US7811308B2 - Spinal prostheses - Google Patents

Spinal prostheses Download PDF

Info

Publication number
US7811308B2
US7811308B2 US11/692,198 US69219807A US7811308B2 US 7811308 B2 US7811308 B2 US 7811308B2 US 69219807 A US69219807 A US 69219807A US 7811308 B2 US7811308 B2 US 7811308B2
Authority
US
United States
Prior art keywords
prosthesis
attachment members
spinal
attachment
article according
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active, expires
Application number
US11/692,198
Other versions
US20070191847A1 (en
Inventor
Uri Arnin
Michael Tauber
Yuri Sudin
Yoram Anekstein
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Premia Spine Ltd
Original Assignee
Impliant Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=34572972&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=US7811308(B2) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Impliant Ltd filed Critical Impliant Ltd
Priority to US11/692,198 priority Critical patent/US7811308B2/en
Assigned to IMPLIANT LTD. reassignment IMPLIANT LTD. ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: ANEKSTEIN, YORAM, ARNIN, URI, SUDIN, YURI, TAUBER, MICHAEL
Publication of US20070191847A1 publication Critical patent/US20070191847A1/en
Application granted granted Critical
Publication of US7811308B2 publication Critical patent/US7811308B2/en
Assigned to Premia Spine Ltd. reassignment Premia Spine Ltd. ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: IMPLIANT LTD.
Active legal-status Critical Current
Adjusted expiration legal-status Critical

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B17/56Surgical instruments or methods for treatment of bones or joints; Devices specially adapted therefor
    • A61B17/58Surgical instruments or methods for treatment of bones or joints; Devices specially adapted therefor for osteosynthesis, e.g. bone plates, screws, setting implements or the like
    • A61B17/68Internal fixation devices, including fasteners and spinal fixators, even if a part thereof projects from the skin
    • A61B17/70Spinal positioners or stabilisers ; Bone stabilisers comprising fluid filler in an implant
    • A61B17/7001Screws or hooks combined with longitudinal elements which do not contact vertebrae
    • A61B17/7043Screws or hooks combined with longitudinal elements which do not contact vertebrae with a longitudinal element fixed to one or more transverse elements which connect multiple screws or hooks
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B17/56Surgical instruments or methods for treatment of bones or joints; Devices specially adapted therefor
    • A61B17/58Surgical instruments or methods for treatment of bones or joints; Devices specially adapted therefor for osteosynthesis, e.g. bone plates, screws, setting implements or the like
    • A61B17/68Internal fixation devices, including fasteners and spinal fixators, even if a part thereof projects from the skin
    • A61B17/70Spinal positioners or stabilisers ; Bone stabilisers comprising fluid filler in an implant
    • A61B17/7062Devices acting on, attached to, or simulating the effect of, vertebral processes, vertebral facets or ribs ; Tools for such devices
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B17/56Surgical instruments or methods for treatment of bones or joints; Devices specially adapted therefor
    • A61B17/58Surgical instruments or methods for treatment of bones or joints; Devices specially adapted therefor for osteosynthesis, e.g. bone plates, screws, setting implements or the like
    • A61B17/68Internal fixation devices, including fasteners and spinal fixators, even if a part thereof projects from the skin
    • A61B17/70Spinal positioners or stabilisers ; Bone stabilisers comprising fluid filler in an implant
    • A61B17/7062Devices acting on, attached to, or simulating the effect of, vertebral processes, vertebral facets or ribs ; Tools for such devices
    • A61B17/7064Devices acting on, attached to, or simulating the effect of, vertebral facets; Tools therefor
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/02Prostheses implantable into the body
    • A61F2/30Joints
    • A61F2/44Joints for the spine, e.g. vertebrae, spinal discs
    • A61F2/4405Joints for the spine, e.g. vertebrae, spinal discs for apophyseal or facet joints, i.e. between adjacent spinous or transverse processes
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/02Prostheses implantable into the body
    • A61F2/30Joints
    • A61F2002/30001Additional features of subject-matter classified in A61F2/28, A61F2/30 and subgroups thereof
    • A61F2002/30316The prosthesis having different structural features at different locations within the same prosthesis; Connections between prosthetic parts; Special structural features of bone or joint prostheses not otherwise provided for
    • A61F2002/30329Connections or couplings between prosthetic parts, e.g. between modular parts; Connecting elements
    • A61F2002/30383Connections or couplings between prosthetic parts, e.g. between modular parts; Connecting elements made by laterally inserting a protrusion, e.g. a rib into a complementarily-shaped groove
    • A61F2002/30387Dovetail connection
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/02Prostheses implantable into the body
    • A61F2/30Joints
    • A61F2002/30001Additional features of subject-matter classified in A61F2/28, A61F2/30 and subgroups thereof
    • A61F2002/30316The prosthesis having different structural features at different locations within the same prosthesis; Connections between prosthetic parts; Special structural features of bone or joint prostheses not otherwise provided for
    • A61F2002/30329Connections or couplings between prosthetic parts, e.g. between modular parts; Connecting elements
    • A61F2002/30476Connections or couplings between prosthetic parts, e.g. between modular parts; Connecting elements locked by an additional locking mechanism
    • A61F2002/305Snap connection
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/02Prostheses implantable into the body
    • A61F2/30Joints
    • A61F2002/30001Additional features of subject-matter classified in A61F2/28, A61F2/30 and subgroups thereof
    • A61F2002/30316The prosthesis having different structural features at different locations within the same prosthesis; Connections between prosthetic parts; Special structural features of bone or joint prostheses not otherwise provided for
    • A61F2002/30535Special structural features of bone or joint prostheses not otherwise provided for
    • A61F2002/30563Special structural features of bone or joint prostheses not otherwise provided for having elastic means or damping means, different from springs, e.g. including an elastomeric core or shock absorbers
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/02Prostheses implantable into the body
    • A61F2/30Joints
    • A61F2002/30001Additional features of subject-matter classified in A61F2/28, A61F2/30 and subgroups thereof
    • A61F2002/30316The prosthesis having different structural features at different locations within the same prosthesis; Connections between prosthetic parts; Special structural features of bone or joint prostheses not otherwise provided for
    • A61F2002/30535Special structural features of bone or joint prostheses not otherwise provided for
    • A61F2002/30576Special structural features of bone or joint prostheses not otherwise provided for with extending fixation tabs
    • A61F2002/30578Special structural features of bone or joint prostheses not otherwise provided for with extending fixation tabs having apertures, e.g. for receiving fixation screws
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/02Prostheses implantable into the body
    • A61F2/30Joints
    • A61F2002/30001Additional features of subject-matter classified in A61F2/28, A61F2/30 and subgroups thereof
    • A61F2002/30316The prosthesis having different structural features at different locations within the same prosthesis; Connections between prosthetic parts; Special structural features of bone or joint prostheses not otherwise provided for
    • A61F2002/30535Special structural features of bone or joint prostheses not otherwise provided for
    • A61F2002/30604Special structural features of bone or joint prostheses not otherwise provided for modular
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/02Prostheses implantable into the body
    • A61F2/30Joints
    • A61F2/30767Special external or bone-contacting surface, e.g. coating for improving bone ingrowth
    • A61F2/30771Special external or bone-contacting surface, e.g. coating for improving bone ingrowth applied in original prostheses, e.g. holes or grooves
    • A61F2002/30841Sharp anchoring protrusions for impaction into the bone, e.g. sharp pins, spikes
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2220/00Fixations or connections for prostheses classified in groups A61F2/00 - A61F2/26 or A61F2/82 or A61F9/00 or A61F11/00 or subgroups thereof
    • A61F2220/0025Connections or couplings between prosthetic parts, e.g. between modular parts; Connecting elements
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2310/00Prostheses classified in A61F2/28 or A61F2/30 - A61F2/44 being constructed from or coated with a particular material
    • A61F2310/00005The prosthesis being constructed from a particular material
    • A61F2310/00011Metals or alloys
    • A61F2310/00017Iron- or Fe-based alloys, e.g. stainless steel
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2310/00Prostheses classified in A61F2/28 or A61F2/30 - A61F2/44 being constructed from or coated with a particular material
    • A61F2310/00005The prosthesis being constructed from a particular material
    • A61F2310/00011Metals or alloys
    • A61F2310/00023Titanium or titanium-based alloys, e.g. Ti-Ni alloys
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2310/00Prostheses classified in A61F2/28 or A61F2/30 - A61F2/44 being constructed from or coated with a particular material
    • A61F2310/00005The prosthesis being constructed from a particular material
    • A61F2310/00011Metals or alloys
    • A61F2310/00029Cobalt-based alloys, e.g. Co-Cr alloys or Vitallium
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2310/00Prostheses classified in A61F2/28 or A61F2/30 - A61F2/44 being constructed from or coated with a particular material
    • A61F2310/00389The prosthesis being coated or covered with a particular material
    • A61F2310/00592Coating or prosthesis-covering structure made of ceramics or of ceramic-like compounds
    • A61F2310/00796Coating or prosthesis-covering structure made of a phosphorus-containing compound, e.g. hydroxy(l)apatite
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S606/00Surgery
    • Y10S606/907Composed of particular material or coated
    • Y10S606/91Polymer

