JPH072170B2 - Composite implant member and manufacturing method thereof - Google Patents

Composite implant member and manufacturing method thereof

Info

Publication number
JPH072170B2
JPH072170B2 JP63305010A JP30501088A JPH072170B2 JP H072170 B2 JPH072170 B2 JP H072170B2 JP 63305010 A JP63305010 A JP 63305010A JP 30501088 A JP30501088 A JP 30501088A JP H072170 B2 JPH072170 B2 JP H072170B2
Authority
JP
Japan
Prior art keywords
particles
implant member
composite implant
base material
porosity
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP63305010A
Other languages
Japanese (ja)
Other versions
JPH02149269A (en
Inventor
隆夫 川井
佳男 佐々木
喜昌 伊藤
康夫 真鍋
憲司 土居
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Original Assignee
Kobe Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe Steel Ltd filed Critical Kobe Steel Ltd
Priority to JP63305010A priority Critical patent/JPH072170B2/en
Publication of JPH02149269A publication Critical patent/JPH02149269A/en
Publication of JPH072170B2 publication Critical patent/JPH072170B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Materials For Medical Uses (AREA)
  • Prostheses (AREA)

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は人工骨,人工関節,人工歯根等の複合インプラ
ント部材及びその製造方法に関し、詳細には生体骨組織
との一体性を強化するため材質的及び構造的に気孔率の
高い表面層を基材層外側に形成してなる複合インプラン
ト部材及びその製造方法に関するものである。
TECHNICAL FIELD The present invention relates to a composite implant member such as an artificial bone, an artificial joint, and an artificial tooth root, and a method for producing the same, and more specifically, to enhance the integrity with living bone tissue. The present invention relates to a composite implant member in which a surface layer having a high porosity in terms of material and structure is formed outside a base material layer, and a method for manufacturing the same.

[従来の技術] 人工骨,人工関節,人工歯根等のインプラント部材は損
傷又は欠損した人骨,関節,歯等を修復する目的で使用
されるものである。該インプラント部材は生体との適合
性に優れ、且つ生体骨組織に対して強い固着性を確保す
る必要があり、これらを満足するためインプラント部材
の基材表面に他の金属材料やセラミックス材料をコーテ
ィングした複合インプラント部材が使われる。
[Prior Art] Implant members such as artificial bones, artificial joints and artificial tooth roots are used for the purpose of repairing damaged or missing human bones, joints, teeth and the like. It is necessary for the implant member to have excellent compatibility with the living body and to secure strong adhesion to the living bone tissue. To satisfy these requirements, the surface of the implant member base material is coated with another metal material or a ceramic material. Composite implant members are used.

第2図(a)〜(c)は色々な表面構造が与えられた複
合インプラント部材の表面層を拡大して示す断面説明図
であり、(a)図では基材層1上に細粒粉2を、(b)
図ではビーズ状粒子3を、更に(c)図では線条体4を
夫々接合して表面層を形成したものである。これらの表
面構造においては例えば第2図(a)に基づいて説明す
ると、基材層1と細粒粉2の間及び細粒粉2同士の間等
に孔部5が形成され、複合インプラント部材の表面に微
細な凹凸構造を形成する。その結果該孔部5内には新生
骨組織が侵入・成長し易くなり両者が強い固着状態を形
成する。
2 (a) to 2 (c) are sectional explanatory views showing enlarged surface layers of a composite implant member provided with various surface structures, and in FIG. 2 (a), fine-grained powder is formed on the base material layer 1. 2 into (b)
In the figure, the bead-shaped particles 3 are joined together, and in the figure (c), the filaments 4 are joined together to form a surface layer. With respect to these surface structures, for example, referring to FIG. 2 (a), the pores 5 are formed between the base material layer 1 and the fine-granular powder 2 and between the fine-granular powders 2, and the composite implant member is formed. A fine uneven structure is formed on the surface of. As a result, new bone tissue easily invades and grows in the hole portion 5, and both of them form a strong fixed state.

