US7722735B2 - Microstructure applique and method for making same - Google Patents
Microstructure applique and method for making same Download PDFInfo
- Publication number
- US7722735B2 US7722735B2 US11/784,249 US78424907A US7722735B2 US 7722735 B2 US7722735 B2 US 7722735B2 US 78424907 A US78424907 A US 78424907A US 7722735 B2 US7722735 B2 US 7722735B2
- Authority
- US
- United States
- Prior art keywords
- appliqué
- microstructure
- pad
- particles
- layer
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related, expires
Links
Images
Classifications
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61L—METHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
- A61L27/00—Materials for grafts or prostheses or for coating grafts or prostheses
- A61L27/28—Materials for coating prostheses
- A61L27/30—Inorganic materials
- A61L27/306—Other specific inorganic materials not covered by A61L27/303 - A61L27/32
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61F—FILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
- A61F2/00—Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
- A61F2/02—Prostheses implantable into the body
- A61F2/30—Joints
- A61F2/30767—Special external or bone-contacting surface, e.g. coating for improving bone ingrowth
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61L—METHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
- A61L27/00—Materials for grafts or prostheses or for coating grafts or prostheses
- A61L27/50—Materials characterised by their function or physical properties, e.g. injectable or lubricating compositions, shape-memory materials, surface modified materials
- A61L27/56—Porous materials, e.g. foams or sponges
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B22—CASTING; POWDER METALLURGY
- B22F—WORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
- B22F7/00—Manufacture of composite layers, workpieces, or articles, comprising metallic powder, by sintering the powder, with or without compacting wherein at least one part is obtained by sintering or compression
- B22F7/002—Manufacture of composite layers, workpieces, or articles, comprising metallic powder, by sintering the powder, with or without compacting wherein at least one part is obtained by sintering or compression of porous nature
- B22F7/004—Manufacture of composite layers, workpieces, or articles, comprising metallic powder, by sintering the powder, with or without compacting wherein at least one part is obtained by sintering or compression of porous nature comprising at least one non-porous part
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B22—CASTING; POWDER METALLURGY
- B22F—WORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
- B22F7/00—Manufacture of composite layers, workpieces, or articles, comprising metallic powder, by sintering the powder, with or without compacting wherein at least one part is obtained by sintering or compression
- B22F7/02—Manufacture of composite layers, workpieces, or articles, comprising metallic powder, by sintering the powder, with or without compacting wherein at least one part is obtained by sintering or compression of composite layers
- B22F7/04—Manufacture of composite layers, workpieces, or articles, comprising metallic powder, by sintering the powder, with or without compacting wherein at least one part is obtained by sintering or compression of composite layers with one or more layers not made from powder, e.g. made from solid metal
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61F—FILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
- A61F2/00—Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
- A61F2/02—Prostheses implantable into the body
- A61F2/30—Joints
- A61F2/3094—Designing or manufacturing processes
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61F—FILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
- A61F2/00—Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
- A61F2/02—Prostheses implantable into the body
- A61F2/30—Joints
- A61F2/38—Joints for elbows or knees
- A61F2/3859—Femoral components
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61F—FILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
- A61F2/00—Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
- A61F2/02—Prostheses implantable into the body
- A61F2/30—Joints
- A61F2002/30001—Additional features of subject-matter classified in A61F2/28, A61F2/30 and subgroups thereof
- A61F2002/30003—Material related properties of the prosthesis or of a coating on the prosthesis
- A61F2002/30004—Material related properties of the prosthesis or of a coating on the prosthesis the prosthesis being made from materials having different values of a given property at different locations within the same prosthesis
- A61F2002/30011—Material related properties of the prosthesis or of a coating on the prosthesis the prosthesis being made from materials having different values of a given property at different locations within the same prosthesis differing in porosity
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61F—FILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
- A61F2/00—Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
- A61F2/02—Prostheses implantable into the body
- A61F2/30—Joints
- A61F2002/30001—Additional features of subject-matter classified in A61F2/28, A61F2/30 and subgroups thereof
- A61F2002/30316—The prosthesis having different structural features at different locations within the same prosthesis; Connections between prosthetic parts; Special structural features of bone or joint prostheses not otherwise provided for
- A61F2002/30329—Connections or couplings between prosthetic parts, e.g. between modular parts; Connecting elements
- A61F2002/30448—Connections or couplings between prosthetic parts, e.g. between modular parts; Connecting elements using adhesives
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61F—FILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
- A61F2/00—Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
- A61F2/02—Prostheses implantable into the body
- A61F2/30—Joints
- A61F2/30767—Special external or bone-contacting surface, e.g. coating for improving bone ingrowth
- A61F2002/30769—Special external or bone-contacting surface, e.g. coating for improving bone ingrowth madreporic
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61F—FILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
- A61F2/00—Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
- A61F2/02—Prostheses implantable into the body
- A61F2/30—Joints
- A61F2/30767—Special external or bone-contacting surface, e.g. coating for improving bone ingrowth
- A61F2/30771—Special external or bone-contacting surface, e.g. coating for improving bone ingrowth applied in original prostheses, e.g. holes or grooves
- A61F2002/30838—Microstructures
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61F—FILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
- A61F2/00—Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
- A61F2/02—Prostheses implantable into the body
- A61F2/30—Joints
- A61F2/30767—Special external or bone-contacting surface, e.g. coating for improving bone ingrowth
- A61F2/30771—Special external or bone-contacting surface, e.g. coating for improving bone ingrowth applied in original prostheses, e.g. holes or grooves
- A61F2002/30878—Special external or bone-contacting surface, e.g. coating for improving bone ingrowth applied in original prostheses, e.g. holes or grooves with non-sharp protrusions, for instance contacting the bone for anchoring, e.g. keels, pegs, pins, posts, shanks, stems, struts
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61F—FILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
- A61F2/00—Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
- A61F2/02—Prostheses implantable into the body
- A61F2/30—Joints
- A61F2/30767—Special external or bone-contacting surface, e.g. coating for improving bone ingrowth
- A61F2002/30929—Special external or bone-contacting surface, e.g. coating for improving bone ingrowth having at least two superposed coatings
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61F—FILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
- A61F2/00—Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
- A61F2/02—Prostheses implantable into the body
- A61F2/30—Joints