Definitions

  • the present invention is generally related to apparatus and methods for spinal prostheses.
  • the present invention seeks to provide a novel spinal prosthesis, as is described more in detail hereinbelow.
  • the prostheses disclosed herein are particularly advantageous for the posterior portion of the spine, but the invention is not limited to the posterior portion of the spine.
  • an article including a spinal prosthesis having a unitary body with at least three attachment points attachable to spinal structure, the unitary body including a flexure assembly positioned between first and second attachment members, wherein flexure of the flexure assembly permits movement of the first attachment member relative to the second attachment member.
  • the spinal prosthesis can include one or more of the following features.
  • the first and second attachment members may be formed with mounting holes adapted for a mechanical fastener to pass through and into the spinal structure.
  • the first and second attachment members may include sidewalls separated by a gap, the gap being adapted for receiving therein a posterior portion of the spine.
  • the flexure assembly may be attached to the first and second attachment members by means of a tenon-and-mortise joint.
  • the first and second attachment members may include at least one pair of opposing resilient pawls adapted for gripping the portion of the spine.
  • the flexure assembly may include more than one flexure member between the first and second attachment members.
  • At least a portion of the flexure assembly may be attached to the first and second attachment members with a plurality of locking members.
  • at least a portion of the flexure assembly may be integrally formed with the first and second attachment members.
  • the locking members may include plate-like elements secured to the first and second attachment members with mechanical fasteners.
  • the locking members may include at least one lug extending generally perpendicularly from the plate-like elements, around which at least one stopper is engaged.
  • the flexure assembly may include a boot placed at least partially around inner portions of the first and second attachment members, the boot being connected to the first and second attachment members.
  • the boot may be elastomeric.
  • the flexure assembly may be adapted to flex omnidirectionally.
  • a plurality of pedicle screws may be attached to or integrally formed with the spinal prosthesis.
  • the pedicle screws may include polyaxial pedicle screws having a threaded shank and a polyaxial swivel head.
  • the threaded shank and/or the polyaxial swivel head may be attached to or integrally formed with the spinal prosthesis.
  • the first and second attachment members may include mounting arms rotatably mounted in a housing, one portion of each mounting arm being disposed in a hollow chamber formed in the housing, and another portion of each mounting arm protruding from the housing through an aperture formed in the housing.
  • the flexure assembly may include a multi-part articulating assembly, including a first joint member that has a convex contour that articulates with a second joint member that has a concave contour that corresponds to and glides over the convex contour of the first joint member, the first and second joint members being attached to or integrally part of the attachment members.
  • a stopper may be provided that limits the flexure of the flexure assembly and limits relative movement of the attachment members with respect to one another.
  • FIGS. 1A and 1B are simplified pictorial illustrations of a structure of a human spine, in particular the lumbar vertebrae, FIGS. 1A and 1B respectively showing side and top views of the L4 and L5 vertebrae;
  • FIG. 1C is a simplified perspective illustration of an elastomeric spinal prosthesis, constructed and operative in accordance with an embodiment of the present invention
  • FIG. 2 is a simplified perspective illustration of an elastomeric spinal prosthesis, constructed and operative in accordance with another embodiment of the present invention
  • FIG. 3 is a simplified perspective illustration of an elastomeric spinal prosthesis, constructed and operative in accordance with yet another embodiment of the present invention, adapted for attachment to a posterior portion of the spine and to other vertebral structure, e.g., a facet or pedicle of the same vertebra;
  • FIG. 4 is a perspective view of a superior attachment member of the prosthesis shown in FIG. 3 ;
  • FIG. 5 is a perspective view of an inferior attachment member of the prosthesis shown in FIG. 3 ;
  • FIG. 6 is a perspective view of an elastomeric member of the prosthesis shown in FIG. 3 ;
  • FIGS. 7A and 7B are simplified pictorial illustrations, from two different perspective views, of an elastomeric spinal prosthesis, constructed and operative in accordance with still another embodiment of the present invention.
  • FIGS. 8A and 8B are simplified sectional illustrations, respectively along front and side facing planes, of the elastomeric spinal prosthesis shown in FIGS. 7A and 7B ;
  • FIGS. 8C and 8D are simplified sectional illustrations of an alternative construction of a flexure assembly of the elastomeric spinal prosthesis of FIGS. 8A and 8B .
  • FIGS. 1A and 1B illustrate a structure of a human spine, in particular the lumbar vertebrae.
  • FIGS. 1A and 1B illustrate the fourth and fifth lumbar vertebrae L4 and L5, respectively, in a lateral view (while in anatomic association) and in a superior view (separately).
  • the lumbar vertebrae (of which there are a total of five) are in the lower back, also called the “small of the back.”
  • each vertebra includes a vertebral body 110 , which is the anterior, massive part of bone that gives strength to the vertebral column and supports body weight.
  • a vertebral arch 112 is posterior to the vertebral body 110 and is formed by right and left pedicles 114 and lamina 116 .
  • the pedicles 114 are short, stout processes that join the vertebral arch 112 to the vertebral body 110 .
  • the pedicles 114 project posteriorly to meet two broad flat plates of bone, called the lamina 116 .
  • a spinous process 118 and two transverse processes 120 project from the vertebral arch 112 and afford attachments for muscles, thus forming levers that help the muscles move the vertebrae.
  • Two superior articular processes 122 project superiorly from the vertebral arch 112 and two inferior articular processes 124 project inferiorly from the vertebral arch 112 .
  • the superior articular processes 122 of a vertebra are located opposite corresponding inferior articular processes 124 of an adjacent vertebra.
  • inferior articular processes 124 are located opposite corresponding superior articular processes 122 of an adjacent vertebra.
  • a vertebra's superior articular processes 122 with the inferior articular processes 124 of an adjacent vertebra form a joint, called a zygapophysial joint, or in short hand, a facet joint or facet 126 .
  • Facet joints 126 found between adjacent superior articular processes 122 and inferior articular processes 124 along the spinal column permit gliding movement between the vertebrae L4 and L5.
  • FIG. 1C illustrates a spinal prosthesis 10 , constructed and operative in accordance with an embodiment of the present invention.
  • Prosthesis 10 may include an upper (superior) vertebral attachment member 20 attachable to one of the spinous processes 118 (not shown in FIG. 1C ), and a lower (inferior) vertebral attachment member 21 attachable to an adjacent spinous process 118 .
  • Attachment members 20 and 21 may be rigid or non-rigid, formed of materials including, but not limited to, a biocompatible material such as a metal, e.g., stainless steel, titanium or titanium alloy, cobalt chromium alloys, plastics or other hard, rigid materials or any combination of the above.
  • An elastomeric member 22 (also referred to as a flexure assembly) is placed between and may be integrally formed with or attached to upper and lower vertebral attachment members 20 and 21 .
  • Elastomeric member 22 may be made from a compliant material including, but not limited to, polyurethane containing materials, silicone containing materials, polyethylene based elastomers, hydrogels, and polypropylene containing materials.
  • Elastomeric member 22 may flex in any direction, which may help reduce tension between the attachment members 20 and 21 during movement of the spine.
  • the flexure of elastomeric member 22 permits the attachment members 20 and 21 to move relative to one another. This may help install the prosthesis in the body by overcoming misalignments between the parts of the prosthesis and the mounting holes in the body.
  • any material or body structure such as ligaments may be removed or moved to the side temporarily in order to expose adjacent spinous processes.
  • a laminactomy (cutting into the lamina 116 and removing at least a portion thereof) may be performed through a posterior incision.
  • the attachment members 20 and 21 may be attached to the exposed spinous processes 118 of the adjacent vertebrae.
  • upper and lower vertebral attachment members 20 and 21 are formed with mounting holes 24 adapted for a mechanical fastener (not shown) to pass through and into the spinous processes 118 .
  • a mechanical fastener (not shown)
  • any fastener or fasteners such as but not limited to, screws, bolts, rivets, nails, tacks and nuts may pass through holes 24 to firmly attach attachment members 20 and 21 to the spinous process 118 .
  • the vertebral attachment members 20 and 21 may have sidewalls 25 separated by a gap 23 (forming a U-shape).
  • the spinous process 118 or any posterior portion of the spine, for example, may be received snugly (or loosely) in gap 23 prior to fastening with the mechanical fastener.
  • a hole, or holes, may be drilled into or right through the spinous process 118 at a place opposite holes 24 in order to use the mechanical fasteners to firmly attach the attachment members 20 and 21 to the spinous processes 118 .
  • elastomeric member 22 may be attached to or integrally formed with upper and lower vertebral attachment members 20 and 21 by means of a tenon-and-mortise joint.
  • the tenon-and-mortise joint may comprise tenons 27 (protrusions) that mate with mortises (grooves) 29 .
  • the invention is not limited to this type of joint or connection, and other types of joints, connections, fastenings, adhesive bonding and the like may also be used.
  • FIG. 2 illustrates a spinal prosthesis 30 having upper and lower vertebral attachment members 32 and 34 that can be attached to a spinous process 118 without having to drill into or through the spinous process.
  • a smaller incision to install the prosthesis 30 may be used than to install the prosthesis 10 .
  • This embodiment may include upper and lower vertebral attachment members 32 and 34 that have one or more pairs of opposing resilient pawls 36 mounted on a base 38 and adapted for gripping the spinous process 118 .
  • the pawls 36 apply a spring force to tightly grip the spinous process 118 .
  • the attachment members may thus be pushed into place and tightly “snap on” the spinous process 118 . (The spinous process 118 is received in gap 23 as before.)
  • the prosthesis may be attached to the spinous process 118 alone.
  • the attachment members may be additionally or alternatively attached to other parts of the vertebra, such as but not limited to parts of the facet 126 and/or to the pedicles 114 or any posterior portion of the spine, not just the spinous process 118 .
  • Other embodiments that attach to the pedicles 114 are described further hereinbelow.
  • FIG. 3 illustrates an elastomeric spinal prosthesis 39 , constructed and operative in accordance with yet another embodiment of the present invention.
  • Prosthesis 39 may be attached, for example, to the spinous process 118 and to other vertebral structure, e.g., a facet 126 or pedicle 114 or any posterior portion of the spine (see FIGS. 1A and 1B ; not shown in FIG. 3 ).
  • Prosthesis 39 may include an upper vertebral attachment member 40 attachable to the spinous process 118 , facet 126 and/or pedicle 114 , and a lower vertebral attachment member 41 attachable to another portion of the spine (not shown), such as an adjacent spinous process 118 , facet 126 and/or pedicle 114 .
  • Attachment members 40 and 41 may be rigid or non-rigid, as above.
  • One or more elastomeric members 42 may be placed between and may be integrally formed with or attached to upper and lower vertebral attachment members 40 and 41 .
  • Elastomeric member 42 shown clearly in FIG. 6 , may be made from a compliant material as above.
  • upper and lower vertebral attachment members 40 and 41 may be formed with one or more mounting holes adapted for a mechanical fastener (not shown) to pass through and into the portion of the spine.
  • a mechanical fastener not shown
  • any fastener or fasteners such as but not limited to, screws, bolts, rivets, nails, tacks and nuts may pass through the mounting holes to firmly attach attachment members 40 and 41 to the spinous process 118 .
  • FIGS. 4 and 5 are posterior perspective views of non-limiting examples of upper and lower attachment members 40 and 41 , respectively, as shown in FIG. 3 .
  • a mounting hole 44 is formed for attaching attachment member 40 to the posterior of one of the spinous processes 118 , for example.
  • Another mounting hole 46 in member 40 may be for fixation to the right facet 126 of the same vertebra and yet another mounting hole 48 may be for fixation to the left facet 126 of the same vertebra.
  • the three-point fixation or attachment may provide a stable and more secure attachment of member 40 to the vertebra posteriorly with a minimum amount of invasiveness.
  • elastomeric member may be attached to or integrally formed with upper and lower vertebral attachment members 40 and 41 by means of a tenon-and-mortise joint.
  • the tenon-and-mortise joint may comprise tenons 47 (protrusions) that mate with mortises (grooves) 49 .
  • the invention is not limited to this type of joint or connection, and other types of joints, connections, fastenings, adhesive bonding and the like may also be used.
  • the mounting holes may be placed and oriented in a multitude of manners.
  • the mounting holes 24 do not pass through a plane that intersects elastomeric member 22 .
  • the mounting holes 24 are generally transverse to a longitudinal axis of elastomeric member 22 .
  • the mounting hole 44 passes through a plane that intersects elastomeric member 42 .
  • the mounting holes 44 , 46 and 48 are generally parallel to the longitudinal axis of elastomeric member 42 .
  • Other arrangements are also within the scope of the invention.
  • FIGS. 7A , 7 B, 8 A and 8 B illustrate an elastomeric spinal prosthesis 50 , constructed and operative in accordance with still another embodiment of the present invention.
  • Prosthesis 50 may be attached, for example, to the spinous process 118 and pedicles 114 (see FIGS. 1A and 1B ; not shown in FIGS. 7A , 7 B, 8 A and 8 B).
  • Prosthesis 50 may include an upper (superior) vertebral attachment member 52 and a lower (inferior) vertebral attachment member 54 .
  • the attachment members 52 and 54 may be attached to adjacent spinous processes 118 , but as is described further hereinbelow, the prosthesis 50 may be attached to pedicles without having to attach the attachment members 52 and 54 to the spinous processes 118 .
  • Attachment members 52 and 54 may be rigid or non-rigid, formed of materials including, but not limited to, a biocompatible material such as a metal, e.g., stainless steel, titanium or titanium alloy, cobalt chromium alloys, plastics or other hard, rigid materials or any combination of the above.
  • a flexure assembly 56 comprising one or more flexing members (described below), may be placed between and may be integrally formed with or attached to upper and lower vertebral attachment members 52 and 54 .
  • Flexure assembly 56 may be attached to upper and lower vertebral attachment members 52 and 54 by means of locking members 58 .
  • Locking members 58 may include plate-like elements 59 secured to upper and lower vertebral attachment members 52 and 54 with mechanical fasteners 60 , such as but not limited to, screws.
  • Locking members 58 may further include lugs 61 extending generally perpendicularly from plate-like elements 59 , around which stoppers 62 are securedly engaged. Four such stoppers 62 are shown in the illustrated embodiment, however, the invention may be carried out with any number of such stoppers.
  • a boot 64 may be placed at least partially or fully around inner portions of the attachment members 52 and 54 , e.g., at least partially or fully around the locking members 58 and stoppers 62 .
  • the boot 64 may have any suitable shape or size, such as but not limited to, a ring, a stocking, an ellipsoid and other shapes.
  • the boot 64 is sandwiched between upper and lower vertebral attachment members 52 and 54 , and connected to locking members 58 , such as but not necessarily, by means of inner ridges 65 of boot 64 fixedly engaging grooves 66 formed in plate-like elements 59 (as seen best in FIG. 8B ).
  • flexure assembly 56 comprises stoppers 62 and boot 64 .
  • the flexure assembly 56 may be constructed of a compliant, elastomeric material including, but not limited to, polyurethane containing materials, silicone containing materials, polyethylene based elastomers, hydrogels, and polypropylene containing materials.
  • the flexure assembly 56 may be constructed of rigid materials, such as stainless steel, for example.
  • boot 64 is made of a compliant material, such as but not limited to, an elastomer (e.g., polyurethane) or cloth (woven or non-woven synthetic or natural fibers).
  • the flexure assembly 56 permits flexure of prosthesis 50 about two mutually orthogonal axes 67 and 68 , as well as other directions for omnidirectional flexure in any degree of freedom.
  • prosthesis 50 can resiliently rotate about axis 67 in the direction of arrows 69 .
  • prosthesis 50 can resiliently rotate about axis 68 in the direction of arrows 70 .
  • the stoppers 62 (as well as boot 64 to some extent) may limit the flexure of flexure assembly 56 and thus limit the relative movement of the attachment members 52 and 54 with respect to one another.
  • pedicle screws 72 ( FIGS. 7A and 7B ) for installing prosthesis 50 into the pedicles 114 .
  • the pedicle screws 72 may comprise, without limitation, polyaxial pedicle screws, e.g., made of titanium or titanium alloy, commercially available in many sizes and shapes from many manufacturers. It is noted that titanium is highly resistant to corrosion and fatigue, and is MRI compatible.
  • the pedicle screw 72 may have a threaded shank 74 and a mobile, swivel head 75 , whose ability to swivel may help avoid vertebral stress.
  • the swivel heads 75 may be rotatably attached to rounded prongs 76 jutting from upper and lower vertebral attachment members 52 and 54 , by means of lock nuts 77 that mate with heads 75 .
  • a laminactomy may be performed, thereby creating a gap between the spinous processes 118 , as mentioned hereinabove.
  • the pedicle screws 72 may be screwed into the pedicles 114 .
  • the prosthesis 50 may be inserted in the gap between the spinous processes 118 , with the rounded prongs 76 aligned with the heads 75 of the pedicle screws 72 .
  • the lock nuts 77 may then secure the prosthesis 50 to the pedicle screws 72 .
  • the prosthesis 50 may thus be attached to the pedicles without having to attach the attachment members 52 and 54 to the spinous processes 118 .
  • attachment members 52 and 54 may also be attached to adjacent spinous processes 118 or other spinal structure by any convenient method.
  • the outer surfaces of attachment members 52 and 54 may be coated with a material, such as but not limited to, Hydroxy-Appatite (H/A), which encourages bone growth into the outer surfaces thereof.
  • H/A Hydroxy-Appatite
  • FIGS. 8C and 8D illustrate an alternative construction of the flexure assembly 56 of the elastomeric spinal prosthesis 50 .
  • flexure assembly 56 may be constructed may include a two-part articulating assembly, constructed of a first joint member 101 , which may have a convex outer contour 102 with a truncated face 103 .
  • a semi-circular cutout 104 may be gouged out of the convex outer contour 102 .
  • a plate 105 may secure the first joint member 101 to the lower attachment member 54 , such as with screws (not shown) that pass through mounting holes 106 .
  • the other part of the two-part articulating assembly of flexure assembly 56 may include a second joint member 107 , which may have a concave outer contour 108 that corresponds to and glides over the convex outer contour of the first joint member 101 .
  • a plate 109 may secure the second joint member 107 to the upper attachment member 52 , such as with screws (not shown) that pass through mounting holes 110 .
  • a stopper 111 may be provided, either as part of the second joint member 107 or as a separate part attached to the upper attachment member 52 . The stopper 111 protrudes into the semi-circular cutout 104 .
  • this version of the flexure assembly 56 shown in FIGS. 8C and 8D permits flexure of prosthesis 50 about two mutually orthogonal axes 67 and 68 as well as other directions for omnidirectional flexure in any degree of freedom.
  • prosthesis 50 can resiliently rotate about axis 67 in the direction of arrows 69 .
  • prosthesis 50 can resiliently rotate about axis 68 in the direction of arrows 70 .
  • the stopper 111 may limit the flexure of flexure assembly 56 and thus limit the relative movement of the attachment members 52 and 54 with respect to one another.
  • each of the spinal prostheses described hereinabove include a unitary body with at least three attachment points attachable to spinal structure.
  • unitary body it is meant that the spinal prosthesis may be attached to the spinal structure as one pre-assembled, contiguous assembly. The surgeon can simply hold the entire unitary body in place during attachment to the spinal structure. This is in contrast to known prostheses that must be attached to the spinal structure as at least two separate parts, which may or may not articulate with one another. With those prostheses, the surgeon must attach each part separately to some spinal structure and merely “hope” that the parts fit together properly after installment.
  • the unitary construction of the present invention eliminates this problem and greatly facilitates installation of the prosthesis.
  • attachment of attachment members was to either the spinous process alone or to the spinous process and to the facet or to the spinous process and to pedicle of the particular vertebra
  • any combination of the above embodiments will bring about similar results (such as stabilization of the spine, relief of pain, implantation of the prosthesis, etc.) and the above examples are just examples of attachment sites and not in any way meant to be limiting.
  • a superior attachment member may be attached to a spinous process alone and the prosthesis's inferior attachment member may be attached to the adjacent vertebra's spinous process and to its pedicle or facet or even a combination of both.
  • the prosthesis of this invention may be used in conjunction with an implant that is anterior to the spinal cord such as a total disc replacement.