上記複合インプラント部材の製造に当たっては、細粒粉
2やビーズ状粒子3、更には線条体4等を焼結法や溶射
法によって基材層1の表面に拡散接合し、その後該表面
層を研磨仕上げするのが一般的な製造方法である。
In the production of the above composite implant member, fine powder 2, bead-shaped particles 3, and filaments 4 are diffusion-bonded to the surface of the base material layer 1 by a sintering method or a thermal spraying method, and then the surface layer is formed. The general manufacturing method is to finish by polishing.

[発明が解決しようとする課題] 上記細粒粉2やビーズ状粒子3は粒径200〜700μmのも
のを使用し、また線条体4は直径200〜300μmのものを
使用するのが一般的であり、それによって複合インプラ
ント部材表面に20〜400μm程度の直径を有する孔部5
を形成する。しかしこれら孔部5は、例えば第2図
(a)に示した様に基材層1と細粒粉2の間及び細粒粉
2同士の間に形成されるものであり、第2図(a)〜
(c)のいずれにおいてもその気孔率はせいぜい30〜50
%程度であった。そして気孔率をそれ以上に高めようと
すると、細粒粉2等と基材層1又は細粒粉2等同士の結
合力が低下し、細粒粉2等が剥れ易くなるという不都合
を生じる。
[Problems to be Solved by the Invention] Generally, the fine powder 2 and the beaded particles 3 have a particle diameter of 200 to 700 μm, and the filaments 4 have a diameter of 200 to 300 μm. And thereby the pores 5 having a diameter of about 20 to 400 μm on the surface of the composite implant member.
To form. However, these holes 5 are formed, for example, between the base material layer 1 and the fine grain powder 2 and between the fine grain powders 2 as shown in FIG. a) ~
In any of (c), the porosity is at most 30-50.
It was about%. If an attempt is made to increase the porosity further, the binding force between the fine-grain powder 2 and the like and the base material layer 1 or the fine-grain powder 2 and the like will decrease, and the fine-grain powder 2 and the like will easily peel off. .

ところで上記数値範囲の気孔率を有する複合インプラン
ト部材を生体内に埋め込んだ場合、生体骨組織が孔部5
内に侵入・成長して該複合インプラント部材との間で強
力な固着状態を形成することは先に述べたが、実際臨床
の場においては、所定の強度を発揮(当該複合インプラ
ント部材に期待される最高の強度)するに至る迄、通常
4〜8週間という長期間を必要とし、しかも生体骨との
到達固着強度は、人体重量や日常生活上負荷される荷重
の支持等において十分満足し得るまでには至っていな
い。
By the way, when a composite implant member having a porosity within the above numerical range is embedded in a living body, the living bone tissue has pores 5
As described above, it penetrates and grows inside to form a strong adherence state with the composite implant member, but in actual clinical practice, it exerts a predetermined strength (expected for the composite implant member. It usually requires a long time of 4 to 8 weeks to reach the maximum strength), and the ultimate strength of fixation with living bone can be sufficiently satisfied in supporting the weight of the human body and the load applied to daily life. Not up to.

そこで本発明者らは、気孔率が高く且つそれ自身基材か
ら簡単に剥離されることがない様な表面層を形成して上
記諸欠点を解消することのできる複合インプラント部材
及びその製造方法を提供する目的で研究を重ね、本発明
を完成した。
Therefore, the inventors of the present invention provide a composite implant member and a method for producing the same, which can eliminate the above-mentioned drawbacks by forming a surface layer having high porosity and not easily peeled from the base material itself. The present invention has been completed through repeated research for the purpose of providing it.

[課題を解決するための手段] 上記目的を達成した本発明の複合インプラント部材は、
表面層形成材料である粉粒体又は線条体がそれ自身10〜
100μmの細孔を有する無機多孔質体によって形成され
てなる点に要旨を有し、また該複合インプラント部材の
製造方法については、10〜100μmの細孔を有する無機
多孔質体を不均整粒子に粉砕して該粒子を基材層表面に
溶射し、基材層と粒子及び粒子同士を拡散接合させるこ
とを要旨とするものである。
[Means for Solving the Problems] The composite implant member of the present invention which achieves the above object,
The particles or filaments that form the surface layer are themselves 10 ~
The gist is that it is formed of an inorganic porous material having 100 μm pores, and a method for producing the composite implant member is described below, wherein the inorganic porous material having 10-100 μm pores is used as asymmetric particles. The gist is to pulverize and spray the particles onto the surface of the base material layer to diffusely bond the base material layer and the particles and the particles together.