- A61F2/3094—Designing or manufacturing processes
- A61F2002/30968—Sintering
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61F—FILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
- A61F2220/00—Fixations or connections for prostheses classified in groups A61F2/00 - A61F2/26 or A61F2/82 or A61F9/00 or A61F11/00 or subgroups thereof
- A61F2220/0025—Connections or couplings between prosthetic parts, e.g. between modular parts; Connecting elements
- A61F2220/005—Connections or couplings between prosthetic parts, e.g. between modular parts; Connecting elements using adhesives
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61F—FILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
- A61F2250/00—Special features of prostheses classified in groups A61F2/00 - A61F2/26 or A61F2/82 or A61F9/00 or A61F11/00 or subgroups thereof
- A61F2250/0014—Special features of prostheses classified in groups A61F2/00 - A61F2/26 or A61F2/82 or A61F9/00 or A61F11/00 or subgroups thereof having different values of a given property or geometrical feature, e.g. mechanical property or material property, at different locations within the same prosthesis
- A61F2250/0023—Special features of prostheses classified in groups A61F2/00 - A61F2/26 or A61F2/82 or A61F9/00 or A61F11/00 or subgroups thereof having different values of a given property or geometrical feature, e.g. mechanical property or material property, at different locations within the same prosthesis differing in porosity
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61F—FILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
- A61F2310/00—Prostheses classified in A61F2/28 or A61F2/30 - A61F2/44 being constructed from or coated with a particular material
- A61F2310/00005—The prosthesis being constructed from a particular material
- A61F2310/00011—Metals or alloys
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61F—FILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
- A61F2310/00—Prostheses classified in A61F2/28 or A61F2/30 - A61F2/44 being constructed from or coated with a particular material
- A61F2310/00389—The prosthesis being coated or covered with a particular material
- A61F2310/00395—Coating or prosthesis-covering structure made of metals or of alloys
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61F—FILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
- A61F2310/00—Prostheses classified in A61F2/28 or A61F2/30 - A61F2/44 being constructed from or coated with a particular material
- A61F2310/00389—The prosthesis being coated or covered with a particular material
- A61F2310/00395—Coating or prosthesis-covering structure made of metals or of alloys
- A61F2310/00401—Coating made of iron, of stainless steel or of other Fe-based alloys
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61F—FILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
- A61F2310/00—Prostheses classified in A61F2/28 or A61F2/30 - A61F2/44 being constructed from or coated with a particular material
- A61F2310/00389—The prosthesis being coated or covered with a particular material
- A61F2310/00395—Coating or prosthesis-covering structure made of metals or of alloys
- A61F2310/00407—Coating made of titanium or of Ti-based alloys
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61F—FILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
- A61F2310/00—Prostheses classified in A61F2/28 or A61F2/30 - A61F2/44 being constructed from or coated with a particular material
- A61F2310/00389—The prosthesis being coated or covered with a particular material
- A61F2310/00395—Coating or prosthesis-covering structure made of metals or of alloys
- A61F2310/00413—Coating made of cobalt or of Co-based alloys
Definitions
- the invention relates to a method of forming a porous structure on the surface of a solid substrate.
- the porous structure is created by the use of a microstructure appliqué consisting of a binder and a particulate material formed in the predetermined shape and depth and applied to a substrate of similar or dissimilar material and geometrical configuration.
- the process is especially, although not exclusively, useful for making prosthetic implant devices with porous metal-coated surfaces.
- Kafesjian teaches a method where an adhesive is applied to select areas of a valve body casting followed by pouring metallic powder of specific size onto the treated areas. Additional layers of powder are applied by repeating the process until reaching the desired thickness. After achieving the desired depth, the coated casting is sintered in an appropriate atmosphere to permanently attach the particles to the casting and to each other.
- the shape and size of the metallic powder and the appropriate choice of sintering conditions control the porosity of the sintered layer.
- Porous coatings are again added to bone prosthesis in U.S. Pat. No. 4,550,448 where a layer of spherical metal powder is deposited on adhesive-coated areas, via treatment in a fluid bed, and presintered to burn off the binder and establish bonding between different particles and between particles and the substrate surface.
- a second layer of particles is added on top of the first layer in similar fashion and presintered a second time for establishing secure bonding between layers.
- a third sinter step is performed on the coated substrate to promote formation of secure junctions between particles, between layers and attachments to the substrate.
- a porous metal coating is created by positioning a rigid mold in close proximity to a substrate such that the space between mold and substrate defines the boundaries of the porous layer.
- the defined space is filled with metal powder, without a binder, and the mold/substrate assembly then presintered to lightly bind particles together and to the substrate. After removal from the mold, the coated substrate is further sintered to obtain the proper desired bond strength and pore volume.
- This technique would be difficult to implement for coating areas with complex geometrical shapes and patterns but offers a way to eliminate sources of contamination introduced through the use of adhesive binders.
- Bugle in U.S. Pat. No.
- 4,854,496 describes a method where a porous pad of pure titanium is first made by presintering powder in a cavity of the desired shape. The shaped pad then sintered to achieve required bond strength, the pad flattened on one side to create a bonding surface and finally sintered to the substrate under application of pressure within a non-reactive atmosphere.
- Chowdhary describes a method in U.S. Pat. No. 5,104,410 wherein a titanium powder is combined with a urea to form a mixture that is compressed into pockets using a hydraulic press. After compaction, the urea component is leached out of the pressed-on material by soaking the device in water and subsequently dried and sintered in vacuum. The porosity of the added layer is created by the removal of urea within the volume of the compacted pockets.
- porous metal pads are fabricated using a sintering or diffusion bonding process. Pre-shaped pads with adhesive backing are placed on the implant and coupled to the surface at a plurality of locations by application of a laser beam to form weld beads attaching the pads to the implant body.
- metallic porous bead preforms are described in U.S. Pat. Nos. 6,193,761 and 6,209,621.
- the bead preforms are first prepared by mixing metallic beads with binder, such as methylcellulose, and applying the resultant slurry to a mold of the desired shape.
- binder such as methylcellulose
- the bead/binder slurry is fired to burn off the binder and bond beads together.
- the shaped preform is then attached to the prosthesis during its formation by the casting of molten metal into a refractory shell containing said preform positioned where a porous metal coating is desired on the implant device.
- the present invention enables the production of devices with porous metal-coated surfaces possessing uniform and reproducible pore diameters and volume. This is accomplished preferably by the utilization of microstructure appliqués that are manufactured in specific shape and controlled dimension and positioned at locations on a surface where a porous coating is desired.
- microstructure appliqués are fabricated according to the prescribed series of steps.
