier in cable compounds
US6491838B1 (en) 1999-11-15 2002-12-10 Degussa Ag Triamino- and fluoroalkyl-functional organosiloxanes
US6500883B1 (en) 1999-12-22 2002-12-31 Degussa Ag Organosilane-and/or organosiloxane-containing agent for filled polyamide
US6641870B2 (en) 2000-09-27 2003-11-04 Degussa Ag Ink, paint, pollutant, bioorganism, oil, water and/or dirt repellent coating
US6767982B2 (en) 2000-11-14 2004-07-27 Degussa Ag Continuous manufacturing process for organoalkoxysiloxanes
US6841197B2 (en) 2000-11-14 2005-01-11 Degussa Ag n-Propylethoxysiloxanes, their preparation and use
US20020192385A1 (en) 2001-01-05 2002-12-19 Degussa Ag Method of applying a fluoroalkyl-functional organopolysiloxane coationg having durable water and oil repellent properties to polymeric substrates
US20020127415A1 (en) 2001-01-05 2002-09-12 Degussa Ag Process for modifying functionality of organofunctional substrate surfaces
US20040138355A1 (en) 2001-01-24 2004-07-15 Hideo Saito Polyphentlene ether resin composition containing silicon compounds
US6770327B2 (en) 2001-10-17 2004-08-03 Degussa Ag Aminoalkylalkoxysiloxane mixtures
US6685766B2 (en) 2001-11-05 2004-02-03 Degussa Ag Corrosion inhibitor for steel-reinforced concrete
US7611753B2 (en) 2002-04-26 2009-11-03 Degussa Ag Process for impregnating porous mineral substrates
US20060185555A1 (en) 2003-08-05 2006-08-24 Degussa Ag Two-component coating system for equipping smooth surfaces with easy-to-clean properties
US20080058489A1 (en) 2004-07-29 2008-03-06 Degussa Gmbh Aqueous Silane Nanocomposites
US20080210130A1 (en) 2005-12-15 2008-09-04 Sabine Giessler-Blank Storage-Stable Coating Composition for Abrasion-Resistantly and Weathering-Stably Providing Smooth Inorganic Surfaces with Easy-To-Clean Properties
US20090011246A1 (en) 2005-12-15 2009-01-08 Evonik Degussa Gmbh Storage-Stable Coating Composition for Abrasion-Resistantly and Weathering-Stably Providing Smooth Inorganic Surfaces with Easy-to-Clean Properties
US20090022898A1 (en) 2006-01-26 2009-01-22 Evonik Degussa Gmbh Water-dilutable sol-gel composition

Non-Patent Citations (13)

* Cited by examiner, † Cited by third party
Title
Feher Frank J. et al., Octafunctionalized Polyhedral Ologosilsesquioxanes as Scaffolds: Synthesis of Peptidyl Silsesquioxanes, Chem. Commun., No. 14, pp. 1469-1470, 1998.
Feher, Frank J. et al.,"Amine and Ester-Substituted Silsesquioxanes: Synthesis, Characterization and Use as a Core for Starburst Dendrimers", Chem. Commun., No. 3, pp. 323-324, 1998.
Feher, Frank J. et al.,"Syntheses of Highly Functionalized Cube-Octameric Polyhedral Oligosilsesquioxanes (R8Si8O12)", J. Chem. Soc., Dalton Trans., No. 9, pp. 1491-1497, 1999.
U.S. Appl. No. 08/124,955, filed Sep. 21, 1993, Standke, et al.
U.S. Appl. No. 10/581,690, filed Jun. 6, 2006, Standke.
U.S. Appl. No. 11/572,555, filed Jan. 23, 2007, Just, et al.
U.S. Appl. No. 11/576,504, filed Apr. 2, 2007, Mueh, et al.
U.S. Appl. No. 11/718,442, filed May 2, 2007, Standke.
U.S. Appl. No. 11/814,127, filed Jul. 17, 2007, Standke, et al.
U.S. Appl. No. 11/815,391, filed Aug. 2, 2007, Standke, et al.
U.S. Appl. No. 12/161,112, filed Jul. 16, 2008, Standke, et al.
U.S. Appl. No. 12/596,725, filed Oct. 20, 2009, Giessler-Blank, et al.
U.S. Appl. No. 12/673,390, filed Feb. 16, 2010, Wassmer, et al.