[作用及び実施例] 本発明の複合インプラント部材においては、表面層形成
材料として金属製又はセラミックス製の多孔質体を使用
する。該多孔質体は10〜100μmの細孔を多数内蔵し、
且つ生体との適合性の優れた材料を選択する。その代表
例としては連続気泡型のスポンジ状チタンを挙げること
ができる。
[Operations and Examples] In the composite implant member of the present invention, a metal or ceramic porous body is used as the surface layer forming material. The porous body contains a large number of pores of 10 to 100 μm,
Also, select a material that is highly compatible with the living body. As a typical example thereof, there can be mentioned open-cell type sponge titanium.

上記複合インプラント部材の表面層を形成するに当たっ
ては、前記多孔質体を100〜400μm程度の不均整な粒子
状に粉砕し、プラズマスプレー法によって前記粒子を基
材層表面に溶射し、基材と粒子の間又は粒子同士を拡散
接合させる。この際、基材層表面は予めサンドブラスト
等の機械的な粗面化処理、あるいはエッチング等の化学
的な粗面化処理がなされていることが、表面層と基材層
との密着性改善、および孔部の形成し易さ等の点から好
ましい。このとき該粒子は完全に溶融して細孔を失うこ
とはなく、表面部のみが軟化溶融して基材層表面に接合
される。この様にして製造された複合インプラント部材
の表面には、基材と粒子の間及び粒子同士の間に孔部5
が形成されると共に、多孔質の粒子そのものが微細な細
孔を有するので、複合インプラント部材表面層の気孔率
は50〜80%の高い範囲内とすることができる。従って新
生骨の侵入・成長によって早期に安定強度まで到達す
る。またその孔部5及び細孔はランダムな方向に複雑に
入り込んだ形状に形成されるので、新生骨組織の侵入・
成長によって最終的に非常に強い固着力を発揮するに至
る。
In forming the surface layer of the composite implant member, the porous body is pulverized into asymmetric particles of about 100 to 400 μm, and the particles are sprayed onto the surface of the base material layer by a plasma spray method to form a base material. Diffusion bonding between particles or particles is performed. At this time, the surface of the base layer is subjected to mechanical surface roughening treatment such as sandblasting in advance or chemical surface roughening treatment such as etching to improve the adhesion between the surface layer and the base layer. Also, it is preferable in terms of easiness of forming the holes. At this time, the particles do not completely melt and lose the pores, and only the surface portion is softened and melted and bonded to the surface of the base material layer. On the surface of the composite implant member manufactured in this manner, the pores 5 are formed between the base material and the particles and between the particles.
And the porous particles themselves have fine pores, the porosity of the surface layer of the composite implant member can be in the high range of 50 to 80%. Therefore, the stable strength is reached early by the invasion and growth of new bone. Also, since the pores 5 and pores are formed in a complicated direction in a random direction, invasion of new bone tissue
The growth eventually leads to a very strong sticking force.

さらに基材と粒子又は粒子同士の結合力は従来の単なる
細粒粉等を使用する場合に比較して劣化することがな
く、また粒子そのものが容易に剥れるということもな
い。また粒子の溶射量が従来の細粒粉の使用するときよ
り少量であっても、微細な凹凸を効果的に形成すること
ができる。これらの結果、本発明の複合インプラント部
材を生体内へ埋め込んだときには、短期間で生体骨と一
体化して所要の固着力を発揮し、しかも最終の到達固着
力は人体の支持等に十分な強さを確保することができ
る。
Further, the bonding force between the base material and the particles or between the particles is not deteriorated as compared with the case where a conventional simple fine powder is used, and the particles themselves are not easily peeled off. Further, even if the amount of particles sprayed is smaller than that when the conventional fine powder is used, fine irregularities can be effectively formed. As a result, when the composite implant member of the present invention is embedded in a living body, it integrates with the living bone in a short period of time to exhibit the required fixing force, and the final reaching fixing force is sufficiently strong to support the human body. You can secure the quality.

次に表面層の気孔率について説明する。Next, the porosity of the surface layer will be described.