Landscapes

  • Health & Medical Sciences (AREA)
  • Orthopedic Medicine & Surgery (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Neurology (AREA)
  • Surgery (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Engineering & Computer Science (AREA)
  • Biomedical Technology (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Medical Informatics (AREA)
  • Molecular Biology (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Prostheses (AREA)
  • Surgical Instruments (AREA)
  • Steroid Compounds (AREA)

Abstract

An article including a spinal prosthesis having a unitary body with at least three attachment points attachable to spinal structure, the unitary body including a flexure assembly positioned between first and second attachment members, wherein flexure of the flexure assembly permits movement of the first attachment member relative to the second attachment member.

Description

CROSS-REFERENCE TO RELATED APPLICATIONS
This application claims priority under 35 USC §119 to U.S. Provisional Patent Application Ser. No. 60/517,888, filed Nov. 7, 2003, and is a continuation of U.S. patent application Ser. No. 11/369,816, filed Mar. 8, 2006 now U.S. Pat. No. 7,537,613, which is a continuation of U.S. patent application Ser. No. 10/750,860, filed Jan. 5, 2004, now U.S. Pat. No. 7,011,685, which are incorporated herein by reference.
FIELD OF THE INVENTION
The present invention is generally related to apparatus and methods for spinal prostheses.
BACKGROUND OF THE INVENTION
Spinal stenosis, as well as spondylosis, spondylolisthesis, osteoarthritis and other degenerative phenomena may cause back pain, especially lower back pain. Such phenomena may be caused by a narrowing of the spinal canal by a variety of causes that result in the pinching of the spinal cord and/or nerves in the spine. Fusion of two or more adjacent vertebrae has been to alleviate back pain. However, fusion of vertebrae can be disfavored because fusion tends to cause degenerative phenomena in the fused vertebrae to migrate to adjacent vertebral components that have not been fused.
SUMMARY OF THE INVENTION
The present invention seeks to provide a novel spinal prosthesis, as is described more in detail hereinbelow. The prostheses disclosed herein are particularly advantageous for the posterior portion of the spine, but the invention is not limited to the posterior portion of the spine.
There is thus provided in accordance with an embodiment of the present invention an article including a spinal prosthesis having a unitary body with at least three attachment points attachable to spinal structure, the unitary body including a flexure assembly positioned between first and second attachment members, wherein flexure of the flexure assembly permits movement of the first attachment member relative to the second attachment member.
The spinal prosthesis can include one or more of the following features. For example, the first and second attachment members may be formed with mounting holes adapted for a mechanical fastener to pass through and into the spinal structure. The first and second attachment members may include sidewalls separated by a gap, the gap being adapted for receiving therein a posterior portion of the spine. The flexure assembly may be attached to the first and second attachment members by means of a tenon-and-mortise joint. The first and second attachment members may include at least one pair of opposing resilient pawls adapted for gripping the portion of the spine. The flexure assembly may include more than one flexure member between the first and second attachment members. At least a portion of the flexure assembly may be attached to the first and second attachment members with a plurality of locking members. Alternatively, at least a portion of the flexure assembly may be integrally formed with the first and second attachment members. The locking members may include plate-like elements secured to the first and second attachment members with mechanical fasteners. The locking members may include at least one lug extending generally perpendicularly from the plate-like elements, around which at least one stopper is engaged. The flexure assembly may include a boot placed at least partially around inner portions of the first and second attachment members, the boot being connected to the first and second attachment members. The boot may be elastomeric. The flexure assembly may be adapted to flex omnidirectionally. A plurality of pedicle screws may be attached to or integrally formed with the spinal prosthesis. The pedicle screws may include polyaxial pedicle screws having a threaded shank and a polyaxial swivel head. The threaded shank and/or the polyaxial swivel head may be attached to or integrally formed with the spinal prosthesis. The first and second attachment members may include mounting arms rotatably mounted in a housing, one portion of each mounting arm being disposed in a hollow chamber formed in the housing, and another portion of each mounting arm protruding from the housing through an aperture formed in the housing. The flexure assembly may include a multi-part articulating assembly, including a first joint member that has a convex contour that articulates with a second joint member that has a concave contour that corresponds to and glides over the convex contour of the first joint member, the first and second joint members being attached to or integrally part of the attachment members. A stopper may be provided that limits the flexure of the flexure assembly and limits relative movement of the attachment members with respect to one another.
BRIEF DESCRIPTION OF THE DRAWINGS
In the drawings:
FIGS. 1A and 1B are simplified pictorial illustrations of a structure of a human spine, in particular the lumbar vertebrae, FIGS. 1A and 1B respectively showing side and top views of the L4 and L5 vertebrae;
FIG. 1C is a simplified perspective illustration of an elastomeric spinal prosthesis, constructed and operative in accordance with an embodiment of the present invention;
FIG. 2 is a simplified perspective illustration of an elastomeric spinal prosthesis, constructed and operative in accordance with another embodiment of the present invention;
FIG. 3 is a simplified perspective illustration of an elastomeric spinal prosthesis, constructed and operative in accordance with yet another embodiment of the present invention, adapted for attachment to a posterior portion of the spine and to other vertebral structure, e.g., a facet or pedicle of the same vertebra;
FIG. 4 is a perspective view of a superior attachment member of the prosthesis shown in FIG. 3;
FIG. 5 is a perspective view of an inferior attachment member of the prosthesis shown in FIG. 3;
FIG. 6 is a perspective view of an elastomeric member of the prosthesis shown in FIG. 3;
FIGS. 7A and 7B are simplified pictorial illustrations, from two different perspective views, of an elastomeric spinal prosthesis, constructed and operative in accordance with still another embodiment of the present invention;
FIGS. 8A and 8B are simplified sectional illustrations, respectively along front and side facing planes, of the elastomeric spinal prosthesis shown in FIGS. 7A and 7B; and
FIGS. 8C and 8D are simplified sectional illustrations of an alternative construction of a flexure assembly of the elastomeric spinal prosthesis of FIGS. 8A and 8B.
DETAILED DESCRIPTION OF EMBODIMENTS
Reference is now made to FIGS. 1A and 1B, which illustrate a structure of a human spine, in particular the lumbar vertebrae.
FIGS. 1A and 1B illustrate the fourth and fifth lumbar vertebrae L4 and L5, respectively, in a lateral view (while in anatomic association) and in a superior view (separately). The lumbar vertebrae (of which there are a total of five) are in the lower back, also called the “small of the back.”
As is typical with vertebrae, the vertebrae L4 and L5 are separated by an intervertebral disk 125. The configuration of the vertebrae L4 and L5 differ somewhat, but each vertebra includes a vertebral body 110, which is the anterior, massive part of bone that gives strength to the vertebral column and supports body weight. A vertebral arch 112 is posterior to the vertebral body 110 and is formed by right and left pedicles 114 and lamina 116. The pedicles 114 are short, stout processes that join the vertebral arch 112 to the vertebral body 110. The pedicles 114 project posteriorly to meet two broad flat plates of bone, called the lamina 116.
Seven other processes arise from the vertebral arch 112. A spinous process 118 and two transverse processes 120 project from the vertebral arch 112 and afford attachments for muscles, thus forming levers that help the muscles move the vertebrae. Two superior articular processes 122 project superiorly from the vertebral arch 112 and two inferior articular processes 124 project inferiorly from the vertebral arch 112. The superior articular processes 122 of a vertebra are located opposite corresponding inferior articular processes 124 of an adjacent vertebra. Similarly, inferior articular processes 124 are located opposite corresponding superior articular processes 122 of an adjacent vertebra. The intersection of a vertebra's superior articular processes 122 with the inferior articular processes 124 of an adjacent vertebra form a joint, called a zygapophysial joint, or in short hand, a facet joint or facet 126. Facet joints 126 found between adjacent superior articular processes 122 and inferior articular processes 124 along the spinal column permit gliding movement between the vertebrae L4 and L5.
Reference is now made to FIG. 1C, which illustrates a spinal prosthesis 10, constructed and operative in accordance with an embodiment of the present invention.
Prosthesis 10 may include an upper (superior) vertebral attachment member 20 attachable to one of the spinous processes 118 (not shown in FIG. 1C), and a lower (inferior) vertebral attachment member 21 attachable to an adjacent spinous process 118. Attachment members 20 and 21 may be rigid or non-rigid, formed of materials including, but not limited to, a biocompatible material such as a metal, e.g., stainless steel, titanium or titanium alloy, cobalt chromium alloys, plastics or other hard, rigid materials or any combination of the above.
An elastomeric member 22 (also referred to as a flexure assembly) is placed between and may be integrally formed with or attached to upper and lower vertebral attachment members 20 and 21. Elastomeric member 22 may be made from a compliant material including, but not limited to, polyurethane containing materials, silicone containing materials, polyethylene based elastomers, hydrogels, and polypropylene containing materials. Elastomeric member 22 may flex in any direction, which may help reduce tension between the attachment members 20 and 21 during movement of the spine. The flexure of elastomeric member 22 permits the attachment members 20 and 21 to move relative to one another. This may help install the prosthesis in the body by overcoming misalignments between the parts of the prosthesis and the mounting holes in the body.
In order to install prosthesis 10, any material or body structure such as ligaments may be removed or moved to the side temporarily in order to expose adjacent spinous processes. For example, a laminactomy (cutting into the lamina 116 and removing at least a portion thereof) may be performed through a posterior incision. Afterwards, the attachment members 20 and 21 may be attached to the exposed spinous processes 118 of the adjacent vertebrae.
In the embodiment of FIG. 1C, but not necessarily, upper and lower vertebral attachment members 20 and 21 are formed with mounting holes 24 adapted for a mechanical fastener (not shown) to pass through and into the spinous processes 118. For example, any fastener or fasteners, such as but not limited to, screws, bolts, rivets, nails, tacks and nuts may pass through holes 24 to firmly attach attachment members 20 and 21 to the spinous process 118.
The vertebral attachment members 20 and 21 may have sidewalls 25 separated by a gap 23 (forming a U-shape). The spinous process 118 or any posterior portion of the spine, for example, may be received snugly (or loosely) in gap 23 prior to fastening with the mechanical fastener. A hole, or holes, may be drilled into or right through the spinous process 118 at a place opposite holes 24 in order to use the mechanical fasteners to firmly attach the attachment members 20 and 21 to the spinous processes 118.
In the embodiment of FIG. 1C, but not necessarily, elastomeric member 22 may be attached to or integrally formed with upper and lower vertebral attachment members 20 and 21 by means of a tenon-and-mortise joint. The tenon-and-mortise joint may comprise tenons 27 (protrusions) that mate with mortises (grooves) 29. However, the invention is not limited to this type of joint or connection, and other types of joints, connections, fastenings, adhesive bonding and the like may also be used.
Reference is now made to FIG. 2, which illustrates a spinal prosthesis 30 having upper and lower vertebral attachment members 32 and 34 that can be attached to a spinous process 118 without having to drill into or through the spinous process. Thus, a smaller incision to install the prosthesis 30 may be used than to install the prosthesis 10.
This embodiment may include upper and lower vertebral attachment members 32 and 34 that have one or more pairs of opposing resilient pawls 36 mounted on a base 38 and adapted for gripping the spinous process 118. The pawls 36 apply a spring force to tightly grip the spinous process 118. The attachment members may thus be pushed into place and tightly “snap on” the spinous process 118. (The spinous process 118 is received in gap 23 as before.)
In the above-described embodiments, the prosthesis may be attached to the spinous process 118 alone. However, the attachment members may be additionally or alternatively attached to other parts of the vertebra, such as but not limited to parts of the facet 126 and/or to the pedicles 114 or any posterior portion of the spine, not just the spinous process 118. Other embodiments that attach to the pedicles 114 are described further hereinbelow.
Reference is now made to FIG. 3, which illustrates an elastomeric spinal prosthesis 39, constructed and operative in accordance with yet another embodiment of the present invention. Prosthesis 39 may be attached, for example, to the spinous process 118 and to other vertebral structure, e.g., a facet 126 or pedicle 114 or any posterior portion of the spine (see FIGS. 1A and 1B; not shown in FIG. 3).
Prosthesis 39 may include an upper vertebral attachment member 40 attachable to the spinous process 118, facet 126 and/or pedicle 114, and a lower vertebral attachment member 41 attachable to another portion of the spine (not shown), such as an adjacent spinous process 118, facet 126 and/or pedicle 114. Attachment members 40 and 41 may be rigid or non-rigid, as above. One or more elastomeric members 42 (two are shown in this example; elastomeric members 42 also being referred to as a flexure assembly) may be placed between and may be integrally formed with or attached to upper and lower vertebral attachment members 40 and 41. Elastomeric member 42, shown clearly in FIG. 6, may be made from a compliant material as above.
In the embodiment of FIG. 3, but not necessarily, upper and lower vertebral attachment members 40 and 41 may be formed with one or more mounting holes adapted for a mechanical fastener (not shown) to pass through and into the portion of the spine. For example, any fastener or fasteners, such as but not limited to, screws, bolts, rivets, nails, tacks and nuts may pass through the mounting holes to firmly attach attachment members 40 and 41 to the spinous process 118.
FIGS. 4 and 5 are posterior perspective views of non-limiting examples of upper and lower attachment members 40 and 41, respectively, as shown in FIG. 3. A mounting hole 44 is formed for attaching attachment member 40 to the posterior of one of the spinous processes 118, for example. Another mounting hole 46 in member 40 may be for fixation to the right facet 126 of the same vertebra and yet another mounting hole 48 may be for fixation to the left facet 126 of the same vertebra. The three-point fixation or attachment may provide a stable and more secure attachment of member 40 to the vertebra posteriorly with a minimum amount of invasiveness.
In the embodiment of FIG. 3, but not necessarily, elastomeric member may be attached to or integrally formed with upper and lower vertebral attachment members 40 and 41 by means of a tenon-and-mortise joint. The tenon-and-mortise joint may comprise tenons 47 (protrusions) that mate with mortises (grooves) 49. However, the invention is not limited to this type of joint or connection, and other types of joints, connections, fastenings, adhesive bonding and the like may also be used.
It is noted that the mounting holes may be placed and oriented in a multitude of manners. For example, in the embodiment of FIG. 1C, the mounting holes 24 do not pass through a plane that intersects elastomeric member 22. The mounting holes 24 are generally transverse to a longitudinal axis of elastomeric member 22. In contrast, in the embodiment of FIG. 3, the mounting hole 44 passes through a plane that intersects elastomeric member 42. The mounting holes 44, 46 and 48 are generally parallel to the longitudinal axis of elastomeric member 42. Other arrangements are also within the scope of the invention.
Reference is now made to FIGS. 7A, 7B, 8A and 8B, which illustrate an elastomeric spinal prosthesis 50, constructed and operative in accordance with still another embodiment of the present invention. Prosthesis 50 may be attached, for example, to the spinous process 118 and pedicles 114 (see FIGS. 1A and 1B; not shown in FIGS. 7A, 7B, 8A and 8B).
Prosthesis 50 may include an upper (superior) vertebral attachment member 52 and a lower (inferior) vertebral attachment member 54. The attachment members 52 and 54 may be attached to adjacent spinous processes 118, but as is described further hereinbelow, the prosthesis 50 may be attached to pedicles without having to attach the attachment members 52 and 54 to the spinous processes 118. Attachment members 52 and 54 may be rigid or non-rigid, formed of materials including, but not limited to, a biocompatible material such as a metal, e.g., stainless steel, titanium or titanium alloy, cobalt chromium alloys, plastics or other hard, rigid materials or any combination of the above.
A flexure assembly 56, comprising one or more flexing members (described below), may be placed between and may be integrally formed with or attached to upper and lower vertebral attachment members 52 and 54. Flexure assembly 56 may be attached to upper and lower vertebral attachment members 52 and 54 by means of locking members 58. Locking members 58 may include plate-like elements 59 secured to upper and lower vertebral attachment members 52 and 54 with mechanical fasteners 60, such as but not limited to, screws. Locking members 58 may further include lugs 61 extending generally perpendicularly from plate-like elements 59, around which stoppers 62 are securedly engaged. Four such stoppers 62 are shown in the illustrated embodiment, however, the invention may be carried out with any number of such stoppers. A boot 64 may be placed at least partially or fully around inner portions of the attachment members 52 and 54, e.g., at least partially or fully around the locking members 58 and stoppers 62. The boot 64 may have any suitable shape or size, such as but not limited to, a ring, a stocking, an ellipsoid and other shapes. As seen clearly in FIGS. 8A and 8B, the boot 64 is sandwiched between upper and lower vertebral attachment members 52 and 54, and connected to locking members 58, such as but not necessarily, by means of inner ridges 65 of boot 64 fixedly engaging grooves 66 formed in plate-like elements 59 (as seen best in FIG. 8B). Thus, flexure assembly 56 comprises stoppers 62 and boot 64. The flexure assembly 56 may be constructed of a compliant, elastomeric material including, but not limited to, polyurethane containing materials, silicone containing materials, polyethylene based elastomers, hydrogels, and polypropylene containing materials. Alternatively, the flexure assembly 56 may be constructed of rigid materials, such as stainless steel, for example. In any case, boot 64 is made of a compliant material, such as but not limited to, an elastomer (e.g., polyurethane) or cloth (woven or non-woven synthetic or natural fibers).
The flexure assembly 56 permits flexure of prosthesis 50 about two mutually orthogonal axes 67 and 68, as well as other directions for omnidirectional flexure in any degree of freedom. For example, as seen in FIG. 8A, prosthesis 50 can resiliently rotate about axis 67 in the direction of arrows 69. As seen in FIG. 8B, prosthesis 50 can resiliently rotate about axis 68 in the direction of arrows 70. The stoppers 62 (as well as boot 64 to some extent) may limit the flexure of flexure assembly 56 and thus limit the relative movement of the attachment members 52 and 54 with respect to one another.
Depending from prosthesis 50 are pedicle screws 72 (FIGS. 7A and 7B) for installing prosthesis 50 into the pedicles 114. The pedicle screws 72 may comprise, without limitation, polyaxial pedicle screws, e.g., made of titanium or titanium alloy, commercially available in many sizes and shapes from many manufacturers. It is noted that titanium is highly resistant to corrosion and fatigue, and is MRI compatible. The pedicle screw 72 may have a threaded shank 74 and a mobile, swivel head 75, whose ability to swivel may help avoid vertebral stress. The swivel heads 75 may be rotatably attached to rounded prongs 76 jutting from upper and lower vertebral attachment members 52 and 54, by means of lock nuts 77 that mate with heads 75.
In order to install prosthesis 50, a laminactomy may be performed, thereby creating a gap between the spinous processes 118, as mentioned hereinabove. The pedicle screws 72 may be screwed into the pedicles 114. The prosthesis 50 may be inserted in the gap between the spinous processes 118, with the rounded prongs 76 aligned with the heads 75 of the pedicle screws 72. The lock nuts 77 may then secure the prosthesis 50 to the pedicle screws 72. As mentioned before, the prosthesis 50 may thus be attached to the pedicles without having to attach the attachment members 52 and 54 to the spinous processes 118. Optionally, the attachment members 52 and 54 may also be attached to adjacent spinous processes 118 or other spinal structure by any convenient method. The outer surfaces of attachment members 52 and 54 may be coated with a material, such as but not limited to, Hydroxy-Appatite (H/A), which encourages bone growth into the outer surfaces thereof.
Reference is now made to FIGS. 8C and 8D, which illustrate an alternative construction of the flexure assembly 56 of the elastomeric spinal prosthesis 50. (The elastomeric boot 64 is omitted for clarity.) In this alternative construction, flexure assembly 56 may be constructed may include a two-part articulating assembly, constructed of a first joint member 101, which may have a convex outer contour 102 with a truncated face 103. A semi-circular cutout 104 may be gouged out of the convex outer contour 102. A plate 105 may secure the first joint member 101 to the lower attachment member 54, such as with screws (not shown) that pass through mounting holes 106.
The other part of the two-part articulating assembly of flexure assembly 56 may include a second joint member 107, which may have a concave outer contour 108 that corresponds to and glides over the convex outer contour of the first joint member 101. A plate 109 may secure the second joint member 107 to the upper attachment member 52, such as with screws (not shown) that pass through mounting holes 110. A stopper 111 may be provided, either as part of the second joint member 107 or as a separate part attached to the upper attachment member 52. The stopper 111 protrudes into the semi-circular cutout 104.
As similarly described above, this version of the flexure assembly 56 shown in FIGS. 8C and 8D permits flexure of prosthesis 50 about two mutually orthogonal axes 67 and 68 as well as other directions for omnidirectional flexure in any degree of freedom. For example, as seen in FIG. 8A, prosthesis 50 can resiliently rotate about axis 67 in the direction of arrows 69. As seen in FIG. 8B, prosthesis 50 can resiliently rotate about axis 68 in the direction of arrows 70. The stopper 111 may limit the flexure of flexure assembly 56 and thus limit the relative movement of the attachment members 52 and 54 with respect to one another.
It is noted that each of the spinal prostheses described hereinabove include a unitary body with at least three attachment points attachable to spinal structure. By “unitary body” it is meant that the spinal prosthesis may be attached to the spinal structure as one pre-assembled, contiguous assembly. The surgeon can simply hold the entire unitary body in place during attachment to the spinal structure. This is in contrast to known prostheses that must be attached to the spinal structure as at least two separate parts, which may or may not articulate with one another. With those prostheses, the surgeon must attach each part separately to some spinal structure and merely “hope” that the parts fit together properly after installment. The unitary construction of the present invention eliminates this problem and greatly facilitates installation of the prosthesis.
Even though embodiments were described above in which the attachment of attachment members was to either the spinous process alone or to the spinous process and to the facet or to the spinous process and to pedicle of the particular vertebra, it is feasible that any combination of the above embodiments will bring about similar results (such as stabilization of the spine, relief of pain, implantation of the prosthesis, etc.) and the above examples are just examples of attachment sites and not in any way meant to be limiting. For example a superior attachment member may be attached to a spinous process alone and the prosthesis's inferior attachment member may be attached to the adjacent vertebra's spinous process and to its pedicle or facet or even a combination of both. Similarly the prosthesis of this invention may be used in conjunction with an implant that is anterior to the spinal cord such as a total disc replacement.
Although the invention has been described in conjunction with specific embodiments thereof, many alternatives, modifications and variations are apparent to those skilled in the art. Accordingly, all such alternatives, modifications and variations fall within the spirit and scope of the following claims.