Cited By (28)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8911638B2 (en) 2004-07-01 2014-12-16 Degussa Ag Silicon dioxide dispersion comprising polyol
US20090261309A1 (en) * 2004-07-01 2009-10-22 Degussa Ag Silicon dioxide dispersion comprising polyol
US8481165B2 (en) 2004-07-29 2013-07-09 Evonik Degussa Gmbh Agent for providing substrates based on cellulose and/or starch with water repellent and simultaneously antifungal, antibacterial insect-repellent and antialgal properties
US20080264299A1 (en) * 2005-07-12 2008-10-30 Evonik Degussa Gmbh Aluminium Oxide Dispersion
US8562733B2 (en) 2005-07-12 2013-10-22 Evonik Degussa Gmbh Aluminium oxide dispersion
US9012538B2 (en) 2005-08-26 2015-04-21 Evonik Degussa Gmbh Silane-containing binder for composite materials
US8188266B2 (en) 2005-08-26 2012-05-29 Evonik Degussa Gmbh Cellulose- or lignocellulose-containing composite materials based on a silane-based composite as a binder
US20080221318A1 (en) * 2005-08-26 2008-09-11 Evonik Degussa Gmbh Cellulose- or Lignocellulose-Containing Composite Materials Based on a Silane-Based Composite as a Binder
US8232333B2 (en) 2005-11-04 2012-07-31 Evonik Degussa Gmbh Process for producing ultrafine powders based on polyamides, ultrafine polyamide powders and their use
US20080249237A1 (en) * 2005-11-04 2008-10-09 Evonik Degussa Gmbh Process for Producing Ultrafine Powders Based on Polyamides, Ultrafine Polyamide Powders and Their Use
US20090007818A1 (en) * 2006-03-20 2009-01-08 Evonik Degussa Gmbh Silanization of Wood Turnings and Fibers for Producing Wood-Plastic Composite Materials
US20090131694A1 (en) * 2006-04-15 2009-05-21 Evonik Degussa Gmbh Silicon-titanium mixed oxide powder, dispersion thereof and titanium-containing zeolite prepared therefrom
US20100233392A1 (en) * 2006-08-22 2010-09-16 Evonik Degussa Gmbh Dispersion of aluminium oxide, coating composition and ink-absorbing medium
US8394972B2 (en) 2007-08-14 2013-03-12 Evonik Degussa Gmbh Process for controlled hydrolysis and condensation of epoxy-functional organosilanes and the cocondensation thereof with further organofunctional alkoxysilanes
US8809412B2 (en) 2007-08-25 2014-08-19 Evonik Degussa Gmbh Radiation-curable formulations
US20110144226A1 (en) * 2007-08-25 2011-06-16 Evonik Degussa Gmbh Radiation-curable formulations
US8298679B2 (en) 2007-08-28 2012-10-30 Evonik Degussa Gmbh Aqueous silane systems based on bis(trialkoxysilylalkyl)amines
US20100209339A1 (en) * 2007-10-16 2010-08-19 Evonik Degussa Silicon-titanium mixed oxide powder, dispersion thereof and titanium-containing zeolite prepared therefrom
US8747541B2 (en) 2009-04-20 2014-06-10 Evonik Degussa Gmbh Dispersion containing silica particles surface-modified with quaternary, aminofunctional organosilicon compounds
US8728225B2 (en) 2009-04-20 2014-05-20 Evonik Degussa Gmbh Composition containing quaternary amino-functional organosilicon compounds and production and use thereof
US8979996B2 (en) 2009-04-20 2015-03-17 Evonik Degussa Gmbh Composition containing quaternary amino-functional organosilicon compunds and production and use thereof
US8980960B2 (en) 2010-07-09 2015-03-17 Evonik Degussa Gmbh Methods for producing a dispersion containing silicon dioxide particles and cationization agent
US9796738B2 (en) 2010-07-09 2017-10-24 Evonik Degussa Gmbh Quaternary amino alcohol functional organosilicon compounds, composition containing the latter and their production and use
US9353136B2 (en) 2012-04-20 2016-05-31 Evonik Degussa Gmbh Process for preparing (meth)acrylamido-functional silanes by the reaction of aminoalkyl alkoxysilanes with acrylic acid anhydride
US9409930B2 (en) 2012-04-20 2016-08-09 Evonik Degussa Gmbh Easily synthesizable, spontaneously water-soluble, essentially VOC-free, environmentally friendly (meth)acrylamido-functional siloxanol systems, process for preparation thereof and use
US9441094B2 (en) 2012-04-20 2016-09-13 Evonik Degussa Gmbh Easily preparable, reduced-VOC, environmentally friendly (meth)acrylamido-functional siloxane systems, process for preparation thereof and use
US9765095B2 (en) 2012-04-20 2017-09-19 Evonik Degussa Gmbh Easily synthesizable, spontaneously water-soluble, essentially voc-free, environmentally friendly (meth)acrylamido-functional siloxanol systems, process for preparation thereof and use
US9090503B2 (en) 2012-12-28 2015-07-28 Owens-Brockway Glass Container Inc. Coatings for enhancing glass strength

Also Published As

Publication number Publication date Type
EP1761546A1 (en) 2007-03-14 application
US20080003448A1 (en) 2008-01-03 application
KR20070020250A (en) 2007-02-20 application
CN100506890C (en) 2009-07-01 grant
JP4773429B2 (en) 2011-09-14 grant
ES2442676T3 (en) 2014-02-12 grant
EP1761546B1 (en) 2013-10-23 grant
CN1788056A (en) 2006-06-14 application
KR20080063427A (en) 2008-07-03 application
JP2008500306A (en) 2008-01-10 application
WO2005118599A1 (en) 2005-12-15 application
KR100992703B1 (en) 2010-11-05 grant
KR100854237B1 (en) 2008-08-25 grant
DE102004025767A1 (en) 2005-12-22 application

Similar Documents

Publication Publication Date Title
US5139601A (en) Method for metal bonding
US4778727A (en) Silane coupling agents polyimide-mineral oxide composites
US6767982B2 (en) Continuous manufacturing process for organoalkoxysiloxanes
US6972312B1 (en) Process for the formation of polyhedral oligomeric silsesquioxanes
US3819675A (en) Cationic unsaturated amine-functional silane coupling agents
US6491838B1 (en) Triamino- and fluoroalkyl-functional organosiloxanes
US5124466A (en) Cationic silicone surfactant and method of its manufacture
US20090203929A1 (en) Amino alkoxy-modified silsesquioxanes and method of preparation
EP1538177A1 (en) Tfe copolymers
US6489498B2 (en) Silanes with hydrophilic groups, their synthesis and use as surfactants in aqueous media
JP2005264154A (en) New cyanate ester compound, flame-retardant resin composition and cured product thereof
WO2002083809A1 (en) Water-and-oil repellant composition
US4005117A (en) Organosilane compounds
JP2005272506A (en) Fluorine-containing silsesquioxane polymer
US6506921B1 (en) Amine compounds and curable compositions derived therefrom
JP2002256208A (en) Composition for coating having gas barrier property and coating
US5143951A (en) Epoxy resin composition for semiconductor sealing
US7056449B2 (en) Aqueous silica dispersion
US20040139887A1 (en) Metal coating coupling composition
EP0738771A1 (en) Water-soluble surface treating agents
US5001011A (en) Ionomeric silane coupling agents
US5354881A (en) Silanes carrying water-solubilizing and hydrophobic moieties
JP2000290454A (en) Fluorine-containing elastomeric composition
US20060178452A1 (en) Aqueous silica dispersion
WO2003078479A1 (en) Aqueous polytetrafluoroethylene dispersion composition and process for producing the same

Legal Events

Date Code Title Description
AS Assignment

Owner name: DEGUSSA AG, GERMANY

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:STANDKE, BURKHARD;JENKNER, PETER;REEL/FRAME:020423/0321;SIGNING DATES FROM 20061023 TO 20061103

Owner name: DEGUSSA AG, GERMANY

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:STANDKE, BURKHARD;JENKNER, PETER;SIGNING DATES FROM 20061023 TO 20061103;REEL/FRAME:020423/0321

AS Assignment

Owner name: EVONIK DEGUSSA GMBH,GERMANY

Free format text: CHANGE ADDRESS;ASSIGNOR:EVONIK DEGUSSA GMBH;REEL/FRAME:023985/0296

Effective date: 20071031

Owner name: DEGUSSA GMBH,GERMANY

Free format text: CHANGE OF ENTITY;ASSIGNOR:DEGUSSA AG;REEL/FRAME:023998/0937

Effective date: 20070102

Owner name: EVONIK DEGUSSA GMBH, GERMANY

Free format text: CHANGE ADDRESS;ASSIGNOR:EVONIK DEGUSSA GMBH;REEL/FRAME:023985/0296

Effective date: 20071031

Owner name: DEGUSSA GMBH, GERMANY

Free format text: CHANGE OF ENTITY;ASSIGNOR:DEGUSSA AG;REEL/FRAME:023998/0937

Effective date: 20070102

AS Assignment

Owner name: EVONIK DEGUSSA GMBH,GERMANY

Free format text: CHANGE OF NAME;ASSIGNOR:DEGUSSA GMBH;REEL/FRAME:024006/0127

Effective date: 20070912

Owner name: EVONIK DEGUSSA GMBH, GERMANY

Free format text: CHANGE OF NAME;ASSIGNOR:DEGUSSA GMBH;REEL/FRAME:024006/0127

Effective date: 20070912

FPAY Fee payment

Year of fee payment: 4