第3図はスポンジ状Tiの粉粒体をプラズマ溶射した場合
における表面層の厚さ方向に見た気孔率の変化を示すグ
ラフである。この図から分かる様に表面層における最外
表面側の気孔率は基材層側の気孔率よりも高くなってい
る。これは溶射法における初期溶射粒子が基材との大き
な衝突エネルギーによって潰れ基材側ほど大密度化する
ことによるものと考えられる。この構造において基材層
側の気孔率は基材層と表面層の密着性に大きな影響を与
えるので、該気孔率は上記の如く低い方が好ましく、一
方最外表面側の気孔率は生体骨との一体化、並びにアパ
タイト類の生成に大きな影響を与えるので、該気孔率は
上記の如く高いほうが好ましい。従ってこの溶射法によ
って形成された表面層は好適な気孔率分布を示している
と言える。
FIG. 3 is a graph showing changes in the porosity as seen in the thickness direction of the surface layer when spongy Ti powder particles are plasma sprayed. As can be seen from this figure, the porosity of the outermost surface side of the surface layer is higher than the porosity of the base material layer side. It is considered that this is because the initial thermal spray particles in the thermal spraying method are crushed by the large collision energy with the base material and become denser on the base material side. In this structure, the porosity of the base material layer has a great influence on the adhesion between the base material layer and the surface layer. Therefore, it is preferable that the porosity is low as described above, while the porosity of the outermost surface side is the biological bone. The porosity is preferably high as described above, since it has a great influence on the integration with the above and the formation of apatites. Therefore, it can be said that the surface layer formed by this thermal spraying method exhibits a suitable porosity distribution.

複合インプラント部材の基材層の材料としてはTiが多く
使用され、このTiとの密着性や付着強度を向上させる面
等から考えると表面層の材料としては基材層と同質のTi
系材料が好ましい。他方生体骨との一体化の面から考え
ると、該表面層の材料はアパタイト系材料、例えばリン
酸カルシウム系化合物等を使用することが推奨される。
Ti is often used as the material of the base material layer of the composite implant member, and considering the aspects such as improving the adhesion and adhesion strength with this Ti, the material of the surface layer is Ti of the same quality as the base material layer.
Base materials are preferred. On the other hand, from the viewpoint of integration with living bone, it is recommended to use an apatite-based material such as a calcium phosphate-based compound as the material of the surface layer.

従って以上の観点から、表面層の材料および構成として
好ましい態様は次の2つに大別される。
Therefore, from the above viewpoints, the preferred embodiments of the material and structure of the surface layer are roughly classified into the following two.

基材と同じ材料、例えばTi基材に対するものとして発
泡Tiを選択するか、あるいはセラミックス基材上に対す
るものとして多孔質アルミナ材料、ジルコニア材料、チ
タニア材料等、アパタイトを生成しない多孔質体を選定
する場合。尚この場合は多孔質表面層上に、更にリン酸
カルシウム系化合物あるいはこのリン酸カルシウム系化
合物を含むガラス状物をコーティングした構造とするこ
ともできる。
Select foamed Ti as the same material as the base material, for example, the Ti base material, or select a porous material that does not form apatite, such as porous alumina material, zirconia material, titania material, etc. as the base material on the ceramic base material. If. In this case, the porous surface layer may be further coated with a calcium phosphate-based compound or a glassy material containing the calcium phosphate-based compound.

水酸化アパタイト類の多孔質顆粒やリン酸カルシウム
系化合物を含有するガラス状物質など予めアパタイト類
を生成しているもの、あるいは生体中でアパタイト類を
生成する様な多孔質体を選定する場合。尚リン酸カルシ
ウム系化合物としては、水酸化アパタイト、炭酸アパタ
イト、フッ素アパタイト、塩素アパタイト、Ca3(PO4
、Ca3P2O7などが例示される。
When selecting apatites that have previously produced apatites such as porous granules of hydroxyapatites or a glassy substance containing a calcium phosphate compound, or a porous body that produces apatites in a living body. The calcium phosphate compounds include hydroxyapatite, carbonate apatite, fluoroapatite, chlorine apatite, Ca 3 (PO 4 )
2 , Ca 3 P 2 O 7 and the like are exemplified.