Claims (9)

1. An article comprising:
a spinal prosthesis comprising two pairs of elongate rods adapted for attachment to spinal structure of a patient, one of the pairs comprising elongate rods that extend along a common straight axis and the other pair comprising elongate rods that do not extend along a common straight axis.
2. The article according to claim 1, wherein the two pairs of elongate rods lie in planes that are not parallel to each other.
3. The article according to claim 1, wherein the two pairs of elongate rods lie in planes that are parallel to each other.
4. The article according to claim 1, further comprising pedicle screws for attaching the elongate rods to spinal structure.
5. The article according to claim 1, wherein both pairs of elongate rods extend from plates.
6. The article according to claim 1, further comprising a flexure assembly positioned between said plates.
7. The article according to claim 4, wherein each of said pedicle screws comprises a head formed with an opening and said elongate rod is received in said opening.
8. The article according to claim 6, wherein said flexure assembly comprises elastomeric members that articulate with one another.
9. The article according to claim 6, wherein said flexure assembly comprises concave and convex elastomeric members that articulate with one another.
US11/692,198 2003-11-07 2007-03-28 Spinal prostheses Active 2026-04-19 US7811308B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US11/692,198 US7811308B2 (en) 2003-11-07 2007-03-28 Spinal prostheses

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
US51788803P 2003-11-07 2003-11-07
US10/750,860 US7011685B2 (en) 2003-11-07 2004-01-05 Spinal prostheses
US11/369,816 US7537613B2 (en) 2003-11-07 2006-03-08 Spinal prostheses
US11/692,198 US7811308B2 (en) 2003-11-07 2007-03-28 Spinal prostheses

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
US11/369,816 Continuation US7537613B2 (en) 2003-11-07 2006-03-08 Spinal prostheses

Publications (2)

Publication Number Publication Date
US20070191847A1 US20070191847A1 (en) 2007-08-16
US7811308B2 true US7811308B2 (en) 2010-10-12

Family

ID=34572972

Family Applications (13)

Application Number Title Priority Date Filing Date
US10/750,860 Expired - Lifetime US7011685B2 (en) 2003-11-07 2004-01-05 Spinal prostheses
US11/369,816 Expired - Lifetime US7537613B2 (en) 2003-11-07 2006-03-08 Spinal prostheses
US11/692,199 Active 2026-05-03 US7811330B2 (en) 2003-11-07 2007-03-28 Spinal prostheses
US11/692,201 Active 2026-05-09 US7811322B2 (en) 2003-11-07 2007-03-28 Spinal prostheses
US11/692,202 Active 2026-05-09 US7811323B2 (en) 2003-11-07 2007-03-28 Spinal prostheses
US11/692,203 Active 2026-05-16 US7811324B2 (en) 2003-11-07 2007-03-28 Spinal prostheses
US11/692,198 Active 2026-04-19 US7811308B2 (en) 2003-11-07 2007-03-28 Spinal prostheses
US11/692,204 Active - Reinstated 2026-06-02 US8262699B2 (en) 2003-11-07 2007-03-28 Spinal prostheses
US11/692,200 Active - Reinstated 2025-10-02 US8012176B2 (en) 2003-11-07 2007-03-28 Spinal prostheses
US11/692,197 Active 2026-05-18 US7833272B2 (en) 2003-11-07 2007-03-28 Spinal prostheses
US11/833,246 Active 2025-11-06 US7842090B2 (en) 2003-11-07 2007-08-03 Spinal prostheses
US11/833,248 Active 2025-11-14 US7846209B2 (en) 2003-11-07 2007-08-03 Spinal prostheses
US11/858,277 Abandoned US20080009948A1 (en) 2003-11-07 2007-09-20 Spinal prostheses

Family Applications Before (6)

Application Number Title Priority Date Filing Date
US10/750,860 Expired - Lifetime US7011685B2 (en) 2003-11-07 2004-01-05 Spinal prostheses
US11/369,816 Expired - Lifetime US7537613B2 (en) 2003-11-07 2006-03-08 Spinal prostheses
US11/692,199 Active 2026-05-03 US7811330B2 (en) 2003-11-07 2007-03-28 Spinal prostheses
US11/692,201 Active 2026-05-09 US7811322B2 (en) 2003-11-07 2007-03-28 Spinal prostheses
US11/692,202 Active 2026-05-09 US7811323B2 (en) 2003-11-07 2007-03-28 Spinal prostheses
US11/692,203 Active 2026-05-16 US7811324B2 (en) 2003-11-07 2007-03-28 Spinal prostheses

Family Applications After (6)

Application Number Title Priority Date Filing Date
US11/692,204 Active - Reinstated 2026-06-02 US8262699B2 (en) 2003-11-07 2007-03-28 Spinal prostheses
US11/692,200 Active - Reinstated 2025-10-02 US8012176B2 (en) 2003-11-07 2007-03-28 Spinal prostheses
US11/692,197 Active 2026-05-18 US7833272B2 (en) 2003-11-07 2007-03-28 Spinal prostheses
US11/833,246 Active 2025-11-06 US7842090B2 (en) 2003-11-07 2007-08-03 Spinal prostheses
US11/833,248 Active 2025-11-14 US7846209B2 (en) 2003-11-07 2007-08-03 Spinal prostheses
US11/858,277 Abandoned US20080009948A1 (en) 2003-11-07 2007-09-20 Spinal prostheses

Country Status (6)

Country Link
US (13) US7011685B2 (en)
EP (1) EP1578314B1 (en)
AT (1) ATE363250T1 (en)
DE (1) DE602004006709T2 (en)
ES (1) ES2287686T3 (en)
WO (1) WO2005044152A1 (en)