- the shape of the appliqué is formed to correspond to the shape of a selected area where a porous coating is to be applied.
- a pattern of the representative shape is cut out from a suitable substrate material such as silicone rubber.
- multiple layers of uniformly sized and packed particles are transferred to and retained on the pattern with application of an appropriate binder solution.
- the appliqué is removed from the pattern and adhesively attached to the area of corresponding shape.
- the above process can be used to specifically make structures consisting of only one layer of particles by executing the series of steps one time. Permanent attachment of the appliqué to the surface, as it relates to prosthetic implant devices, is accomplished through the application of an appropriate sintering treatment under controlled conditions.
- the advantages of the present invention include a method of making uniform and reproducible structures with uniform porosity in controlled shapes and thickness that can be applied to prosthetic implant surfaces for establishing porous metal coatings into which bone tissue can infiltrate and grow.
- the method is adaptable to automation such that microstructure appliqués of specific shape and dimension can be produced in large quantity, thereby shortening the manufacturing cycle and reducing costs associated with prosthetic implant production.
- the scope of the porous microstructure appliqués shall not be limited to the sole application for medical implant devices and can be used to apply porous coatings used elsewhere in such areas as filtration, separations and fluid processing technologies.
- the object of this invention is to provide a method for applying particulate particles on a substrate for the purpose of making a porous surface structure.
- a further object is to provide a means whereby the particulate material can be formed into microstructure appliqués that may be adhered to the substrate.
- a further object is to provide a means of reducing production time and costs by reducing the number of steps to manufacture prosthetic implant devices having porous metal coatings.
- a further object is to provide a more uniform and reproducible means of packing the particles within the porous surface structure of the prosthetic implant.
- a further object is to provide a means for controlling both shape and depth of a porous surface structure applied to a prosthetic implant.
- a further object is to provide a means for controlling a uniform size of pores within the porous surface structure by using a narrow distribution of particle sizes.
- This invention features a method of making microstructure appliqués that can accommodate a plurality of vaporizable binder systems which thermally decompose without leaving objectionable residues or contaminants within the porous structure.
- This invention results from the realization that a vaporizable binder and particulates can be formed into flexible structures that can be handled, through appropriate selection of binder, processing and forming, for preparing porous coatings on the surface of prosthetic implants.
- FIG. 1 is drawing of a femoral knee component showing the interior surfaces where a porous metal coating is typically applied.
- FIG. 2 is a drawing of the upper end section of the femoral knee component depicting an area with curved perimeter and an oval-shaped border in the center.
- FIG. 3 is a side view of the microstructure appliqué consisting of one layer of metal powder particles 4 adhered to a silicone rubber pad 2 by application of an adhesive layer 3 and held together through the addition of a binder solution 5 and filling the space in-between particles 6 .
- FIG. 4 is a side view of a microstructure appliqué consisting of two layers of metal powder particles adhered to the silicone rubber pad 2 showing the addition of a second adhesive layer 3 ′ and second layer of powder particles 8 over the first layer 7 and addition of more binder solution 5 ′ to fill the space between particles in the second layer 6 ′.
- FIG. 5 is an image of a microstructure appliqué made in the shape of the section of the femoral knee component pictured FIG. 2 following the method of this invention.
- FIGS. 3 and 4 The invention will be described in detail using FIGS. 3 and 4 as an outline.
- the specific shape of the microstructure appliqué corresponds to a section of a femoral knee component shown in FIG. 2 .
- the process for making a microstructure appliqué starts by loading metal powder of the desired particle size into a shallow trough or tray such that the powder forms a dense, closely-packed body of particles at a depth of one particle diameter (mono-layer). Packing of the powder particles can be assisted by intermittent tapping of the tray or by the addition of mechanical vibration until the particles reach a maximum desired packing density in a single layer.
- the shape of the microstructure appliqué is formed to correspond to the shape of a selected region of the prosthesis where a porous metal coating is to be situated.
- the desired shape is cut from a sheet of silicon rubber of suitable firmness (60 A durometer) and possessing an adhesive layer on one side such that the shaped rubber cut-out can be adhered to a support block 1 suitable for mounting in a hand operated or air-actuated press.
- a thin layer of adhesive 3 with sufficient tackiness is sprayed (via aerosol) onto the pad surface and allowed to stand for a minute to develop maximum tackiness.
- a suitable product for this application is Repositionable 75 Spray Adhesive (3M, St. Paul, Minn.) although others may be used.
- the support block 1 with mounted pad 2 is then situated in the air-actuated press or like device such that the pad surface covered with adhesive is parallel to and facing the trough of packed powder particles.
- the pad/support block is pressed onto the single layer of packed particles with enough force to capture and transfer essentially all of those particles coming into contact with the adhesive layer 3 .
- Contact between pad and tray is typically maintained for a period of 5-10 seconds.
- the press is used here only as a means of maintaining the pad parallel to the packed layer of particles in the tray and ensures contact between pad surface and particles is uniform and reproducible.
- the pad/support block with captured particles is then removed from the press and reoriented to a horizontal position with the powder layer facing upward.
- a binder solution 5 is then applied to the packed powder surface in sufficient quantity to fill the void volume 6 between particles in such a manner as to not disturb the particle packing.
- the preferred means for addition of the binder solution 5 is accomplished with the use of an airbrush or similar device that dispenses the binder solution in the form of micro-droplets.
- the support block 1 containing the pad 2 with applied powder 4 and binder solution 5 is then placed in an oven at 70° C. for 15-30 minutes to accelerate the curing of the binder.
- the thickness of the microstructure appliqué may be adjusted by adding additional layers of particles of like size or different sizes.
- Typical porous metal coatings can range from 2 to 4 layers in thickness, depending upon the type and application of the prosthesis. This can be accomplished by repeating the steps to form a second layer, beginning with preparing another single layer of powder particles in the tray and applying another layer of aerosol spray adhesive 3 ′ over the surface of assembled particles 7 covering the shaped silicon rubber pad 2 , as shown in FIG. 4 .
- the support block 1 with pad 2 and first layer of metal particles 7 is then pressed onto the packed layer of particles in the trough to pick up a second layer of particles 8 onto the first layer 7 .
- additional binder solution 5 ′ is applied to the packed particle surface in sufficient quantity to backfill the void volume 6 ′ contained between the first and second particle layers.
- the applied binder solution is cured with another 15-30 minute cycle in the 70° C. oven. Additional layers of particles can be added in a likewise fashion.