なおの場合は問題ないが、の場合は、基材に選択さ
れるTi等の金属と表面層材料との歪率、熱膨張係数の違
いが大きく、表面層の密着性の問題が生じる場合があ
り、このような場合には下地層として、基材の熱膨張係
数と近い熱膨張係数を有するアルミナやジルコニア、チ
タン等の薄膜(中間層)をコーティングしておくことが
好ましい。
In the case of, there is no problem, but in the case of, the difference in the coefficient of thermal expansion and the coefficient of thermal expansion between the metal such as Ti selected for the base material and the surface layer material may be large, and the problem of the adhesion of the surface layer may occur. In such a case, it is preferable to coat a thin film (intermediate layer) such as alumina, zirconia, or titanium having a thermal expansion coefficient close to that of the base material as the underlayer.

上記多孔質粒子の代表的な素材としては先にスポンジ状
Tiを挙げたが、該スポンジ状Tiは塩化Tiを溶融Naもしく
は溶融Mgに滴下し還元処理して製造するのが一般的であ
る。そしてこれを必要に応じてプレス等によって粉砕
し、粒径100〜400μm程度の粒子を分級して上記溶射に
使用することが推奨される。
A sponge-like material is first used as a typical material for the porous particles.
Although Ti was mentioned, the spongy Ti is generally produced by dropping Ti chloride onto molten Na or molten Mg and performing reduction treatment. Then, it is recommended to grind this with a press or the like, if necessary, to classify particles having a particle size of about 100 to 400 μm, and use the particles for the thermal spraying.

<実験例> 第1図は本発明の複合インプラント部材を使った場合
と、従来の複合インプラント部材を使った場合の夫々に
おける固着力の経時的変化(固着強度向上速度)を示す
グラフである。実線は本発明の実施例を示し、破線は従
来例を示す。本発明の実施例では基材層としてTi−6A1
−4V合金を使用し、表面層には粒径10〜100μmの細孔
を有する純Ti製粒子をプラズマ溶射したものを用いた。
他方従来品としては上記と同一材料の基材層に粒径400
〜700μmのTi製ビーズ状粒子を焼結したものを使用し
た。そしてこれらの複合インプラント部材を同一条件で
犬の脛骨に埋め込み、所定期間後の引き抜き強度の変化
を各々測定した。
<Experimental Example> FIG. 1 is a graph showing changes over time (adhesion strength improvement rate) in the adhesive force when the composite implant member of the present invention is used and when the conventional composite implant member is used. The solid line shows the embodiment of the present invention, and the broken line shows the conventional example. In the examples of the present invention, Ti-6A1 was used as the base material layer.
A −4V alloy was used, and the surface layer was formed by plasma spraying pure Ti particles having pores with a particle size of 10 to 100 μm.
On the other hand, as a conventional product, a particle size of 400
Sintered bead-shaped particles made of Ti having a size of ˜700 μm were used. Then, these composite implant members were embedded in the tibia of a dog under the same conditions, and changes in pull-out strength after a predetermined period were measured.

その結果本発明の実施例では2週間経過後すでに10kg/c
m2以上の引き抜き強度に達したのに対し、従来例では10
kg/cm2を超えるのに4週間を必要とした。またいずれの
測定時においても本発明の実施例の方が従来例に比較し
て1.5〜2倍の引き抜き強度を発揮でき、8週目以降の
比較的安定したときの強度は1.5:1程度の相違になるこ
とが分かった。
As a result, in the example of the present invention, after 2 weeks, it was already 10 kg / c.
While the drawing strength of m 2 or more was reached, in the conventional example it was 10
It took 4 weeks to exceed kg / cm 2 . Further, in any measurement, the embodiment of the present invention can exhibit a pulling strength of 1.5 to 2 times as compared with the conventional example, and the strength at the time of relatively stable after the 8th week is about 1.5: 1. It turned out to be a difference.