Cited By (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20070288006A1 (en) * 2003-11-07 2007-12-13 Uri Arnin Spinal prostheses
US8012207B2 (en) 2004-10-20 2011-09-06 Vertiflex, Inc. Systems and methods for posterior dynamic stabilization of the spine
US8128662B2 (en) 2004-10-20 2012-03-06 Vertiflex, Inc. Minimally invasive tooling for delivery of interspinous spacer
US8152837B2 (en) 2004-10-20 2012-04-10 The Board Of Trustees Of The Leland Stanford Junior University Systems and methods for posterior dynamic stabilization of the spine
US8317864B2 (en) 2004-10-20 2012-11-27 The Board Of Trustees Of The Leland Stanford Junior University Systems and methods for posterior dynamic stabilization of the spine
US8409282B2 (en) 2004-10-20 2013-04-02 Vertiflex, Inc. Systems and methods for posterior dynamic stabilization of the spine
US8425559B2 (en) 2004-10-20 2013-04-23 Vertiflex, Inc. Systems and methods for posterior dynamic stabilization of the spine
US8628574B2 (en) 2004-10-20 2014-01-14 Vertiflex, Inc. Systems and methods for posterior dynamic stabilization of the spine
US8740948B2 (en) 2009-12-15 2014-06-03 Vertiflex, Inc. Spinal spacer for cervical and other vertebra, and associated systems and methods
US8845726B2 (en) 2006-10-18 2014-09-30 Vertiflex, Inc. Dilator
US8864828B2 (en) 2004-10-20 2014-10-21 Vertiflex, Inc. Interspinous spacer
US8900271B2 (en) 2004-10-20 2014-12-02 The Board Of Trustees Of The Leland Stanford Junior University Systems and methods for posterior dynamic stabilization of the spine
US9023084B2 (en) 2004-10-20 2015-05-05 The Board Of Trustees Of The Leland Stanford Junior University Systems and methods for stabilizing the motion or adjusting the position of the spine
US9119680B2 (en) 2004-10-20 2015-09-01 Vertiflex, Inc. Interspinous spacer
US9155570B2 (en) 2004-10-20 2015-10-13 Vertiflex, Inc. Interspinous spacer
US9161783B2 (en) 2004-10-20 2015-10-20 Vertiflex, Inc. Interspinous spacer
US9211146B2 (en) 2004-10-20 2015-12-15 The Board Of Trustees Of The Leland Stanford Junior University Systems and methods for posterior dynamic stabilization of the spine
US9393055B2 (en) 2004-10-20 2016-07-19 Vertiflex, Inc. Spacer insertion instrument
US9572603B2 (en) 2004-10-20 2017-02-21 Vertiflex, Inc. Interspinous spacer
US9675303B2 (en) 2013-03-15 2017-06-13 Vertiflex, Inc. Visualization systems, instruments and methods of using the same in spinal decompression procedures
WO2019003048A1 (en) 2017-06-25 2019-01-03 Premia Spine Ltd. Multi-level vertebral implant system
US10398478B2 (en) 2015-07-31 2019-09-03 Paradigm Spine, Llc Interspinous stabilization and fusion device
US10524772B2 (en) 2014-05-07 2020-01-07 Vertiflex, Inc. Spinal nerve decompression systems, dilation systems, and methods of using the same
US12102542B2 (en) 2022-02-15 2024-10-01 Boston Scientific Neuromodulation Corporation Interspinous spacer and methods and systems utilizing the interspinous spacer

Families Citing this family (263)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20080086212A1 (en) * 1997-01-02 2008-04-10 St. Francis Medical Technologies, Inc. Spine distraction implant
US7959652B2 (en) * 2005-04-18 2011-06-14 Kyphon Sarl Interspinous process implant having deployable wings and method of implantation
US20080039859A1 (en) * 1997-01-02 2008-02-14 Zucherman James F Spine distraction implant and method
US6695842B2 (en) * 1997-10-27 2004-02-24 St. Francis Medical Technologies, Inc. Interspinous process distraction system and method with positionable wing and method
US7201751B2 (en) * 1997-01-02 2007-04-10 St. Francis Medical Technologies, Inc. Supplemental spine fixation device
US6068630A (en) * 1997-01-02 2000-05-30 St. Francis Medical Technologies, Inc. Spine distraction implant
US8128661B2 (en) * 1997-01-02 2012-03-06 Kyphon Sarl Interspinous process distraction system and method with positionable wing and method
US7306628B2 (en) 2002-10-29 2007-12-11 St. Francis Medical Technologies Interspinous process apparatus and method with a selectably expandable spacer
EP1854433B1 (en) * 1999-10-22 2010-05-12 FSI Acquisition Sub, LLC Facet arthroplasty devices
US8187303B2 (en) * 2004-04-22 2012-05-29 Gmedelaware 2 Llc Anti-rotation fixation element for spinal prostheses
US6811567B2 (en) * 1999-10-22 2004-11-02 Archus Orthopedics Inc. Facet arthroplasty devices and methods
US7674293B2 (en) * 2004-04-22 2010-03-09 Facet Solutions, Inc. Crossbar spinal prosthesis having a modular design and related implantation methods
US7691145B2 (en) 1999-10-22 2010-04-06 Facet Solutions, Inc. Prostheses, systems and methods for replacement of natural facet joints with artificial facet joint surfaces
US6579319B2 (en) 2000-11-29 2003-06-17 Medicinelodge, Inc. Facet joint replacement
US20050080486A1 (en) 2000-11-29 2005-04-14 Fallin T. Wade Facet joint replacement
US7090698B2 (en) 2001-03-02 2006-08-15 Facet Solutions Method and apparatus for spine joint replacement
FR2828398B1 (en) * 2001-08-08 2003-09-19 Jean Taylor VERTEBRA STABILIZATION ASSEMBLY
US7241272B2 (en) 2001-11-13 2007-07-10 Baxter International Inc. Method and composition for removing uremic toxins in dialysis processes
WO2004009158A2 (en) 2002-07-19 2004-01-29 Baxter International Inc. Systems and methods for performing peritoneal dialysis
US20040143264A1 (en) * 2002-08-23 2004-07-22 Mcafee Paul C. Metal-backed UHMWPE rod sleeve system preserving spinal motion
FR2844179B1 (en) * 2002-09-10 2004-12-03 Jean Taylor POSTERIOR VERTEBRAL SUPPORT KIT
US8221463B2 (en) * 2002-10-29 2012-07-17 Kyphon Sarl Interspinous process implants and methods of use
US20060264939A1 (en) * 2003-05-22 2006-11-23 St. Francis Medical Technologies, Inc. Interspinous process implant with slide-in distraction piece and method of implantation
US8070778B2 (en) * 2003-05-22 2011-12-06 Kyphon Sarl Interspinous process implant with slide-in distraction piece and method of implantation
US8147548B2 (en) 2005-03-21 2012-04-03 Kyphon Sarl Interspinous process implant having a thread-shaped wing and method of implantation
US8048117B2 (en) 2003-05-22 2011-11-01 Kyphon Sarl Interspinous process implant and method of implantation
US7549999B2 (en) * 2003-05-22 2009-06-23 Kyphon Sarl Interspinous process distraction implant and method of implantation
US7931674B2 (en) * 2005-03-21 2011-04-26 Kyphon Sarl Interspinous process implant having deployable wing and method of implantation
US7608104B2 (en) * 2003-05-14 2009-10-27 Archus Orthopedics, Inc. Prostheses, tools and methods for replacement of natural facet joints with artifical facet joint surfaces
US7074238B2 (en) 2003-07-08 2006-07-11 Archus Orthopedics, Inc. Prostheses, tools and methods for replacement of natural facet joints with artificial facet joint surfaces
FR2858546B1 (en) * 2003-08-04 2006-04-28 Spine Next Sa INTERVERTEBRAL DISC PROSTHESIS
US8603168B2 (en) 2003-08-05 2013-12-10 Flexuspine, Inc. Artificial functional spinal unit system and method for use
US7753958B2 (en) 2003-08-05 2010-07-13 Gordon Charles R Expandable intervertebral implant
US7909869B2 (en) 2003-08-05 2011-03-22 Flexuspine, Inc. Artificial spinal unit assemblies
US8926700B2 (en) 2003-12-10 2015-01-06 Gmedelware 2 LLC Spinal facet joint implant
US20050131406A1 (en) 2003-12-15 2005-06-16 Archus Orthopedics, Inc. Polyaxial adjustment of facet joint prostheses
US8562649B2 (en) 2004-02-17 2013-10-22 Gmedelaware 2 Llc System and method for multiple level facet joint arthroplasty and fusion
US7993373B2 (en) 2005-02-22 2011-08-09 Hoy Robert W Polyaxial orthopedic fastening apparatus
US8333789B2 (en) 2007-01-10 2012-12-18 Gmedelaware 2 Llc Facet joint replacement
US7763073B2 (en) * 2004-03-09 2010-07-27 Depuy Spine, Inc. Posterior process dynamic spacer
US7717939B2 (en) 2004-03-31 2010-05-18 Depuy Spine, Inc. Rod attachment for head to head cross connector
US7645294B2 (en) 2004-03-31 2010-01-12 Depuy Spine, Inc. Head-to-head connector spinal fixation system
US7282065B2 (en) * 2004-04-09 2007-10-16 X-Spine Systems, Inc. Disk augmentation system and method
US7051451B2 (en) * 2004-04-22 2006-05-30 Archus Orthopedics, Inc. Facet joint prosthesis measurement and implant tools
US7406775B2 (en) * 2004-04-22 2008-08-05 Archus Orthopedics, Inc. Implantable orthopedic device component selection instrument and methods
US7585316B2 (en) 2004-05-21 2009-09-08 Warsaw Orthopedic, Inc. Interspinous spacer
US8764801B2 (en) 2005-03-28 2014-07-01 Gmedelaware 2 Llc Facet joint implant crosslinking apparatus and method
US7507242B2 (en) 2004-06-02 2009-03-24 Facet Solutions Surgical measurement and resection framework
US7854752B2 (en) 2004-08-09 2010-12-21 Theken Spine, Llc System and method for dynamic skeletal stabilization
AU2005274013A1 (en) * 2004-08-09 2006-02-23 Innovative Spinal Technologies System and method for dynamic skeletal stabilization
DE502004008055D1 (en) * 2004-08-13 2008-10-23 Synthes Gmbh INTERSPINAL IMPLANT
KR20070065329A (en) 2004-08-18 2007-06-22 아추스 오토페딕스, 인코포레이티드 Adjacent level facet arthroplasty devices, spine stabilization systems, and methods
US7717938B2 (en) 2004-08-27 2010-05-18 Depuy Spine, Inc. Dual rod cross connectors and inserter tools
US7887566B2 (en) * 2004-09-16 2011-02-15 Hynes Richard A Intervertebral support device with bias adjustment and related methods
US7766940B2 (en) 2004-12-30 2010-08-03 Depuy Spine, Inc. Posterior stabilization system
US20060084976A1 (en) * 2004-09-30 2006-04-20 Depuy Spine, Inc. Posterior stabilization systems and methods
US8092496B2 (en) 2004-09-30 2012-01-10 Depuy Spine, Inc. Methods and devices for posterior stabilization
US7896906B2 (en) 2004-12-30 2011-03-01 Depuy Spine, Inc. Artificial facet joint
US8945183B2 (en) * 2004-10-20 2015-02-03 Vertiflex, Inc. Interspinous process spacer instrument system with deployment indicator
US20070239159A1 (en) * 2005-07-22 2007-10-11 Vertiflex, Inc. Systems and methods for stabilization of bone structures
US8025680B2 (en) 2004-10-20 2011-09-27 Exactech, Inc. Systems and methods for posterior dynamic stabilization of the spine
US8162985B2 (en) 2004-10-20 2012-04-24 The Board Of Trustees Of The Leland Stanford Junior University Systems and methods for posterior dynamic stabilization of the spine
US8613747B2 (en) 2004-10-20 2013-12-24 Vertiflex, Inc. Spacer insertion instrument
US8277488B2 (en) 2004-10-20 2012-10-02 Vertiflex, Inc. Interspinous spacer
US8123782B2 (en) 2004-10-20 2012-02-28 Vertiflex, Inc. Interspinous spacer
US8267969B2 (en) * 2004-10-20 2012-09-18 Exactech, Inc. Screw systems and methods for use in stabilization of bone structures
US7935134B2 (en) 2004-10-20 2011-05-03 Exactech, Inc. Systems and methods for stabilization of bone structures
US8226690B2 (en) 2005-07-22 2012-07-24 The Board Of Trustees Of The Leland Stanford Junior University Systems and methods for stabilization of bone structures
EP1809214B1 (en) 2004-10-25 2017-07-12 Gmedelaware 2 LLC Spinal prothesis having a modular design
US8241330B2 (en) 2007-01-11 2012-08-14 Lanx, Inc. Spinous process implants and associated methods
US9055981B2 (en) 2004-10-25 2015-06-16 Lanx, Inc. Spinal implants and methods
US8597331B2 (en) * 2004-12-10 2013-12-03 Life Spine, Inc. Prosthetic spinous process and method
US8172877B2 (en) * 2004-12-13 2012-05-08 Kyphon Sarl Inter-cervical facet implant with surface enhancements
US7655044B2 (en) * 2004-12-13 2010-02-02 Depuy Spine, Inc. Artificial facet joint device having a compression spring
US7491238B2 (en) * 2004-12-23 2009-02-17 Impliant Ltd. Adjustable spinal prosthesis
US20060200156A1 (en) * 2005-01-05 2006-09-07 Jamal Taha Spinal docking system, spinal docking device, and methods of spinal stabilization
US20060190081A1 (en) * 2005-02-09 2006-08-24 Gary Kraus Facet stabilization schemes
US8029567B2 (en) * 2005-02-17 2011-10-04 Kyphon Sarl Percutaneous spinal implants and methods
US8057513B2 (en) 2005-02-17 2011-11-15 Kyphon Sarl Percutaneous spinal implants and methods
US8157841B2 (en) * 2005-02-17 2012-04-17 Kyphon Sarl Percutaneous spinal implants and methods
US20080288078A1 (en) * 2005-02-17 2008-11-20 Kohm Andrew C Percutaneous spinal implants and methods
US20080039944A1 (en) * 2005-02-17 2008-02-14 Malandain Hugues F Percutaneous Spinal Implants and Methods
US8100943B2 (en) 2005-02-17 2012-01-24 Kyphon Sarl Percutaneous spinal implants and methods
US20070055237A1 (en) * 2005-02-17 2007-03-08 Edidin Avram A Percutaneous spinal implants and methods
US7988709B2 (en) * 2005-02-17 2011-08-02 Kyphon Sarl Percutaneous spinal implants and methods
US20070276372A1 (en) * 2005-02-17 2007-11-29 Malandain Hugues F Percutaneous Spinal Implants and Methods
US8038698B2 (en) * 2005-02-17 2011-10-18 Kphon Sarl Percutaneous spinal implants and methods
US20060184248A1 (en) * 2005-02-17 2006-08-17 Edidin Avram A Percutaneous spinal implants and methods
US8007521B2 (en) 2005-02-17 2011-08-30 Kyphon Sarl Percutaneous spinal implants and methods
US8034080B2 (en) * 2005-02-17 2011-10-11 Kyphon Sarl Percutaneous spinal implants and methods
US20070276493A1 (en) * 2005-02-17 2007-11-29 Malandain Hugues F Percutaneous spinal implants and methods
US8097018B2 (en) * 2005-02-17 2012-01-17 Kyphon Sarl Percutaneous spinal implants and methods
US7998174B2 (en) 2005-02-17 2011-08-16 Kyphon Sarl Percutaneous spinal implants and methods
US8096994B2 (en) 2005-02-17 2012-01-17 Kyphon Sarl Percutaneous spinal implants and methods
US7267690B2 (en) 2005-03-09 2007-09-11 Vertebral Technologies, Inc. Interlocked modular disc nucleus prosthesis
US7722647B1 (en) 2005-03-14 2010-05-25 Facet Solutions, Inc. Apparatus and method for posterior vertebral stabilization
US8496686B2 (en) * 2005-03-22 2013-07-30 Gmedelaware 2 Llc Minimally invasive spine restoration systems, devices, methods and kits
US20060241757A1 (en) * 2005-03-31 2006-10-26 Sdgi Holdings, Inc. Intervertebral prosthetic device for spinal stabilization and method of manufacturing same
US9675385B2 (en) 2005-04-12 2017-06-13 Nathan C. Moskowitz Spinous process staple with interdigitating-interlocking hemi-spacers for adjacent spinous process separation and distraction
US8034079B2 (en) * 2005-04-12 2011-10-11 Warsaw Orthopedic, Inc. Implants and methods for posterior dynamic stabilization of a spinal motion segment
WO2006116606A2 (en) * 2005-04-27 2006-11-02 James Marino Mono-planar pedilcle screw method, system, and kit
US7727233B2 (en) * 2005-04-29 2010-06-01 Warsaw Orthopedic, Inc. Spinous process stabilization devices and methods
US20060276790A1 (en) * 2005-06-02 2006-12-07 Zimmer Spine, Inc. Minimally invasive facet joint repair
US7695496B2 (en) 2005-06-10 2010-04-13 Depuy Spine, Inc. Posterior dynamic stabilization Y-device
US20070005064A1 (en) * 2005-06-27 2007-01-04 Sdgi Holdings Intervertebral prosthetic device for spinal stabilization and method of implanting same
FR2887434B1 (en) 2005-06-28 2008-03-28 Jean Taylor SURGICAL TREATMENT EQUIPMENT OF TWO VERTEBRATES
US8523865B2 (en) 2005-07-22 2013-09-03 Exactech, Inc. Tissue splitter
US8163024B2 (en) * 2005-09-14 2012-04-24 Premia Spine Ltd. Adjustable spinal prostheses
US8486145B2 (en) 2005-09-19 2013-07-16 Premia Spine Ltd. Flexure limiter for spinal prosthesis
WO2007034516A1 (en) * 2005-09-21 2007-03-29 Sintea Biotech S.P.A. Device, kit and method for intervertebral stabilization
US7879074B2 (en) * 2005-09-27 2011-02-01 Depuy Spine, Inc. Posterior dynamic stabilization systems and methods
US8357181B2 (en) 2005-10-27 2013-01-22 Warsaw Orthopedic, Inc. Intervertebral prosthetic device for spinal stabilization and method of implanting same
US8430911B2 (en) * 2005-12-14 2013-04-30 Spinefrontier Inc Spinous process fixation implant
WO2007126428A2 (en) 2005-12-20 2007-11-08 Archus Orthopedics, Inc. Arthroplasty revision system and method
US7695514B2 (en) * 2005-12-29 2010-04-13 Depuy Spine, Inc. Facet joint and spinal ligament replacement
US20070173822A1 (en) * 2006-01-13 2007-07-26 Sdgi Holdings, Inc. Use of a posterior dynamic stabilization system with an intradiscal device
US7815680B2 (en) * 2006-01-13 2010-10-19 Nabil L. Muhanna Flexible vertebral implant
US20070173823A1 (en) 2006-01-18 2007-07-26 Sdgi Holdings, Inc. Intervertebral prosthetic device for spinal stabilization and method of implanting same
US8083795B2 (en) * 2006-01-18 2011-12-27 Warsaw Orthopedic, Inc. Intervertebral prosthetic device for spinal stabilization and method of manufacturing same
US20070191838A1 (en) * 2006-01-27 2007-08-16 Sdgi Holdings, Inc. Interspinous devices and methods of use
US7682376B2 (en) * 2006-01-27 2010-03-23 Warsaw Orthopedic, Inc. Interspinous devices and methods of use
US7691130B2 (en) 2006-01-27 2010-04-06 Warsaw Orthopedic, Inc. Spinal implants including a sensor and methods of use
US8118869B2 (en) * 2006-03-08 2012-02-21 Flexuspine, Inc. Dynamic interbody device
US8262698B2 (en) * 2006-03-16 2012-09-11 Warsaw Orthopedic, Inc. Expandable device for insertion between anatomical structures and a procedure utilizing same
US8025681B2 (en) * 2006-03-29 2011-09-27 Theken Spine, Llc Dynamic motion spinal stabilization system
FR2899788B1 (en) * 2006-04-13 2008-07-04 Jean Taylor TREATMENT EQUIPMENT FOR VERTEBRATES, COMPRISING AN INTEREPINOUS IMPLANT
US20070270959A1 (en) * 2006-04-18 2007-11-22 Sdgi Holdings, Inc. Arthroplasty device
US20070288012A1 (en) * 2006-04-21 2007-12-13 Dennis Colleran Dynamic motion spinal stabilization system and device
US8118844B2 (en) 2006-04-24 2012-02-21 Warsaw Orthopedic, Inc. Expandable device for insertion between anatomical structures and a procedure utilizing same
US20070270962A1 (en) * 2006-04-26 2007-11-22 Impliant Ltd. Tools for spinal prostheses
DE102007018860B4 (en) 2006-04-28 2023-01-05 Paradigm Spine L.L.C. Instrument system for use with an interspinous implant
US8048118B2 (en) 2006-04-28 2011-11-01 Warsaw Orthopedic, Inc. Adjustable interspinous process brace
US20070270824A1 (en) * 2006-04-28 2007-11-22 Warsaw Orthopedic, Inc. Interspinous process brace
US8062337B2 (en) * 2006-05-04 2011-11-22 Warsaw Orthopedic, Inc. Expandable device for insertion between anatomical structures and a procedure utilizing same
US8147517B2 (en) * 2006-05-23 2012-04-03 Warsaw Orthopedic, Inc. Systems and methods for adjusting properties of a spinal implant
US20070276496A1 (en) * 2006-05-23 2007-11-29 Sdgi Holdings, Inc. Surgical spacer with shape control
US8048120B1 (en) * 2006-05-31 2011-11-01 Medicine Lodge, Inc. System and method for segmentally modular spinal plating
US8172882B2 (en) 2006-06-14 2012-05-08 Spartek Medical, Inc. Implant system and method to treat degenerative disorders of the spine
FR2902639B1 (en) * 2006-06-26 2008-08-22 Arca Medica Gmbh IMPLANT INTENDED FOR THE STABILIZATION OF THE SACRED LOMBO REGION
EP2040632B1 (en) * 2006-07-03 2010-05-05 Sami Khalife Interspinous stabilization system
US8048119B2 (en) * 2006-07-20 2011-11-01 Warsaw Orthopedic, Inc. Apparatus for insertion between anatomical structures and a procedure utilizing same
US20080039847A1 (en) * 2006-08-09 2008-02-14 Mark Piper Implant and system for stabilization of the spine
WO2008019397A2 (en) 2006-08-11 2008-02-14 Archus Orthopedics, Inc. Angled washer polyaxial connection for dynamic spine prosthesis
US8906096B2 (en) 2006-08-15 2014-12-09 GMFDelaware 2 LLC Spinal implant
US20080086115A1 (en) * 2006-09-07 2008-04-10 Warsaw Orthopedic, Inc. Intercostal spacer device and method for use in correcting a spinal deformity
US8097019B2 (en) 2006-10-24 2012-01-17 Kyphon Sarl Systems and methods for in situ assembly of an interspinous process distraction implant
US8096996B2 (en) 2007-03-20 2012-01-17 Exactech, Inc. Rod reducer
US8361117B2 (en) 2006-11-08 2013-01-29 Depuy Spine, Inc. Spinal cross connectors
FR2908035B1 (en) * 2006-11-08 2009-05-01 Jean Taylor INTEREPINE IMPLANT
US7879104B2 (en) * 2006-11-15 2011-02-01 Warsaw Orthopedic, Inc. Spinal implant system
US20080114455A1 (en) * 2006-11-15 2008-05-15 Warsaw Orthopedic, Inc. Rotating Interspinous Process Devices and Methods of Use
US9737414B2 (en) 2006-11-21 2017-08-22 Vertebral Technologies, Inc. Methods and apparatus for minimally invasive modular interbody fusion devices
US7955392B2 (en) 2006-12-14 2011-06-07 Warsaw Orthopedic, Inc. Interspinous process devices and methods
WO2008086467A2 (en) 2007-01-10 2008-07-17 Facet Solutions, Inc. Taper-locking fixation system
US9265532B2 (en) 2007-01-11 2016-02-23 Lanx, Inc. Interspinous implants and methods
US8075596B2 (en) * 2007-01-12 2011-12-13 Warsaw Orthopedic, Inc. Spinal prosthesis systems
US7931676B2 (en) * 2007-01-18 2011-04-26 Warsaw Orthopedic, Inc. Vertebral stabilizer
US8597358B2 (en) 2007-01-19 2013-12-03 Flexuspine, Inc. Dynamic interbody devices
US20080243187A1 (en) * 2007-02-01 2008-10-02 Warsaw Orthopedic, Inc. Vertebral body fixation apparatus
US9414861B2 (en) 2007-02-09 2016-08-16 Transcendental Spine, Llc Dynamic stabilization device
US7799058B2 (en) * 2007-04-19 2010-09-21 Zimmer Gmbh Interspinous spacer
US9173686B2 (en) * 2007-05-09 2015-11-03 Ebi, Llc Interspinous implant
US9381047B2 (en) 2007-05-09 2016-07-05 Ebi, Llc Interspinous implant
EP1994901A1 (en) * 2007-05-24 2008-11-26 Bio Medical S.r.L. Intervertebral support device
US8114134B2 (en) 2007-06-05 2012-02-14 Spartek Medical, Inc. Spinal prosthesis having a three bar linkage for motion preservation and dynamic stabilization of the spine
US7993372B2 (en) 2007-06-05 2011-08-09 Spartek Medical, Inc. Dynamic stabilization and motion preservation spinal implantation system with a shielded deflection rod system and method
US8048121B2 (en) 2007-06-05 2011-11-01 Spartek Medical, Inc. Spine implant with a defelction rod system anchored to a bone anchor and method
US8048113B2 (en) 2007-06-05 2011-11-01 Spartek Medical, Inc. Deflection rod system with a non-linear deflection to load characteristic for a dynamic stabilization and motion preservation spinal implantation system and method
US8092501B2 (en) 2007-06-05 2012-01-10 Spartek Medical, Inc. Dynamic spinal rod and method for dynamic stabilization of the spine
US8048115B2 (en) 2007-06-05 2011-11-01 Spartek Medical, Inc. Surgical tool and method for implantation of a dynamic bone anchor
US8021396B2 (en) 2007-06-05 2011-09-20 Spartek Medical, Inc. Configurable dynamic spinal rod and method for dynamic stabilization of the spine
US8162987B2 (en) 2007-06-05 2012-04-24 Spartek Medical, Inc. Modular spine treatment kit for dynamic stabilization and motion preservation of the spine
US8083772B2 (en) * 2007-06-05 2011-12-27 Spartek Medical, Inc. Dynamic spinal rod assembly and method for dynamic stabilization of the spine
CA2694437C (en) 2007-07-26 2016-09-06 Glenn R. Buttermann Segmental orthopedic device for spinal elongation and for treatment of scoliosis
US9204908B2 (en) 2007-07-26 2015-12-08 Dynamic Spine, Llc Segmental orthopedic device for spinal elongation and for treatment of scoliosis
US8348976B2 (en) * 2007-08-27 2013-01-08 Kyphon Sarl Spinous-process implants and methods of using the same
KR20100080908A (en) * 2007-09-14 2010-07-13 신세스 게엠바하 Interspinous spacer
US8267965B2 (en) 2007-10-22 2012-09-18 Flexuspine, Inc. Spinal stabilization systems with dynamic interbody devices
US8182514B2 (en) 2007-10-22 2012-05-22 Flexuspine, Inc. Dampener system for a posterior stabilization system with a fixed length elongated member
US8157844B2 (en) 2007-10-22 2012-04-17 Flexuspine, Inc. Dampener system for a posterior stabilization system with a variable length elongated member
US8523912B2 (en) 2007-10-22 2013-09-03 Flexuspine, Inc. Posterior stabilization systems with shared, dual dampener systems
US8187330B2 (en) 2007-10-22 2012-05-29 Flexuspine, Inc. Dampener system for a posterior stabilization system with a variable length elongated member
US8162994B2 (en) 2007-10-22 2012-04-24 Flexuspine, Inc. Posterior stabilization system with isolated, dual dampener systems
US20090118833A1 (en) * 2007-11-05 2009-05-07 Zimmer Spine, Inc. In-situ curable interspinous process spacer
US20090182384A1 (en) * 2008-01-14 2009-07-16 Warsaw Orthopedic, Inc. Material combinations for medical device implants
US8105358B2 (en) * 2008-02-04 2012-01-31 Kyphon Sarl Medical implants and methods
US20090198245A1 (en) * 2008-02-04 2009-08-06 Phan Christopher U Tools and methods for insertion and removal of medical implants
US8252029B2 (en) * 2008-02-21 2012-08-28 Zimmer Gmbh Expandable interspinous process spacer with lateral support and method for implantation
US8007518B2 (en) 2008-02-26 2011-08-30 Spartek Medical, Inc. Load-sharing component having a deflectable post and method for dynamic stabilization of the spine
US8083775B2 (en) 2008-02-26 2011-12-27 Spartek Medical, Inc. Load-sharing bone anchor having a natural center of rotation and method for dynamic stabilization of the spine
US8211155B2 (en) 2008-02-26 2012-07-03 Spartek Medical, Inc. Load-sharing bone anchor having a durable compliant member and method for dynamic stabilization of the spine
US8267979B2 (en) 2008-02-26 2012-09-18 Spartek Medical, Inc. Load-sharing bone anchor having a deflectable post and axial spring and method for dynamic stabilization of the spine
US8097024B2 (en) 2008-02-26 2012-01-17 Spartek Medical, Inc. Load-sharing bone anchor having a deflectable post and method for stabilization of the spine
US8057515B2 (en) 2008-02-26 2011-11-15 Spartek Medical, Inc. Load-sharing anchor having a deflectable post and centering spring and method for dynamic stabilization of the spine
US8333792B2 (en) 2008-02-26 2012-12-18 Spartek Medical, Inc. Load-sharing bone anchor having a deflectable post and method for dynamic stabilization of the spine
US8337536B2 (en) 2008-02-26 2012-12-25 Spartek Medical, Inc. Load-sharing bone anchor having a deflectable post with a compliant ring and method for stabilization of the spine
US8016861B2 (en) 2008-02-26 2011-09-13 Spartek Medical, Inc. Versatile polyaxial connector assembly and method for dynamic stabilization of the spine
US20090234456A1 (en) * 2008-03-14 2009-09-17 Warsaw Orthopedic, Inc. Intervertebral Implant and Methods of Implantation and Treatment
US8114136B2 (en) * 2008-03-18 2012-02-14 Warsaw Orthopedic, Inc. Implants and methods for inter-spinous process dynamic stabilization of a spinal motion segment
US8057679B2 (en) 2008-07-09 2011-11-15 Baxter International Inc. Dialysis system having trending and alert generation
CN101332116B (en) * 2008-07-18 2011-05-04 南方医科大学 Spinal crest elastic internal fixation device
US20100030549A1 (en) * 2008-07-31 2010-02-04 Lee Michael M Mobile device having human language translation capability with positional feedback
WO2010016949A1 (en) * 2008-08-08 2010-02-11 Alphatec Spine, Inc. Spinous process device and method of use
WO2010019928A2 (en) * 2008-08-14 2010-02-18 Doerr Timothy E Tack for spine fixation
US20110106170A1 (en) * 2008-08-14 2011-05-05 Doerr Timothy E Tack for spine fixation
US20100051552A1 (en) 2008-08-28 2010-03-04 Baxter International Inc. In-line sensors for dialysis applications
US7927375B2 (en) 2008-09-12 2011-04-19 Doty Keith L Dynamic six-degrees-of-freedom intervertebral spinal disc prosthesis
US20100087864A1 (en) * 2008-10-03 2010-04-08 Assaf Klein Fastener assembly that fastens to polyaxial pedicle screw
US20100106252A1 (en) * 2008-10-29 2010-04-29 Kohm Andrew C Spinal implants having multiple movable members
US8114131B2 (en) * 2008-11-05 2012-02-14 Kyphon Sarl Extension limiting devices and methods of use for the spine
US9044278B2 (en) * 2008-11-06 2015-06-02 Spinal Kinetics Inc. Inter spinous process spacer with compressible core providing dynamic stabilization
US9089436B2 (en) 2008-11-25 2015-07-28 DePuy Synthes Products, Inc. Visco-elastic facet joint implant
WO2010068829A2 (en) * 2008-12-12 2010-06-17 Spinefrontier, Inc. Improved spinous process fixation implant
US20100160978A1 (en) * 2008-12-23 2010-06-24 John Carbone Bone screw assembly with non-uniform material
CH700268A2 (en) * 2009-01-21 2010-07-30 Med Titan Spine Gmbh Lumbar support relief.
US8128699B2 (en) * 2009-03-13 2012-03-06 Warsaw Orthopedic, Inc. Spinal implant and methods of implantation and treatment
EP2413825A4 (en) 2009-03-31 2013-12-11 Lanx Inc Spinous process implants and associated methods
US8372117B2 (en) * 2009-06-05 2013-02-12 Kyphon Sarl Multi-level interspinous implants and methods of use
US8157842B2 (en) * 2009-06-12 2012-04-17 Kyphon Sarl Interspinous implant and methods of use
US8226724B2 (en) * 2009-06-18 2012-07-24 Doty Keith L Intervertebral spinal disc prosthesis
US8343223B2 (en) 2009-07-14 2013-01-01 Life Spine, Inc. Combined spinal interbody and plate assemblies
PL215752B1 (en) * 2009-09-28 2014-01-31 Lfc Spolka Z Ograniczona Odpowiedzialnoscia Equipment for surgical vertebra movement
US20110077686A1 (en) * 2009-09-29 2011-03-31 Kyphon Sarl Interspinous process implant having a compliant spacer
US8771317B2 (en) * 2009-10-28 2014-07-08 Warsaw Orthopedic, Inc. Interspinous process implant and method of implantation
US9901455B2 (en) 2009-11-25 2018-02-27 Nathan C. Moskowitz Total artificial spino-laminar prosthetic replacement
CN102695465A (en) 2009-12-02 2012-09-26 斯帕泰克医疗股份有限公司 Low profile spinal prosthesis incorporating a bone anchor having a deflectable post and a compound spinal rod
US8317831B2 (en) * 2010-01-13 2012-11-27 Kyphon Sarl Interspinous process spacer diagnostic balloon catheter and methods of use
US8114132B2 (en) * 2010-01-13 2012-02-14 Kyphon Sarl Dynamic interspinous process device
US8388656B2 (en) 2010-02-04 2013-03-05 Ebi, Llc Interspinous spacer with deployable members and related method
US8147526B2 (en) * 2010-02-26 2012-04-03 Kyphon Sarl Interspinous process spacer diagnostic parallel balloon catheter and methods of use
US8409287B2 (en) * 2010-05-21 2013-04-02 Warsaw Orthopedic, Inc. Intervertebral prosthetic systems, devices, and associated methods
AU2011264818B2 (en) 2010-06-10 2015-06-18 Globus Medical, Inc. Low-profile, uniplanar bone screw
US20110307015A1 (en) 2010-06-10 2011-12-15 Spartek Medical, Inc. Adaptive spinal rod and methods for stabilization of the spine
US8814908B2 (en) 2010-07-26 2014-08-26 Warsaw Orthopedic, Inc. Injectable flexible interspinous process device system
US9358122B2 (en) 2011-01-07 2016-06-07 K2M, Inc. Interbody spacer
US9370382B2 (en) 2011-02-06 2016-06-21 Paradigm Spine, Llc Translaminar interspinous stabilization system
US8496689B2 (en) 2011-02-23 2013-07-30 Farzad Massoudi Spinal implant device with fusion cage and fixation plates and method of implanting
US8425560B2 (en) 2011-03-09 2013-04-23 Farzad Massoudi Spinal implant device with fixation plates and lag screws and method of implanting
US8388687B2 (en) 2011-03-25 2013-03-05 Flexuspine, Inc. Interbody device insertion systems and methods
US8591548B2 (en) 2011-03-31 2013-11-26 Warsaw Orthopedic, Inc. Spinous process fusion plate assembly
US8591549B2 (en) 2011-04-08 2013-11-26 Warsaw Orthopedic, Inc. Variable durometer lumbar-sacral implant
CN103547237B (en) 2011-05-18 2016-06-08 欧利奇两合股份有限公司 Prosthetic spinal disk
US8277505B1 (en) 2011-06-10 2012-10-02 Doty Keith L Devices for providing up to six-degrees of motion having kinematically-linked components and methods of use
US20120323276A1 (en) * 2011-06-17 2012-12-20 Bryan Okamoto Expandable interspinous device
US9144506B2 (en) 2011-08-11 2015-09-29 Jeff Phelps Interbody axis cage
US11812923B2 (en) 2011-10-07 2023-11-14 Alan Villavicencio Spinal fixation device
US9468536B1 (en) 2011-11-02 2016-10-18 Nuvasive, Inc. Spinal fusion implants and related methods
US9526627B2 (en) 2011-11-17 2016-12-27 Exactech, Inc. Expandable interbody device system and method
US8287598B1 (en) 2011-12-05 2012-10-16 TrueMotion Spine, Inc. True spinal motion preserving, shock absorbing, intervertebral spinal disc prosthesis
US8430916B1 (en) 2012-02-07 2013-04-30 Spartek Medical, Inc. Spinal rod connectors, methods of use, and spinal prosthesis incorporating spinal rod connectors
US9510953B2 (en) 2012-03-16 2016-12-06 Vertebral Technologies, Inc. Modular segmented disc nucleus implant
US10448977B1 (en) * 2012-03-31 2019-10-22 Ali H. MESIWALA Interspinous device and related methods
WO2013177314A1 (en) * 2012-05-22 2013-11-28 The Regents Of The University Of California A method and device for restabilization with axial rotation of the atlantoaxial junction
ITPI20120106A1 (en) * 2012-10-19 2014-04-20 Giancarlo Guizzardi DEVICE AND SYSTEM FOR VERTEBRAL ARTHRODES
US9492288B2 (en) 2013-02-20 2016-11-15 Flexuspine, Inc. Expandable fusion device for positioning between adjacent vertebral bodies
JP2016515983A (en) * 2013-03-15 2016-06-02 クラウン パッケイジング テクノロジー インコーポレイテッド Necked beverage can with seamed ends
US10398565B2 (en) 2014-04-24 2019-09-03 Choice Spine, Llc Limited profile intervertebral implant with incorporated fastening and locking mechanism
US9517144B2 (en) 2014-04-24 2016-12-13 Exactech, Inc. Limited profile intervertebral implant with incorporated fastening mechanism
CN116206744A (en) 2015-06-25 2023-06-02 甘布罗伦迪亚股份公司 Medical device systems and methods with distributed databases
EP3182826B1 (en) * 2015-09-15 2021-03-31 De Luca Oven Technologies, LLC Microwave wire mesh oven
KR102476516B1 (en) 2016-12-21 2022-12-09 감브로 룬디아 아베 A medical device system that includes an information technology infrastructure with secure cluster domains supporting external domains.
CN109431662B (en) * 2018-12-12 2021-05-28 南昌大学第二附属医院 Lumbar vertebra posterior vertebral plate reconstruction device
US11622864B2 (en) 2019-06-28 2023-04-11 Innovasis, Inc. Expandable intervertebral implant

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5645599A (en) * 1994-07-26 1997-07-08 Fixano Interspinal vertebral implant
US6440169B1 (en) * 1998-02-10 2002-08-27 Dimso Interspinous stabilizer to be fixed to spinous processes of two vertebrae
US6974478B2 (en) * 1999-10-22 2005-12-13 Archus Orthopedics, Inc. Prostheses, systems and methods for replacement of natural facet joints with artificial facet joint surfaces
US7294129B2 (en) * 2005-02-18 2007-11-13 Ebi, L.P. Spinal fixation device and associated method
US7377942B2 (en) * 2003-08-06 2008-05-27 Warsaw Orthopedic, Inc. Posterior elements motion restoring device

Family Cites Families (37)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4617922A (en) * 1982-01-18 1986-10-21 Richards Medical Company Compression screw assembly
CA1283501C (en) * 1987-02-12 1991-04-30 Thomas P. Hedman Artificial spinal disc
FR2681525A1 (en) 1991-09-19 1993-03-26 Medical Op Device for flexible or semi-rigid stabilisation of the spine, in particular of the human spine, by a posterior route
US5496318A (en) * 1993-01-08 1996-03-05 Advanced Spine Fixation Systems, Inc. Interspinous segmental spine fixation device
US5397364A (en) * 1993-10-12 1995-03-14 Danek Medical, Inc. Anterior interbody fusion device
US5458642A (en) * 1994-01-18 1995-10-17 Beer; John C. Synthetic intervertebral disc
US7494507B2 (en) * 2000-01-30 2009-02-24 Diamicron, Inc. Articulating diamond-surfaced spinal implants
US5683465A (en) * 1996-03-18 1997-11-04 Shinn; Gary Lee Artificial intervertebral disk prosthesis
US5836948A (en) * 1997-01-02 1998-11-17 Saint Francis Medical Technologies, Llc Spine distraction implant and method
US5893889A (en) * 1997-06-20 1999-04-13 Harrington; Michael Artificial disc
US6146421A (en) * 1997-08-04 2000-11-14 Gordon, Maya, Roberts And Thomas, Number 1, Llc Multiple axis intervertebral prosthesis
FR2775183B1 (en) 1998-02-20 2000-08-04 Jean Taylor INTER-SPINOUS PROSTHESIS
CA2332822C (en) 1998-05-19 2007-01-16 Synthes (U.S.A.) Osteosynthetic implant with an embedded hinge joint
US6063121A (en) * 1998-07-29 2000-05-16 Xavier; Ravi Vertebral body prosthesis
FR2787017B1 (en) * 1998-12-11 2001-04-27 Dimso Sa INTERVERTEBRAL DISC PROSTHESIS WITH IMPROVED MECHANICAL BEHAVIOR
FR2787014B1 (en) * 1998-12-11 2001-03-02 Dimso Sa INTERVERTEBRAL DISC PROSTHESIS WITH REDUCED FRICTION
US6293949B1 (en) * 2000-03-01 2001-09-25 Sdgi Holdings, Inc. Superelastic spinal stabilization system and method
FR2811540B1 (en) * 2000-07-12 2003-04-25 Spine Next Sa IMPORTING INTERVERTEBRAL IMPLANT
US6610093B1 (en) * 2000-07-28 2003-08-26 Perumala Corporation Method and apparatus for stabilizing adjacent vertebrae
US6468311B2 (en) * 2001-01-22 2002-10-22 Sdgi Holdings, Inc. Modular interbody fusion implant
DE10132588C2 (en) * 2001-07-05 2003-05-22 Fehling Instr Gmbh Disc prosthesis
US6375682B1 (en) * 2001-08-06 2002-04-23 Lewis W. Fleischmann Collapsible, rotatable and expandable spinal hydraulic prosthetic device
EP1429671B1 (en) * 2001-09-28 2011-01-19 Stephen Ritland Connection rod for screw or hook polyaxial system
US20030125738A1 (en) * 2002-01-03 2003-07-03 Khanna Rohit Kumar Laminoplasty with laminar stabilization method and system
US6626909B2 (en) * 2002-02-27 2003-09-30 Kingsley Richard Chin Apparatus and method for spine fixation
US6669729B2 (en) * 2002-03-08 2003-12-30 Kingsley Richard Chin Apparatus and method for the replacement of posterior vertebral elements
EP1346708A1 (en) * 2002-03-20 2003-09-24 A-Spine Holding Group Corp. Three-hooked device for fixing spinal column
US20040015166A1 (en) * 2002-07-22 2004-01-22 Gorek Josef E. System and method for stabilizing the spine by securing spine stabilization rods in crossed disposition
US7101400B2 (en) * 2002-08-19 2006-09-05 Jeffery Thramann Shaped memory artificial disc and methods of engrafting the same
FR2845587B1 (en) * 2002-10-14 2005-01-21 Scient X DYNAMIC DEVICE FOR INTERVERTEBRAL CONNECTION WITH MULTIDIRECTIONALLY CONTROLLED DEBATMENT
BR0215928A (en) * 2002-10-28 2005-08-09 Mathys Medizinaltechnik Ag Intervertebral disc prosthesis or artificial vertebra
US6908484B2 (en) * 2003-03-06 2005-06-21 Spinecore, Inc. Cervical disc replacement
US7794465B2 (en) * 2003-09-10 2010-09-14 Warsaw Orthopedic, Inc. Artificial spinal discs and associated implantation instruments and methods
ES2287686T3 (en) * 2003-11-07 2007-12-16 Impliant Ltd. VERTEBRAL PROTESIS.
US7566346B2 (en) * 2004-10-29 2009-07-28 X-Spine Systems, Inc. Prosthetic implant and method
US7310487B2 (en) * 2004-11-04 2007-12-18 Seiko Epson Corporation Image forming apparatus with controlled timing of contact of cleaning blade against intermediate transfer member
US7309357B2 (en) * 2004-12-30 2007-12-18 Infinesse, Corporation Prosthetic spinal discs

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5645599A (en) * 1994-07-26 1997-07-08 Fixano Interspinal vertebral implant
US6440169B1 (en) * 1998-02-10 2002-08-27 Dimso Interspinous stabilizer to be fixed to spinous processes of two vertebrae
US6974478B2 (en) * 1999-10-22 2005-12-13 Archus Orthopedics, Inc. Prostheses, systems and methods for replacement of natural facet joints with artificial facet joint surfaces
US7377942B2 (en) * 2003-08-06 2008-05-27 Warsaw Orthopedic, Inc. Posterior elements motion restoring device
US7294129B2 (en) * 2005-02-18 2007-11-13 Ebi, L.P. Spinal fixation device and associated method

Cited By (59)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8262699B2 (en) * 2003-11-07 2012-09-11 Premia Spine Ltd. Spinal prostheses
US20070288006A1 (en) * 2003-11-07 2007-12-13 Uri Arnin Spinal prostheses
US10835295B2 (en) 2004-10-20 2020-11-17 Vertiflex, Inc. Interspinous spacer
US10080587B2 (en) 2004-10-20 2018-09-25 Vertiflex, Inc. Methods for treating a patient's spine
US8128662B2 (en) 2004-10-20 2012-03-06 Vertiflex, Inc. Minimally invasive tooling for delivery of interspinous spacer
US8317864B2 (en) 2004-10-20 2012-11-27 The Board Of Trustees Of The Leland Stanford Junior University Systems and methods for posterior dynamic stabilization of the spine
US8409282B2 (en) 2004-10-20 2013-04-02 Vertiflex, Inc. Systems and methods for posterior dynamic stabilization of the spine
US8425559B2 (en) 2004-10-20 2013-04-23 Vertiflex, Inc. Systems and methods for posterior dynamic stabilization of the spine
US8628574B2 (en) 2004-10-20 2014-01-14 Vertiflex, Inc. Systems and methods for posterior dynamic stabilization of the spine
US11076893B2 (en) 2004-10-20 2021-08-03 Vertiflex, Inc. Methods for treating a patient's spine
US10835297B2 (en) 2004-10-20 2020-11-17 Vertiflex, Inc. Interspinous spacer
US8864828B2 (en) 2004-10-20 2014-10-21 Vertiflex, Inc. Interspinous spacer
US8900271B2 (en) 2004-10-20 2014-12-02 The Board Of Trustees Of The Leland Stanford Junior University Systems and methods for posterior dynamic stabilization of the spine
US9023084B2 (en) 2004-10-20 2015-05-05 The Board Of Trustees Of The Leland Stanford Junior University Systems and methods for stabilizing the motion or adjusting the position of the spine
US9039742B2 (en) 2004-10-20 2015-05-26 The Board Of Trustees Of The Leland Stanford Junior University Systems and methods for posterior dynamic stabilization of the spine
US9283005B2 (en) 2004-10-20 2016-03-15 Vertiflex, Inc. Systems and methods for posterior dynamic stabilization of the spine
US9125692B2 (en) 2004-10-20 2015-09-08 The Board Of Trustees Of The Leland Stanford Junior University Systems and methods for posterior dynamic stabilization of the spine
US9155570B2 (en) 2004-10-20 2015-10-13 Vertiflex, Inc. Interspinous spacer
US9155572B2 (en) 2004-10-20 2015-10-13 Vertiflex, Inc. Minimally invasive tooling for delivery of interspinous spacer
US9161783B2 (en) 2004-10-20 2015-10-20 Vertiflex, Inc. Interspinous spacer
US10278744B2 (en) 2004-10-20 2019-05-07 The Board Of Trustees Of The Leland Stanford Junior University Systems and methods for posterior dynamic stabilization of the spine
US8152837B2 (en) 2004-10-20 2012-04-10 The Board Of Trustees Of The Leland Stanford Junior University Systems and methods for posterior dynamic stabilization of the spine
US9119680B2 (en) 2004-10-20 2015-09-01 Vertiflex, Inc. Interspinous spacer
US9314279B2 (en) 2004-10-20 2016-04-19 The Board Of Trustees Of The Leland Stanford Junior University Systems and methods for posterior dynamic stabilization of the spine
US9393055B2 (en) 2004-10-20 2016-07-19 Vertiflex, Inc. Spacer insertion instrument
US9445843B2 (en) 2004-10-20 2016-09-20 The Board Of Trustees Of The Leland Stanford Junior University Systems and methods for posterior dynamic stabilization of the spine
US9532812B2 (en) 2004-10-20 2017-01-03 Vertiflex, Inc. Interspinous spacer
US8012207B2 (en) 2004-10-20 2011-09-06 Vertiflex, Inc. Systems and methods for posterior dynamic stabilization of the spine
US9572603B2 (en) 2004-10-20 2017-02-21 Vertiflex, Inc. Interspinous spacer
US10709481B2 (en) 2004-10-20 2020-07-14 The Board Of Trustees Of The Leland Stanford Junior University Systems and methods for posterior dynamic stabilization of the spine
US9861398B2 (en) 2004-10-20 2018-01-09 Vertiflex, Inc. Interspinous spacer
US9877749B2 (en) 2004-10-20 2018-01-30 The Board Of Trustees Of The Leland Stanford Junior University Systems and methods for posterior dynamic stabilization of the spine
US9956011B2 (en) 2004-10-20 2018-05-01 Vertiflex, Inc. Interspinous spacer
US10039576B2 (en) 2004-10-20 2018-08-07 The Board Of Trustees Of The Leland Stanford Junior University Systems and methods for posterior dynamic stabilization of the spine
US10058358B2 (en) 2004-10-20 2018-08-28 The Board Of Trustees Of The Leland Stanford Junior University Systems and methods for posterior dynamic stabilization of the spine
US9211146B2 (en) 2004-10-20 2015-12-15 The Board Of Trustees Of The Leland Stanford Junior University Systems and methods for posterior dynamic stabilization of the spine
US10166047B2 (en) 2004-10-20 2019-01-01 Vertiflex, Inc. Interspinous spacer
US10292738B2 (en) 2004-10-20 2019-05-21 The Board Of Trustees Of The Leland Stanford Junior University Systems and methods for stabilizing the motion or adjusting the position of the spine
US10258389B2 (en) 2004-10-20 2019-04-16 The Board Of Trustees Of The Leland Stanford Junior University Systems and methods for posterior dynamic stabilization of the spine
US10610267B2 (en) 2004-10-20 2020-04-07 Vertiflex, Inc. Spacer insertion instrument
US10653456B2 (en) 2005-02-04 2020-05-19 Vertiflex, Inc. Interspinous spacer
US9566086B2 (en) 2006-10-18 2017-02-14 VeriFlex, Inc. Dilator
US11013539B2 (en) 2006-10-18 2021-05-25 Vertiflex, Inc. Methods for treating a patient's spine
US10588663B2 (en) 2006-10-18 2020-03-17 Vertiflex, Inc. Dilator
US12035946B2 (en) 2006-10-18 2024-07-16 Boston Scientific Neuromodulation Corporation Interspinous spacer
US12035947B2 (en) 2006-10-18 2024-07-16 Boston Scientific Neuromodulation Corporation Devices and methods for treating a patient's spine
US11986221B2 (en) 2006-10-18 2024-05-21 Vertiflex, Inc. Interspinous spacer
US11229461B2 (en) 2006-10-18 2022-01-25 Vertiflex, Inc. Interspinous spacer
US8845726B2 (en) 2006-10-18 2014-09-30 Vertiflex, Inc. Dilator
US8740948B2 (en) 2009-12-15 2014-06-03 Vertiflex, Inc. Spinal spacer for cervical and other vertebra, and associated systems and methods
US9186186B2 (en) 2009-12-15 2015-11-17 Vertiflex, Inc. Spinal spacer for cervical and other vertebra, and associated systems and methods
US9675303B2 (en) 2013-03-15 2017-06-13 Vertiflex, Inc. Visualization systems, instruments and methods of using the same in spinal decompression procedures
US10524772B2 (en) 2014-05-07 2020-01-07 Vertiflex, Inc. Spinal nerve decompression systems, dilation systems, and methods of using the same
US11357489B2 (en) 2014-05-07 2022-06-14 Vertiflex, Inc. Spinal nerve decompression systems, dilation systems, and methods of using the same
US12035884B2 (en) 2014-05-07 2024-07-16 Boston Scientific Neuromodulation Corporation Spinal nerve decompression systems, dilation systems, and methods of using the same
US11141201B2 (en) 2015-07-31 2021-10-12 Paradigm Spine, Llc Interspinous stabilization and fusion device
US10398478B2 (en) 2015-07-31 2019-09-03 Paradigm Spine, Llc Interspinous stabilization and fusion device
WO2019003048A1 (en) 2017-06-25 2019-01-03 Premia Spine Ltd. Multi-level vertebral implant system
US12102542B2 (en) 2022-02-15 2024-10-01 Boston Scientific Neuromodulation Corporation Interspinous spacer and methods and systems utilizing the interspinous spacer

Also Published As

Publication number Publication date
US20080009948A1 (en) 2008-01-10
US20070191950A1 (en) 2007-08-16
ES2287686T3 (en) 2007-12-16
US7811330B2 (en) 2010-10-12
US7537613B2 (en) 2009-05-26
US8012176B2 (en) 2011-09-06
EP1578314B1 (en) 2007-05-30
US7811322B2 (en) 2010-10-12
US20060149383A1 (en) 2006-07-06
US20070288006A1 (en) 2007-12-13
US7846209B2 (en) 2010-12-07
US7811324B2 (en) 2010-10-12
US20070213724A1 (en) 2007-09-13
ATE363250T1 (en) 2007-06-15
US7842090B2 (en) 2010-11-30
US20070191947A1 (en) 2007-08-16
DE602004006709T2 (en) 2008-02-07
US7011685B2 (en) 2006-03-14
US20080004706A1 (en) 2008-01-03
US20050102028A1 (en) 2005-05-12
US7811323B2 (en) 2010-10-12
US20070203494A1 (en) 2007-08-30
US8262699B2 (en) 2012-09-11
US20080009947A1 (en) 2008-01-10
US20070191847A1 (en) 2007-08-16
EP1578314A1 (en) 2005-09-28
US7833272B2 (en) 2010-11-16
US20070191949A1 (en) 2007-08-16
US20070191948A1 (en) 2007-08-16
WO2005044152A1 (en) 2005-05-19
DE602004006709D1 (en) 2007-07-12

Similar Documents

Publication Publication Date Title
US7811308B2 (en) Spinal prostheses
EP1848354B1 (en) Adjustable spinal prosthesis
US9844399B2 (en) Facet joint implant crosslinking apparatus and method
US20070198091A1 (en) Facet joint prosthesis
US8323342B2 (en) Intervertebral implant
EP1945116B1 (en) Spinal prosthesis
US7763051B2 (en) Posterior dynamic stabilization systems and methods
US20140336707A1 (en) Transverse connectors
US20140207198A1 (en) Tools for implantation of interspinous implants and methods therof

Legal Events

Date Code Title Description
AS Assignment

Owner name: IMPLIANT LTD., ISRAEL

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:ARNIN, URI;SUDIN, YURI;TAUBER, MICHAEL;AND OTHERS;REEL/FRAME:019261/0577

Effective date: 20040104

STCF Information on status: patent grant

Free format text: PATENTED CASE

AS Assignment

Owner name: PREMIA SPINE LTD., ISRAEL

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:IMPLIANT LTD.;REEL/FRAME:026761/0863

Effective date: 20110531

REMI Maintenance fee reminder mailed
FPAY Fee payment

Year of fee payment: 4

SULP Surcharge for late payment
FEPP Fee payment procedure

Free format text: MAINTENANCE FEE REMINDER MAILED (ORIGINAL EVENT CODE: REM.)

FEPP Fee payment procedure

Free format text: 7.5 YR SURCHARGE - LATE PMT W/IN 6 MO, SMALL ENTITY (ORIGINAL EVENT CODE: M2555); ENTITY STATUS OF PATENT OWNER: SMALL ENTITY

MAFP Maintenance fee payment

Free format text: PAYMENT OF MAINTENANCE FEE, 8TH YR, SMALL ENTITY (ORIGINAL EVENT CODE: M2552); ENTITY STATUS OF PATENT OWNER: SMALL ENTITY

Year of fee payment: 8

MAFP Maintenance fee payment

Free format text: PAYMENT OF MAINTENANCE FEE, 12TH YR, SMALL ENTITY (ORIGINAL EVENT CODE: M2553); ENTITY STATUS OF PATENT OWNER: SMALL ENTITY

Year of fee payment: 12