- the cured appliqué is removed from the silicon rubber pad 2 by using a flat, wide blade inserted between the bottom-most particle layer and rubber pad to lift the piece from the pad.
- the microstructure appliqué can be applied to the corresponding shaped area of the prosthesis by first adding a small amount of adhesive to the surface of the prosthesis and manually pressing the appliqué into the desired area.
- a pressure-sensitive adhesive film may be applied to the backside of the appliqué and then the appliqué pressed into place on the implant surface.
- the appliqué structure is permanently attached to the prosthesis surface through application of the appropriate sintering treatment.
- biocompatible metals or metals having high strength and durability can be used to form microstructure appliqués.
- Exemplary materials include stainless steel, titanium, titanium alloys and cobalt-chromium alloys as well as other materials that are well known for use in the manufacturing of prosthetic implant articles.
- a particularly preferred metal alloy includes ASTM F-75.
- the metal powder which is used to make a microstructure appliqué of the present invention, can be a variety of different sizes, depending on the type and application of the implant device.
- the metal particles have a spherical geometry such as those made utilizing a rotating electrode process or plasma rotating electrode process, with the resulting product screened to achieve a narrow particle distribution.
- the particles can have a nominal diameter in the range between 0.007 to 0.033 inch. Choice of particle diameter and size distribution will determine the total volume of porosity and pore size distribution contained within the microstructure appliqué after permanent attachment to the prosthesis surface.
- a table showing the particle diameter and corresponding particle size in microns is shown in Table 1.
- a preferred particle size distribution for manufacturing the porous coating on a prosthetic implant device includes particles in the range between 595 to 841 microns. Still another size distribution includes particles between 354 to 500 microns. Another narrow distribution includes particles between 250 to 354 microns. Finally, particles in the range between 177 to 250 microns are useful in creating a porous coating composed of smaller pores in comparison to the larger particle sizes.
- binder solutions that have curing or solidifying properties, which firmly hold the particles together after reaching their respective endpoints, may be used.
- Example materials include aqueous solutions of methylcellulose and other water-soluble polymers such as polyvinyl alcohol.
- This invention improves upon the method of manufacturing prosthetic implant devices containing porous metal-coated regions by making more uniform and reproducible structures in a multitude of shapes and thickness that is adaptable to automation.
- the invention is described with respect to an implantable knee femoral component, it is understood that the invention is applicable to the manufacture of other joint prostheses and implantable articles as well.
Landscapes
- Health & Medical Sciences (AREA)
- Chemical & Material Sciences (AREA)
- Veterinary Medicine (AREA)
- General Health & Medical Sciences (AREA)
- Engineering & Computer Science (AREA)
- Oral & Maxillofacial Surgery (AREA)
- Transplantation (AREA)
- Public Health (AREA)
- Life Sciences & Earth Sciences (AREA)
- Animal Behavior & Ethology (AREA)
- Mechanical Engineering (AREA)
- Composite Materials (AREA)
- Materials Engineering (AREA)
- Dermatology (AREA)
- Epidemiology (AREA)
- Medicinal Chemistry (AREA)
- Manufacturing & Machinery (AREA)
- Biomedical Technology (AREA)
- Vascular Medicine (AREA)
- Dispersion Chemistry (AREA)
- Heart & Thoracic Surgery (AREA)
- Cardiology (AREA)
- Orthopedic Medicine & Surgery (AREA)
- Inorganic Chemistry (AREA)
- Prostheses (AREA)
- Materials For Medical Uses (AREA)
Abstract
Description
TABLE 1 |
Metal Particle Size Conversion Table |
Particle diameter | Converted to | ||
(inch) | Microns(μ) | ||
0.0331 | 841 | ||
0.0280 | 707 | ||
0.0232 | 595 | ||
0.0197 | 500 | ||
0.0138 | 354 | ||
0.0098 | 250 | ||
0.0070 | 177 | ||
Claims (16)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US11/784,249 US7722735B2 (en) | 2006-04-06 | 2007-04-06 | Microstructure applique and method for making same |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US78990206P | 2006-04-06 | 2006-04-06 | |
US11/784,249 US7722735B2 (en) | 2006-04-06 | 2007-04-06 | Microstructure applique and method for making same |
Publications (2)
Publication Number | Publication Date |
---|---|
US20070243312A1 US20070243312A1 (en) | 2007-10-18 |
US7722735B2 true US7722735B2 (en) | 2010-05-25 |
Family
ID=38605145
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US11/784,249 Expired - Fee Related US7722735B2 (en) | 2006-04-06 | 2007-04-06 | Microstructure applique and method for making same |
Country Status (1)
Country | Link |
---|---|
US (1) | US7722735B2 (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US8864826B2 (en) * | 2010-02-26 | 2014-10-21 | Limacorporate Spa | Integrated prosthetic element |
US20170027707A1 (en) * | 2013-12-20 | 2017-02-02 | Adler Ortho S.R.L. | Femoral component for knee prostheses |
Families Citing this family (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US8123814B2 (en) | 2001-02-23 | 2012-02-28 | Biomet Manufacturing Corp. | Method and appartus for acetabular reconstruction |
US8266780B2 (en) | 2005-04-21 | 2012-09-18 | Biomet Manufacturing Corp. | Method and apparatus for use of porous implants |
US8292967B2 (en) | 2005-04-21 | 2012-10-23 | Biomet Manufacturing Corp. | Method and apparatus for use of porous implants |
US7635447B2 (en) | 2006-02-17 | 2009-12-22 | Biomet Manufacturing Corp. | Method and apparatus for forming porous metal implants |
US7722735B2 (en) * | 2006-04-06 | 2010-05-25 | C3 Materials Corp. | Microstructure applique and method for making same |
US8383033B2 (en) | 2009-10-08 | 2013-02-26 | Biomet Manufacturing Corp. | Method of bonding porous metal to metal substrates |
US20140010951A1 (en) * | 2012-06-26 | 2014-01-09 | Zimmer, Inc. | Porous metal implants made from custom manufactured substrates |
US20170266009A1 (en) * | 2014-07-09 | 2017-09-21 | Ceramtec Gmbh | Full-Ceramic Resurfacing Prosthesis Having a Porous Inner Face |
Citations (63)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3388004A (en) * | 1965-09-30 | 1968-06-11 | Leesona Corp | Method of making electrodes using hydrophobic polymer |
US3605123A (en) | 1969-04-29 | 1971-09-20 | Melpar Inc | Bone implant |
US3607369A (en) * | 1968-09-11 | 1971-09-21 | Union Carbide Corp | Method for forming porous aluminum layer |
US3855638A (en) | 1970-06-04 | 1974-12-24 | Ontario Research Foundation | Surgical prosthetic device with porous metal coating |
US3871200A (en) * | 1973-02-06 | 1975-03-18 | Sumitomo Electric Industries | Method and apparatus for producing sintered metal product |
US3897221A (en) * | 1970-07-13 | 1975-07-29 | Atomic Energy Commission | Porous metal structure |
US4017911A (en) * | 1974-05-28 | 1977-04-19 | American Hospital Supply Corporation | Heart valve with a sintered porous surface |
US4049428A (en) * | 1971-03-25 | 1977-09-20 | Union Carbide Corporation | Metal porous abradable seal |
US4073999A (en) * | 1975-05-09 | 1978-02-14 | Minnesota Mining And Manufacturing Company | Porous ceramic or metallic coatings and articles |
US4101984A (en) * | 1975-05-09 | 1978-07-25 | Macgregor David C | Cardiovascular prosthetic devices and implants with porous systems |
US4244824A (en) * | 1978-02-27 | 1981-01-13 | Enka Ag | Molded body with inclusions |
US4357393A (en) * | 1979-04-10 | 1982-11-02 | Katuragi Sangyo Co., Ltd. | Sintered porous metal plate and its production |
US4536894A (en) | 1983-08-04 | 1985-08-27 | Galante Jorge O | Hip prosthesis with flared porous bony ingrowth pads |
US4550448A (en) | 1982-02-18 | 1985-11-05 | Pfizer Hospital Products Group, Inc. | Bone prosthesis with porous coating |
US4569821A (en) * | 1982-02-24 | 1986-02-11 | Compagnie Generale D'electricite, S.A. | Method of preparing a porous metal body |
US4612160A (en) | 1984-04-02 | 1986-09-16 | Dynamet, Inc. | Porous metal coating process and mold therefor |
US4636219A (en) * | 1985-12-05 | 1987-01-13 | Techmedica, Inc. | Prosthesis device fabrication |
US4644942A (en) * | 1981-07-27 | 1987-02-24 | Battelle Development Corporation | Production of porous coating on a prosthesis |
US4660755A (en) * | 1985-09-09 | 1987-04-28 | Zimmer, Inc. | Method for constructing a surgical implant |
US4693864A (en) * | 1985-06-24 | 1987-09-15 | Donald W. Lloyd Realty, Inc. | Powder metallurgy process for producing steel articles |
US4702930A (en) * | 1984-12-28 | 1987-10-27 | Battelle-Institute E.V. | Method of producing implantable bone replacement materials |
US4793968A (en) * | 1982-12-29 | 1988-12-27 | Sermatech International, Inc. | Surface modified powder metal parts and methods for making same |
US4846393A (en) * | 1987-01-28 | 1989-07-11 | Commissariat A L'energie Atomique | Process for attaching a porous layer to a substrate and using the process to the making of a prosthesis |
US4854496A (en) * | 1987-01-16 | 1989-08-08 | Dynamet, Inc. | Porous metal coated implant and method for producing same |
US5080674A (en) * | 1988-09-08 | 1992-01-14 | Zimmer, Inc. | Attachment mechanism for securing an additional portion to an implant |
US5104410A (en) | 1990-10-22 | 1992-04-14 | Intermedics Orthopedics, Inc | Surgical implant having multiple layers of sintered porous coating and method |
US5236457A (en) * | 1992-02-27 | 1993-08-17 | Zimmer, Inc. | Method of making an implant having a metallic porous surface |
US5470401A (en) * | 1990-10-09 | 1995-11-28 | Iowa State University Research Foundation, Inc. | Method of making bonded or sintered permanent magnets |
US5504300A (en) * | 1994-04-18 | 1996-04-02 | Zimmer, Inc. | Orthopaedic implant and method of making same |
US5734959A (en) * | 1995-10-12 | 1998-03-31 | Zimmer, Inc. | Method of making an orthopaedic implant having a porous surface using an organic binder |
US5773789A (en) * | 1994-04-18 | 1998-06-30 | Bristol-Myers Squibb Company | Method of making an orthopaedic implant having a porous metal pad |
US5846664A (en) * | 1995-07-25 | 1998-12-08 | Westaim Technologies, Inc. | Porous metal structures and processes for their production |
US5848351A (en) * | 1995-04-03 | 1998-12-08 | Mitsubishi Materials Corporation | Porous metallic material having high specific surface area, method of producing the same, porous metallic plate material and electrode for alkaline secondary battery |
US5973222A (en) * | 1994-04-18 | 1999-10-26 | Bristol-Myers Squibb Co. | Orthopedic implant having a porous metal pad |
US6033788A (en) * | 1996-11-15 | 2000-03-07 | Case Western Reserve University | Process for joining powder metallurgy objects in the green (or brown) state |
US6049054A (en) * | 1994-04-18 | 2000-04-11 | Bristol-Myers Squibb Company | Method of making an orthopaedic implant having a porous metal pad |
US6087024A (en) * | 1996-12-17 | 2000-07-11 | Whinnery; Leroy Louis | Method for forming porous sintered bodies with controlled pore structure |
US6132674A (en) * | 1995-10-12 | 2000-10-17 | Bristol-Myers Squibb Company | Method of making an orthopaedic implant having a porous surface |
US6193761B1 (en) | 1995-07-07 | 2001-02-27 | Depuy Orthopaedics, Inc. | Implantable prosthesis with metallic porous bead preforms applied during casting |
US6253443B1 (en) * | 1997-09-30 | 2001-07-03 | Scimed Life Systems, Inc. | Method of forming a stent |