本発明は複合インプラント用基材の材質については特に
限定するものではないが、機械的強度に優れしかも生体
に悪影響を及ぼすことがない材質として通常使用されて
いるTi,Ti合金,Zr,Zr合金,Co−Cr−Mo合金,Co−Cr−W
−Ni合金,Ta、ステンレス鋼等の金属材料が使用できる
他、水酸化アパタイトやアルミナ等のセラミックス類も
使用できる。
The present invention is not particularly limited as to the material of the composite implant substrate, Ti, Ti alloy, Zr, Zr alloy that is usually used as a material that has excellent mechanical strength and does not adversely affect the living body , Co-Cr-Mo alloy, Co-Cr-W
-Metal materials such as Ni alloy, Ta, and stainless steel can be used, as well as ceramics such as hydroxyapatite and alumina.

[発明の効果] 本発明の複合インプラント部材は上記の様に構成されて
その表面層に高い気孔率を有しているので、生体組織と
短期間内に強固に一体化されると共に、安定で且つ強力
な固着性を長期間発揮できる様になる。また本発明の製
造方法により、高い気孔率の表面層を形成した複合イン
プラント部材が確実に製造できる様になった。
EFFECTS OF THE INVENTION Since the composite implant member of the present invention is configured as described above and has a high porosity in its surface layer, it is firmly integrated with living tissue within a short period of time and stable. In addition, it becomes possible to exert strong adhesiveness for a long period of time. Further, the manufacturing method of the present invention has made it possible to reliably manufacture a composite implant member having a surface layer with a high porosity.

【図面の簡単な説明】[Brief description of drawings]

第1図は本発明の複合インプラント部材及び従来の複合
インプラント部材を各々生体骨へ埋め込み、その後の引
き抜き強度を比較したグラフ、第2図(a)〜(c)は
従来の複合インプラント部材の表層部を示す拡大断面説
明図、第3図はスポンジ状Ti粒子を基材層上に溶射法に
よって拡散接合したとき表層部における厚さ方向での気
孔率の変化を示すグラフである。 1……基材層、2……細粒粉 3……ビーズ状粒子、4……線条体
FIG. 1 is a graph in which a composite implant member of the present invention and a conventional composite implant member are each embedded in a living bone and the pull-out strengths after that are compared, and FIGS. 2 (a) to (c) are surface layers of the conventional composite implant member. FIG. 3 is an enlarged cross-sectional explanatory view showing a portion, and FIG. 3 is a graph showing a change in porosity in a surface layer portion in a thickness direction when diffusion bonding is performed on a base material layer by spongy Ti particles. 1 ... Base material layer, 2 ... Fine powder 3 ... Bead-like particles, 4 ... Striatum

───────────────────────────────────────────────────── フロントページの続き (72)発明者 土居 憲司 兵庫県神戸市須磨区菅の台6―4―1 (56)参考文献 特開 昭63−160646(JP,A) 特開 昭63−59950(JP,A) 特開 昭63−210079(JP,A) 特開 昭62−503011(JP,A) ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Kenji Doi 6-4-1 Suganodai, Suma-ku, Kobe City, Hyogo Prefecture (56) References JP-A-63-160646 (JP, A) JP-A-63-59950 (JP) , A) JP 63-210079 (JP, A) JP 62-503011 (JP, A)

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】基材層表面に粉粒体又は線状体を付着させ
て多孔表面層を形成してなる複合インプラント部材にお
いて、該粉粒体又は線条体はそれ自身10〜100μmの細
孔を有する無機多孔質体よりなることを特徴とする複合
インプラント部材。
1. A composite implant member comprising a porous surface layer formed by adhering powder or particles to the surface of a base material layer, wherein the powder or particles have a diameter of 10 to 100 μm. A composite implant member comprising an inorganic porous material having pores.
【請求項2】無機多孔質体がスポンジ状Tiである請求項
(1)に記載の複合インプラント部材。
2. The composite implant member according to claim 1, wherein the inorganic porous body is spongy Ti.
【請求項3】スポンジ状Tiの表面にアパタイト類または
アパタイト類生成化合物がコーティングされてなる請求
項(2)に記載の複合インプラント部材。
3. The composite implant member according to claim 2, wherein the surface of spongy Ti is coated with apatites or an apatite-forming compound.
【請求項4】表面層の気孔率は厚さ方向に見たとき最外
表面側気孔率が基材層側気孔率より高くなる様に形成さ
れてなる請求項(1)〜(3)のいずれかに記載の複合
インプラント部材。
4. The porosity of the surface layer is so formed that the outermost surface side porosity is higher than the base material layer side porosity when viewed in the thickness direction. The composite implant member according to any one of claims.
【請求項5】10〜100μmの細孔を有する無機多孔質体
を不均整粒子に粉砕し、該粒子を基材層表面に溶射し、
基材層と粒子及び粒子同士を拡散接合させることを特徴
とする複合インプラント部材の製造方法。
5. An inorganic porous material having pores of 10 to 100 μm is crushed into asymmetric particles, and the particles are sprayed onto the surface of the base material layer,
A method for producing a composite implant member, which comprises diffusion-bonding a base material layer, particles, and particles to each other.
JP63305010A 1988-11-30 1988-11-30 Composite implant member and manufacturing method thereof Expired - Fee Related JPH072170B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63305010A JPH072170B2 (en) 1988-11-30 1988-11-30 Composite implant member and manufacturing method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63305010A JPH072170B2 (en) 1988-11-30 1988-11-30 Composite implant member and manufacturing method thereof

