US7737128B2 - Pyrimidines, such as uridine, in treatments for patients with bipolar disorder - Google Patents

Pyrimidines, such as uridine, in treatments for patients with bipolar disorder Download PDF

Info

Publication number
US7737128B2
US7737128B2 US11/629,111 US62911105A US7737128B2 US 7737128 B2 US7737128 B2 US 7737128B2 US 62911105 A US62911105 A US 62911105A US 7737128 B2 US7737128 B2 US 7737128B2
Authority
US
United States
Prior art keywords
uridine
symptoms
day
composition
study
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active, expires
Application number
US11/629,111
Other versions
US20090054370A1 (en
Inventor
Perry Renshaw
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mclean Hospital Corp
Original Assignee
Mclean Hospital Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mclean Hospital Corp filed Critical Mclean Hospital Corp
Priority to US11/629,111 priority Critical patent/US7737128B2/en
Assigned to THE MCLEAN HOSPITAL CORPORATION reassignment THE MCLEAN HOSPITAL CORPORATION ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: RENSHAW, PERRY
Publication of US20090054370A1 publication Critical patent/US20090054370A1/en
Application granted granted Critical
Publication of US7737128B2 publication Critical patent/US7737128B2/en
Active legal-status Critical Current
Adjusted expiration legal-status Critical

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/70Carbohydrates; Sugars; Derivatives thereof
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P25/00Drugs for disorders of the nervous system
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P25/00Drugs for disorders of the nervous system
    • A61P25/18Antipsychotics, i.e. neuroleptics; Drugs for mania or schizophrenia
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P25/00Drugs for disorders of the nervous system
    • A61P25/22Anxiolytics
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P25/00Drugs for disorders of the nervous system
    • A61P25/24Antidepressants

Definitions

  • This invention relates to the treatment of bipolar disorder.
  • Bipolar disorder which is also referred to as manic-depression, is a brain disorder that causes extreme shifts in a person's mood, thought, energy, behavior, and ability to function.
  • the symptoms of bipolar disorder can be are severe, and can result in emotional problems, poor job or school performance, and even suicide.
  • the name “bipolar” comes from the patients' mood swings, which can alternate between the “poles” of mania (highs) and depression (lows). These mood swings can be quite dramatic, from overly “high” and/or irritable to sad and hopeless, and then back again, often with periods of normal mood in between, and severe changes in energy and behavior go along with these changes in mood.
  • Bipolar disorder typically develops in late adolescence or early adulthood. However, some people have their first symptoms during childhood or late in life. This disorder is not always viewed as an illness, and people may suffer for years before proper diagnosis.
  • Bipolar disorder has been separated into two categories, Type I and Type II, and is typically diagnosed following the guidelines in the Diagnostic and Statistical Manual of Mental Disorders (DSM) Fourth Edition, 1994 (American Psychiatric Association, 1400 K Street NW, Suite 1101, Washington, D.C. 20005-2403 USA). The fourth edition of these guidelines, DSM-IV, identifies the diagnostic features of Bipolar I Disorder as follows.
  • DSM Diagnostic and Statistical Manual of Mental Disorders
  • This disorder is a clinical course that is characterized by the occurrence of one or more Manic Episodes or Mixed Episodes. Often individuals have also had one or more Major Depressive Episodes.
  • Episodes of Substance-Induced Mood Disorder due to the direct effects of a medication, or other somatic treatments for depression, a drug of abuse, or toxin exposure) or of Mood Disorder Due to a General Medical Condition do not count toward a diagnosis of Bipolar I Disorder.
  • the episodes are not better accounted for by Schizoaffective Disorder and are not superimposed on Schizophrenia, Schizophreniform Disorder, Delusional Disorder, or Psychotic Disorder Not Otherwise Specified.
  • This disorder is a clinical course that is characterized by the occurrence of one or more Major Depressive Episodes accompanied by at least one Hypomanic Episode. Hypomanic Episodes should not be confused with the several days of euthymia that may follow remission of a Major Depressive Episode.
  • Episodes of Substance-Induced Mood Disorder due to the direct effects of a medication, or other somatic treatments for depression, a drug of abuse, or toxin exposure
  • Mood Disorder Due to a General Medical Condition do not count toward a diagnosis of Bipolar I Disorder.
  • the episodes are not better accounted for by Schizoaffective Disorder and are not superimposed on Schizophrenia, Schizophreniform Disorder, Delusional Disorder, or Psychotic Disorder Not Otherwise Specified.
  • DSM-IV Criteria for Major Depressive Episode
  • the symptoms are not due to the direct physiological effects of a substance (e.g., a drug of abuse, a medication) or a general medical condition (e.g., hypothyroidism).
  • a substance e.g., a drug of abuse, a medication
  • a general medical condition e.g., hypothyroidism
  • the symptoms are not better accounted for by bereavement, i.e., after the loss of a loved one, the symptoms persist for longer than 2 months or are characterized by marked functional impairment, morbid preoccupation with worthlessness, suicidal ideation, psychotic symptoms, or psychomotor retardation.
  • the mood disturbance is sufficiently severe to cause marked impairment in occupational functioning or in usual social activities or relationships with others, or to necessitate hospitalization to prevent harm to self or others, or there are psychotic features.
  • the symptoms are not due to the direct physiological effects of a substance (e.g., a drug of abuse, a medication, or other treatments) or a general medical condition (e.g., hyperthyroidism).
  • a substance e.g., a drug of abuse, a medication, or other treatments
  • a general medical condition e.g., hyperthyroidism
  • Manic-like episodes that are clearly caused by somatic antidepressant treatment should not count toward a diagnosis of Bipolar I Disorder.
  • the mood disturbance is sufficiently severe to cause marked impairment in occupational functioning or in usual social activities or relationships with others, or to necessitate hospitalization to prevent harm to self or others, or there are psychotic features.
  • the symptoms are not due to the direct physiological effects of a substance (e.g., a drug of abuse, a medication, or other treatment) or a general medical condition (e.g., hyperthyroidism).
  • a substance e.g., a drug of abuse, a medication, or other treatment
  • a general medical condition e.g., hyperthyroidism
  • the episode is associated with an unequivocal change in functioning that is uncharacteristic of the person when not symptomatic.
  • the symptoms are not due to the direct physiological effects of a substance (e.g., a drug of abuse, a medication, or other treatment) or a general medical condition (e.g., hyperthyroidism).
  • a substance e.g., a drug of abuse, a medication, or other treatment
  • a general medical condition e.g., hyperthyroidism
  • Hypomanic-like episodes that are clearly caused by somatic antidepressant treatment should not count toward a diagnosis of Bipolar II Disorder.
  • the invention is based, in part, on the discovery that individuals who are diagnosed with one or more symptoms of bipolar disorder can be treated with specific dosages of one or more pyrimidines, such as uridine.
  • the invention is based on a phase I human clinical trial of a prodrug of uridine in patients with bipolar disorder.
  • the invention features methods of treating an individual diagnosed as having one or more symptoms of bipolar disorder by administering to the individual an effective amount of a pyrimidine composition, such as a uridine composition.
  • a pyrimidine composition such as a uridine composition.
  • the individual may have one or more symptoms of bipolar disorder.
  • the amount of the uridine composition can be effective to improve one or more of the symptoms of bipolar disorder.
  • the effective amount of the uridine composition can provide about 0.1 to 10 grams/day, e.g., about 0.25, 0.5, 0.75, 1, 2, 3, 4, or 5 grams/day, or 1 to 250 mg, e.g., 10 to 50 mg, of uridine/kg of body weight/day.
  • the uridine composition can be administered orally, for example, when the uridine composition includes uridine and a liquid ingestible carrier.
  • the uridine composition can be acylated derivatives of uridine, such as triacetyl uridine.
  • a pyrimidine composition is either a purified pyrimidine, a compound or product that contains a pyrimidine, a compound that increases the level of a pyrimidine in the patient, or a compound or molecule that mimics the biological function of a pyrimidine.
  • a compound can be a pyrimidine precursor or prodrug, which is processed, e.g., metabolized, degraded, or cleaved, in the body to form a pyrimidine.
  • Such a compound can also be a pyrimidine derivative, which includes pyrimidine, and other molecules or compounds bound (e.g., covalently or non-covalently) to a pyrimidine, but that do not impair the pyrimidine's biological activity in patients with increased purine levels.
  • Such compounds can also be pyrimidine mimetics, such as other nucleotides or small molecules that have a sufficiently similar three-dimensional shape or electron configuration that the compound has at least 50 percent of the biological activity of the pyrimidine.
  • Such compounds can also be drugs or other compounds that induce the body to produce one or more pyrimidines.
  • a pyrimidine composition can be a uridine composition.
  • a uridine composition is either a purified uridine, a compound or product that contains uridine, a compound that increases the level of uridine in the patient, or a compound or molecule that mimics the biological function of uridine.
  • Such a compound can be a uridine precursor or prodrug, which is processed, e.g., metabolized, degraded, or cleaved, in the body to form uridine.
  • Such a compound can also be a uridine derivative, which includes uridine, and other molecules or compounds bound (e.g., covalently or non-covalently) to uridine, but that do not impair uridine's biological activity in patients with increased purine levels.
  • uridine mimetics such as other nucleotides or small molecules that have a sufficiently similar three-dimensional shape or electron configuration that the compound has at least 50 percent of the biological activity of uridine.
  • Such compounds can also be drugs or other compounds that induce the body to produce uridine.
  • the invention includes a method of treating an individual exhibiting one or more symptoms of bipolar disorder (e.g., type I or type II bipolar disorder) by administering to the individual an effective amount of a uridine composition.
  • Uridine compositions can include triacetyl uridine, and/or other uridine precursors or mimetics, e.g., UTP, UDP, or UMP.
  • An effective amount of the uridine composition can be an amount sufficient to improve one or more symptoms of bipolar disorder, e.g., one or more symptoms of a major depressive episode, one or more symptoms of a manic episode, one or more symptoms of a mixed episode, or one or more symptoms of a hypomanic episode.
  • the invention includes a method of reducing anxiety in an individual suffering from bipolar disorder by administering to the individual an effective amount of a uridine composition.
  • the invention includes a method of reducing the severity of manic symptoms in an individual in need of treatment for bipolar disorder by administering to the individual an effective amount of a uridine composition.
  • treating is meant the medical management of a patient to cure, ameliorate, or prevent a specific disorder.
  • This term includes active treatment directed towards improvement of a disorder, and causal treatment directed towards the removal of a cause of the disorder.
  • palliative treatment designed for the relief of one or more symptoms rather than curing the disorder; preventive treatment directed to prevention of the disorder; and supportive treatment employed to supplement another specific therapy directed toward the improvement of the disorder.
  • terapéuticaally-effective amount is meant an amount of a uridine composition sufficient to produce a healing, curative, prophylactic, stabilizing, or ameliorative effect in the treatment of bipolar disorder. Such an effect is sufficient even if it improves only one symptom in a patient.
  • the new methods provide a safe therapy for bipolar disorder, without the side effect of mania, which can accompany other known treatments.
  • FIG. 1 is a graph showing the weekly Montgomery-Asberg Depression (MADRS) scores of patients treated with uridine.
  • MADRS Montgomery-Asberg Depression
  • FIG. 2 is a graph showing the weekly Young Mania Rating Scale (YMRS) scores of patients treated with uridine.
  • FIG. 3 is a graph showing the weekly Clinical Global Impression (CGI) scores of patients treated with uridine.
  • FIG. 4 is a graph showing the weekly Global Assessment of Functioning (GAF) scores of patients treated with uridine.
  • FIG. 5 is a graph showing the weekly Hamilton Anxiety (HAM-A) scores of patients treated with uridine.
  • FIG. 6 is a graph showing the weekly YMRS scores of patients treated with uridine, divided according to gender.
  • FIG. 7 is a graph showing the weekly CGI scores of patients treated with uridine, divided according to gender.
  • FIG. 8 is a graph showing the weekly CGI scores of patients treated with uridine, divided into groups of patients taking, or not taking, antidepressant medication.
  • the new methods are based on the finding that individuals diagnosed with bipolar disorder can benefit from treatment by the administration of specific dosages of one or more pyrimidines, such as uridine, prodrugs of uridine, and uridine analogs.
  • the patient can be easily treated by the administration of an effective amount of a pyrimidine composition such as a uridine composition, for example, by oral or systemic intravenous administration.
  • the new methods are based on a Phase I open-label clinical trial of RG2133, a prodrug of uridine, designed to assess the impact of uridine in patients with bipolar disorder.
  • the results demonstrate that administration of RG2133 in this patient population was safe, did not induce mania, a potential and concerning side effect of existing therapy, and provides evidence of a clinical effect of the drug.
  • the trial assessed the impact of daily, oral administration of escalating doses of RG2133 over a 6 week period on the symptoms associated with bipolar disorder, which are not adequately treated with existing drugs including SSRIs such as Prozac® or Zoloft®.
  • the trial included 11 patients.
  • the new methods involve the administration of an effective amount of a pyrimidine composition, such as a uridine composition, to a patient diagnosed with one or more symptoms of bipolar disorder.
  • a pyrimidine composition such as a uridine composition
  • the uridine composition can be formulated into a therapeutic composition and administered using a variety of known routes of administration, and in various dosage forms.
  • the uridine composition can be purified by standard methods, e.g., filtration, to remove contaminants, if present.
  • the final compositions can be lyophilized and resuspended in sterile, deionized water before further compounding.
  • the therapeutic compositions can be formulated as solutions, suspensions, suppositories, tablets, granules, powders, capsules, ointments, or creams. In the preparation of these compositions, at least one pharmaceutical excipient can be included.
  • Examples of pharmaceutical excipients include solvents (e.g., water or physiological saline), solubilizing agents (e.g., polysorbates, or Cremophor EL7), agents for achieving isotonicity, preservatives, antioxidizing agents, lactose, crystalline cellulose, mannitol, maltose, calcium hydrogen phosphate, light silicic acid anhydride, calcium carbonate, binders (e.g., starch, polyvinylpyrrolidone, hydroxypropyl cellulose, ethyl cellulose, carboxy methyl cellulose, or gum arabic), lubricants (e.g., magnesium stearate, talc, or hardened oils), or stabilizers (e.g., lactose, mannitol, maltose, polysorbates, macrogols, or polyoxyethylene hardened castor oils).
  • solvents e.g., water or physiological saline
  • solubilizing agents e.
  • glycerin, dimethylacetamide, 70% sodium lactate, surfactant, or basic substances such as sodium hydroxide, ethylenediamine, ethanolamine, sodium bicarbonate, arginine, meglumine, or trisaminomethane can be added.
  • Common disintegrants that can be included in the composition include croscarmellose sodium, crospovidone, gellan gum, and sodium starch glycolate.
  • the excipient or carrier can be water, a flavored beverage such as a fruit juice, broth, carbonated beverage, milk, or milk shake.
  • Biodegradable polymers such as poly-D,L-lactide-co-glycolide or polyglycolide can be used as a bulk matrix if slow release of the composition is desired (see, e.g., U.S. Pat. Nos. 5,417,986, 4,675,381, and 4,450,150).
  • Pharmaceutical preparations such as solutions, tablets, granules or capsules can be formed with these components. If the composition is to be administered orally, flavorings and/or colors can be added.
  • compositions can be administered via any appropriate route, e.g., intravenously, intraarterially, topically, transdermally, by injection, intraperitoneally, intrapleurally, orally, subcutaneously, intramuscularly, sublingually, nasally, by inhalation, intraepidermally, or rectally, using standard techniques.
  • any appropriate route e.g., intravenously, intraarterially, topically, transdermally, by injection, intraperitoneally, intrapleurally, orally, subcutaneously, intramuscularly, sublingually, nasally, by inhalation, intraepidermally, or rectally, using standard techniques.
  • Dosages administered in practicing the new methods will depend on factors including the specific uridine composition used and its concentration in the composition, the mode and frequency of administration, the age, weight, sex, and general health of the subject, and the severity of the autistic symptoms.
  • the new compositions can be administered in amounts ranging between 1.0 mg and 200 mg of uridine per kilogram of body weight per day, e.g., 2, 3, 5, 10, 20, 50, or 100 mg/kg/day.
  • a general dosage is between 3 and 100 mg/kg/day, e.g., which can be 0.25 to 7 grams (e.g., 0.25, 0.5, or 1 grams) per patient per day.
  • Oral tablets of triacetyl uridine can be used. The daily dosage is administered on an ongoing basis until symptoms subside.
  • Dosages can be administered with meals or once, twice, or more times per day to achieve the best relief of symptoms.
  • the dosage should be adjusted to provide a reduction in symptoms. Once the proper dosage is determined, it can be easily maintained over time as required.
  • 5 to 15 ⁇ M is the normal plasma concentration of uridine with a volume distribution around 0.634 liters/kg.
  • blood plasma levels of about 50 to 300 ⁇ M are in the therapeutic range.
  • Clinical results also indicate that overly high doses are not effective.
  • Administration is repeated as necessary, as determined by one skilled in the art.
  • the administration protocol can be optimized based on the present disclosure to elicit a maximal improvement in symptoms of bipolar disorder.
  • Physicians, pharmacologists, and other skilled artisans are able to determine the most therapeutically effective treatment regimen, which will vary from patient to patient.
  • the potency of a specific composition and its duration of action can require administration on an infrequent basis, including administration in an implant made from a polymer that allows slow release of the uridine.
  • toxicity testing can be conducted in animals, e.g., as described in Examples below.
  • the uridine compositions can be administered to mice via an oral or parenteral route with varying dosages of uridine in the composition, and the mice observed for signs of toxicity using standard techniques.
  • the uridine composition is pure uridine, long-term experience has shown that uridine has no known toxic effects at dosages of up to 1000 mg/kg/day. Higher dosages may cause mild diarrhea in some patients.
  • a uridine composition is either purified uridine, a compound or product that contains uridine, a compound that increases the level of uridine in the patient, or a compound or molecule that mimics the biological function of uridine.
  • a compound can be a uridine precursor or prodrug, which is processed, e.g., metabolized, degraded, or cleaved, in the body to form uridine.
  • a compound can also be a uridine derivative, which includes uridine, and other molecules or compounds bound (e.g., covalently or non-covalently) to uridine, but that do not impair uridine's biological activity in patients with increased purine levels.
  • Such compounds can also be uridine mimetics, such as other nucleotides or small molecules that have a sufficiently similar three-dimensional shape or electron configuration that the compound has at least 50 percent of the biological activity of uridine.
  • Such compounds can also be drugs or other compounds that induce the body to produce uridine, or drugs or compounds that inhibit degradation or otherwise prolong the half-life of uridine in the body.
  • Uridine precursors or prodrugs include orotic acid, mono-, di- or tri-esters of uridine, including mono-, di-, and triacetyl uridine, and mono, di- or tri-phosphates of uridine including uridine monophosphate (UMP) uridine diphosphate (UDP) and uridine triphosphate (UTP).
  • Uridine mimetics include cytidine and mono-, di-, or tri-phosphates of cytidine including cytidine monophosphate, as well as mono-, di-, or tri-esters of cytidine including triacetyl cytidine. Deoxy-versions of these and other ribonucleosides may also be useful.
  • Uridine compositions also include encapsulated uridine, e.g., liposome- or polymer-encapsulated uridine.
  • Uridine compositions also include uridine linked (e.g., covalently or non-covalently) to various antibodies, ligands, or other targeting and enveloping or shielding agents (e.g., albumin or dextrose), to allow the uridine to reach the target site (e.g., the central nervous system, muscle cells, or the peripheral nervous system) prior to being removed from the blood stream, e.g., by the kidneys and liver, and prior to being degraded.
  • target site e.g., the central nervous system, muscle cells, or the peripheral nervous system
  • Uridine salts or food products containing uridine that transform into uridine upon administration to a host such as human can also be used.
  • Useful uridine-containing compounds include, without limitation, any compound comprising uridine, UTP, UDP, or UMP.
  • Uridine and uridine-containing compounds and analogs are well tolerated in humans.
  • triacetyl uridine (TAU) is a prodrug for the naturally occurring compound uridine. Enteral dosages of TAU are rapidly metabolized to uridine and uracil and these metabolites are the compounds observed in blood, not the prodrug. Elevation of uridine blood levels to reverse toxicity of Fluorouracil in cancer patients has been tested using intravenous (van Groeningen et al., 1986, Cancer Treat. Rep., 70:745-750) or oral (van Groeningen et al., 1991, J.
  • TAU has also been used in preliminary clinical studies of oral dosing to treat fluorouracil toxicity (Kelsen et al., 1997, J. Clin. Oncol., Apr. 15(4):1511-1517). Both suspension and tablet forms of TAU were given at 6 g/dose every 6 hours for 9 doses that achieved peak blood uridine levels of 167 ⁇ M. Diarrhea was seen in cancer patients receiving TAU but overlying cancer and fluorouracil toxicities made drug toxicity evaluation equivocal. A reduction in hematologic toxicities associated with fluorouracil was observed in patients receiving TAU at this dose.
  • the first dose level used in this study 6 g/day or 2 g/dose, was expected to achieve a maximum uridine blood level about 10 fold over baseline values, which is between 5 and 50 ⁇ M.
  • Preliminary results from patient studies suggest that lower doses of uridine may also be therapeutically effective, and that too high a dose of uridine may reduce the therapeutic effect.
  • the pyrimidine, e.g., uridine, compositions described herein can be administered as a monotherapy, as combinations of two or more different pyrimidines, e.g., uridine compositions (or uridine and cytidine compositions), or in combination with other compounds for the treatment of bipolar disorders.
  • the pyrimidine compositions can be administered in conjunction with lower doses of current treatments for bipolar disorder, including stimulants and antidepressants.
  • bipolar disorder including stimulants and antidepressants.
  • divalproex sodium DEPAKOTE®
  • DEPAKOTE® has been used to treat bipolar disorder.
  • the pyrimidine compositions may be administered in combination with an antidepressant, anticonvulsant, antianxiety, antimanic, antipyschotic, antiobsessional, sedative, stimulant, or anti-hypertensive medication.
  • these medications include, serotonin reuptake inhibitors, monoamine oxidase inhibitors, tricyclic antidepressants, dopamine agonists (e.g., bromocriptine, pergolide), bupropion, venlafaxine, nefazodone, benzodiazepine, trazodone, lithium (Li), risperidone, topiramate, lamotrigine, gabapentin, nimodipine, divalproex, quetiapine, divalproex, lamotrigine, carbamazepine, clozapine, olanzapine, topiramate, thyroid hormone (e.g., T3 or T4), Omega-3 fatty acids, calcium channel blockers (other than nimodipine), tiagabine, cholinesterase inhibitors, tamoxifen, and phenytoin.
  • dopamine agonists e.g., bromocriptine, pergolide
  • RG2133 (2′,3′,5′-tri-O-acetyluridine).
  • RG2133 was produced under cGMP conditions from uridine via exhaustive acetylation and purified by repeated precipitation after residual acetic anhydride is removed by distillation. The purified drug substance was dried under reduced pressure and sieved to obtain a uniform solid.
  • RG2133 has been tested in a repeat dose rodent toxicity and toxicokinetic study.
  • Three groups of ten male and ten female rats received RG2133 orally, by gavage, at dosages of 300, 1000, or 2000 mg/kg/day (administered as 150, 500, or 1000 mg/kg b.i.d.) in aqueous 1% carboxymethylcellulose with methyl paraben (at 1.8 g/l) and propyl paraben (at 0.2 g/l) for four weeks.
  • Animals were examined by observation and lab analysis of blood and urine for evidence of toxicity, and results are shown in Table 1. Tissues were examined microscopically for evidence of drug related toxicity.
  • RG2133 administered as 1000 mg/kg b.i.d.
  • RG2133 Pharmacological activity of RG2133 was observed in rodents during repeat dose toxicology study. The procedure of oral gavage was shown to increase blood lactate levels in rats presumably as a stress response to the procedure. Plasma lactate levels showed peak elevations of 3-6 fold from 10 minutes to 4 hours post dosing. RG2133 showed a dose dependent decrease in the C max and AUC of lactate elevation. RG2133 did not reduce the lactate level below the normal baseline value (2.4 mM). This result is consistent with reports of anxiolytic and anticonvulsant activity of uridine and a postulated biological function as a GABAa receptor agonist (Guarneri et al., 1985, November-December; 26(6):666-71).
  • Outpatients with bipolar disorder were recruited for this 6-week open-label study. Patients' daily dose amounts were divided into three daily doses. Subjects received an initial RG2133 dose of 6 g/day. During the course of the study subjects who responded favorably, maintained the initial dose. Patients who did not respond favorably received increasing doses during the third week, ending with a dose of about 12 g/day (mean dose 11.17 g/day). For patients that did not respond favorably to 12 g/day, the dose was increased to about 18 g/day. Subjects were monitored for changes in mood using standard rating scales. The subjects' physical status was followed clinically and with standard laboratory measures to monitor for any adverse effects and/or toxicity.
  • SCID Structured Clinical Interview for DSM-IV
  • YMRS Young Mania Rating Scale
  • MADRS Montgomery-Asberg Depression rating Scale
  • HAMA Hamilton Anxiety Scale
  • CGI Clinical Global Impression scale
  • GAF Global Assessment of Function
  • SF-36 quality of life scale
  • Patient #3 was a 36-year-old male suffering from bipolar II disorder, taking antidepressant medication. He received an initial RG2133 dose of 6 g/day. After one week of treatment, his dose was gradually increased to 12 g/day by the end of the second week of treatment. After three weeks of treatment, his medication was gradually decreased to 6 g/day, by the end of the fourth week; and his dose was maintained at 6 g/day until completion of the study after six weeks. The patient exhibited slight hypomania at week three, which led to the decision to lower his dose to 6 g/day.
  • Patient #4 was 29-year-old female suffering from bipolar I disorder, taking antidepressant medication. She received an initial RG2133 dose of 6 g/day. After one week of treatment, her dose was gradually increased to 12 g/day by the end of the second week of treatment. Her dose was held constant at 12 g/day until completion of the study at week six. The patient reported that, although the study was occurring during the most difficult time of the year for her, she was feeling stable. She exhibited some hypomania at week three, and her mood deteriorated at week six.
  • Patient #5 was a 53-year-old female suffering from bipolar I disorder, taking no antidepressant medication. She received an initial RG2133 dose of 6 g/day, which was held constant through the first two weeks of the study. After the second week, her dose was gradually increased to 7.5 g/day by the end of the third week. After the fourth week, her dose was gradually increased to 9 g/day. Her dose was held at 9 g/day from week four until completion of the study at week six. The patient reported a significant change in mood at week one, saying she felt better than she had felt in a long time.
  • Patient #6 was a 46-year-old female suffering unspecified form of bipolar disorder, taking no antidepressant medication. She received an initial RG2133 dose of 6 g/day, which was held constant until completion of the study at the end of week six. One day during the last week of the study the patient reported taking 12 g/day because she wanted to see if the dose change would alter her mood. The patient reported some eye pain similar to when she had previously taken Topomax. The patient also reported feeling significantly better than she had in two years.
  • Patient #7 was a 44-year-old male suffering bipolar I disorder, taking antidepressant medication. He received an initial RG2133 dose of 6 g/day. After one week of treatment, his dose was gradually increased to 12 g/day by the end of the second week of treatment. After the third week of treatment, his medication was gradually increased to 18 g/day by the end of week four. The patient's dose was maintained at 18 g/day until completion of the study after week six. The patient reported no change in mood.
  • Patient #11 was a 46-year-old female suffering bipolar II disorder, taking antidepressant medication. She received an initial RG2133 dose of 6 g/day. After one week, her dose was gradually increased to 12 g/day by the end of the second week of treatment. Her dose was held constant at 12 g/day until completion of the study after week six. The patient had a severe bout of colitis. The patient underwent a complete remission at week four in her bipolar symptoms.
  • Patient #13 was a 42-year-old male suffering bipolar I disorder, taking no antidepressant medication. He received an initial RG2133 dose of 6 g/day, which was held constant until week three of the study. Between weeks three and four, his medication was gradually increased to 9 g/day, and maintained at 9 g/day until completion of the study at six weeks. The patient reported feeling less depressed and more hopeful. He experienced a slight change in depth perception leading to two falls.
  • Patient #15 was female suffering bipolar II disorder, taking no antidepressant medication. She received an initial RG2133 dose of 6 g/day. After one week, her dose was gradually increased to 12 g/day by the end of the second week of treatment. She reported feeling less volatile and fewer mood swings on RG2133. After three weeks of treatment, the patient reduced her medication back to 6 g/day in response to complaints of dizziness spells, constipation, and a reported manic episode. This patient was terminated from the study during the third week because of noncompliance and impending shoulder surgery.
  • Patient #16 was a 41-year-old male suffering bipolar II disorder, taking antidepressant medication. He received an initial RG2133 dose of 6 g/day. After the first week of the study, his medication was gradually increased to 12 g/day by the end of the second week. This dose was held constant through the third week of the study. The patient reported no change in mood and complained of loose stools and increased flatulence.
  • Patient #17 was a 56-year-old male suffering bipolar II disorder, taking antidepressant medication. He received an initial RG2133 dose of 6 g/day. After the first week of the study, his medication was gradually increased to 12 g/day by the end of the second week. This dose was held constant through the third week of the study. The patient reported no change in mood and complained of loose stools and increased flatulence.
  • Patient #18 was a 67-year-old male suffering bipolar II disorder, taking no antidepressant medication. He received an initial RG2133 dose of 6 g/day. After the first week of the study, his medication was gradually increased to 12 g/day by the end of the second week. After the third week of the study, the patient's dose was gradually reduced to 6 g/day by the end of the fourth week. The 6 g/day dose was held constant for the remaining two weeks of the study.
  • Patient #19 was female suffering an unspecified form of bipolar disorder. She received an initial RG2133 dose of 6 g/day. After the first week of the study, her medication was gradually increased to 12 g/day by the end of the second week. After the third week of the study, the patient's dose was gradually increased to 18 g/day by the end of the fourth week. The 18 g/day dose was held constant for the remaining two weeks of the study.
  • MADRS Montgomery-Asberg Depression Rating Scale
  • YMRS Young Mania Rating Scale
  • bipolar patients exhibited a slight decrease in averaged YMRS scores during the course of the study. This result is significant because many drugs that have been used to treat bipolar disorder in the past have induced mania in patients.
  • CGI Clinical Global Impression
  • FIG. 3 shows that the CGI of bipolar patients in the study improved slightly from weeks one to three, and then deteriorated slightly from weeks three to six. At the end of the study, the average CGI score of the patient group was somewhat above baseline.
  • GAF Global Assessment of Functioning
  • GAS Global Assessment Scale
  • FIG. 4 shows that the average GAF score improved slightly from the beginning of the study to the week four, and then declined to a level slightly above the initial GAF score.
  • HAM-A Hamilton Anxiety
  • This scale measures the severity of symptoms such as anxiety, tension, depressed mood, palpitations, breathing difficulties, sleep disturbances, restlessness, and other physical symptoms.
  • the HAM-A was one of the first rating scales developed to measure the severity of anxiety symptomatology, and is a widely used outcome measure in clinical trials. Mild Anxiety is indicated by a score of 18, moderate anxiety by a score of 25, and severe anxiety by a score of 30.
  • FIG. 5 shows that the average HAM-A score in the patient group went down slightly during the course of the study.
  • FIG. 6 shows the average YMRS scores of patients in the study divided according to gender.
  • the average YMRS for female patients declined slightly more than males YMRS scores during the first three weeks of the study.
  • Female YMRS scores also did not increase above the initial baseline score during the study.
  • FIG. 7 shows the average CGI scores of patients in the study divided according to gender. Unlike average male CGI scores, average female CGI scores improved (i.e. declined) during the course of the study, relative to the initial score.
  • FIG. 8 shows the average CGI for patients in the study divided according to whether the patient was taking an antidepressant medication.
  • the group of patients that were not taking antidepressant exhibited a faster decline in average CGI scores than the group of patients who were on antidepressant medication.
  • the total number of adverse events is reported by the number and percentage of subjects experiencing each adverse event. If a subject reported the same adverse event over the course of the study, that event was counted once.
  • MRI/MRS studies are then divided into two groups: one receiving uridine in addition to lithium, and the other group receiving paroxetine in addition to lithium.
  • Paroxetine is a selective serotonin reuptake inhibitor (SSRI) that has been extensively documented to be an effective and well-tolerated antidepressant treatment, and serves as a positive control in this study.
  • SSRI selective serotonin reuptake inhibitor
  • Uridine is initiated and maintained at 1 gram twice a day, based on our experience in our preliminary treatment studies (described in Example 3).
  • Paroxetine is initiated at 20 mg/day (10 mg twice a day to maintain double-blind) with further dose adjustments during the first four weeks as clinically warranted based on therapeutic response and emergent side-effect profile.
  • the aim is to maintain consistent dosing of paroxetine at a range between 20 mg to 50 mg/day (maximum dose based on clinical response parameters) for the final four weeks of the study. Due to potential withdrawal symptoms from abrupt discontinuation, at study conclusion, for patients that discontinue paroxetine, the drug is tapered at 10 to 20 mg per week as clinically tolerated. To monitor compliance with study medication, subjects are asked to keep a weekly medication diary.
  • a total of 130 medication-free bipolar depressed individuals (26/year) are recruited and enrolled to end up with 110 bipolar subjects who have completed three scans, assuming a 15% treatment drop-out rate. In addition, twelve healthy controls are also enrolled each year for comparison scans.
  • Individuals who respond to recruitment efforts (physician referrals, advertising) undergo an initial phone screen to determine likelihood of meeting study criteria. Those individuals who appear to meet study criteria are invited into the clinic for a screening interview. Upon arrival at the clinic, informed consent is obtained. Those individuals who provide consent undergo a psychiatric evaluation that includes the SCID-IV for Axis I, HAM-D; MADRS; and YES. These scales are chosen as they are standard assessment tools for mood with known reliability.
  • CBC complete blood count
  • standard blood screening battery including electrolytes, liver function tests and Bun/Creatine
  • TSH thyroid stimulating hormone
  • ECG ECG
  • urine HCG urine toxic screen
  • Inclusion Criteria aged 18 to 40 years; DSM-IV criteria met for Bipolar Disorder-depressed; HAM-D score >18, and YMRS score ⁇ 7; psychotropic medication-free for at least two months; capable of providing informed consent; and has an established residence and phone.
  • Exclusion Criteria meets DSM-IV criteria for another Axis I disorder, except co-morbid anxiety disorder or history of substance abuse disorder; alcohol or substance dependence or actively abusing within the past month; co-morbid medical condition which in the opinion of the investigator contributes to the individual's mood symptoms (stable and adequately treated thyroid disease will be permitted); acutely suicidal or moderate to high suicide risk; women of child-bearing potential who are unwilling to use a standard method of birth control for the duration of the study; pregnancy or breast-feeding; allergy or other contraindication to paroxetine, uridine or Li; history of significant head trauma; claustrophobia or other contraindication to MRI (e.g., pacemaker, metal fragments).
  • MRI e.g., pacemaker, metal fragments
  • Visit 1 Screening psychiatric/medical workup as described above; informed consent; SCID-IV for Axis I; rating scales: HAM-D, MADRS, YMRS and clinician global impression.
  • Visit 2 Baseline MR exam (before starting treatment); review laboratory results; repeat rating scales; Bipolar subjects only—Dispense Li with single 600 mg dose then next day blood level (Visit 3), followed by Li adjustment to establish serum Li levels between 0.5-0.8 mEq/L.
  • Visit 5 Rating scales; repeat urine HCG and toxic screen; repeat MRS scan.
  • Visits 6 thru 8 Bipolar subjects only—Clinical assessment; rating scales.
  • Visit 9 Bipolar subjects only—Clinical management; rating scales.
  • Visit 10 Bipolar subjects only—Clinical management; rating scales; repeat urine HCG and toxic screen; repeat MRI/MRSI scanning.
  • Visit 11 Bipolar subjects only—Clinical assessment. Repeat medical workup, transition off of uridine (and taper paroxetine if patient requests discontinuation). Refer for follow-up treatment.

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Veterinary Medicine (AREA)
  • Public Health (AREA)
  • Chemical & Material Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Animal Behavior & Ethology (AREA)
  • Medicinal Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Neurosurgery (AREA)
  • Organic Chemistry (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Neurology (AREA)
  • Biomedical Technology (AREA)
  • Psychiatry (AREA)
  • Molecular Biology (AREA)
  • Epidemiology (AREA)
  • Pain & Pain Management (AREA)
  • Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)

Abstract

The invention is based on the discovery that specific dosages of pyrimidine compositions, such as uridine compositions, can be used to treat patients diagnosed with bipolar disorder.

Description

CROSS REFERENCE TO RELATED APPLICATIONS
This application is a national phase application under 35 U.S.C. §371 of PCT International Application No. PCT/US2005/020690, filed on Jun. 10, 2005, which claims the benefit of priority, under 35 U.S.C. §119(e), from U.S. Provisional Patent Application Ser. No. 60/578,885, filed on Jun. 10, 2004. The contents of both of these applications are incorporated herein by reference in their entirety.
TECHNICAL FIELD
This invention relates to the treatment of bipolar disorder.
BACKGROUND
Bipolar disorder, which is also referred to as manic-depression, is a brain disorder that causes extreme shifts in a person's mood, thought, energy, behavior, and ability to function. The symptoms of bipolar disorder can be are severe, and can result in emotional problems, poor job or school performance, and even suicide. The name “bipolar” comes from the patients' mood swings, which can alternate between the “poles” of mania (highs) and depression (lows). These mood swings can be quite dramatic, from overly “high” and/or irritable to sad and hopeless, and then back again, often with periods of normal mood in between, and severe changes in energy and behavior go along with these changes in mood. Bipolar disorder typically develops in late adolescence or early adulthood. However, some people have their first symptoms during childhood or late in life. This disorder is not always viewed as an illness, and people may suffer for years before proper diagnosis.
Bipolar disorder has been separated into two categories, Type I and Type II, and is typically diagnosed following the guidelines in the Diagnostic and Statistical Manual of Mental Disorders (DSM) Fourth Edition, 1994 (American Psychiatric Association, 1400 K Street NW, Suite 1101, Washington, D.C. 20005-2403 USA). The fourth edition of these guidelines, DSM-IV, identifies the diagnostic features of Bipolar I Disorder as follows.
Bipolar I Disorder (DSM-IV, p. 350)
This disorder is a clinical course that is characterized by the occurrence of one or more Manic Episodes or Mixed Episodes. Often individuals have also had one or more Major Depressive Episodes. Episodes of Substance-Induced Mood Disorder (due to the direct effects of a medication, or other somatic treatments for depression, a drug of abuse, or toxin exposure) or of Mood Disorder Due to a General Medical Condition do not count toward a diagnosis of Bipolar I Disorder. In addition, the episodes are not better accounted for by Schizoaffective Disorder and are not superimposed on Schizophrenia, Schizophreniform Disorder, Delusional Disorder, or Psychotic Disorder Not Otherwise Specified.
The diagnostic features of Bipolar II Disorder are as follows.
Bipolar II Disorder (DSM-IV, p. 359)
This disorder is a clinical course that is characterized by the occurrence of one or more Major Depressive Episodes accompanied by at least one Hypomanic Episode. Hypomanic Episodes should not be confused with the several days of euthymia that may follow remission of a Major Depressive Episode. Episodes of Substance-Induced Mood Disorder (due to the direct effects of a medication, or other somatic treatments for depression, a drug of abuse, or toxin exposure) or of Mood Disorder Due to a General Medical Condition do not count toward a diagnosis of Bipolar I Disorder. In addition, the episodes are not better accounted for by Schizoaffective Disorder and are not superimposed on Schizophrenia, Schizophreniform Disorder, Delusional Disorder, or Psychotic Disorder Not Otherwise Specified.
The following diagnostic criteria, also from the DSM-IV apply.
Criteria for Major Depressive Episode (DSM-IV, p. 327)
A. Five (or more) of the following symptoms have been present during the same 2-week period and represent a change from previous functioning; at least one of the symptoms is either (1) depressed mood or (2) loss of interest or pleasure. Symptoms that are clearly due to a general medical condition, or mood-incongruent delusions or hallucinations should not be included.
    • Depressed mood most of the day, nearly every day, as indicated by either subjective report (e.g., feels sad or empty) or observation made by others (e.g., appears tearful). Note: In children and adolescents, can be irritable mood.
    • Markedly diminished interest or pleasure in all, or almost all, activities most of the day, nearly every day (as indicated by either subjective account or observation made by others)
    • Significant weight loss when not dieting or weight gain (e.g., a change of more than 5% of body weight in a month), or decrease or increase in appetite nearly every day. Note: In children, consider failure to make expected weight gains.
    • Insomnia or hypersomnia nearly every day.
    • Psychomotor agitation or retardation nearly every day (observable by others, not merely subjective feelings of restlessness or being slowed down).
    • Fatigue or loss of energy nearly every day.
    • Feelings of worthlessness or excessive or inappropriate guilt (which may be delusional) nearly every day (not merely self-reproach or guilt about being sick).
    • Diminished ability to think or concentrate, or indecisiveness, nearly every day (either by subjective account or as observed by others).
    • Recurrent thoughts of death (not just fear of dying), recurrent suicidal ideation without a specific plan, or a suicide attempt or a specific plan for committing suicide.
B. The symptoms do not meet criteria for a Mixed Episode.
C. The symptoms cause clinically significant distress or impairment in social, occupational, or other important areas of functioning.
D. The symptoms are not due to the direct physiological effects of a substance (e.g., a drug of abuse, a medication) or a general medical condition (e.g., hypothyroidism).
E. The symptoms are not better accounted for by bereavement, i.e., after the loss of a loved one, the symptoms persist for longer than 2 months or are characterized by marked functional impairment, morbid preoccupation with worthlessness, suicidal ideation, psychotic symptoms, or psychomotor retardation.
Criteria for Manic Episode (DSM-IV, p. 332)
A. A distinct period of abnormally and persistently elevated, expansive, or irritable mood, lasting at least 1 week (or any duration if hospitalization is necessary).
B. During the period of mood disturbance, three (or more) of the following symptoms have persisted (four if the mood is only irritable) and have been present to a significant degree:
    • Inflated self-esteem or grandiosity.
    • Decreased need for sleep (e.g., feels rested after only 3 hours of sleep).
    • More talkative than usual or pressure to keep talking.
    • Flight of ideas or subjective experience that thoughts are racing.
    • Distractibility (i.e., attention too easily drawn to unimportant or irrelevant external stimuli).
    • Increase in goal-directed activity (either socially, at work or school, or sexually) or psychomotor agitation.
    • Excessive involvement in pleasurable activities that have a high potential for painful consequences (e.g., engaging in unrestrained buying sprees, sexual indiscretions, or foolish business investments).
C. The symptoms do not meet criteria for a Mixed Episode.
D. The mood disturbance is sufficiently severe to cause marked impairment in occupational functioning or in usual social activities or relationships with others, or to necessitate hospitalization to prevent harm to self or others, or there are psychotic features.
E. The symptoms are not due to the direct physiological effects of a substance (e.g., a drug of abuse, a medication, or other treatments) or a general medical condition (e.g., hyperthyroidism).
Manic-like episodes that are clearly caused by somatic antidepressant treatment (e.g., medication, electroconvulsive therapy, light therapy) should not count toward a diagnosis of Bipolar I Disorder.
Criteria for Mixed Episode (DSM-IV, p. 335)
A. The criteria are met both for a Manic Episode and for a Major Depressive Episode (except for duration) nearly every day during at least a 1-week period.
B. The mood disturbance is sufficiently severe to cause marked impairment in occupational functioning or in usual social activities or relationships with others, or to necessitate hospitalization to prevent harm to self or others, or there are psychotic features.
C. The symptoms are not due to the direct physiological effects of a substance (e.g., a drug of abuse, a medication, or other treatment) or a general medical condition (e.g., hyperthyroidism).
Criteria for Hypomanic Episode (DSM-IV, p. 338)
A. A distinct period of persistently elevated, expansive, or irritable mood, lasting throughout at least 4 days, that is clearly different from the usual nondepressed mood.
B. During the period of mood disturbance, three (or more) of the following symptoms have persisted (four if the mood is only irritable) and have been present to a significant degree:
    • Inflated self-esteem or grandiosity.
    • Decreased need for sleep (e.g., feels rested after only 3 hours of sleep).
    • More-talkative than usual or pressure to keep talking.
    • Flight of ideas or subjective experience that thoughts are racing.
    • Distractibility (i.e., attention too easily drawn to unimportant or irrelevant external stimuli).
    • Increase in goal-directed activity (either socially, at work or school, or sexually) or psychomotor agitation.
    • Excessive involvement in pleasurable activities that have a high potential for painful consequences (e.g., engaging in unrestrained buying sprees, sexual indiscretions, or foolish business investments).
C. The episode is associated with an unequivocal change in functioning that is uncharacteristic of the person when not symptomatic.
D. The disturbance in mood and the change in functioning are observable by others.
E. The episode is not severe enough to cause marked impairment in social or occupational functioning, or to necessitate hospitalization, and there are no psychotic features.
F. The symptoms are not due to the direct physiological effects of a substance (e.g., a drug of abuse, a medication, or other treatment) or a general medical condition (e.g., hyperthyroidism).
Hypomanic-like episodes that are clearly caused by somatic antidepressant treatment (e.g., medication, electroconvulsive therapy, light therapy) should not count toward a diagnosis of Bipolar II Disorder.
Current drug therapy for bipolar disorder includes the use of lithium or valproic acid; however side effects are frequent and troublesome, and patients do not respond fully, leading to frequent recurrences of mania and depression.
SUMMARY
The invention is based, in part, on the discovery that individuals who are diagnosed with one or more symptoms of bipolar disorder can be treated with specific dosages of one or more pyrimidines, such as uridine. In particular, the invention is based on a phase I human clinical trial of a prodrug of uridine in patients with bipolar disorder.
Thus, in general, the invention features methods of treating an individual diagnosed as having one or more symptoms of bipolar disorder by administering to the individual an effective amount of a pyrimidine composition, such as a uridine composition. The individual may have one or more symptoms of bipolar disorder. For example, the amount of the uridine composition can be effective to improve one or more of the symptoms of bipolar disorder. For example, the effective amount of the uridine composition can provide about 0.1 to 10 grams/day, e.g., about 0.25, 0.5, 0.75, 1, 2, 3, 4, or 5 grams/day, or 1 to 250 mg, e.g., 10 to 50 mg, of uridine/kg of body weight/day. The uridine composition can be administered orally, for example, when the uridine composition includes uridine and a liquid ingestible carrier. In specific embodiments, the uridine composition can be acylated derivatives of uridine, such as triacetyl uridine.
A pyrimidine composition is either a purified pyrimidine, a compound or product that contains a pyrimidine, a compound that increases the level of a pyrimidine in the patient, or a compound or molecule that mimics the biological function of a pyrimidine. Such a compound can be a pyrimidine precursor or prodrug, which is processed, e.g., metabolized, degraded, or cleaved, in the body to form a pyrimidine. Such a compound can also be a pyrimidine derivative, which includes pyrimidine, and other molecules or compounds bound (e.g., covalently or non-covalently) to a pyrimidine, but that do not impair the pyrimidine's biological activity in patients with increased purine levels. Such compounds can also be pyrimidine mimetics, such as other nucleotides or small molecules that have a sufficiently similar three-dimensional shape or electron configuration that the compound has at least 50 percent of the biological activity of the pyrimidine. Such compounds can also be drugs or other compounds that induce the body to produce one or more pyrimidines.
For example, a pyrimidine composition can be a uridine composition. A uridine composition is either a purified uridine, a compound or product that contains uridine, a compound that increases the level of uridine in the patient, or a compound or molecule that mimics the biological function of uridine. Such a compound can be a uridine precursor or prodrug, which is processed, e.g., metabolized, degraded, or cleaved, in the body to form uridine. Such a compound can also be a uridine derivative, which includes uridine, and other molecules or compounds bound (e.g., covalently or non-covalently) to uridine, but that do not impair uridine's biological activity in patients with increased purine levels. Such compounds can also be uridine mimetics, such as other nucleotides or small molecules that have a sufficiently similar three-dimensional shape or electron configuration that the compound has at least 50 percent of the biological activity of uridine. Such compounds can also be drugs or other compounds that induce the body to produce uridine.
In one aspect, the invention includes a method of treating an individual exhibiting one or more symptoms of bipolar disorder (e.g., type I or type II bipolar disorder) by administering to the individual an effective amount of a uridine composition. Uridine compositions can include triacetyl uridine, and/or other uridine precursors or mimetics, e.g., UTP, UDP, or UMP. An effective amount of the uridine composition can be an amount sufficient to improve one or more symptoms of bipolar disorder, e.g., one or more symptoms of a major depressive episode, one or more symptoms of a manic episode, one or more symptoms of a mixed episode, or one or more symptoms of a hypomanic episode.
In another aspect, the invention includes a method of reducing anxiety in an individual suffering from bipolar disorder by administering to the individual an effective amount of a uridine composition. In another aspect the invention includes a method of reducing the severity of manic symptoms in an individual in need of treatment for bipolar disorder by administering to the individual an effective amount of a uridine composition.
By “treating” is meant the medical management of a patient to cure, ameliorate, or prevent a specific disorder. This term includes active treatment directed towards improvement of a disorder, and causal treatment directed towards the removal of a cause of the disorder. In addition, this term includes palliative treatment designed for the relief of one or more symptoms rather than curing the disorder; preventive treatment directed to prevention of the disorder; and supportive treatment employed to supplement another specific therapy directed toward the improvement of the disorder.
By “therapeutically-effective amount” is meant an amount of a uridine composition sufficient to produce a healing, curative, prophylactic, stabilizing, or ameliorative effect in the treatment of bipolar disorder. Such an effect is sufficient even if it improves only one symptom in a patient.
The new methods provide a safe therapy for bipolar disorder, without the side effect of mania, which can accompany other known treatments.
Unless otherwise defined, all technical and scientific terms used herein have the same meaning as commonly understood by one of ordinary skill in the art to which this invention belongs. Although suitable methods and materials for the practice or testing of the present invention are described below, other methods and materials similar or equivalent to those described herein, which are well known in the art, can also be used. All publications, patent applications, patents, and other references mentioned herein are incorporated by reference in their entirety. In case of conflict, the present specification, including definitions, will control. In addition, the materials, methods, and examples are illustrative only and not intended to be limiting.
Other features and advantages of the invention will be apparent from the following detailed description, and from the claims.
BRIEF FIGURE DESCRIPTION
FIG. 1 is a graph showing the weekly Montgomery-Asberg Depression (MADRS) scores of patients treated with uridine.
FIG. 2 is a graph showing the weekly Young Mania Rating Scale (YMRS) scores of patients treated with uridine.
FIG. 3 is a graph showing the weekly Clinical Global Impression (CGI) scores of patients treated with uridine.
FIG. 4 is a graph showing the weekly Global Assessment of Functioning (GAF) scores of patients treated with uridine.
FIG. 5 is a graph showing the weekly Hamilton Anxiety (HAM-A) scores of patients treated with uridine.
FIG. 6 is a graph showing the weekly YMRS scores of patients treated with uridine, divided according to gender.
FIG. 7 is a graph showing the weekly CGI scores of patients treated with uridine, divided according to gender.
FIG. 8 is a graph showing the weekly CGI scores of patients treated with uridine, divided into groups of patients taking, or not taking, antidepressant medication.
DETAILED DESCRIPTION
The new methods are based on the finding that individuals diagnosed with bipolar disorder can benefit from treatment by the administration of specific dosages of one or more pyrimidines, such as uridine, prodrugs of uridine, and uridine analogs. The patient can be easily treated by the administration of an effective amount of a pyrimidine composition such as a uridine composition, for example, by oral or systemic intravenous administration.
The new methods are based on a Phase I open-label clinical trial of RG2133, a prodrug of uridine, designed to assess the impact of uridine in patients with bipolar disorder. The results demonstrate that administration of RG2133 in this patient population was safe, did not induce mania, a potential and concerning side effect of existing therapy, and provides evidence of a clinical effect of the drug. The trial assessed the impact of daily, oral administration of escalating doses of RG2133 over a 6 week period on the symptoms associated with bipolar disorder, which are not adequately treated with existing drugs including SSRIs such as Prozac® or Zoloft®. The trial included 11 patients.
General Methods of Therapy
The new methods involve the administration of an effective amount of a pyrimidine composition, such as a uridine composition, to a patient diagnosed with one or more symptoms of bipolar disorder. The uridine composition can be formulated into a therapeutic composition and administered using a variety of known routes of administration, and in various dosage forms.
To formulate pharmaceutical grade therapeutic compositions, the uridine composition can be purified by standard methods, e.g., filtration, to remove contaminants, if present. The final compositions can be lyophilized and resuspended in sterile, deionized water before further compounding. The therapeutic compositions can be formulated as solutions, suspensions, suppositories, tablets, granules, powders, capsules, ointments, or creams. In the preparation of these compositions, at least one pharmaceutical excipient can be included. Examples of pharmaceutical excipients include solvents (e.g., water or physiological saline), solubilizing agents (e.g., polysorbates, or Cremophor EL7), agents for achieving isotonicity, preservatives, antioxidizing agents, lactose, crystalline cellulose, mannitol, maltose, calcium hydrogen phosphate, light silicic acid anhydride, calcium carbonate, binders (e.g., starch, polyvinylpyrrolidone, hydroxypropyl cellulose, ethyl cellulose, carboxy methyl cellulose, or gum arabic), lubricants (e.g., magnesium stearate, talc, or hardened oils), or stabilizers (e.g., lactose, mannitol, maltose, polysorbates, macrogols, or polyoxyethylene hardened castor oils). If desired, glycerin, dimethylacetamide, 70% sodium lactate, surfactant, or basic substances such as sodium hydroxide, ethylenediamine, ethanolamine, sodium bicarbonate, arginine, meglumine, or trisaminomethane can be added. Common disintegrants that can be included in the composition include croscarmellose sodium, crospovidone, gellan gum, and sodium starch glycolate.
When the pyrimidine composition, e.g., a uridine composition, is ingested, the excipient or carrier can be water, a flavored beverage such as a fruit juice, broth, carbonated beverage, milk, or milk shake.
Biodegradable polymers such as poly-D,L-lactide-co-glycolide or polyglycolide can be used as a bulk matrix if slow release of the composition is desired (see, e.g., U.S. Pat. Nos. 5,417,986, 4,675,381, and 4,450,150). Pharmaceutical preparations such as solutions, tablets, granules or capsules can be formed with these components. If the composition is to be administered orally, flavorings and/or colors can be added.
The new compositions can be administered via any appropriate route, e.g., intravenously, intraarterially, topically, transdermally, by injection, intraperitoneally, intrapleurally, orally, subcutaneously, intramuscularly, sublingually, nasally, by inhalation, intraepidermally, or rectally, using standard techniques.
Dosages administered in practicing the new methods will depend on factors including the specific uridine composition used and its concentration in the composition, the mode and frequency of administration, the age, weight, sex, and general health of the subject, and the severity of the autistic symptoms. In general, the new compositions can be administered in amounts ranging between 1.0 mg and 200 mg of uridine per kilogram of body weight per day, e.g., 2, 3, 5, 10, 20, 50, or 100 mg/kg/day.
A general dosage is between 3 and 100 mg/kg/day, e.g., which can be 0.25 to 7 grams (e.g., 0.25, 0.5, or 1 grams) per patient per day. Oral tablets of triacetyl uridine can be used. The daily dosage is administered on an ongoing basis until symptoms subside.
Dosages can be administered with meals or once, twice, or more times per day to achieve the best relief of symptoms. The dosage should be adjusted to provide a reduction in symptoms. Once the proper dosage is determined, it can be easily maintained over time as required. In general, 5 to 15 μM is the normal plasma concentration of uridine with a volume distribution around 0.634 liters/kg. Following administration of a uridine composition, e.g., triacetyl uridine, blood plasma levels of about 50 to 300 μM are in the therapeutic range. Clinical results also indicate that overly high doses are not effective.
Administration is repeated as necessary, as determined by one skilled in the art. By varying the amount of the composition or dosage, the administration protocol can be optimized based on the present disclosure to elicit a maximal improvement in symptoms of bipolar disorder. Physicians, pharmacologists, and other skilled artisans are able to determine the most therapeutically effective treatment regimen, which will vary from patient to patient. The potency of a specific composition and its duration of action can require administration on an infrequent basis, including administration in an implant made from a polymer that allows slow release of the uridine.
Skilled artisans are also aware that the treatment regimen must be commensurate with issues of safety and possible toxic effect produced by the uridine or other components in the compositions. Thus, before administering the above compositions to humans, toxicity testing can be conducted in animals, e.g., as described in Examples below. In an example of toxicity testing, the uridine compositions can be administered to mice via an oral or parenteral route with varying dosages of uridine in the composition, and the mice observed for signs of toxicity using standard techniques. Of course, if the uridine composition is pure uridine, long-term experience has shown that uridine has no known toxic effects at dosages of up to 1000 mg/kg/day. Higher dosages may cause mild diarrhea in some patients. See, e.g., Leyva et al., Cancer Res., 4:5928-5933 (1984) (high dose uridine used to rescue patients from 5-fluorouracil toxicity) and Webster et al., Chapter 55, pages 1799-1837, in “The Metabolic and Molecular Bases of Inherited Disease,” 7th Ed., Scriver et al. (eds.) (McGraw-Hill, Inc., New York, N.Y., 1995) (treatment of orotic aciduria with uridine, see, e.g., page 1815).
Uridine Compositions
A uridine composition is either purified uridine, a compound or product that contains uridine, a compound that increases the level of uridine in the patient, or a compound or molecule that mimics the biological function of uridine. Such a compound can be a uridine precursor or prodrug, which is processed, e.g., metabolized, degraded, or cleaved, in the body to form uridine. Such a compound can also be a uridine derivative, which includes uridine, and other molecules or compounds bound (e.g., covalently or non-covalently) to uridine, but that do not impair uridine's biological activity in patients with increased purine levels. Such compounds can also be uridine mimetics, such as other nucleotides or small molecules that have a sufficiently similar three-dimensional shape or electron configuration that the compound has at least 50 percent of the biological activity of uridine. Such compounds can also be drugs or other compounds that induce the body to produce uridine, or drugs or compounds that inhibit degradation or otherwise prolong the half-life of uridine in the body.
Uridine precursors or prodrugs include orotic acid, mono-, di- or tri-esters of uridine, including mono-, di-, and triacetyl uridine, and mono, di- or tri-phosphates of uridine including uridine monophosphate (UMP) uridine diphosphate (UDP) and uridine triphosphate (UTP). Uridine mimetics include cytidine and mono-, di-, or tri-phosphates of cytidine including cytidine monophosphate, as well as mono-, di-, or tri-esters of cytidine including triacetyl cytidine. Deoxy-versions of these and other ribonucleosides may also be useful.
Uridine compositions also include encapsulated uridine, e.g., liposome- or polymer-encapsulated uridine. Uridine compositions also include uridine linked (e.g., covalently or non-covalently) to various antibodies, ligands, or other targeting and enveloping or shielding agents (e.g., albumin or dextrose), to allow the uridine to reach the target site (e.g., the central nervous system, muscle cells, or the peripheral nervous system) prior to being removed from the blood stream, e.g., by the kidneys and liver, and prior to being degraded.
Uridine salts or food products containing uridine that transform into uridine upon administration to a host such as human can also be used.
Useful uridine-containing compounds include, without limitation, any compound comprising uridine, UTP, UDP, or UMP. Uridine and uridine-containing compounds and analogs are well tolerated in humans. For example, triacetyl uridine (TAU) is a prodrug for the naturally occurring compound uridine. Enteral dosages of TAU are rapidly metabolized to uridine and uracil and these metabolites are the compounds observed in blood, not the prodrug. Elevation of uridine blood levels to reverse toxicity of Fluorouracil in cancer patients has been tested using intravenous (van Groeningen et al., 1986, Cancer Treat. Rep., 70:745-750) or oral (van Groeningen et al., 1991, J. Natl. Cancer Inst., 83(6):437-441) dosing with uridine. Studies of uridine infusion achieved plasma concentrations >100 fold above baseline values (3 μM) with fever as the observed side effect. Oral dosing of uridine in 6 healthy volunteers and 9 cancer patients showed a maximum tolerated dose without side effects of 10 g/m2 for a single dose and 5 g/m2 for multiple dosing every 6 hours. Bioavailability of uridine was 5.8-9.9% and peak plasma levels of 80 μM uridine. No toxicity was observed at doses of 8 g/m2 or less. At 10 or 12 g/m2 cramps and diarrhea were reported. Repeat doses every 6 hours of 8 g/m2 resulted in diarrhea.
TAU has also been used in preliminary clinical studies of oral dosing to treat fluorouracil toxicity (Kelsen et al., 1997, J. Clin. Oncol., Apr. 15(4):1511-1517). Both suspension and tablet forms of TAU were given at 6 g/dose every 6 hours for 9 doses that achieved peak blood uridine levels of 167 μM. Diarrhea was seen in cancer patients receiving TAU but overlying cancer and fluorouracil toxicities made drug toxicity evaluation equivocal. A reduction in hematologic toxicities associated with fluorouracil was observed in patients receiving TAU at this dose. The first dose level used in this study, 6 g/day or 2 g/dose, was expected to achieve a maximum uridine blood level about 10 fold over baseline values, which is between 5 and 50 μM. Preliminary results from patient studies (see Example 3) suggest that lower doses of uridine may also be therapeutically effective, and that too high a dose of uridine may reduce the therapeutic effect.
Combination with Other Therapeutics
The pyrimidine, e.g., uridine, compositions described herein can be administered as a monotherapy, as combinations of two or more different pyrimidines, e.g., uridine compositions (or uridine and cytidine compositions), or in combination with other compounds for the treatment of bipolar disorders.
For example, the pyrimidine compositions can be administered in conjunction with lower doses of current treatments for bipolar disorder, including stimulants and antidepressants. For example, divalproex sodium (DEPAKOTE®) has been used to treat bipolar disorder.
In particular examples, the pyrimidine compositions may be administered in combination with an antidepressant, anticonvulsant, antianxiety, antimanic, antipyschotic, antiobsessional, sedative, stimulant, or anti-hypertensive medication. Examples of these medications include, serotonin reuptake inhibitors, monoamine oxidase inhibitors, tricyclic antidepressants, dopamine agonists (e.g., bromocriptine, pergolide), bupropion, venlafaxine, nefazodone, benzodiazepine, trazodone, lithium (Li), risperidone, topiramate, lamotrigine, gabapentin, nimodipine, divalproex, quetiapine, divalproex, lamotrigine, carbamazepine, clozapine, olanzapine, topiramate, thyroid hormone (e.g., T3 or T4), Omega-3 fatty acids, calcium channel blockers (other than nimodipine), tiagabine, cholinesterase inhibitors, tamoxifen, and phenytoin.
EXAMPLES
The invention is further described in the following examples, which do not limit the scope of the invention described in the claims.
Example 1 Triacetyl Uridine RG2133
The investigational drug used in the Examples below was RG2133 (2′,3′,5′-tri-O-acetyluridine). RG2133 was produced under cGMP conditions from uridine via exhaustive acetylation and purified by repeated precipitation after residual acetic anhydride is removed by distillation. The purified drug substance was dried under reduced pressure and sieved to obtain a uniform solid.
Example 2 Toxicology Studies in Rodents
RG2133 has been tested in a repeat dose rodent toxicity and toxicokinetic study. Three groups of ten male and ten female rats (Crl: CD® (SD)IGS BR strain) received RG2133 orally, by gavage, at dosages of 300, 1000, or 2000 mg/kg/day (administered as 150, 500, or 1000 mg/kg b.i.d.) in aqueous 1% carboxymethylcellulose with methyl paraben (at 1.8 g/l) and propyl paraben (at 0.2 g/l) for four weeks. Animals were examined by observation and lab analysis of blood and urine for evidence of toxicity, and results are shown in Table 1. Tissues were examined microscopically for evidence of drug related toxicity. The repeated oral administration of RG2133 at dosages up to 2000 mg/kg/day (administered as 1000 mg/kg b.i.d.) for 28 days was well tolerated and produced no toxicologically significant changes. The no-observed-adverse-effect-level (NOAEL) was considered to be 2000 mg/kg/day (1000 mg/kg b.i.d.).
TABLE 1
Rat Plasma Uridine Following Oral Gavage of TAU Suspension, RG2133
Fold
Dose Cmax Change Tmax AUC0-24 h T1/2
(g/kg/day) (μM) (Cmax/Co) (hr) (μmol hr/L) (hr)
0.3 18.2 ± 1.9  6.1 ± .07 0.39 ± 0.04  93.3 ± 6.8 4.14 ± 1.20
1.0  104 ± 18.3 35.8 ± 7.5 0.42 ± 0.04 147.8 ± 7.0 1.28 ± 0.08
2.0  182 ± 25.6 60.1 ± 10.4 0.54 ± 0.05 225.2 ± 17.4 0.97 ± 0.12
Co, baseline plasma uridine value is 3 μM.
Toxicokinetic studies performed in a satellite group of animals provided information on the bioavailability, peak plasma levels of uridine and elimination rates. Bioavailability was ˜40% for each dose tested.
Pharmacological activity of RG2133 was observed in rodents during repeat dose toxicology study. The procedure of oral gavage was shown to increase blood lactate levels in rats presumably as a stress response to the procedure. Plasma lactate levels showed peak elevations of 3-6 fold from 10 minutes to 4 hours post dosing. RG2133 showed a dose dependent decrease in the Cmax and AUC of lactate elevation. RG2133 did not reduce the lactate level below the normal baseline value (2.4 mM). This result is consistent with reports of anxiolytic and anticonvulsant activity of uridine and a postulated biological function as a GABAa receptor agonist (Guarneri et al., 1985, November-December; 26(6):666-71).
Example 3 Patient Studies
Outpatients with bipolar disorder were recruited for this 6-week open-label study. Patients' daily dose amounts were divided into three daily doses. Subjects received an initial RG2133 dose of 6 g/day. During the course of the study subjects who responded favorably, maintained the initial dose. Patients who did not respond favorably received increasing doses during the third week, ending with a dose of about 12 g/day (mean dose 11.17 g/day). For patients that did not respond favorably to 12 g/day, the dose was increased to about 18 g/day. Subjects were monitored for changes in mood using standard rating scales. The subjects' physical status was followed clinically and with standard laboratory measures to monitor for any adverse effects and/or toxicity.
During the baseline visit, a detailed psychiatric and medical history was obtained, and the following standard rating scales were performed: Structured Clinical Interview for DSM-IV (SCID) for diagnosis, Young Mania Rating Scale (YMRS), Montgomery-Asberg Depression rating Scale (MADRS), the Hamilton Anxiety Scale (HAMA), Clinical Global Impression scale (CGI), the Global Assessment of Function (GAF) scale, quality of life scale (SF-36), as well as a brief adverse-effect rating scale.
After the baseline evaluation, patients returned for office visits at weeks 1, 2, 3, 4, and 6. The same rating scales were performed at each follow-up office visit, except for the SCID. Instead of the full SCID at the follow-up visits, only the SCID screening questions for mania and depression were performed to aid in the determination of syndromic recovery or recurrence. In addition, patients maintained a daily Mood Diary, which was reviewed at each study visit to elicit symptom recall. Routine clinical and laboratory evaluations of each patient's physical status occurred at baseline and at regular intervals. Subjects were monitored for changes in mood using standard rating scales. The subjects' physical status was followed clinically and with standard laboratory measures to monitor for any adverse effects and/or toxicity.
Criteria for Inclusion in the Study:
    • 1) Patients with bipolar disorder (type I or II)
    • 2) Patients must have had subsyndromal or syndromal symptoms or mania, hypomania, mixed mania, or depression.
    • 3) Patients include both male and female; ages 21-65.
    • 4) If a subject was receiving ongoing pharmacotherapy, no dosage changes occurred in the 2 weeks prior to the study.
    • 5) No new pharmacological or psychotherapeutic treatments were introduced within the 4 weeks prior to the study.
Criteria for Exclusion from the Study:
    • 1) Patients enrolled in another clinical research trial or receiving another experimental drug within 30 days prior to initiation of this study.
    • 2) Patients with active medical or neurological disorders.
    • 3) Patients, who in the Principal Investigator's judgment have active suicidal or homicidal ideation.
    • 4) Patients, who in the Principal Investigator's judgment would be unable to comply with the study protocol.
    • 5) Significant psychiatric comorbidity.
    • 6) Patients whose baseline laboratories indicate abnormal hepatic function (AST, ALT or bilirubin >1.25 times the upper limit of normal), abnormal renal function (BUN or creatinine >1.25 times the upper limit of normal), or abnormal bone marrow function (WBC <4×103/cubic mm, platelets <100×103/cubic mm and hemoglobin <10 g/dl).
      Individual Patient Histories
Patient #3 was a 36-year-old male suffering from bipolar II disorder, taking antidepressant medication. He received an initial RG2133 dose of 6 g/day. After one week of treatment, his dose was gradually increased to 12 g/day by the end of the second week of treatment. After three weeks of treatment, his medication was gradually decreased to 6 g/day, by the end of the fourth week; and his dose was maintained at 6 g/day until completion of the study after six weeks. The patient exhibited slight hypomania at week three, which led to the decision to lower his dose to 6 g/day.
Patient #4 was 29-year-old female suffering from bipolar I disorder, taking antidepressant medication. She received an initial RG2133 dose of 6 g/day. After one week of treatment, her dose was gradually increased to 12 g/day by the end of the second week of treatment. Her dose was held constant at 12 g/day until completion of the study at week six. The patient reported that, although the study was occurring during the most difficult time of the year for her, she was feeling stable. She exhibited some hypomania at week three, and her mood deteriorated at week six.
Patient #5 was a 53-year-old female suffering from bipolar I disorder, taking no antidepressant medication. She received an initial RG2133 dose of 6 g/day, which was held constant through the first two weeks of the study. After the second week, her dose was gradually increased to 7.5 g/day by the end of the third week. After the fourth week, her dose was gradually increased to 9 g/day. Her dose was held at 9 g/day from week four until completion of the study at week six. The patient reported a significant change in mood at week one, saying she felt better than she had felt in a long time.
Patient #6 was a 46-year-old female suffering unspecified form of bipolar disorder, taking no antidepressant medication. She received an initial RG2133 dose of 6 g/day, which was held constant until completion of the study at the end of week six. One day during the last week of the study the patient reported taking 12 g/day because she wanted to see if the dose change would alter her mood. The patient reported some eye pain similar to when she had previously taken Topomax. The patient also reported feeling significantly better than she had in two years.
Patient #7 was a 44-year-old male suffering bipolar I disorder, taking antidepressant medication. He received an initial RG2133 dose of 6 g/day. After one week of treatment, his dose was gradually increased to 12 g/day by the end of the second week of treatment. After the third week of treatment, his medication was gradually increased to 18 g/day by the end of week four. The patient's dose was maintained at 18 g/day until completion of the study after week six. The patient reported no change in mood.
Patient #11 was a 46-year-old female suffering bipolar II disorder, taking antidepressant medication. She received an initial RG2133 dose of 6 g/day. After one week, her dose was gradually increased to 12 g/day by the end of the second week of treatment. Her dose was held constant at 12 g/day until completion of the study after week six. The patient had a severe bout of colitis. The patient underwent a complete remission at week four in her bipolar symptoms.
Patient #13 was a 42-year-old male suffering bipolar I disorder, taking no antidepressant medication. He received an initial RG2133 dose of 6 g/day, which was held constant until week three of the study. Between weeks three and four, his medication was gradually increased to 9 g/day, and maintained at 9 g/day until completion of the study at six weeks. The patient reported feeling less depressed and more hopeful. He experienced a slight change in depth perception leading to two falls.
Patient #15 was female suffering bipolar II disorder, taking no antidepressant medication. She received an initial RG2133 dose of 6 g/day. After one week, her dose was gradually increased to 12 g/day by the end of the second week of treatment. She reported feeling less volatile and fewer mood swings on RG2133. After three weeks of treatment, the patient reduced her medication back to 6 g/day in response to complaints of dizziness spells, constipation, and a reported manic episode. This patient was terminated from the study during the third week because of noncompliance and impending shoulder surgery.
Patient #16 was a 41-year-old male suffering bipolar II disorder, taking antidepressant medication. He received an initial RG2133 dose of 6 g/day. After the first week of the study, his medication was gradually increased to 12 g/day by the end of the second week. This dose was held constant through the third week of the study. The patient reported no change in mood and complained of loose stools and increased flatulence.
Patient #17 was a 56-year-old male suffering bipolar II disorder, taking antidepressant medication. He received an initial RG2133 dose of 6 g/day. After the first week of the study, his medication was gradually increased to 12 g/day by the end of the second week. This dose was held constant through the third week of the study. The patient reported no change in mood and complained of loose stools and increased flatulence.
Patient #18 was a 67-year-old male suffering bipolar II disorder, taking no antidepressant medication. He received an initial RG2133 dose of 6 g/day. After the first week of the study, his medication was gradually increased to 12 g/day by the end of the second week. After the third week of the study, the patient's dose was gradually reduced to 6 g/day by the end of the fourth week. The 6 g/day dose was held constant for the remaining two weeks of the study.
Patient #19 was female suffering an unspecified form of bipolar disorder. She received an initial RG2133 dose of 6 g/day. After the first week of the study, her medication was gradually increased to 12 g/day by the end of the second week. After the third week of the study, the patient's dose was gradually increased to 18 g/day by the end of the fourth week. The 18 g/day dose was held constant for the remaining two weeks of the study.
Cumulative Results of Patient Studies
Example 3A MADRS
During the study patients were evaluated using the Montgomery-Asberg Depression Rating Scale (MADRS). This scale measures the effect of treatment on depression severity relative to a baseline assessment before treatment. The MADRS measures the severity of a number of symptoms on a scale from 0 to 60, including mood and sadness, tension, sleep, appetite, energy, concentration, suicidal ideation, and restlessness. Increasing scores reflect a greater severity of depression. Scores of 15-25 on the MADRS scale indicate moderate depression. Scores above 25 indicate clinically severe depression.
As shown in FIG. 1, bipolar patients exhibited a slight decrease in average MADRS scores during the first three weeks of treatment. MADRS scores then rose slightly between week three and week six. Averaged MADRS scores never returned to baseline levels or above. The data indicate that generally, study patients were not severely depressed at the outset of the study, and the administration of RG2133 did not significantly worsen patients' depression, and may have slightly improved patients' depression, especially during the first half of the study, during which lower doses were administered than in the second half for those subjects responding to RG2133.
Example 3B YMRS
During the study patients were also evaluated using the Young Mania Rating Scale (YMRS). This scale assesses the severity of mania in patients already diagnosed with mania based on a personal interview. Scores of 1 to 12 are not considered to be suffering from mania, whereas a score of 13 indicates minimal mania. Increasing scores to 44, indicate progressively severe mania.
As shown in FIG. 2, bipolar patients exhibited a slight decrease in averaged YMRS scores during the course of the study. This result is significant because many drugs that have been used to treat bipolar disorder in the past have induced mania in patients.
Example 3C CGI
During the study patients were also evaluated using Clinical Global Impression (CGI) scale. A clinician rated the severity of the patient's illness relative to the clinician's past experience with patients with the same diagnosis. At the outset of the study a clinician created a baseline single item score on a 7 point scale from 1 (‘normal’, not ill) to 7 (extremely ill). CGI was then used to track the clinical distance between a patient's individual's current condition and his or her baseline condition at the start of treatment.
FIG. 3 shows that the CGI of bipolar patients in the study improved slightly from weeks one to three, and then deteriorated slightly from weeks three to six. At the end of the study, the average CGI score of the patient group was somewhat above baseline.
Example 3D GAF
During the study patients were evaluated using Global Assessment of Functioning (GAF), which is a modified version of the Global Assessment Scale (GAS). The GAF is a single-item rating scale for evaluation of overall patient functioning during a specified period on a continuum from psychological or psychiatric illness to health. The scale value ranges from 1 (hypothetically sickest person) to 100 (hypothetically healthiest person), divided into 10 equal intervals.
FIG. 4 shows that the average GAF score improved slightly from the beginning of the study to the week four, and then declined to a level slightly above the initial GAF score.
Example 3E HAM-A
In another aspect of the study, patients were evaluated using the Hamilton Anxiety (HAM-A) rating scale. This scale measures the severity of symptoms such as anxiety, tension, depressed mood, palpitations, breathing difficulties, sleep disturbances, restlessness, and other physical symptoms. The HAM-A was one of the first rating scales developed to measure the severity of anxiety symptomatology, and is a widely used outcome measure in clinical trials. Mild Anxiety is indicated by a score of 18, moderate anxiety by a score of 25, and severe anxiety by a score of 30.
FIG. 5 shows that the average HAM-A score in the patient group went down slightly during the course of the study.
Example 3F YMRS by Gender
FIG. 6 shows the average YMRS scores of patients in the study divided according to gender. The average YMRS for female patients declined slightly more than males YMRS scores during the first three weeks of the study. Female YMRS scores also did not increase above the initial baseline score during the study.
Example 3G CGI by Gender
FIG. 7 shows the average CGI scores of patients in the study divided according to gender. Unlike average male CGI scores, average female CGI scores improved (i.e. declined) during the course of the study, relative to the initial score.
Example 3H CGI by Antidepressant Medication
FIG. 8 shows the average CGI for patients in the study divided according to whether the patient was taking an antidepressant medication. The group of patients that were not taking antidepressant exhibited a faster decline in average CGI scores than the group of patients who were on antidepressant medication.
Example 4 Adverse Events
The total number of adverse events is reported by the number and percentage of subjects experiencing each adverse event. If a subject reported the same adverse event over the course of the study, that event was counted once.
During the course of the 6-week study, there were some reported side effects to the medication. 1 subject reported stomach cramps, 1 reported nausea, 4 reported decreased appetite, 3 reported an increase in constipation, 4 reported diarrhea, 1 reported muscle cramps, 2 reported headaches, 1 reported fatigue, 2 reported problems with sleeping, 2 reported increased flatulence, and 1 reported a decrease in libido. In addition, one subject reported changes in her vision that affected her depth perception. Another subject reported “weaker vision.” One subject dropped out of the study after the baseline visit and was unavailable for further questioning. One subject reported a manic episode during week 3 after reducing the dose of TAU treatment per the Principal Investigator's suggestion. The subject independently decided to increase her dose back to its original amount in response to her manic reaction to the decreased dose. Due to this protocol deviation, and the subject's manic break, the subject was terminated from the study.
Example 5 Clinical Study of Uridine Therapy in Bipolar Disorders
This study evaluates the therapeutic effects of uridine in subjects with a bipolar disorder and its ability to normalize altered bioenergetic markers in those subjects.
In addition to behavioral assessments, the subjects undergo a baseline MRI/MRS study followed by lithium monotherapy for four weeks. After four weeks of lithium monotherapy, subjects undergo repeat MRI/MRS studies are then divided into two groups: one receiving uridine in addition to lithium, and the other group receiving paroxetine in addition to lithium. Paroxetine is a selective serotonin reuptake inhibitor (SSRI) that has been extensively documented to be an effective and well-tolerated antidepressant treatment, and serves as a positive control in this study. By comparing the therapeutic effects of both uridine and paroxetine, which have very different mechanisms of action, in a double blind fashion, we can evaluate the therapeutic efficacy of uridine compared to paroxetine, as well as the relationship between brain changes in bioenergetics and treatment specific mood enhancement.
Clinical Methods—Treatment Protocol: Paroxetine vs. Uridine Randomized Treatment Following Lithium Stabilization
Bipolar subjects undergo a baseline MRI/MRS study followed by Li monotherapy for four weeks. Dosing is initiated using a 600 mg test dose with subsequent dosing based on the next day trough serum Li level. After the initial dosage adjustment, a trough Li level is checked the following week to adjust dosage, as necessary, to achieve a serum level of 0.5 to 0.8 mEq/L. This range of therapeutic serum levels for mood stabilization is based on work suggesting a specific Li antidepressant effect above 0.8 mEq/L and to minimize adverse side effects (Nemeroff et al., 2001, Am. J. Psychiatry, 158(6):906-912). After four weeks of Li monotherapy, subjects undergo repeat MRI/MRS studies and are then randomized with respect to supplemental double-blind treatment with paroxetine or uridine. Uridine is initiated and maintained at 1 gram twice a day, based on our experience in our preliminary treatment studies (described in Example 3).
Paroxetine is initiated at 20 mg/day (10 mg twice a day to maintain double-blind) with further dose adjustments during the first four weeks as clinically warranted based on therapeutic response and emergent side-effect profile. The aim is to maintain consistent dosing of paroxetine at a range between 20 mg to 50 mg/day (maximum dose based on clinical response parameters) for the final four weeks of the study. Due to potential withdrawal symptoms from abrupt discontinuation, at study conclusion, for patients that discontinue paroxetine, the drug is tapered at 10 to 20 mg per week as clinically tolerated. To monitor compliance with study medication, subjects are asked to keep a weekly medication diary.
Subject Recruitment
A total of 130 medication-free bipolar depressed individuals (26/year) are recruited and enrolled to end up with 110 bipolar subjects who have completed three scans, assuming a 15% treatment drop-out rate. In addition, twelve healthy controls are also enrolled each year for comparison scans. Individuals who respond to recruitment efforts (physician referrals, advertising) undergo an initial phone screen to determine likelihood of meeting study criteria. Those individuals who appear to meet study criteria are invited into the clinic for a screening interview. Upon arrival at the clinic, informed consent is obtained. Those individuals who provide consent undergo a psychiatric evaluation that includes the SCID-IV for Axis I, HAM-D; MADRS; and YES. These scales are chosen as they are standard assessment tools for mood with known reliability. Individuals who meet study criteria then undergo a screening review of systems, past medical history, physical examination, and laboratory testing (complete blood count (CBC); standard blood screening battery, including electrolytes, liver function tests and Bun/Creatine; T4 and thyroid stimulating hormone (TSH); ECG; urine HCG; and urine toxic screen).
Inclusion Criteria: aged 18 to 40 years; DSM-IV criteria met for Bipolar Disorder-depressed; HAM-D score >18, and YMRS score <7; psychotropic medication-free for at least two months; capable of providing informed consent; and has an established residence and phone.
Exclusion Criteria: meets DSM-IV criteria for another Axis I disorder, except co-morbid anxiety disorder or history of substance abuse disorder; alcohol or substance dependence or actively abusing within the past month; co-morbid medical condition which in the opinion of the investigator contributes to the individual's mood symptoms (stable and adequately treated thyroid disease will be permitted); acutely suicidal or moderate to high suicide risk; women of child-bearing potential who are unwilling to use a standard method of birth control for the duration of the study; pregnancy or breast-feeding; allergy or other contraindication to paroxetine, uridine or Li; history of significant head trauma; claustrophobia or other contraindication to MRI (e.g., pacemaker, metal fragments).
Schedule of Visits
The following treatment schedule is used.
Week 0; Visit 1: Screening psychiatric/medical workup as described above; informed consent; SCID-IV for Axis I; rating scales: HAM-D, MADRS, YMRS and clinician global impression.
Week 1; Visit 2: Baseline MR exam (before starting treatment); review laboratory results; repeat rating scales; Bipolar subjects only—Dispense Li with single 600 mg dose then next day blood level (Visit 3), followed by Li adjustment to establish serum Li levels between 0.5-0.8 mEq/L.
Week 2; Visit 4: Bipolar subjects only—Repeat Li blood level; clinical assessment (including clinician and patient global improvement scales and adverse event monitoring); rating scales.
Week 4; Visit 5: Rating scales; repeat urine HCG and toxic screen; repeat MRS scan. Bipolar subjects only—Clinical assessment; repeat Li blood level; subjects randomized into double-blind supplemental treatment with paroxetine 10 mg twice a day or uridine 1 gram twice a day.
Weeks 5-8; Visits 6 thru 8: Bipolar subjects only—Clinical assessment; rating scales.
Week 10; Visit 9: Bipolar subjects only—Clinical management; rating scales.
Week 12; Visit 10: Bipolar subjects only—Clinical management; rating scales; repeat urine HCG and toxic screen; repeat MRI/MRSI scanning.
Week 13; Visit 11 (Follow-up): Bipolar subjects only—Clinical assessment. Repeat medical workup, transition off of uridine (and taper paroxetine if patient requests discontinuation). Refer for follow-up treatment.
Early Termination: Individuals who decide to terminate early from the study or whose condition worsens during the study such that they are in need of more intensive treatment than that provided by the study are asked to return to the clinic for an early termination visit. Individuals are evaluated and triaged according to their clinical needs. Study medications are discontinued and repeat rating scales, laboratory studies, and physical exam are obtained to the extent that the subject is able to cooperate. If an individual enrolled in the study has an emergency or acute decompensation, appropriate treatment is found for this individual prior to termination.
OTHER EMBODIMENTS
It is to be understood that while the invention has been described in conjunction with the detailed description thereof, the foregoing description is intended to illustrate and not limit the scope of the invention, which is defined by the scope of the appended claims. Other aspects, advantages, and modifications are within the scope of the following claims.

Claims (19)

1. A method of treating an individual exhibiting one or more symptoms of bipolar disorder, the method comprising administering to the individual a therapeutically-effective amount of a uridine composition that provides 1 to 7 grams of uridine per day.
2. The method of claim 1, wherein the therapeutically-effective amount of the uridine composition provides 2 to 5 grams of uridine per day.
3. The method of claim 1, wherein the therapeutically-effective amount of the uridine composition provides 3 to 4 grams of uridine per day.
4. The method of claim 1, wherein the individual is diagnosed under DSM-IV guidelines as having bipolar disorder.
5. The method of claim 1, wherein the composition is administered in two or three doses/day.
6. The method of claim 1, wherein the composition is triacetyl uridine, uridine monophosphate, uridine diphosphate, or uridine triphosphate.
7. The method of claim 1, wherein the uridine composition is administered orally.
8. The method of claim 1, wherein the individual is suffering from type I bipolar disorder.
9. The method of claim 1, wherein the individual is suffering from type II bipolar disorder.
10. The method of claim 1, wherein the therapeutically-effective amount of the uridine composition is an amount sufficient to improve one or more symptoms of bipolar disorder.
11. The method of claim 10, wherein the symptoms are one or more symptoms of a major depressive episode.
12. The method of claim 10, wherein the symptoms are one or more symptoms of a manic episode.
13. The method of claim 10, wherein the symptoms are one or more symptoms of a mixed episode.
14. The method of claim 10, wherein the symptoms are one or more symptoms of a hypomanic episode.
15. A method of reducing anxiety in an individual suffering from bipolar disorder, the method comprising administering to the individual a therapeutically-effective amount of a uridine composition that provides 1 to 7 grams of uridine per day.
16. A method of reducing the severity of manic symptoms in an individual in need of treatment for bipolar disorder, the method comprising administering to the individual a therapeutically-effective amount of a uridine composition that provides 1 to 7 grams of uridine per day.
17. The method of claim 1, wherein the uridine composition is uridine.
18. The method of claim 15, wherein the uridine composition is uridine.
19. The method of claim 16, wherein the uridine composition is uridine.
US11/629,111 2004-06-10 2005-06-10 Pyrimidines, such as uridine, in treatments for patients with bipolar disorder Active 2025-10-12 US7737128B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US11/629,111 US7737128B2 (en) 2004-06-10 2005-06-10 Pyrimidines, such as uridine, in treatments for patients with bipolar disorder

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US57888504P 2004-06-10 2004-06-10
US11/629,111 US7737128B2 (en) 2004-06-10 2005-06-10 Pyrimidines, such as uridine, in treatments for patients with bipolar disorder
PCT/US2005/020690 WO2005122767A1 (en) 2004-06-10 2005-06-10 Pyrimidines, such as uridine, in treatments for patients with bipolar disorder

Publications (2)

Publication Number Publication Date
US20090054370A1 US20090054370A1 (en) 2009-02-26
US7737128B2 true US7737128B2 (en) 2010-06-15

Family

ID=35509348

Family Applications (2)

Application Number Title Priority Date Filing Date
US11/629,111 Active 2025-10-12 US7737128B2 (en) 2004-06-10 2005-06-10 Pyrimidines, such as uridine, in treatments for patients with bipolar disorder
US12/778,637 Abandoned US20100222296A1 (en) 2004-06-10 2010-05-12 Pyrimidines, such as uridine, in treatments for patients with bipolar disorder

Family Applications After (1)

Application Number Title Priority Date Filing Date
US12/778,637 Abandoned US20100222296A1 (en) 2004-06-10 2010-05-12 Pyrimidines, such as uridine, in treatments for patients with bipolar disorder

Country Status (3)

Country Link
US (2) US7737128B2 (en)
EP (1) EP1765075A4 (en)
WO (1) WO2005122767A1 (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20020019364A1 (en) * 2000-03-16 2002-02-14 Renshaw Perry F. Compounds for the treatment of psychiatric or substance abuse disorders
US20100041621A1 (en) * 2008-08-15 2010-02-18 Perry Renshaw Methods and compositions for improving cognitive performance
US20100041620A1 (en) * 2008-08-15 2010-02-18 Perry Renshaw Methods for improving frontal brain bioenergetic metabolism
US20110160158A1 (en) * 2008-06-12 2011-06-30 Repligen Corporation Methods of treatment of bipolar disorder
US8785620B2 (en) 2011-09-30 2014-07-22 Tufts University Uridine diphosphate derivatives, compositions and methods for treating neurodegenerative disorders
US9163055B2 (en) 2012-09-28 2015-10-20 Tufts University Methods for treating glaucoma using uridine diphosphate derivatives
US10138265B2 (en) 2013-03-13 2018-11-27 Tufts University Uridine nucleoside derivatives, compositions and methods of use
US10544183B2 (en) 2013-03-13 2020-01-28 Tufts University Uridine nucleoside derivatives, compositions and methods of use

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7737128B2 (en) 2004-06-10 2010-06-15 The Mclean Hospital Corporation Pyrimidines, such as uridine, in treatments for patients with bipolar disorder
US20090215714A1 (en) * 2004-06-10 2009-08-27 Perry Renshaw Pyrimidines, such as cytidine, in treatments for patients with biopolar disorder
WO2006020703A1 (en) * 2004-08-11 2006-02-23 The Mclean Hospital Corporation Compounds for the treatment of marihuana dependence, withdrawal, and usage
CN101896119A (en) * 2007-11-02 2010-11-24 麻省理工学院 Uridine dietary supplementation compliance methods and use thereof
CN103619340B (en) 2011-04-25 2016-08-17 康奈尔大学 Uridnine and BrdU purposes in treatment folic acid responsiveness pathological changes

Citations (59)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4027017A (en) 1974-07-16 1977-05-31 Chugai Seiyaku Kabushiki Kaisha Method of treating alcoholism
US4048316A (en) 1974-03-04 1977-09-13 Penn Nathar W Composition for antagonizing the narcotic effects of barbiturate addiction and withdrawal effects, and for treatment of barbiturate poisoning
US4115576A (en) 1974-04-02 1978-09-19 Penn Nathar W Compositions and method of employing the same for inhibiting alcohol intoxication
US4386077A (en) 1980-04-18 1983-05-31 Made Italiana S.R.L Pharmaceutical composition for oral administration containing cytidine diphosphocholine
DE3400276A1 (en) 1984-01-05 1985-07-18 Ferrer Internacional S.A., Barcelona Use of CDP-choline for the treatment of neurological disturbances
EP0188647A1 (en) 1985-01-24 1986-07-30 NEOPHARMED S.p.A. Acylated derivatives of cytidine-diphosphate-choline, process for their preparation and their therapeutic use
EP0218190A2 (en) 1985-10-01 1987-04-15 CYANAMID ITALIA S.p.A. Macromolecular CDP-choline derivatives, process for their preparation and pharmaceutical compositions containing them
US4704361A (en) 1983-03-01 1987-11-03 Compagnia Di Ricerca Chimica S.P.A. Pharmaceutical compositions containing the cytidine monophospate of 5-acetamido-3,5-dideoxy-D-glycero-D-galactononulosaminic acid and a method for preparing said compound
US4764603A (en) 1985-02-14 1988-08-16 Gibipharma S.P.A. Stable salts of S-adenosyl-L-methionine with polyanions
JPS63208524A (en) 1987-02-25 1988-08-30 Nippon Oil & Fats Co Ltd Sleep rhythm improver
US4999382A (en) 1988-10-26 1991-03-12 Massachusetts Institute Of Technology Compositions for treating tobacco withdrawal symptoms and methods for their use
EP0431758A2 (en) 1989-11-09 1991-06-12 Ivan F. Diamond Use of adenosine agonists and antagonists in the treatment of alcohol abuse
US5179126A (en) 1988-10-26 1993-01-12 Massachusettes Institute Of Technology Compositions for treating tobacco withdrawl symtoms and methods for their use
WO1993014076A1 (en) 1992-01-08 1993-07-22 John Wyeth & Brother Limited Piperazine derivatives as 5-ht receptors antagonists
RU2003332C1 (en) 1989-06-09 1993-11-30 Борис Витальевич Страдомский Agent for treatment depression
US5278176A (en) 1992-08-21 1994-01-11 Abbott Laboratories Nicotine derivatives that enhance cognitive function
EP0615750A2 (en) 1993-02-17 1994-09-21 Scotia Holdings Plc Treatment of a group of related disorders
US5409946A (en) 1991-05-29 1995-04-25 Abbott Laboratories Isoxazole, isothiazole and pyrazole compounds that enhance cognitive function
US5472958A (en) 1994-08-29 1995-12-05 Abbott Laboratories 2-((nitro)phenoxymethyl) heterocyclic compounds that enhance cognitive function
JPH08183737A (en) 1994-12-28 1996-07-16 Advance Co Ltd Alcohol absorption inhibitor
US5635486A (en) 1990-05-11 1997-06-03 Kanegafuchi Kagaku Kogyo Kabushiki Kaisha Ophthalmic composition comprising a sleep adjusting substance
US5691365A (en) 1995-07-18 1997-11-25 University Of Kentucky Research Foundation Nicotinic receptor antagonists in the treatment of neuropharmacological disorders
US5691320A (en) 1987-10-28 1997-11-25 Pro-Neuron, Inc. Acylated pyrimidine nucleosides for treatment of systemic inflammation and inflammatory hepatitis
US5888532A (en) 1996-08-16 1999-03-30 Pritsos; Chris A. Treatment of alcoholism and related disorders with (nicotinamide-adenine dinucleotide) phosphate derivatives
WO1999026620A1 (en) 1997-11-26 1999-06-03 Protarga, Inc. Choline esters of fatty acids and their use in the treatment of stroke
US5919789A (en) 1996-11-15 1999-07-06 Darwin Discovery Limited Xanthines and their therapeutic use
US5958896A (en) 1997-08-08 1999-09-28 The Mclean Hospital Cytidine-containing and cytosine-containing compounds as treatments for stimulant exposure
US5977174A (en) 1997-11-26 1999-11-02 Neuromedica, Inc. Cholinergic compositions and uses thereof
WO2000006174A1 (en) 1998-07-31 2000-02-10 Massachusetts Institute Of Technology Methods for increasing cytidine levels in vivo and treating cytidine-dependent human diseases
WO2000011952A1 (en) 1998-08-31 2000-03-09 Pro-Neuron, Inc. Compositions and methods for treatment of mitochondrial diseases
US6132724A (en) 1998-04-29 2000-10-17 City Of Hope National Medical Center Allelic polygene diagnosis of reward deficiency syndrome and treatment
WO2001044265A1 (en) 1999-12-14 2001-06-21 The Mclean Hospital Corporation Treatment of mental conditions including depression
US6277855B1 (en) 2000-04-21 2001-08-21 Inspire Pharmaceuticals, Inc. Method of treating dry eye disease with nicotinic acetylcholine receptor agonists
US6284268B1 (en) 1997-12-10 2001-09-04 Cyclosporine Therapeutics Limited Pharmaceutical compositions containing an omega-3 fatty acid oil
WO2001072288A2 (en) 2000-03-29 2001-10-04 Ferrer Internacional, S.A. Use of cdp-choline for the treatment of alcohol withdrawal syndrome
US6319953B1 (en) 1996-10-07 2001-11-20 Merck Sharp & Dohme Ltd. Treatment of depression and anxiety with fluoxetine and an NK-1 receptor antagonist
US6331568B1 (en) 1996-10-11 2001-12-18 Scotia Holdings Plc. Pharmaceutical preparation comprising eicosapentaenoic acid and/or stearidonic acid
US20020019364A1 (en) 2000-03-16 2002-02-14 Renshaw Perry F. Compounds for the treatment of psychiatric or substance abuse disorders
US6410522B1 (en) 2000-10-23 2002-06-25 Lipogen Ltd. Anti-depressant, stress suppressor and mood improver
US20020182196A1 (en) 2001-04-19 2002-12-05 Mccleary Edward Larry Composition and method for normalizing impaired or deteriorating neurological function
US6503951B2 (en) 1999-06-30 2003-01-07 Skw Trostberg Aktiengesellschaft Use of creatine and/or creatine derivatives for treating typical disorders in women
US6541043B2 (en) 2001-08-28 2003-04-01 Dexgen Pharmaceuticals, Inc. Method and synergistic composition for treating attention deficit/hyperactivity disorder
US20030100844A1 (en) 2001-05-25 2003-05-29 Eastman Kodak Company Method for determining attention deficit hyperactivity disorder (ADHD) medication dosage and for monitoring the effects of (ADHD) medication
US20030114515A1 (en) 1997-04-10 2003-06-19 Kaesemeyer Wayne H. Therapeutic mixture of HMG-COA reductase inhibitors
US6608064B2 (en) 1998-09-21 2003-08-19 Pfizer Inc Pharmaceutical agents for the treatment of Parkinson's disease, ADHD and microadenomas
US20030224435A1 (en) 2002-05-16 2003-12-04 Scott Seiwert Detection of abused substances and their metabolites using nucleic acid sensor molecules
US20030232827A1 (en) 2002-02-08 2003-12-18 Meltzer Peter C. Therapeutic compounds
US6696495B2 (en) 1998-12-02 2004-02-24 Snowden Pharmaceuticals, Llc Treatment of disorders secondary to organic impairments
US6727231B1 (en) 2000-10-12 2004-04-27 Repligen Corporation Uridine therapy for patients with elevated purine levels
US20040167093A1 (en) 2002-11-08 2004-08-26 Scott Lukas Compounds for the treatment of tobacco dependence and withdrawal
US20040176316A1 (en) 2002-12-20 2004-09-09 Renshaw Perry F. Compounds for the normalization of the sleep/wake cycle
US20040192732A1 (en) 2001-10-17 2004-09-30 Eisai Co., Ltd. Methods for treating substance abuse with cholinesterase inhibitors
US20040266659A1 (en) 2003-06-27 2004-12-30 Stephen LaBerge Substances that enhance recall and lucidity during dreaming
US6852870B2 (en) 1999-03-22 2005-02-08 Andrew Stoll Omega-3 fatty acids in the treatment of depression
US20050113449A1 (en) 2003-10-08 2005-05-26 Renshaw Perry F. Enhanced efficacy of omega-3 fatty acid therapy in the treatment of psychiatric disorders and other indications
US20050129710A1 (en) 2003-10-08 2005-06-16 Renshaw Perry F. Methods of treating psychiatric substance abuse, and other disorders using combinations containing omega-3 fatty acids
US7026301B2 (en) 2002-10-17 2006-04-11 New York University Method of orally treating inflammatory skin conditions with prodrugs of 5-fluorouracil
US20090054370A1 (en) 2004-06-10 2009-02-26 Mclean Hospital Corporation Pyrimidines, such as uridine, in treatments for patients with bipolar disorder
US20090215714A1 (en) 2004-06-10 2009-08-27 Perry Renshaw Pyrimidines, such as cytidine, in treatments for patients with biopolar disorder

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20030114415A1 (en) * 2001-12-14 2003-06-19 Wurtman Richard J. Compositions and methods for treating and preventing memory impairment using citicoline
JP4194441B2 (en) * 2003-07-28 2008-12-10 Sriスポーツ株式会社 Golf ball

Patent Citations (69)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4048316A (en) 1974-03-04 1977-09-13 Penn Nathar W Composition for antagonizing the narcotic effects of barbiturate addiction and withdrawal effects, and for treatment of barbiturate poisoning
US4115576A (en) 1974-04-02 1978-09-19 Penn Nathar W Compositions and method of employing the same for inhibiting alcohol intoxication
US4027017A (en) 1974-07-16 1977-05-31 Chugai Seiyaku Kabushiki Kaisha Method of treating alcoholism
US4386077A (en) 1980-04-18 1983-05-31 Made Italiana S.R.L Pharmaceutical composition for oral administration containing cytidine diphosphocholine
US4704361A (en) 1983-03-01 1987-11-03 Compagnia Di Ricerca Chimica S.P.A. Pharmaceutical compositions containing the cytidine monophospate of 5-acetamido-3,5-dideoxy-D-glycero-D-galactononulosaminic acid and a method for preparing said compound
DE3400276A1 (en) 1984-01-05 1985-07-18 Ferrer Internacional S.A., Barcelona Use of CDP-choline for the treatment of neurological disturbances
EP0188647A1 (en) 1985-01-24 1986-07-30 NEOPHARMED S.p.A. Acylated derivatives of cytidine-diphosphate-choline, process for their preparation and their therapeutic use
US4764603A (en) 1985-02-14 1988-08-16 Gibipharma S.P.A. Stable salts of S-adenosyl-L-methionine with polyanions
EP0218190A2 (en) 1985-10-01 1987-04-15 CYANAMID ITALIA S.p.A. Macromolecular CDP-choline derivatives, process for their preparation and pharmaceutical compositions containing them
JPS63208524A (en) 1987-02-25 1988-08-30 Nippon Oil & Fats Co Ltd Sleep rhythm improver
US5691320A (en) 1987-10-28 1997-11-25 Pro-Neuron, Inc. Acylated pyrimidine nucleosides for treatment of systemic inflammation and inflammatory hepatitis
US4999382A (en) 1988-10-26 1991-03-12 Massachusetts Institute Of Technology Compositions for treating tobacco withdrawal symptoms and methods for their use
US5179126A (en) 1988-10-26 1993-01-12 Massachusettes Institute Of Technology Compositions for treating tobacco withdrawl symtoms and methods for their use
RU2003332C1 (en) 1989-06-09 1993-11-30 Борис Витальевич Страдомский Agent for treatment depression
EP0431758A2 (en) 1989-11-09 1991-06-12 Ivan F. Diamond Use of adenosine agonists and antagonists in the treatment of alcohol abuse
US5635486A (en) 1990-05-11 1997-06-03 Kanegafuchi Kagaku Kogyo Kabushiki Kaisha Ophthalmic composition comprising a sleep adjusting substance
US5409946A (en) 1991-05-29 1995-04-25 Abbott Laboratories Isoxazole, isothiazole and pyrazole compounds that enhance cognitive function
WO1993014076A1 (en) 1992-01-08 1993-07-22 John Wyeth & Brother Limited Piperazine derivatives as 5-ht receptors antagonists
US5278176A (en) 1992-08-21 1994-01-11 Abbott Laboratories Nicotine derivatives that enhance cognitive function
EP0615750A2 (en) 1993-02-17 1994-09-21 Scotia Holdings Plc Treatment of a group of related disorders
US5472958A (en) 1994-08-29 1995-12-05 Abbott Laboratories 2-((nitro)phenoxymethyl) heterocyclic compounds that enhance cognitive function
JPH08183737A (en) 1994-12-28 1996-07-16 Advance Co Ltd Alcohol absorption inhibitor
US5691365A (en) 1995-07-18 1997-11-25 University Of Kentucky Research Foundation Nicotinic receptor antagonists in the treatment of neuropharmacological disorders
US5888532A (en) 1996-08-16 1999-03-30 Pritsos; Chris A. Treatment of alcoholism and related disorders with (nicotinamide-adenine dinucleotide) phosphate derivatives
US6319953B1 (en) 1996-10-07 2001-11-20 Merck Sharp & Dohme Ltd. Treatment of depression and anxiety with fluoxetine and an NK-1 receptor antagonist
US6624195B2 (en) 1996-10-11 2003-09-23 Scotia Holdings Plc. Pharmaceutical preparation comprising eicosapentaenoic acid and/or stearidonic acid
US6331568B1 (en) 1996-10-11 2001-12-18 Scotia Holdings Plc. Pharmaceutical preparation comprising eicosapentaenoic acid and/or stearidonic acid
US5919789A (en) 1996-11-15 1999-07-06 Darwin Discovery Limited Xanthines and their therapeutic use
US20030114515A1 (en) 1997-04-10 2003-06-19 Kaesemeyer Wayne H. Therapeutic mixture of HMG-COA reductase inhibitors
US5958896A (en) 1997-08-08 1999-09-28 The Mclean Hospital Cytidine-containing and cytosine-containing compounds as treatments for stimulant exposure
US6103703A (en) 1997-08-08 2000-08-15 The Mclean Hospital Corporation Cytidine-containing and cytosine-containing compounds as treatments for stimulant exposure
WO1999026620A1 (en) 1997-11-26 1999-06-03 Protarga, Inc. Choline esters of fatty acids and their use in the treatment of stroke
US5977174A (en) 1997-11-26 1999-11-02 Neuromedica, Inc. Cholinergic compositions and uses thereof
US6153653A (en) 1997-11-26 2000-11-28 Protarga, Inc. Choline compositions and uses thereof
US6284268B1 (en) 1997-12-10 2001-09-04 Cyclosporine Therapeutics Limited Pharmaceutical compositions containing an omega-3 fatty acid oil
US6132724A (en) 1998-04-29 2000-10-17 City Of Hope National Medical Center Allelic polygene diagnosis of reward deficiency syndrome and treatment
US6989376B2 (en) * 1998-07-31 2006-01-24 Massachusetts Institute Of Technology Methods for increasing blood cytidine and/or uridine levels and treating cytidine-dependent human diseases
US20020028787A1 (en) 1998-07-31 2002-03-07 Carol Watkins Methods for increasing cytidine levels in vivo andtreating cytidine-dependent human diseases
WO2000006174A1 (en) 1998-07-31 2000-02-10 Massachusetts Institute Of Technology Methods for increasing cytidine levels in vivo and treating cytidine-dependent human diseases
WO2000011952A1 (en) 1998-08-31 2000-03-09 Pro-Neuron, Inc. Compositions and methods for treatment of mitochondrial diseases
US6608064B2 (en) 1998-09-21 2003-08-19 Pfizer Inc Pharmaceutical agents for the treatment of Parkinson's disease, ADHD and microadenomas
US6696495B2 (en) 1998-12-02 2004-02-24 Snowden Pharmaceuticals, Llc Treatment of disorders secondary to organic impairments
US6852870B2 (en) 1999-03-22 2005-02-08 Andrew Stoll Omega-3 fatty acids in the treatment of depression
US6503951B2 (en) 1999-06-30 2003-01-07 Skw Trostberg Aktiengesellschaft Use of creatine and/or creatine derivatives for treating typical disorders in women
US6258794B1 (en) 1999-12-14 2001-07-10 The Mclean Hospital Corporation Treatment of mental conditions including depression
WO2001044265A1 (en) 1999-12-14 2001-06-21 The Mclean Hospital Corporation Treatment of mental conditions including depression
US20080132472A1 (en) 2000-03-16 2008-06-05 Renshaw Perry F Compounds for the treatment of psychiatric or substance abuse disorders
US20020019364A1 (en) 2000-03-16 2002-02-14 Renshaw Perry F. Compounds for the treatment of psychiatric or substance abuse disorders
US20030220291A1 (en) 2000-03-16 2003-11-27 Renshaw Perry F. Compounds for the treatment of psychiatric or substance abuse disorders
WO2001072288A2 (en) 2000-03-29 2001-10-04 Ferrer Internacional, S.A. Use of cdp-choline for the treatment of alcohol withdrawal syndrome
US6277855B1 (en) 2000-04-21 2001-08-21 Inspire Pharmaceuticals, Inc. Method of treating dry eye disease with nicotinic acetylcholine receptor agonists
US6727231B1 (en) 2000-10-12 2004-04-27 Repligen Corporation Uridine therapy for patients with elevated purine levels
US6410522B1 (en) 2000-10-23 2002-06-25 Lipogen Ltd. Anti-depressant, stress suppressor and mood improver
US20020182196A1 (en) 2001-04-19 2002-12-05 Mccleary Edward Larry Composition and method for normalizing impaired or deteriorating neurological function
US20030100844A1 (en) 2001-05-25 2003-05-29 Eastman Kodak Company Method for determining attention deficit hyperactivity disorder (ADHD) medication dosage and for monitoring the effects of (ADHD) medication
US6541043B2 (en) 2001-08-28 2003-04-01 Dexgen Pharmaceuticals, Inc. Method and synergistic composition for treating attention deficit/hyperactivity disorder
US20040192732A1 (en) 2001-10-17 2004-09-30 Eisai Co., Ltd. Methods for treating substance abuse with cholinesterase inhibitors
US20030232827A1 (en) 2002-02-08 2003-12-18 Meltzer Peter C. Therapeutic compounds
US20030224435A1 (en) 2002-05-16 2003-12-04 Scott Seiwert Detection of abused substances and their metabolites using nucleic acid sensor molecules
US7026301B2 (en) 2002-10-17 2006-04-11 New York University Method of orally treating inflammatory skin conditions with prodrugs of 5-fluorouracil
US7053064B2 (en) 2002-11-08 2006-05-30 The Mclean Hospital Corporation Compounds for the treatment of tobacco dependence and withdrawal
US20060217344A1 (en) 2002-11-08 2006-09-28 Scott Lukas Compounds for the treatment of tobacco dependence and withdrawal
US20040167093A1 (en) 2002-11-08 2004-08-26 Scott Lukas Compounds for the treatment of tobacco dependence and withdrawal
US20040176316A1 (en) 2002-12-20 2004-09-09 Renshaw Perry F. Compounds for the normalization of the sleep/wake cycle
US20040266659A1 (en) 2003-06-27 2004-12-30 Stephen LaBerge Substances that enhance recall and lucidity during dreaming
US20050113449A1 (en) 2003-10-08 2005-05-26 Renshaw Perry F. Enhanced efficacy of omega-3 fatty acid therapy in the treatment of psychiatric disorders and other indications
US20050129710A1 (en) 2003-10-08 2005-06-16 Renshaw Perry F. Methods of treating psychiatric substance abuse, and other disorders using combinations containing omega-3 fatty acids
US20090054370A1 (en) 2004-06-10 2009-02-26 Mclean Hospital Corporation Pyrimidines, such as uridine, in treatments for patients with bipolar disorder
US20090215714A1 (en) 2004-06-10 2009-08-27 Perry Renshaw Pyrimidines, such as cytidine, in treatments for patients with biopolar disorder

Non-Patent Citations (130)

* Cited by examiner, † Cited by third party
Title
Agnoli et al., "Efficacy of CDPcholine in Chronic Cerebral Vascular Diseases (CCVD)," Proceedings of the International Meeting on Novel Biochemical, Pharmacological and Clinical Aspects of Cytidinediphosphocholine, Sorrento, Italy, Jun. 12-14, 1984, pp. 305-315.
Agut et al., "Cytidine(5')Diphosphocholine Enhances the Ability of Haloperidol to Increase Dopamine Metabolites in the Striatum of the Rat and to Diminish Stereotyped Behavior Induced by Apomorphine," Neuropharmacology 23:1403-1406, 1984.
Alvarez et al., "Double-Blind Placebo-Controlled Study with Citicoline in APOE Genotyped Alzheimer's Disease Patients. Effects on Cognitive Performance, Brain Bioelectrical Activity and Cerebral Perfusion," Methods Find. Exp. Clin. Pharmacol. 21:633-644, 1999. (Abstract).
Andreazza et al., "Oxidative Stress Markers in Bipolar Disorder: A Meta-Analysis," J. Affect. Disord. 111:135-144, 2008.
Babb et al., "Differential Effect of CDP-Choline on Brain Cytosolic Choline Levels in Younger and Older Subjects as Measured by Proton Magnetic Resonance Spectroscopy," Psychopharmacology 127:88-94, 1996.
Biederman et al., "Non-Stimulant Treatments for ADHD," Eur. Child Adolesc. Psychiatry 9:151-159, 2000.
Boudouresques et al., "Therapeutic Conduct in Light of a Cerebral Vascular Accident and the Use of CDP-Choline," International Symposium: Brain Suffering and Precursors of Phospholipids, pp. 1-13, 1980.
Bronk et al., "The Transport and Metabolism of Naturally Occurring Pyrimidine Nucleosides by Isolated Rat Jejunum," J. Physiol. 395:349-361, 1988.
Brown et al., "CNS Complications of Cocaine Abuse: Prevalence, Pathophysiology, and Neuroradiology," Am. J. Roentgenol. 159:137-147, 1992.
Budney et al., "Marijuana Abstinence Effects in Marijuana Smokers Maintained in Their Home Environment," Arch. Gen. Psychiatry 58:917-924, 2001.
Carlezon et al., "Antidepressant-Like Effects of Cytidine in the Forced Swim Test in Rats," Biol. Psychiatry 51:882-889, 2002.
Carlezon et al., "Antidepressant-like Effects of Uridine and Omega-3 Fatty Acids Are Potentiated by Combined Treatment in Rats," Biol Psychiatry, 2005, 57:343-350.
Castañé et al., "Lack of CB1 Cannabinoid Receptors Modifies Nicotine Behavioural Responses, But Not Nicotine Abstinence," Neuropharmacology 43:857-867, 2002.
Centrone et al., "Use of Citicoline in High Dosages in Acute Cerebrovascular Disease," Minerva Med. 77:371-373, 1986. English translation of Abstract.
Chang et al., "Neurochemical Alterations in Asymptomatic Abstinent Cocaine Users: A Proton Magnetic Resonance Spectroscopy Study," Biol. Psychiatry 42:1105-1114, 1997.
Christensen et al., "Abnormal Cerebral Metabolism in Polydrug Abusers During Early Withdrawal: A 31P MR Spectroscopy Study," Magn. Reson. Med. 35:658-663, 1996.
Cohen et al., "Decreased Brain Choline Uptake in Older Adults. An In Vivo Proton Magnetic Resonance Spectroscopy Study," JAMA 274:902-907, 1995.
Cohrs et al., "Sleep and Acetylcholine-Precursor-Substances," Pharmacopsychiatry 28:169, 1995. (Abstract).
Connolly et al., "Uridine and Its Nucleotides: Biological Actions, Therapeutic Potentials," Trends Pharmacol. Sci. 20:218-225, 1999.
Cyr et al., "Current Drug Therapy Recommendations for the Treatment of Attention Deficit Hyperactivity Disorder," Drugs 56:215-223, 1998.
English et al., "Elevated Frontal Lobe Cytosolic Choline Levels in Minimal or Mild AIDS Dementia Complex Patients: A Proton Magnetic Resonance Spectroscopy Study," Biol. Psychiatry 41:500-502, 1997.
Fernández, "Efficacy and Safety of Oral CDP-Choline: Drug Surveillance Study in 2817 Cases," Arzneim.-Forsch. 33:1073-1080, 1983.
Fioravanti et al., "Cytidinediphosphocholine (CDP-Choline) for Cognitive and Behavioural Disturbances Associated with Chronic Cerebral Disorders in the Elderly," Cochrane Database Syst. Rev. Apr. 18, 2005 (2):CD000269.
Fux et al., "A Placebo-Controlled Cross-Over Trial of Adjunctive EPA in OCD," J. Psychiatr. Res. 38:323-325, 2004.
G.-Coviella et al., "Effect of Cytidine(5')Diphosphocholine (CDP-Choline) on the Total Urinary Excretion of 3-Methoxy-4-Hydroxphenylglycol (MHPG) by Rats and Humans," J. Neural Transm. 66:129-134, 1986.
G.-Coviella et al., "Enhancement by Cytidine of Membrane Phospholipid Synthesis," Journal of Neurochemistry, 1992, 59:338-343.
G.-Coviella et al., "Metabolism of Cytidine(5')-Diphosphocholine (CDP-Choline) Following Oral and Intravenous Administration to the Human and the Rat," Neurochem. Int. 11:293-297, 1987.
Gallai et al., "Study of the P300 and Cerebral Maps in Subjects With Multi-Infarct Dementia Treated With Cytidine," Psychopharmacology 103:1-5, 1991.
Galletti et al., "Biochemical Rationale for the Use of CDPcholine in Traumatic Brain Injury: Pharmacokinetics of the Orally Administered Drug," J. Neural. Sci. 103:S19-S25, 1991.
Geiger et al., "Cytidine and Uridine Requirement of the Brain," J. Neurochem. 1:93-100, 1956.
Giménez et al., "Changes in Brain Striatum Dopamine and Acetylcholine Receptors Induced by Chronic CDP-Choline Treatment of Aging Mice," Br. J. Pharmacol. 104:575-578, 1991.
Goodman and Gilman's, "The Pharmacological Basis of Therapeutics, 10th Ed.," McGraw-Hill Medical Publishing Division, pp. 54-57, 2001.
Goodman and Gilman's, "The Pharmacological Basis of Therapeutics, 10th Ed.," McGraw-Hill Medical Publishing Division, pp. 54-57, 2001.
Grau et al., "Study on the Protection of CDP-Choline Against Nicotine Intoxication," Arzneim.-Forsch. 33:1025-1026, 1983.
Greenberg, "Clinical Dimensions of Fatigue," Prim. Care Companion J. Clin. Psychiatry 4:90-93, 2002.
Greenwell, "Enhancing Cognitive Function: Keeping Your Memory in Tip Top Shape," LE (Life Extension) Magazine, 2000. [Available at www.lef.org/magazine/mag2000/may00-cover-html.].
Hansen, "Blood Nucleoside and Nucleotide Studies in Mental Disease," The British Journal of Psychiatry, 1972, 121:341-350.
HD Blog, Health Care & Huntington's Disease News, "Triacetyluridine," downloaded from www.huntington.info, Dec. 3, 2003.
Hoff et al., "Effects of Crack Cocaine on Neurocognitive Function," Psychiatry Res. 60:167-176, 1996.
International Search Report and Written Opinion for PCT/US05/28407 (mailed Dec. 30, 2005).
Interneuron Pharmaceuticals, Inc., "Citicoline Sodium (CDP-Choline), Investigator's Brochure," revised Apr. 1994.
Jacobs et al., "Cocaine Abuse: Neurovascular Complications," Radiology 170:223-227, 1989.
Jensen et al., "Triacetyluridine (TAU) Decreases Depressive Symptoms and Increases Brain pH in Bipolar Patients," Exp. Clin. Psychopharmacol. 16:199-206, 2008.
Jørgensen et al., "Herpes Simplex Virus (HSV) Antibodies in Child Psychiatric Patients and Normal Children," Acta Psychiatr. Scand. 66:42-49, 1982.
Karkishchenko et al., "Biosynthesis of Endogenous Pyrimidines in Anxiety and Depressive States of Various Etiologies," S.S. Korsakov Journal of Neuropathology and Psychiatry, 1991, 91:73-74.
Katzung, "Basic & Clinical Pharmacolgy," Appleton & Lang, Seventh Edition, pp. 62 and 521-523, 1998.
Kaufman et al., "Cocaine-Induced Cerebral Vasoconstriction Detected in Humans With Magnetic Resonance Angiography," JAMA 279:376-380, 1998.
Kaufman et al., "Cocaine-Induced Cerebral Vasoconstriction Detected in Humans With Magnetic Resonance Angiography," JAMA 279:376-380, 1998.
Kennedy et al., "The Function of Cytidine Coenzymes in the Biosynthesis of Phospholipides," J. Biol. Chem. 222:193-214, 1956.
Konradi et al., "Molecular Evidence for Mitrochondrial Dysfunction in Bipolar Disorder," Arch. Gen. Psychiatry 61:300-308, 2004. Correction reprinted in Arch. Gen. Psychiatry 61:538, 2004.
Koob et al., "Drug Addiction, Dysregulation of Reward, and Allostasis," Neuropsychopharmacology 24:97-129, 2001.
Koob et al., "Drug Addiction, Dysregulation of Reward, and Allostasis," Neuropsychopharmacology 24:97-129, 2001.
Kouri et al., "Changes in Aggressive Behavior During Withdrawal from Long-Term Marijuana Use," Psychopharmacology 143:302-308, 1999.
Kreek, "Opiate and Cocaine Addictions: Challenge for Pharmacotherapies," Pharmacol. Biochem. Behav. 57:551-569, 1997.
Levin et al., "Improved Regional Cerebral Blood Flow in Chronic Cocaine Polydrug Users Treated with Buprenorphine," J. Nucl. Med. 36:1211-1215, 1995.
London et al., "Cerebral Glucose Utilization in Human Heroin Addicts: Case Reports from a Positron Emission Tomographic Study," Res. Commun. Subst. Abuse 10:141-144, 1989.
Lukacsko et al., "Modulation of the Vasoconstrictor Response to Adrenergic Stimulation by Nucleosides and Nucleotides," J. Pharmocol. Exp. Ther. 222:344-349, 1982.
Lukas et al., "Effects of Short-Term Citicoline Treatment on Acute Cocaine Intoxication and Cardiovascular Effects," Psychopharmacology 157:163-167, 2001.
Lyoo et al., "Frontal Lobe Gray Matter Density Decreases in Bipolar I Disorder," Biol. Psychiatry 55:648-651, 2004.
Lyoo et al., "Frontal Lobe Gray Matter Density Decreases in Bipolar I Disorder," Biol. Psychiatry 55:648-651, 2004.
Maas et al., "Functional Magnetic Resonance Imaging of Human Brain Activation During Cue-Induced Cocaine Craving," Am. J. Psychiatry 155:124-126, 1998.
Maldonado et al., "Involvement of the Endocannabinoid System in Drug Addiction," Trends Neurosci. 29:225-232, 2006.
Malec et al., "Influence of Adenosinergic Drugs on Ethanol Withdrawal Syndrome in Rats," Pot. J. Pharmacol. 48:583-588, 1996. (Abstract).
Martin et al. "Omega-3 Polyunsaturated Fatty Acids Increase Purine but Not Pyrimidine Transport in L1210 Leukaemia Cells," Biochem. J. 315:329-333 (1996).
Martinet et al., "Effects of Cytidine-5'-Diphosphocholine on Norepinephrine, Dopamine and Serotonin Synthesis in Various Regions of the Rat Brain," Arch. Int. Pharmacodyn. 239:52-61, 1979.
Martinet et al., "Interaction of CDP-Choline with Synaptosomal Transport of Biogenic Amines and Their Precursors in Vitro and in Vivo in the Rat Corpus Striatum," Expetientia 34:1197-1199, 1978.
McCance, "Overview of Potential Treatment Medications for Cocaine Dependence," NIDA Res. Monogr. 175:36-72, 1997.
Moglia et al., "Citicoline in Patients with Chronic Cerebrovascular Diseases (CCVD): Quantitative EEG Study," Curr. Ther. Res. 36:309-313, 1984.
Monti et al., "Adenosine Analogues Modulate the Incidence of Sleep Apnea in Rats," Pharmacol. Biochem. Behav. 51:125-131, 1995.
Monticone et al., "On the Therapeutic Use of Nucleosides, Cytidine and Uridine in Some, Neurological Diseases," Minerva Med. 57:4348-4352, 1966.
Moore et al., "Lower Levels of Nucleoside Triphosphate in the Basal Ganglia of Depressed Subjects: A Phosphorous-31 Magnetic Resonance Spectroscopy Study," Am. J. Psychiatry 154:116-118, 1997.
National Institutes of Health, "Problem Sleepiness," NIH Publication No. 97-4071, pp. 1-4, Bethesda, MD, 1997.
Naydenov et al., "Differences in Lymphocyte Electron Transport Gene Expression Levels Between Subjects with Bipolar Disorder and Normal Controls in Response to Glucose Deprivation Stress," Arch. Gen. Psychiatry 64:555-564, E1-E7, 2007.
Nicolson et al., "Evidence for Mycoplasma spp., Chlamydia pneunomiae, and Human Herpes Virus-6 Coinfections in the Blood of Patients with Autistic Spectrum Disorders," J. Neurosci. Res. 85:1143-1148, 2007.
O'Leary et al., "Acute Marijuana Effects on rCBF and Cognition: A Pet Study," NeuroReport 11:3835-3841, 2000.
O'Leary et al., "Acute Marijuana Effects on rCBF and Cognition: A Pet Study," NeuroReport 11:3835-3841, 2000.
O'Rourke et al., "Effect of Chronic Cocaine Exposure on Carotid Artery Reactivity in Neonatal Rabbits," Life Sci. 59:119-130, 1996.
Page et al. "Developmental Disorder Associated with Increased Cellular Nucleotidase Activity," Proc. Natl. Acad. Sci. U.S.A. 94:11601-11606, 1997.
Pekkanen, "Your Inner Clock," Washingtonian 42:131-134, 2007.
Peterson et al., "Neurovascular Complications of Cocaine Abuse," J. Neuropsychiatry Clin. Neurosci. 3:143-149, 1991.
Petkov et al., "Changes in the Brain Biogenic Monoamines Induced by the Nootropic Drugs Adafenoxate and Meclofenoxate and by Citicholine (Experiments on Rats)," Gen. Pharmacol. 21:71-75, 1990.
Petkov et al., "Effects of the Nootropic Agents Adafenoxate, Meclofenoxate and the Acetylcholine Precursor Citicholine on the Brain Muscarinic Receptors (Experiments on Rats)," Acta Physiol. Pharmacol. Bulg. 13:3-10, 1987.
Pleul et al., "Lithium Therapy and the Turnover of Phosphatidylcholine in Human Erythrocytes," Eur. J. Clin. Pharmacol. 31:457-462, 1986.
Purdue News, "Deficiency in Omega-3 Fatty Acids Tied to ADHD in Boys," Jun. 1996.
Radulovacki et al., "Adenosine Analogs and Sleep in Rats," J. Pharmacol, Exp, Ther. 228:268-274, 1984.
Regenold et al., "Cerebrospinal Fluid Evidence of Increased Extra-Mitrochondrial Glucose Metabolism Implicates Mitochondrial Dysfunction in Multliple Sclerosis Disease Progression," J. Neurol. Sci. 275:106-112, 2008.
Regenold et al., "Elevated Cerebrospinal Fluid Lactate Concentrations in Patients with Bipolar Disorder and Schizophrenia: Implications for the Mitochondrial Dysfunction Hypothesis," Biol. Psychiatry 65:489-494, 2009.
Rejdak et al., "Citicoline Treatment Increases Retinal Dopamine Content in Rabbits," Ophthalmic Res. 34:146-149, 2002.
Renshaw et al., "Short-Term Treatment with Citicoline (CDP-Choline) Attenuates Some Measures of Craving in Cocaine-Dependent Subjects: A Preliminary Report," Psychopharmacology 142:132-138, 1999.
Repligen Press Release, "Repligen Reports Initial Clinical Data for Secretin in Schizophrenia," Feb. 4, 2005.
Repligen Press Release, "Repligen Reports Phase 1 Results of RG2133 in Bipolar Disorder and Depression Additional Studies Planned with Uridine in Biopolar Disorder," Jun. 10, 2004.
Repligen Press Release, "Repligen Reports Phase 1 Results of RG2133 in Bipolar Disorder and Depression Additional Studies Planned with Uridine in Biopolar Disorder," Jun. 9, 2004.
Repligen Press Release, "Repligen's RG2417 Demonstrates Positive Activity in Preclinical Model of Anxiety Data Presented at the Annual Meeting of the Society for Neuroscience," Oct. 25, 2004.
Richardson et al., "Laterality Changes Accompanying Symptom Remission in Schizophrenia Following Treatment with Eicosapentaenoic Acid," Int. J. Psychophysiol. 34:333-339, 1999.
Saligaut et al., "Capture de Dopamine Striatale Chez le Rat: Effects d'une Hypoxie Hypobare Agiüe et/ou d'un Traitement Oral Par la Cytidine Diphosphocholine" Circulation et Métabolisme du Cerveau 2:33-42, 1984.
Saligaut et al., "Circling Behaviour in Rats with Unilateral Lesions of the Nigrostriatum Induced by 6-Hydroxydopamine: Changes Induced by Oral Administration of Cytidine-5'-Diphosphocholine," Neuropharmacology 26:1315-1319, 1987.
Saligaut et al., "Effects of Hypoxia and Cytidine (5') Diphosphocholine on the Concentrations of Dopamine, Norepinephrine and Metabolites in Rat Hypothalamus and Striatum," Arch. Int. Pharmacodyn. Ther. 285:25-33, 1987.
Salvadorini et al., "Clinical Evaluation of CDP-Choline (NICHOLIN®): Efficacy as Antidepressant Treatment," Curr. Ther. Res. Clin. Exp. 18:513-520, 1975.
Satoh et al., "Involvement of Adenosine A2A Receptor in Sleep Promotion," Eur. J. Pharmacol. 351:155-162, 1998.
Scammell et al., "An Adenosine A2a Agonist Increases Sleep and Induces Fos in Ventrolateral Preoptic Neurons," Neuroscience 107:653-663, 2001.
Schloesser et al., "Cellular Plasticity Cascades in the Pathophysiology and Treatment of Bipolar Disorder," Neuropsychopharmacology 33:110-133, 2008.
Secades et al., "CDP-Choline: Pharmacological and Clinical Review," Methods Find. Exp. Clin. Pharmacol. 17(Suppl. B):1-54, 1995.
Self et al., "Opposite Modulation of Cocaine-Seeking Behavior by D1- and D2-Like Dopamine Receptor Agonists," Science 271:1586-1589, 1996.
Shargel et al., "Comprehensive Pharmacy Review," Lippincott Williams & Wilkins, Fourth Edition, pp. 547-548, 2001.
Shekim et al., "S-Adenosyl-L-Methionine (SAM) in Adults with ADHD, RS: Preliminary Results from an Open Trial," Psychopharmacol. Bull. 26:249-253, 1990.
Shibuya et al., "Effects of CDP-Choline on Striatal Dopamine Levels and Behavior in Rats," Jpn. J. Pharmacol. 31:47-52, 1981.
Sholar et al., "Concurrent Pharmacokinetic Analysis of Plasma Cocaine and Adrenocorticotropic Hormone in Men," J. Clin. Endocrinol. Metab. 83:966-968, 1998.
Spielman et al., "Treatment of Chronic Insomnia by Restriction of Time in Bed," Sleep 10:45-56, 1987.
Stoll et al., "Choline in the Treatment of Rapid-Cycling Bipolar Disorder: Clinical and Neurochemical Findings in Lithium-Treated Patients," Biol. Psychiatry 40:382-388, 1996.
Stork et al., "Mitochondrial Dysfunction in Bipolar Disorder: Evidence from Magnetic Resonance Spectroscopy Research," Mol. Psychiatry 10:900-919, 2005.
Stradomskii et al., "Pyrimidine Metabolism in Depression Anxiety Disorders," Izvestiya Severo-Kavkazskogo Mauchnogo Tsentra Vysshei Shkoly Estestvennye Nauki, 1990, 1:106-110.
Sun et al. "Observation of Therapeutic Effects of High Dose Citicoline on the Emergency Treatment of 100 Cases of Hypnotics Poisoning," China Pharmacist 2:77-78, 1999. English translation (3 pages).
Tazaki et al., "Treatment of Acute Cerebral Infarction with a Choline Precursor in a Multicenter Double-Blind Placebo-Controlled Study," Stroke 19:211-216, 1988.
Teoh et al., "Acute Interactions of Buprenorphine with Intravenous Cocaine and Morphine: An Investigational New Drug Phase I Safety Evaluation," J. Clin. Psychopharmacol. 13:87-99, 1993.
Tornos et al., "Effect of Oral CDP-Choline on Experimental Withdrawal Syndrome," Arzneim.-Forsch. 33:1018-1021, 1983.
Tucker et al. "Inhibition by Adenosine Analogs of Opiate Withdrawal Effects," NIDA Res. Monogr. 49:85-91, 1984.
U.S. Surgeon General, "Overview of ADHD and its Treatments," U.S. Office of the Surgeon General, Mental Health Matters, pp. 1-6, 2000-2001.
van Groeningen et al., "Clinical and Pharmacokinetic Studies of Prolonged Administration of High-Dose Uridine Intended for Rescue from 5-FU Toxicity," Cancer Treatment Reports, 1986, 70:745-750.
van Groeningen et al., "Clinical and Pharmacologic Study of Orally Administered Uridine," Journal of the National Cancer Institute, 1991, 83:437-441.
Virtue, "Nutrition as Attention Deficit Disorder ADHD Alternative Treatment: Help is as Close as the Kitchen," downloaded from www.naturalhealthweb.com, 1999.
Warner et al., "Pharmacotherapy for Opioid and Cocaine Abuse," Med. Clin. North Am. 81:909-925, 1997.
Weiss, "Metabolism and Actions of CDP-Choline as an Endogenous Compound and Administered Exogenously as Citicoline," Life Sci. 56:637-660, 1995.
Wilson, "Increasing Serotonin Crucial for Treating Obsessive-Compulsive Disorder: Presented at SFN," Doctor's Guide Personal Edition, pp. 1-2, Nov. 14, 2003.
Wurtman et al., "Effect of Oral CDP-Choline on Plasma Choline and Uridine Levels in Humans," Biochemical Pharmacology, 2000, 60:989-992.
Wurtman et al., "Synapse Formation is Enhanced by Oral Administration of Uridine and DHA, the Circulating Precursors of Brain Phosphatides," J. Nutr. Health Aging 13:189-197, 2009.
Wurtman et al., "Synaptic Proteins and Phospholipids are Increased in Gerbil Brain by Administering Uridine Plus Docosahexaenoic Acid Orally," Brain Res. 1088:83-92, 2006.
Yoon et al., "Decreased Glutamate/Glutamine Levels May Mediate Cytidine's Efficacy in Treating Bipolar Depression: A Longitudinal Proton Magnetic Resonance Spectroscopy Study," Neurophyschopharmacology 34:1810-1818, 2009.
Zaharov et al., "Cognitive Disorders in Neurology Practice," A Difficult Patient No. 5, 2005. [Available at http://www.t-pacient.ru/archive/n5-2005/n5-2005—23.html].
Zhao et al., "Effects of Uridine in Models of Epileptogenesis and Seizures," Epilepsy Res. 70:73-82, 2006.
Zhao et al., "Effects of Uridine on Kindling," Epilepsy Behav. 13:47-51, 2008.

Cited By (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20080132472A1 (en) * 2000-03-16 2008-06-05 Renshaw Perry F Compounds for the treatment of psychiatric or substance abuse disorders
US8030294B2 (en) 2000-03-16 2011-10-04 The Mclean Hospital Corporation Compounds for the treatment of psychiatric or substance abuse disorders
US8575219B2 (en) 2000-03-16 2013-11-05 The Mclean Hospital Compounds for the treatment of psychiatric or substance abuse disorders
US20020019364A1 (en) * 2000-03-16 2002-02-14 Renshaw Perry F. Compounds for the treatment of psychiatric or substance abuse disorders
US20110160158A1 (en) * 2008-06-12 2011-06-30 Repligen Corporation Methods of treatment of bipolar disorder
US20100041621A1 (en) * 2008-08-15 2010-02-18 Perry Renshaw Methods and compositions for improving cognitive performance
US20100041620A1 (en) * 2008-08-15 2010-02-18 Perry Renshaw Methods for improving frontal brain bioenergetic metabolism
US11072627B2 (en) 2011-09-30 2021-07-27 Tufts University Uridine diphosphate derivatives, compositions and methods for treating neurodegenerative disorders
US8785620B2 (en) 2011-09-30 2014-07-22 Tufts University Uridine diphosphate derivatives, compositions and methods for treating neurodegenerative disorders
US9227993B2 (en) 2011-09-30 2016-01-05 Tufts University Uridine diphosphate derivatives, compositions and methods for treating neurodegenerative disorders
US9163055B2 (en) 2012-09-28 2015-10-20 Tufts University Methods for treating glaucoma using uridine diphosphate derivatives
US9913855B2 (en) 2012-09-28 2018-03-13 Tufts University Uridine diphosphate derivatives, prodrugs, compositions and uses thereof
US10632138B2 (en) 2012-09-28 2020-04-28 Tufts University Uridine diphosphate derivatives, prodrugs, compositions and uses thereof
US9750760B2 (en) 2012-09-28 2017-09-05 Tufts University Uridine diphosphate derivatives, prodrugs, compositions and methods for treating neurodegenerative disorders
US11241450B2 (en) 2012-09-28 2022-02-08 Tufts University Uridine diphosphate derivatives, prodrugs, compositions and uses thereof
US10138265B2 (en) 2013-03-13 2018-11-27 Tufts University Uridine nucleoside derivatives, compositions and methods of use
US10544183B2 (en) 2013-03-13 2020-01-28 Tufts University Uridine nucleoside derivatives, compositions and methods of use
US11124536B2 (en) 2013-03-13 2021-09-21 Tufts University Uridine nucleoside derivatives, compositions and methods of use

Also Published As

Publication number Publication date
US20100222296A1 (en) 2010-09-02
US20090054370A1 (en) 2009-02-26
EP1765075A4 (en) 2010-11-10
WO2005122767A1 (en) 2005-12-29
EP1765075A1 (en) 2007-03-28

Similar Documents

Publication Publication Date Title
US7737128B2 (en) Pyrimidines, such as uridine, in treatments for patients with bipolar disorder
Verster et al. Clinical pharmacology, clinical efficacy, and behavioral toxicity of alprazolam: a review of the literature
Berk et al. Quetiapine v. lithium in the maintenance phase following a first episode of mania: randomised controlled trial
Vajda et al. The clinical pharmacology of traditional antiepileptic drugs
Abend et al. Treatment of refractory status epilepticus: literature review and a proposed protocol
Ramael et al. Levetiracetam intravenous infusion: a randomized, placebo‐controlled safety and pharmacokinetic study
US10314848B2 (en) Use of testosterone and a 5-HT1A agonist in the treatment of sexual dysfunction
CN114929209A (en) Treatment of amyotrophic lateral sclerosis
Kotagal Treatment of narcolepsy and other organic hypersomnias in children
KR20200055067A (en) Synthetic transdermal cannabidiol for the treatment of focal epilepsy in adults
KR20180081516A (en) How to treat epilepsy
KR20210149028A (en) How to treat depression
Vogel et al. Nefazodone and REM sleep: how do antidepressant drugs decrease REM sleep?
US20090215714A1 (en) Pyrimidines, such as cytidine, in treatments for patients with biopolar disorder
Khan et al. Safety and efficacy of Zavegepant in treating migraine: a systematic review
Walsh et al. Treatment of elderly primary insomnia patients with EVT 201 improves sleep initiation, sleep maintenance, and daytime sleepiness
US20110160158A1 (en) Methods of treatment of bipolar disorder
Sethi et al. Gabapentin in geriatric mania
TW202131910A (en) Methods of treatment using an mtorc1 modulator
Dawit Treatment of Hypoxic Ischemic Encephalopathy in Neonates to Improve Long-Term Outcomes
Kaufman Combining therapies with interferon beta for relapsing and early progressive MS: a review
Sacchetti et al. Paroxetine versus amitriptyline in patients with recurrent major depression: A double-blind trial
Hefton Seizures in the Setting of Trauma
Wang et al. Drugs Commonly Used to Treat Refractory Status Epilepticus in Clinical Practice
Aktekin Video-EEG findings of nonconvulsive status epilepticus in el-derly: a case series study

Legal Events

Date Code Title Description
AS Assignment

Owner name: THE MCLEAN HOSPITAL CORPORATION, MASSACHUSETTS

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:RENSHAW, PERRY;REEL/FRAME:021697/0973

Effective date: 20080924

Owner name: THE MCLEAN HOSPITAL CORPORATION,MASSACHUSETTS

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:RENSHAW, PERRY;REEL/FRAME:021697/0973

Effective date: 20080924

STCF Information on status: patent grant

Free format text: PATENTED CASE

FPAY Fee payment

Year of fee payment: 4

MAFP Maintenance fee payment

Free format text: PAYMENT OF MAINTENANCE FEE, 8TH YEAR, LARGE ENTITY (ORIGINAL EVENT CODE: M1552)

Year of fee payment: 8

MAFP Maintenance fee payment

Free format text: PAYMENT OF MAINTENANCE FEE, 12TH YEAR, LARGE ENTITY (ORIGINAL EVENT CODE: M1553); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY

Year of fee payment: 12