US6291012B1 (en) * | 1997-02-04 | 2001-09-18 | Fuji Kihan Co., Ltd. | Method for forming a metallic coat by impacting metallic particles on a workpiece |
US20020168282A1 (en) * | 2001-05-14 | 2002-11-14 | Lu Jyh-Woei J. | Sintering process and tools for use in metal injection molding of large parts |
US6514288B2 (en) * | 2001-02-23 | 2003-02-04 | Zimmer, Inc. | Prosthetic stem with strengthening rib |
US20030037639A1 (en) * | 2001-06-28 | 2003-02-27 | Woka Schweisstechnik Gmbh | Matrix powder for the production of bodies or components for wear-resistant applications and a component produced therefrom |
US20030054149A1 (en) * | 2001-09-20 | 2003-03-20 | Pan Alfred I-Tsung | Porously coated open-structure substrate and method of manufacture thereof |
US6652804B1 (en) * | 1998-04-17 | 2003-11-25 | Gkn Sinter Metals Gmbh | Method for producing an openly porous sintered metal film |
US6663688B2 (en) * | 2001-06-28 | 2003-12-16 | Woka Schweisstechnik Gmbh | Sintered material of spheroidal sintered particles and process for producing thereof |
US6740186B2 (en) * | 2002-02-20 | 2004-05-25 | Zimmer Technology, Inc. | Method of making an orthopeadic implant having a porous metal surface |
US20040137209A1 (en) * | 2002-12-12 | 2004-07-15 | Robert Zeller | Porous sintered composite materials |
US6814928B2 (en) * | 1998-09-24 | 2004-11-09 | Intermetallics Co., Ltd. | Method of making sintered articles |
US6840978B2 (en) * | 2001-06-11 | 2005-01-11 | Sumitomo Electric Industries, Ltd. | Porous metal article, metal composite material using the article and method for production thereof |
US20050149170A1 (en) * | 1998-08-25 | 2005-07-07 | Tassel Robert A.V. | Implantable device for promoting repair of a body lumen |
US6939509B2 (en) * | 2000-03-24 | 2005-09-06 | Manfred Endrich | Method for manufacturing metal parts |
US6945448B2 (en) * | 2002-06-18 | 2005-09-20 | Zimmer Technology, Inc. | Method for attaching a porous metal layer to a metal substrate |
US20060003179A1 (en) * | 2002-02-08 | 2006-01-05 | Howmedica Osteonics Corp. | Porous metallic scaffold for tissue ingrowth |
US7014712B2 (en) * | 2000-08-04 | 2006-03-21 | Tomoegawa Paper Co., Ltd. | Production apparatus for a monolayer powder film on a base material in a shape of an elongated film |
US20060105015A1 (en) * | 2004-11-12 | 2006-05-18 | Venu Perla | System and method for attaching soft tissue to an implant |
US7241415B2 (en) * | 2002-07-23 | 2007-07-10 | University Of Southern California | Metallic parts fabrication using selective inhibition of sintering (SIS) |
US20070243312A1 (en) * | 2006-04-06 | 2007-10-18 | C3 Materials Corp. | Microstructure applique and method for making same |
US7296990B2 (en) * | 2005-10-14 | 2007-11-20 | Hewlett-Packard Development Company, L.P. | Systems and methods of solid freeform fabrication with translating powder bins |
US20080106853A1 (en) * | 2004-09-30 | 2008-05-08 | Wataru Suenaga | Process for Producing Porous Sintered Metal |
US7597715B2 (en) * | 2005-04-21 | 2009-10-06 | Biomet Manufacturing Corp. | Method and apparatus for use of porous implants |
US7632575B2 (en) * | 2003-12-03 | 2009-12-15 | IMDS, Inc. | Laser based metal deposition (LBMD) of implant structures |
-
2007
- 2007-04-06 US US11/784,249 patent/US7722735B2/en not_active Expired - Fee Related
Patent Citations (71)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3388004A (en) * | 1965-09-30 | 1968-06-11 | Leesona Corp | Method of making electrodes using hydrophobic polymer |
US3607369A (en) * | 1968-09-11 | 1971-09-21 | Union Carbide Corp | Method for forming porous aluminum layer |
US3605123A (en) | 1969-04-29 | 1971-09-20 | Melpar Inc | Bone implant |
US3855638A (en) | 1970-06-04 | 1974-12-24 | Ontario Research Foundation | Surgical prosthetic device with porous metal coating |
US3897221A (en) * | 1970-07-13 | 1975-07-29 | Atomic Energy Commission | Porous metal structure |
US4049428A (en) * | 1971-03-25 | 1977-09-20 | Union Carbide Corporation | Metal porous abradable seal |
US3871200A (en) * | 1973-02-06 | 1975-03-18 | Sumitomo Electric Industries | Method and apparatus for producing sintered metal product |
US4017911A (en) * | 1974-05-28 | 1977-04-19 | American Hospital Supply Corporation | Heart valve with a sintered porous surface |
US4073999A (en) * | 1975-05-09 | 1978-02-14 | Minnesota Mining And Manufacturing Company | Porous ceramic or metallic coatings and articles |
US4101984A (en) * | 1975-05-09 | 1978-07-25 | Macgregor David C | Cardiovascular prosthetic devices and implants with porous systems |
US4244824A (en) * | 1978-02-27 | 1981-01-13 | Enka Ag | Molded body with inclusions |
US4357393A (en) * | 1979-04-10 | 1982-11-02 | Katuragi Sangyo Co., Ltd. | Sintered porous metal plate and its production |
US4443404A (en) * | 1979-04-10 | 1984-04-17 | Katuragi Sangyo Co., Ltd. | Sintered porous metal plate and its production |
US4644942A (en) * | 1981-07-27 | 1987-02-24 | Battelle Development Corporation | Production of porous coating on a prosthesis |
US4550448A (en) | 1982-02-18 | 1985-11-05 | Pfizer Hospital Products Group, Inc. | Bone prosthesis with porous coating |
US4569821A (en) * | 1982-02-24 | 1986-02-11 | Compagnie Generale D'electricite, S.A. | Method of preparing a porous metal body |
US4793968A (en) * | 1982-12-29 | 1988-12-27 | Sermatech International, Inc. | Surface modified powder metal parts and methods for making same |
US4536894A (en) | 1983-08-04 | 1985-08-27 | Galante Jorge O | Hip prosthesis with flared porous bony ingrowth pads |
US4612160A (en) | 1984-04-02 | 1986-09-16 | Dynamet, Inc. | Porous metal coating process and mold therefor |
US4702930A (en) * | 1984-12-28 | 1987-10-27 | Battelle-Institute E.V. | Method of producing implantable bone replacement materials |
US4693864A (en) * | 1985-06-24 | 1987-09-15 | Donald W. Lloyd Realty, Inc. | Powder metallurgy process for producing steel articles |
US4660755A (en) * | 1985-09-09 | 1987-04-28 | Zimmer, Inc. | Method for constructing a surgical implant |
US4636219A (en) * | 1985-12-05 | 1987-01-13 | Techmedica, Inc. | Prosthesis device fabrication |
US4854496A (en) * | 1987-01-16 | 1989-08-08 | Dynamet, Inc. | Porous metal coated implant and method for producing same |
US4846393A (en) * | 1987-01-28 | 1989-07-11 | Commissariat A L'energie Atomique | Process for attaching a porous layer to a substrate and using the process to the making of a prosthesis |
US5080674A (en) * | 1988-09-08 | 1992-01-14 | Zimmer, Inc. | Attachment mechanism for securing an additional portion to an implant |
US5470401A (en) * | 1990-10-09 | 1995-11-28 | Iowa State University Research Foundation, Inc. | Method of making bonded or sintered permanent magnets |
US5104410A (en) | 1990-10-22 | 1992-04-14 | Intermedics Orthopedics, Inc | Surgical implant having multiple layers of sintered porous coating and method |
US5236457A (en) * | 1992-02-27 | 1993-08-17 | Zimmer, Inc. | Method of making an implant having a metallic porous surface |
US5571187A (en) * | 1992-02-27 | 1996-11-05 | Zimmer, Inc. | Implant having a metallic porous surface |
US5504300A (en) * | 1994-04-18 | 1996-04-02 | Zimmer, Inc. | Orthopaedic implant and method of making same |
US5672284A (en) * | 1994-04-18 | 1997-09-30 | Zimmer, Inc. | Method of making orthopaedic implant by welding |
US6049054A (en) * | 1994-04-18 | 2000-04-11 | Bristol-Myers Squibb Company | Method of making an orthopaedic implant having a porous metal pad |
US5773789A (en) * | 1994-04-18 | 1998-06-30 | Bristol-Myers Squibb Company | Method of making an orthopaedic implant having a porous metal pad |
US5973222A (en) * | 1994-04-18 | 1999-10-26 | Bristol-Myers Squibb Co. | Orthopedic implant having a porous metal pad |
US5848351A (en) * | 1995-04-03 | 1998-12-08 | Mitsubishi Materials Corporation | Porous metallic material having high specific surface area, method of producing the same, porous metallic plate material and electrode for alkaline secondary battery |
US6193761B1 (en) | 1995-07-07 | 2001-02-27 | Depuy Orthopaedics, Inc. | Implantable prosthesis with metallic porous bead preforms applied during casting |
US6209621B1 (en) | 1995-07-07 | 2001-04-03 | Depuy Orthopaedics, Inc. | Implantable prostheses with metallic porous bead preforms applied during casting and method of forming the same |
US5846664A (en) * | 1995-07-25 | 1998-12-08 | Westaim Technologies, Inc. | Porous metal structures and processes for their production |
US5734959A (en) * | 1995-10-12 | 1998-03-31 | Zimmer, Inc. | Method of making an orthopaedic implant having a porous surface using an organic binder |
US6132674A (en) * | 1995-10-12 | 2000-10-17 | Bristol-Myers Squibb Company | Method of making an orthopaedic implant having a porous surface |
US6544472B1 (en) * | 1995-10-12 | 2003-04-08 | Zimmer, Inc. | Method of making an orthopaedic implant having a porous surface |
US5926685A (en) * | 1995-10-12 | 1999-07-20 | Zimmer, Inc. | Method of making an orthopaedic implant having a porous surface using an organic binder |
US6033788A (en) * | 1996-11-15 | 2000-03-07 | Case Western Reserve University | Process for joining powder metallurgy objects in the green (or brown) state |
US6087024A (en) * | 1996-12-17 | 2000-07-11 | Whinnery; Leroy Louis | Method for forming porous sintered bodies with controlled pore structure |
US6291012B1 (en) * | 1997-02-04 | 2001-09-18 | Fuji Kihan Co., Ltd. | Method for forming a metallic coat by impacting metallic particles on a workpiece |
US6253443B1 (en) * | 1997-09-30 | 2001-07-03 | Scimed Life Systems, Inc. | Method of forming a stent |
US6652804B1 (en) * | 1998-04-17 | 2003-11-25 | Gkn Sinter Metals Gmbh | Method for producing an openly porous sintered metal film |
US20050149170A1 (en) * | 1998-08-25 | 2005-07-07 | Tassel Robert A.V. | Implantable device for promoting repair of a body lumen |
US6814928B2 (en) * | 1998-09-24 | 2004-11-09 | Intermetallics Co., Ltd. | Method of making sintered articles |
US6939509B2 (en) * | 2000-03-24 | 2005-09-06 | Manfred Endrich | Method for manufacturing metal parts |
US7014712B2 (en) * | 2000-08-04 | 2006-03-21 | Tomoegawa Paper Co., Ltd. | Production apparatus for a monolayer powder film on a base material in a shape of an elongated film |
US6514288B2 (en) * | 2001-02-23 | 2003-02-04 | Zimmer, Inc. | Prosthetic stem with strengthening rib |
US6838046B2 (en) * | 2001-05-14 | 2005-01-04 | Honeywell International Inc. | Sintering process and tools for use in metal injection molding of large parts |
US20020168282A1 (en) * | 2001-05-14 | 2002-11-14 | Lu Jyh-Woei J. | Sintering process and tools for use in metal injection molding of large parts |
US6840978B2 (en) * | 2001-06-11 | 2005-01-11 | Sumitomo Electric Industries, Ltd. | Porous metal article, metal composite material using the article and method for production thereof |
US6663688B2 (en) * | 2001-06-28 | 2003-12-16 | Woka Schweisstechnik Gmbh | Sintered material of spheroidal sintered particles and process for producing thereof |
US20030037639A1 (en) * | 2001-06-28 | 2003-02-27 | Woka Schweisstechnik Gmbh | Matrix powder for the production of bodies or components for wear-resistant applications and a component produced therefrom |
US6656526B2 (en) * | 2001-09-20 | 2003-12-02 | Hewlett-Packard Development Company, L.P. | Porously coated open-structure substrate and method of manufacture thereof |
US20030054149A1 (en) * | 2001-09-20 | 2003-03-20 | Pan Alfred I-Tsung | Porously coated open-structure substrate and method of manufacture thereof |
US20060003179A1 (en) * | 2002-02-08 | 2006-01-05 | Howmedica Osteonics Corp. | Porous metallic scaffold for tissue ingrowth |
US6740186B2 (en) * | 2002-02-20 | 2004-05-25 | Zimmer Technology, Inc. | Method of making an orthopeadic implant having a porous metal surface |
US6945448B2 (en) * | 2002-06-18 | 2005-09-20 | Zimmer Technology, Inc. | Method for attaching a porous metal layer to a metal substrate |
US7241415B2 (en) * | 2002-07-23 | 2007-07-10 | University Of Southern California | Metallic parts fabrication using selective inhibition of sintering (SIS) |
US20040137209A1 (en) * | 2002-12-12 | 2004-07-15 | Robert Zeller | Porous sintered composite materials |
US7632575B2 (en) * | 2003-12-03 | 2009-12-15 | IMDS, Inc. | Laser based metal deposition (LBMD) of implant structures |
US20080106853A1 (en) * | 2004-09-30 | 2008-05-08 | Wataru Suenaga | Process for Producing Porous Sintered Metal |
US20060105015A1 (en) * | 2004-11-12 | 2006-05-18 | Venu Perla | System and method for attaching soft tissue to an implant |
US7597715B2 (en) * | 2005-04-21 | 2009-10-06 | Biomet Manufacturing Corp. | Method and apparatus for use of porous implants |
US7296990B2 (en) * | 2005-10-14 | 2007-11-20 | Hewlett-Packard Development Company, L.P. | Systems and methods of solid freeform fabrication with translating powder bins |
US20070243312A1 (en) * | 2006-04-06 | 2007-10-18 | C3 Materials Corp. | Microstructure applique and method for making same |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US8864826B2 (en) * | 2010-02-26 | 2014-10-21 | Limacorporate Spa | Integrated prosthetic element |
US20170027707A1 (en) * | 2013-12-20 | 2017-02-02 | Adler Ortho S.R.L. | Femoral component for knee prostheses |
Also Published As
Publication number | Publication date |
---|---|
US20070243312A1 (en) | 2007-10-18 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US7722735B2 (en) | Microstructure applique and method for making same | |
JP4911565B2 (en) | Surface modification method for medical device and medical device | |
JP4444587B2 (en) | Method for attaching a porous metal layer to a metal substrate | |
US6193761B1 (en) | Implantable prosthesis with metallic porous bead preforms applied during casting | |
JP4911566B2 (en) | MEDICAL DEVICE AND MEDICAL DEVICE SURFACE MODIFICATION METHOD | |
US9656358B2 (en) | Method for attaching a porous metal layer to a metal substrate | |
US4612160A (en) | Porous metal coating process and mold therefor | |
EP0760687B1 (en) | A biomaterial and bone implant for bone repair and replacement | |
JP4420816B2 (en) | Metallic coating with apertures for joint replacement implants and method of manufacturing the same | |
US20100256773A1 (en) | Surgical implant composed of a porous core and a dense surface layer | |
JPS5936531B2 (en) | Layer-coated artificial adjuster and method for covering the artificial adjuster | |
AU2009206560B2 (en) | Method for forming an integral porous region in cast implant | |
AU2006310838A1 (en) | Open-cell biocompatible coating for an implant, method for the production thereof, and use thereof | |
JP2017519603A (en) | Surface replacement prosthesis made of all ceramics with a porous inner surface | |
CN110614372B (en) | One-step manufacturing method of laminated porous member with curved surface | |
JPH11299879A (en) | Artificial biocompatible structure, functional parts, their manufacture and apparatus | |
JPH072170B2 (en) | Composite implant member and manufacturing method thereof | |
JPH06197947A (en) | Composite organic implant and manufacture thereof | |
JP2000072572A (en) | Plastic ceramics and their production | |
JPH07184987A (en) | Artificial prosthetic member | |
JPH02203853A (en) | Manufacture of implant member | |
JPH0739578A (en) | Metallic implanting article and preparation thereof | |
JPH072171B2 (en) | Method for manufacturing implant member | |
KR20020032959A (en) | Porous implant and the same making | |
JPH09173434A (en) | Bioprosthetic member |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
AS | Assignment |
Owner name: C3 MATERIALS CORP., NEW HAMPSHIRE Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:BULKO, JOHN B.;REEL/FRAME:019211/0920 Effective date: 20070404 Owner name: C3 MATERIALS CORP.,NEW HAMPSHIRE Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:BULKO, JOHN B.;REEL/FRAME:019211/0920 Effective date: 20070404 |
|
AS | Assignment |
Owner name: PREP POWDERED METALS, INC., OHIO Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:COMPOSITE MATERIALS SOLUTIONS F/K/A/ C3 MATERIALS;REEL/FRAME:028024/0620 Effective date: 20111103 Owner name: TIMET POWDERED METALS, LLC, OHIO Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:PREP POWDERED METALS, INC.;REEL/FRAME:028024/0654 Effective date: 20111208 |
|
AS | Assignment |
Owner name: TIMET POWDERED METALS, LLC, TEXAS Free format text: CORRECTIVE ASSIGNMENT TO CORRECT THE RECIEVING PARTY ADDRESS FOR TIMET POWDERED METALS, LLC. PREVIOUSLY RECORDED ON REEL 028024 FRAME 0654. ASSIGNOR(S) HEREBY CONFIRMS THE TIMET POWDERED METALS, LLC. C/O TITANIUM METALS CORPORATION 5430 LBJ FREEWAY, SUITE 1700 DALLAS, TX 75240;ASSIGNOR:PREP POWDERED METALS, INC.;REEL/FRAME:028052/0097 Effective date: 20111208 |
|
FPAY | Fee payment |
Year of fee payment: 4 |
|
FEPP | Fee payment procedure |
Free format text: PAT HOLDER NO LONGER CLAIMS SMALL ENTITY STATUS, ENTITY STATUS SET TO UNDISCOUNTED (ORIGINAL EVENT CODE: STOL); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY |
|
SULP | Surcharge for late payment | ||
FEPP | Fee payment procedure |
Free format text: MAINTENANCE FEE REMINDER MAILED (ORIGINAL EVENT CODE: REM.) |
|
LAPS | Lapse for failure to pay maintenance fees |
Free format text: PATENT EXPIRED FOR FAILURE TO PAY MAINTENANCE FEES (ORIGINAL EVENT CODE: EXP.) |
|
STCH | Information on status: patent discontinuation |
Free format text: PATENT EXPIRED DUE TO NONPAYMENT OF MAINTENANCE FEES UNDER 37 CFR 1.362 |
|
FP | Lapsed due to failure to pay maintenance fee |
Effective date: 20180525 |