Publications (2)

Publication Number Publication Date
JPH02149269A JPH02149269A (en) 1990-06-07
JPH072170B2 true JPH072170B2 (en) 1995-01-18

Family

ID=17940001

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63305010A Expired - Fee Related JPH072170B2 (en) 1988-11-30 1988-11-30 Composite implant member and manufacturing method thereof

Country Status (1)

Country Link
JP (1) JPH072170B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2582949B2 (en) * 1991-03-05 1997-02-19 株式会社神戸製鋼所 Manufacturing method of implant member
SE515227C2 (en) * 1999-04-28 2001-07-02 Bruce Medical Ab Body for providing and growing bone and / or connective tissue and methods for making the body
DE102005052354A1 (en) * 2005-11-02 2007-05-03 Plus Orthopedics Ag Open-pore biocompatible surface layer for application to an implant comprises a coherent pore network and has a defined surface area
AU2008262113A1 (en) * 2007-06-07 2008-12-18 Smith & Nephew, Inc. Reticulated particle porous coating for medical implant use
CN103526196A (en) * 2013-10-23 2014-01-22 中国科学院上海硅酸盐研究所 Method for preparing Ti coating hard tissue alternate material with hierarchical structure

Also Published As

Publication number Publication date
JPH02149269A (en) 1990-06-07

Similar Documents

Publication Publication Date Title
JP2858126B2 (en) Biological implant material and its manufacturing method
US20060100716A1 (en) Open-pored metal coating for joint replacement implants and method for production thereof
US4542539A (en) Surgical implant having a graded porous coating
JPH072180B2 (en) Buried body coating
US4863474A (en) Skeletal implants
US7998523B2 (en) Open-pore biocompatible surface layer for an implant, methods of production and use
US5356436A (en) Materials for living hard tissue replacements
US20100174377A1 (en) Reticulated particle porous coating for medical implant use
WO1992014422A1 (en) Composite bio-implant and production method therefor
Swain et al. Effect of surface roughness on titanium medical implants
JPH11341A (en) Orthopedic implant
JPH04221553A (en) Formation of surface integrated with bone on base body of implant and implant having the surface
Sharan et al. An Overview of Surface Modifications of Titanium and its Alloys for Biomedical Applications.
JPH072170B2 (en) Composite implant member and manufacturing method thereof
CN113289057B (en) Tantalum-coated orthopedic implant material, preparation method thereof and orthopedic implant
Oktar et al. Bond-coating in plasma-sprayed calcium-phosphate coatings
JP2883214B2 (en) Biological implant material and its manufacturing method
JP3166352B2 (en) Implant components
EP0401793B1 (en) Use of ceramic materials for living hard tissue replacements
EP0607017A1 (en) Composite biotic implant and method of making a composite biotic implant
JP3401552B2 (en) Plastic ceramics and method for producing the same
JP2775523B2 (en) Bone substitute material and its manufacturing method
JP2582949B2 (en) Manufacturing method of implant member
JPH0531168A (en) Production of implant material for living body
JP2956318B2 (en) Implant made of Ti or Ti alloy coated with calcium phosphate-based ceramic layer and method for producing the same

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees