US7709491B2 - Substituted quinazolines as antiviral agents, especially against cytomegaloviruses - Google Patents

Substituted quinazolines as antiviral agents, especially against cytomegaloviruses Download PDF

Info

Publication number
US7709491B2
US7709491B2 US10/534,138 US53413803A US7709491B2 US 7709491 B2 US7709491 B2 US 7709491B2 US 53413803 A US53413803 A US 53413803A US 7709491 B2 US7709491 B2 US 7709491B2
Authority
US
United States
Prior art keywords
trifluoromethyl
alkyl
phenyl
alkoxy
independently
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active, expires
Application number
US10/534,138
Other languages
English (en)
Other versions
US20060235032A1 (en
Inventor
Tobias Wunberg
Judith Baumeister
Mario Jeske
Susanne Nikolic
Frank Süβmeier
Holger Zimmermann
Rolf Grosser
Kerstin Henninger
Guy Hewlett
Jörg Keldenich
Dieter Lang
Tse-I Lin
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
AIC246 AG and Co KG
Original Assignee
Bayer Schering Pharma AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Bayer Schering Pharma AG filed Critical Bayer Schering Pharma AG
Assigned to BAYER HEALTHCARE AG reassignment BAYER HEALTHCARE AG ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: LIN, TSE-I, HEWLETT, GUY, HENNINGER, KERSTIN, WUNBERG, TOBIAS, LANG, DIETER, JESKE, MARIO, SUSSMEIER, FRANK, GROSSER, ROLF, ZIMMERMANN, HOLGER, BAUMEISTER, JUDITH, KELDENICH, JORG, NIKOLIC, SUSANNE
Publication of US20060235032A1 publication Critical patent/US20060235032A1/en
Assigned to BAYER SCHERING PHARMA AKTIENGESELLSCHAFT reassignment BAYER SCHERING PHARMA AKTIENGESELLSCHAFT MERGER (SEE DOCUMENT FOR DETAILS). Assignors: BAYER HEALTHCARE AG
Application granted granted Critical
Publication of US7709491B2 publication Critical patent/US7709491B2/en
Assigned to AICURIS GMBH & CO. KG reassignment AICURIS GMBH & CO. KG ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: BAYER SCHERING PHARMA AKTIENGESELLSCHAFT
Assigned to AICURIS ANTI-INFECTIVE CURES GMBH reassignment AICURIS ANTI-INFECTIVE CURES GMBH ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: AICURIS GMBH & CO. KG
Assigned to AIC246 GMBH & CO. KG reassignment AIC246 GMBH & CO. KG ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: AICURIS ANTI-INFECTIVE CURES GMBH
Assigned to AIC246 AG & CO. KG reassignment AIC246 AG & CO. KG CHANGE OF NAME (SEE DOCUMENT FOR DETAILS). Assignors: AIC246 GMBH & CO. KG
Active legal-status Critical Current
Adjusted expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D239/00Heterocyclic compounds containing 1,3-diazine or hydrogenated 1,3-diazine rings
    • C07D239/70Heterocyclic compounds containing 1,3-diazine or hydrogenated 1,3-diazine rings condensed with carbocyclic rings or ring systems
    • C07D239/72Quinazolines; Hydrogenated quinazolines
    • C07D239/74Quinazolines; Hydrogenated quinazolines with only hydrogen atoms, hydrocarbon or substituted hydrocarbon radicals, attached to ring carbon atoms of the hetero ring
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P31/00Antiinfectives, i.e. antibiotics, antiseptics, chemotherapeutics
    • A61P31/12Antivirals
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P31/00Antiinfectives, i.e. antibiotics, antiseptics, chemotherapeutics
    • A61P31/12Antivirals
    • A61P31/20Antivirals for DNA viruses
    • A61P31/22Antivirals for DNA viruses for herpes viruses

Definitions

  • the invention relates to substituted quinazolines and processes for their preparation, and to their use for producing medicaments for the treatment and/or prophylaxis of diseases, especially for use as antiviral agents, especially against cytomegaloviruses.
  • One object of the present invention is therefore to provide novel compounds having the same or improved antiviral effect for the treatment of viral infectious diseases in humans and animals.
  • the invention relates to compounds of the formula
  • Compounds of the invention are the compounds of the formula (I) and the salts, solvates and solvates of the salts thereof, and the compounds which are mentioned below as exemplary embodiment(s), and the salts, solvates and solvates of the salts thereof, where the compounds which are encompassed by formula (I) and are mentioned below are not already salts, solvates and solvates of the salts.
  • the compounds of the invention may, depending on their structure, exist in stereoisomeric forms (enantiomers, diastereomers).
  • the invention therefore relates to the enantiomers or diastereomers and respective mixtures thereof.
  • the stereoisomerically pure constituents can be isolated from such mixtures of enantiomers and/or diastereomers in a known manner.
  • Salts preferred for the purposes of the present invention are physiologically acceptable salts of the compounds of the invention. However, salts which are not themselves suitable for pharmaceutical applications but can be used for example to isolate or purify the compounds of the invention are also encompassed.
  • Physiologically acceptable salts of the compounds of the invention include acid addition salts of mineral acids, carboxylic acids and sulfonic acids, e.g. salts of hydrochloric acid, hydrobromic acid, sulfuric acid, phosphoric acid, methanesulfonic acid, ethanesulfonic acid, toluenesulfonic acid, benzenesulfonic acid, naphthalenedisulfonic acid, acetic acid, trifluoroacetic acid, propionic acid, lactic acid, tartaric acid, malic acid, citric acid, fumaric acid, maleic acid and benzoic acid.
  • Physiologically acceptable salts of the compounds of the invention also include salts of conventional bases such as, by way of example and preferably, alkali metal salts (e.g. sodium and potassium salts), alkaline earth metal salts (e.g. calcium and magnesium salts) and ammonium salts derived from ammonia or organic amines having 1 to 16 carbon atoms, such as, by way of example and preferably, ethylamine, diethylamine, triethylamine, ethyldiisopropylamine, monoethanolamine, diethanolamine, triethanolamine, dicyclohexylamine, dimethylaminoethanol, procaine, dibenzylamine, N-methylmorpholine, arginine, lysine, ethylenediamine and N-methylpiperidine.
  • alkali metal salts e.g. sodium and potassium salts
  • alkaline earth metal salts e.g. calcium and magnesium salts
  • Solvates refer for the purposes of the invention to those forms of the compounds of the invention which form a complex in the solid or liquid state through coordination with solvent molecules. Hydrates are a special form of solvates in which coordination takes place with water.
  • Alkyl per se and “Alk” and “Alkyl” in alkoxy, alkylamino, alkylcarbonyl and alkoxycarbonyl are a linear or branched alkyl radical usually having 1 to 6 (“C 1 -C 6 -alkyl”), preferably 1 to 4, particularly preferably 1 to 3, carbon atoms, by way of example and preferably, methyl, ethyl, n-propyl, isopropyl, tert-butyl, n-pentyl and n-hexyl.
  • Alkoxy is, by way of example and preferably, methoxy, ethoxy, n-propoxy, isopropoxy, tert-butoxy, n-pentoxy and n-hexoxy.
  • Alkylcarbonyl is, by way of example and preferably, acetyl and propanoyl.
  • Alkylamino is an alkylamino radical having one or two (chosen independently of one another) alkyl substituents, by way of example and preferably, methylamino, ethylamino, n-propylamino, isopropylamino, tert-butylamino, n-pentylamino, n-hexylamino, N,N-dimethylamino, N,N-diethylamino, N-ethyl-N-methylamino, N-methyl-N-n-propylamino, N-isopropylamino-N-n-propylamino, N-t-butyl-N-methylamino, N-ethyl-N-n-pentylamino and N-n-hexyl-N-methylamino.
  • C 1 -C 3 -Alkylamino is, for example, a monoalkylamino radical having 1 to
  • Alkoxycarbonyl is, by way of example and preferably, methoxycarbonyl, ethoxycarbonyl, n-propoxycarbonyl, isopropoxycarbonyl, tert-butoxycarbonyl, n-pentoxycarbonyl and n-hexoxycarbonyl.
  • Aryl is a mono- to tricyclic aromatic, carbocyclic radical ordinarily having 6 to 14 carbon atoms; by way of example and preferably phenyl, naphthyl and phenanthrenyl.
  • Halogen is fluorine, chlorine, bromine and iodine.
  • a * symbol on a carbon atom means that the compound is, in terms of the configuration at this carbon atom, in enantiopure form, by which is meant for the purposes of the present invention an enantiomeric excess of more than 90% (>90% ee).
  • R 3 is fluorine, in particular is a fluorine bonded to the carbon atom in position 8 of the quinazoline structure.
  • R 9 is phenyl
  • phenyl may be substituted by 1 to 2 substituents, where the substituents are selected independently of one another from the group consisting of methyl, methoxy, fluorine and chlorine.
  • the invention further relates to a process for preparing the compounds of the formula (I), where compounds of the formula
  • the reaction generally takes place in inert solvents, preferably in a temperature range from room temperature to reflux of the solvents under atmospheric pressure.
  • bases examples include alkali metal hydroxides such as sodium, lithium or potassium hydroxide, or alkali metal carbonates such as cesium carbonate, sodium or potassium carbonate, where appropriate in aqueous solution, with preference for sodium hydroxide in water.
  • inert solvents examples include halohydrocarbons such as ethers such as 1,2-dimethoxyethane, dioxane, tetrahydrofuran, glycol dimethyl ether or diethylene glycol dimethyl ether, alcohols such as methanol, ethanol, n-propanol, isopropanol, n-butanol or tert-butanol, or mixtures of solvents, with preference for dioxane or tetrahydrofuran.
  • halohydrocarbons such as ethers such as 1,2-dimethoxyethane, dioxane, tetrahydrofuran, glycol dimethyl ether or diethylene glycol dimethyl ether, alcohols such as methanol, ethanol, n-propanol, isopropanol, n-butanol or tert-butanol, or mixtures of solvents, with preference for dioxane or tetrahydrofuran
  • the reaction generally takes place in inert solvents in the presence of a catalyst, where appropriate in the presence of an additional reagent, preferably in a temperature range from room temperature to 130° C. under atmospheric pressure.
  • catalysts are palladium catalysts usual for Suzuki reaction conditions, with preference for catalyst such as, for example, dichlorobis(triphenylphosphine)palladium, tetrakistriphenylphosphinepalladium(0), palladium(II)acetate, palladium(II) acetate/triscyclohexylphosphine or bis(diphenylphosphaneferrocenylpalladium(II) chloride.
  • catalysts are palladium catalysts usual for Suzuki reaction conditions, with preference for catalyst such as, for example, dichlorobis(triphenylphosphine)palladium, tetrakistriphenylphosphinepalladium(0), palladium(II)acetate, palladium(II) acetate/triscyclohexylphosphine or bis(diphenylphosphaneferrocenylpalladium(II) chloride.
  • Additional reagents are carried out for example potassium acetate, cesium carbonate, potassium carbonate or sodium carbonate, potassium tert-butoxide, cesium fluoride or potassium phosphate, with preference for additional reagents such as potassium acetate and/or aqueous sodium carbonate solution.
  • inert solvents examples include ethers such as dioxane, tetrahydrofuran or 1,2-dimethoxyethane, hydrocarbons such as benzene, xylene or toluene, or carboxamides such as dimethylformamide or dimethylacetamide, alkyl sulfoxides such as dimethyl sulfoxide, or N-methylpyrrolidone, with preference for dioxane.
  • the compounds of the formula (IV) are known or can be synthesized by known processes from the appropriate precursors.
  • the reaction generally takes place in inert solvents, preferably in a temperature range from 50° C. to reflux of the solvents under atmospheric pressure.
  • inert solvents are hydrocarbons such as benzene, xylene, toluene, hexane, cyclohexane or petroleum fractions, with preference for toluene.
  • the compounds of the formula (III) can be prepared in a two-stage synthetic process.
  • the compounds of the formula (V) are heated with phosphorus oxychloride in an inert solvent, with preference for toluene, under reflux under atmospheric pressure.
  • the solvent is removed.
  • the compounds obtained in this way are reacted with compounds of the formula (VI) in an inert solvent, with preference for toluene, likewise under reflux under atmospheric pressure.
  • the compounds of the formula (VI) are known or can be synthesized by known processes from the appropriate precursors.
  • the compounds of the formula (V) are known or can be prepared by reacting compounds of the formula
  • the reaction generally takes place in inert solvents in the presence of usual condensing agents, where appropriate in the presence of a base, preferably in a temperature range from room temperature to 50° C. under atmospheric pressure.
  • inert solvents examples include halohydrocarbons such as methylene chloride, trichloromethane, tetrachloromethane, trichloroethane, tetrachloroethane, 1,2-dichloroethane or trichloroethylene, ethers such as diethyl ether, methyl tert-butyl ether, dioxane, tetrahydrofuran, 1,2-dimethoxyethane, glycol dimethyl ether or diethylene glycol dimethyl ether, hydrocarbons such as benzene, xylene, toluene, hexane, cyclohexane or petroleum fractions, or carboxamides such as dimethylformamide or dimethylacetamide, alkyl nitriles such as acetonitrile, or heteroaromatic compounds such as pyridine, or ethyl acetate, with preference for tetrahydrofuran, 1,2-dich
  • carbodiimides such as, for example, N,N′-diethyl-, N,N′-dipropyl, N,N′-diisopropyl, N,N′-dicyclohexylcarbodiimide, N-(3-dimethylaminoisopropyl)-N′-ethylcarbodiimide hydrochloride (EDC), N-cyclohexylcarbodiimide-N′-propyloxymethyl-polystyrene (PS-carbodiimide) or carbonyl compounds such as carbonyldiimidazole, or 1,2-oxazolium compounds such as 2-ethyl-5-phenyl-1,2-oxazolium 3-sulfate or 2-tert-butyl-5-methylisoxazolium perchlorate, or acylamino compounds such as 2-ethoxy-1-ethoxycarbonyl-1,2-dihydroquinoline, or propane
  • bases are alkali metal carbonates such as, for example, sodium or potassium carbonate, or bicarbonate, or organic bases such as trialkylamines, for example triethylamine, N-methylmorpholine, N-methylpiperidine, 4-dimethylaminopyridine or diisopropylethylamine.
  • N-(3-dimethylaminoisopropyl)-N′-ethylcarbodiimide hydrochloride (EDC), 1-hydroxybenzotriazole (HOBt) and triethylamine in dimethylformamide or carbonyldiimidazole in 1,2-dichloroethane is particularly preferred.
  • the reaction generally takes place in inert solvents, where appropriate in the presence of a base, preferably in a temperature range from 0° C. to 50° C. under atmospheric pressure.
  • inert solvents examples include halohydrocarbons such as methylene chloride, trichloromethane, tetrachloromethane, trichloroethane, tetrachloroethane, 1,2-dichloroethane or trichloroethylene, ethers such as diethyl ether, methyl tert-butyl ether, dioxane, tetrahydrofuran, 1,2-dimethoxyethane, glycol dimethyl ether or diethylene glycol dimethyl ether, hydrocarbons such as benzene, xylene, toluene, hexane, cyclohexane or petroleum fractions, or carboxamides such as dimethylformamide or dimethylacetamide, alkyl nitriles such as acetonitrile, or heteroaromatic compounds such as pyridine, or ethyl acetate, with preference for tetrahydrofuran, dioxan
  • bases are alkali metal carbonates such as cesium carbonate, sodium or potassium carbonate, or other bases such as triethylamine or diisopropylethylamine, preferably diisopropylethylamine or triethylamine.
  • the compounds of the formula (VIII) are known or can be synthesized by known processes from the appropriate precursors.
  • the compounds of the formula (VII) are known or can be synthesized by known processes from the appropriate precursors, for example by a Heck reaction or a Wittig-Horner reaction as shown in the following synthesis schemes:
  • the precursors required therefor are known or can be synthesized by known processes from the appropriate precursors.
  • the compounds of the invention of the formula (I) show a surprising range of effects which could not have been predicted. They show an antiviral effect on representatives of the group of Herpes viridae (herpes viruses), in particular on cytomegaloviruses (CMV) especially on human cytomegalovirus (HCMV). They are therefore suitable for the treatment and/or prophylaxis of diseases, especially of infections with viruses, in particular the aforementioned viruses, and the infectious diseases caused thereby.
  • a viral infection means hereinafter both an infection with a virus and a disease caused by infection with a virus.
  • the compounds of the formula (I) can, because of their particular properties, be used to produce medicaments which are suitable for the prophylaxis and/or treatment of diseases, especially viral infections.
  • the compounds of the invention are preferably used to produce medicaments which are suitable for the prophylaxis and/or treatment of infections with a representative of the group of Herpes viridae, particularly a cytomegalovirus, in particular human cytomegalovirus.
  • the compounds of the invention can, because of their pharmacological properties, be employed alone and, if required, also in combination with other active ingredients, especially antiviral active ingredients such as, for example, gancyclovir or acyclovir for the treatment and/or prevention of viral infections, in particular of HCMV infections.
  • active ingredients especially antiviral active ingredients such as, for example, gancyclovir or acyclovir for the treatment and/or prevention of viral infections, in particular of HCMV infections.
  • the present invention further relates to medicaments which comprise at least one compound of the invention, preferably together with one or more inert, non-toxic, pharmacologically acceptable excipients, and to the use thereof for the aforementioned purposes.
  • the compounds of the invention may have systemic and/or local effects. It can for this purpose be administered in a suitable way, such as, for example, by the oral, parenteral, pulmonary, nasal, sublingual, lingual, buccal, rectal, dermal, transdermal, conjunctival or otic route, or as implant or stent.
  • Suitable for oral administration are administration forms which function according to the prior art and deliver the compounds of the invention rapidly and/or in modified fashion, and which contain the compounds of the invention in crystalline and/or amorphized and/or dissolved form, such as, for example, tablets (uncoated or coated tablets, for example having coatings which are resistant to gastric juice or are insoluble or dissolve with a delay and control the release of the compound of the invention), tablets which disintegrate rapidly in the mouth, or films/wafers, films/lyophylisates, capsules (for example hard or soft gelatin capsules), sugar-coated tablets, granules, pellets, powders, emulsions, suspensions, aerosols or solutions.
  • tablets uncoated or coated tablets, for example having coatings which are resistant to gastric juice or are insoluble or dissolve with a delay and control the release of the compound of the invention
  • tablets which disintegrate rapidly in the mouth or films/wafers, films/lyophylisates
  • capsules for example hard or soft
  • Parenteral administration can take place with avoidance of an absorption step (intravenous, intraarterial, intracardiac, intraspinal or intralumbar) or with inclusion of absorption (intramuscular, subcutaneous, intracutaneous, percutaneous, or intraperitoneal).
  • Administration forms suitable for parenteral administration are, inter alia, preparations for injection and infusion in the form of solutions, suspensions, emulsions, lyophilizates and sterile powders.
  • Examples suitable for the other administration routes are pharmaceutical forms for inhalation (inter alia powder inhalers, nebulizers), nasal drops/solutions, sprays; tablets, films or capsules to be administered lingually, sublingually or buccally, suppositories, preparations for the eyes and ears, vaginal capsules, aqueous suspensions (lotions, shaking mixtures), lipophilic suspensions, ointments, creams, transdermal therapeutic systems, milk, pastes, foams, dusting powders, implants or stents.
  • inhalation inter alia powder inhalers, nebulizers
  • nasal drops/solutions, sprays tablets, films or capsules to be administered lingually, sublingually or buccally, suppositories, preparations for the eyes and ears, vaginal capsules, aqueous suspensions (lotions, shaking mixtures), lipophilic suspensions, ointments, creams, transdermal therapeutic systems, milk, pastes, foams, dusting powders
  • the compounds of the invention can be converted into the stated administration forms. This can take place in a manner known per se by mixing with inert, nontoxic, pharmaceutically suitable excipients.
  • excipients include, inter alia, carriers (for example microcrystalline cellulose, lactose, mannitol), solvents (e.g. liquid polyethylene glycols), emulsifiers and dispersants or wetting agents (for example sodium dodecyl sulphate, polyoxysorbitan oleate), binders (for example polyvinylpyrrolidone), synthetic and natural polymers (for example albumin), stabilizers (e.g. antioxidants such as, for example, ascorbic acid), colours (e.g. inorganic pigments such as, for example, iron oxides) and masking tastes and/or odours.
  • carriers for example microcrystalline cellulose, lactose, mannitol
  • solvents e.g. liquid polyethylene glycols
  • intravenous administration amounts of about 0.001 to 10 mg/kg, preferably about 0.01 to 5 mg/kg, of body weight to achieve effective results, and the dosage on oral administration is about 0.01 to 25 mg/kg, preferably 0.1 to 10 mg/kg, of body weight.
  • Method 1 instrument: HP 1100 with DAD detection; column: Kromasil RP-18, 60 mm ⁇ 2 mm, 3.5 ⁇ m; eluent A: 5 ml (HClO 4 /l water, eluent B: acetonitrile; gradient: 0 min 2% B, 0.5 min 2% B 4.5 min 90% B, 6.5 min 90% B; flow rate: 0.75 ml/min; temp.: 30° C.; UV detection: 210 nm.
  • Method 2 (HPLC, enantiomer separation): chiral silica gel selector KBD 6136 (10 ⁇ m, 350 ⁇ 30 mm) based on the selector poly(N-methylacryloyl-L-leucine 1-menthylamide); temperature: 24° C.; flow rate 50 ml/min; UV detection: 254 nm; sample loaded in ethyl acetate; elution mixtures of isohexane (A)/ethyl acetate (B), e.g.: gradient: ⁇ 0 min 40% B ⁇ 9.0 min 40% B ⁇ 9.01 min 100% B ⁇ 12.0 min 100% B ⁇ -+12.01 min 40% B ⁇ 15 min 40% B.
  • A isohexane
  • B e.g.: gradient: ⁇ 0 min 40% B ⁇ 9.0 min 40% B ⁇ 9.01 min 100% B ⁇ 12.0 min 100% B ⁇ -+12.01 min 40% B ⁇ 15 min 40% B.
  • Method 3 instrument: Micromass Platform LCZ with HPLC Agilent series 1100; column: Grom-SIL120 ODS-4 HE, 50 mm ⁇ 2.0 mm, 3 ⁇ m; eluent A: 111 of water+1 ml of 50% formic acid, eluent B: 1 l of acetonitrile+1 ml of 50% formic acid; gradient: 0.0 min 100% A ⁇ 0.2 min 100% A ⁇ 2.9 min 30% A ⁇ 3.1 min 10% A ⁇ 4.5 min 10% A; oven: 55° C.; flow rate: 0.8 ml/min; UV detection: 208-400 nm.
  • Method 5 instrument: HP 1100 with DAD detection; column: Kromasil RP-18, 60 mm ⁇ 2 mm, 1.0 ⁇ l; eluent A: 5 ml (HClO 4 /l water, eluent B: acetonitrile; gradient: 0 min 2% B, 0.5 min 2% B 4.5 min 90% B, 9.0 min 90% B; flow rate: 0.75 ml/min; temp.: 30° C.; UV detection: 210 nm.
  • Method 6 HPLC, enantiomer separation: chiral silica gel selector ZWE 840B (10 ⁇ m; column 250*20 mm) based on the selector poly(N-methacryloyl-L-leucine (+)-3-aminomethylpinanylamide); temperature: 24° C.; flow rate 25 min/min; UV detection: 280 nm; sample loaded in isohexane/ethyl acetate; elution mixture of isohexane/ethyl acetate 7:3 (vol/vol).
  • Method 7 MS instrument type: Micromass ZQ; HPLC instrument type: Waters Alliance 2790; column: Grom-Sil 120 ODS-4-HE 50 mm ⁇ 2 mm, 3.0 ⁇ m; eluent B: acetonitrile+0.05% formic acid, eluent A: water+0.05% formic acid; gradient 0.0 min 5% B ⁇ 2.0 min 40% B ⁇ 4.5 min 90% B ⁇ 5.5 min 90% B; oven: 45° C.; flow rate: 0.0 min 0.75 ml/min ⁇ 4.5 min 0.75 ml/min ⁇ 5.5 min 1.25 ml/min; UV detection: 210 nm.
  • Method 8 instrument: Micromass Quattro LCA, with HPLC Agilent series 1100; column: Grom-SIL120 ODA-4 HE, 50 mm ⁇ 2.0 mm, 3 ⁇ m; eluent A: 1 l water+1 ml 50% formic acid, eluent B: 1 l acetonitrile+1 ml 50% formic acid; gradient: 0.0 min 100% A ⁇ 0.2 min 100% A ⁇ 2.9 min 30% A ⁇ 3.1 min 10% A ⁇ 4.5 min 10% A; oven: 55° C.; flow rate: 0.8 ml/min; UV detection: 208-400 nm.
  • Method 9 HPLC, enantiomer separation: chiral silica gel selector KBD 8361 (10 ⁇ m; column 250*20 mm) based on the selector poly(N-methacryloyl-L-leucine 1-menthylamide); temperature: 24° C.; flow rate 25 ml/min; UV detection: 280 nm; sample loaded in isohexane/ethyl acetate; elution mixture of isohexane/ethyl acetate 1:1 (vol/vol).
  • Method 10 HPLC, enantiomer separation: chiral silica gel selector KBD 6784 (10 ⁇ m; column 250*20 mm (based on the selector poly(N-methacryloyl-L-leucine 2,4-dimethylpentylamide); temperature: 24° C.; flow rate 20 m/min; UV detection: 270 nm; sample loaded in methyl tert-butyl ether; eluent: methyl tert-butyl ether.
  • test compounds are employed as 50 millimolar (mM) solutions in dimethyl sulfoxide (DMSO).
  • DMSO dimethyl sulfoxide
  • Ganciclovir, foscamet and cidofovir are used as reference compounds.
  • 2 ⁇ l of the 50, 5 0.5 and 0.05 mM DMSO stock solutions to 98 ⁇ l portions of cell culture medium in row 2 A-H for duplicate determinations 1:2 dilutions are carried out with 50 ⁇ l portions of medium up to row 11 of the 96-well plate.
  • the wells in rows 1 and 12 each contain 50 ⁇ l of medium.
  • a suspension of 1 ⁇ 10 4 cells human prepuce fibroblasts [NHDF]
  • NHDF human prepuce fibroblasts
  • rows 1 cell control
  • Row 12 (without substance) serves as virus control.
  • the final test concentrations are 250-0.0005 ⁇ M.
  • the plates are incubated at 37° C./5% CO 2 for 6 days, i.e. until all the cells are infected in the virus controls (100% cytopathogenic effect [CPE]).
  • the wells are then fixed and stained by adding a mixture of formalin and Giemsa's dye (30 minutes), washed with double-distilled water and dried in a drying oven at 50° C.
  • the plates are then assessed visually using an overhead microscope (plaque multiplier from Technomara).
  • CC 50 substance concentration in 1M at which no visible cytotoxic effects on the cells are evident by comparison with the untreated cell control;
  • EC 50 substance concentration in ⁇ M which inhibits the CPE (cytopathic effect) by 50% compared with the untreated virus control;
  • SI selection index
  • mice 3-4-week old female immunodeficient mice (16-18 g), Fox Chase SCID or Fox Chase SCID-NOD or SCID beige, are purchased from commercial breeders (Bomholtgaard, Jackson). The animals are housed under sterile conditions (including bedding and feed) in isolators.
  • HCMV Human cytomegalovirus
  • NHDF cells Human embryonic prepuce fibroblasts
  • M.O.I. multiplicity of infection
  • FCS fetal calf serum
  • DMSO fetal calf serum
  • Collagen sponges 1 ⁇ 1 ⁇ 1 cm in size (Gelfoam®; from Peasel & Lorey, order No. 407534; K. T. Chong et al., Abstracts of 39 th Interscience Conference on Antimicrobial Agents and Chemotherapy, 1999, p. 439; P. M. Kraemer et al, Cancer Research 1983, (43): 4822-4827) are initially wetted with phosphate-buffered saline (PBS), the trapped air bubbles are removed by degassing, and then stored in MEM+10% FCS.
  • PBS phosphate-buffered saline
  • 5 ng/ ⁇ l basic fibroblast growth factor (bFGF) in 25 ⁇ l of PBS/0.1% BSA/1 mM DTT are put on infected sponges and incubated for 1 hour.
  • the immunodeficient mice are anesthetized with Avertin or a azepromazine-xylazine and ketamine mixture, the fur on the back is removed using a dry shaver, the epidermis is opened 1-2 cm, unstressed and the moist sponges are transplanted under the dorsal skin. The surgical wound is closed with tissue glue. 24 hours after the transplantation, the mice are treated orally with the substance three times a day (7.00 h and 14.00 h and 19.00 h) twice a day (8 h and 18 h) or once a day (14 h) over a period of 8 days.
  • the daily dose is for example 3 or 10 or 30 or 100 mg/kg of body weight, the volume administered is 10 ml/kg of body weight.
  • the substances are formulated in the form of a 0.5% strength Tylose suspension optionally with 2% DMSO. 9 days after transplantation and 16 hours after the last administration of substance, the animals are painlessly sacrificed and the sponge is removed. The virus-infected cells are released from the sponge by collagenase digestion (330 U/1.5 ml) and stored in the presence of MEM, 10% fetal calf serum, 10% DMSO at ⁇ 140° C.
  • Evaluation takes place after serial ten-fold dilutions of the virus-infected cells by determining the titer on 24-well plates of confluent NHDF cells after vital staining with neutral red, or fixing and staining with a formalin-Giemsa mixture (as described under B). The number of infectious virus particles after the substance treatment compared with the placebo-treated control group is determined.
  • the compounds of the invention can be converted into pharmaceutical preparations in the following ways:
  • Example 1 100 mg of the compound of Example 1, 50 mg of lactose (monohydrate), 50 mg of corn starch (native), 10 mg of polyvinylpyrolidone (PVP 25) (from BASF, Ludwigshafen, Germany) and 2 mg of magnesium stearate.
  • the mixture of active ingredient, lactose and starch is granulated with a 5% strength solution (m/m) of the PVP in water.
  • the granules are then dried and mixed with the magnesium stearate for 5 min.
  • This mixture is compressed using a conventional tablet press (see above for format of the tablet).
  • a guideline for the compressive force used for the compression is 15 kN.
  • 10 ml of oral suspension are equivalent to a single dose of 100 mg of the compound of the invention.
  • Rhodigel is suspended in ethanol, and the active ingredient is added to the suspension.
  • the water is added while stirring.
  • the mixture is stirred for about 6 h until the swelling of the Rhodigel is complete.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Organic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Virology (AREA)
  • Animal Behavior & Ethology (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Oncology (AREA)
  • Veterinary Medicine (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Public Health (AREA)
  • Communicable Diseases (AREA)
  • General Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Biotechnology (AREA)
  • Molecular Biology (AREA)
  • Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)
  • Plural Heterocyclic Compounds (AREA)
  • Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)
US10/534,138 2002-11-08 2003-10-25 Substituted quinazolines as antiviral agents, especially against cytomegaloviruses Active 2026-08-22 US7709491B2 (en)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
DE10251914 2002-11-08
DE10251914A DE10251914A1 (de) 2002-11-08 2002-11-08 Substituierte Chinazoline
DE10251914.5 2002-11-08
PCT/EP2003/011880 WO2004041790A1 (de) 2002-11-08 2003-10-25 Substituierte chinazoline als antivirale mittel, insbesonder gegen cytomegaloviren

Publications (2)

Publication Number Publication Date
US20060235032A1 US20060235032A1 (en) 2006-10-19
US7709491B2 true US7709491B2 (en) 2010-05-04

Family

ID=32115357

Family Applications (1)

Application Number Title Priority Date Filing Date
US10/534,138 Active 2026-08-22 US7709491B2 (en) 2002-11-08 2003-10-25 Substituted quinazolines as antiviral agents, especially against cytomegaloviruses

Country Status (8)

Country Link
US (1) US7709491B2 (de)
EP (1) EP1562913B1 (de)
JP (1) JP4528127B2 (de)
AU (1) AU2003301848A1 (de)
CA (1) CA2505183C (de)
DE (1) DE10251914A1 (de)
ES (1) ES2367630T3 (de)
WO (1) WO2004041790A1 (de)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20070281953A1 (en) * 2003-11-11 2007-12-06 Bayer Healthcare Ag Substituted Dihydroquinazolines II
USRE46791E1 (en) 2003-05-02 2018-04-17 Aicuris Anti-Infective Cures Gmbh Substituted dihydroquinazolines

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10305785A1 (de) * 2003-02-12 2004-08-26 Bayer Healthcare Ag Dihydrochinazoline
DE10320780A1 (de) * 2003-05-09 2005-01-20 Bayer Healthcare Ag Heterocyclyl-substituierte Dihydrochinazoline
DE102004022672A1 (de) 2004-05-07 2005-11-24 Bayer Healthcare Ag Substituierte Azachinazoline
DE102005027517A1 (de) 2005-06-15 2006-12-21 Bayer Healthcare Ag Verfahren zur Herstellung von Dihydrochinazolinen

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1999041253A1 (en) 1998-02-17 1999-08-19 Tularik Inc. Anti-viral pyrimidine derivatives
US7271260B2 (en) * 2004-02-24 2007-09-18 Korea Institute Of Science And Technology 3,4-dihydroquinazoline derivatives as T-type calcium channel blockers and method of preparing the same

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS51105082A (ja) * 1975-03-07 1976-09-17 Tanabe Seiyaku Co Kinazorinonjudotaino seiho

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1999041253A1 (en) 1998-02-17 1999-08-19 Tularik Inc. Anti-viral pyrimidine derivatives
US7271260B2 (en) * 2004-02-24 2007-09-18 Korea Institute Of Science And Technology 3,4-dihydroquinazoline derivatives as T-type calcium channel blockers and method of preparing the same

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
Saito, et al., A Facile and Efficient Carbodiimide-Mediated Synthesis of Dihydroquinazolines via a Tandem Nucleophilic Addition-Intramolecular Hetero Conjugate Addition Annulation Strategy, Tetra. Letts., vol. 37(2), 209-212 (1996).
Vippagunta, S.R. et. al., "Crystalline solids", Advanced Drug Delivery Reviews, (2001), vol. 48, pp. 3-26. *
Wang, et al., Solid-Phase Synthesis of 3,4-Dihydroquinazoline, Tetra. Letts., vol. 38(50), 8651-8654 (1997).

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
USRE49698E1 (en) 2003-02-05 2023-10-17 Aic246 Ag & Co. Kg Substituted dihydroquinazolines
USRE46791E1 (en) 2003-05-02 2018-04-17 Aicuris Anti-Infective Cures Gmbh Substituted dihydroquinazolines
US20070281953A1 (en) * 2003-11-11 2007-12-06 Bayer Healthcare Ag Substituted Dihydroquinazolines II
US8314113B2 (en) * 2003-11-11 2012-11-20 Aicuris Gmbh & Co. Kg Substituted dihydroquinazolines II

Also Published As

Publication number Publication date
EP1562913B1 (de) 2011-07-13
WO2004041790A1 (de) 2004-05-21
AU2003301848A1 (en) 2004-06-07
JP4528127B2 (ja) 2010-08-18
US20060235032A1 (en) 2006-10-19
DE10251914A1 (de) 2004-05-19
ES2367630T3 (es) 2011-11-07
CA2505183C (en) 2012-01-03
CA2505183A1 (en) 2004-05-21
JP2006509740A (ja) 2006-03-23
EP1562913A1 (de) 2005-08-17

Similar Documents

Publication Publication Date Title
USRE49698E1 (en) Substituted dihydroquinazolines
US8198282B2 (en) Substituted azaquinazolines having an antiviral action
US7919489B2 (en) Heterocyclyamide-substituted imidazoles
US7709491B2 (en) Substituted quinazolines as antiviral agents, especially against cytomegaloviruses
US8314113B2 (en) Substituted dihydroquinazolines II
US7960387B2 (en) 2-(3-phenyl-2-piperazinyl-3,4-dihydroquinazolin-4-yl)acetic acids as antiviral agents, especially against cytomegaloviruses
CA2483591A1 (en) Lactams used as anti-viral agents
CA2482715A1 (en) Antiviral lactone-ureas

Legal Events

Date Code Title Description
AS Assignment

Owner name: BAYER HEALTHCARE AG,GERMANY

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:WUNBERG, TOBIAS;BAUMEISTER, JUDITH;JESKE, MARIO;AND OTHERS;SIGNING DATES FROM 20050105 TO 20050530;REEL/FRAME:016772/0738

Owner name: BAYER HEALTHCARE AG, GERMANY

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:WUNBERG, TOBIAS;BAUMEISTER, JUDITH;JESKE, MARIO;AND OTHERS;REEL/FRAME:016772/0738;SIGNING DATES FROM 20050105 TO 20050530

FEPP Fee payment procedure

Free format text: PAYOR NUMBER ASSIGNED (ORIGINAL EVENT CODE: ASPN); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY

AS Assignment

Owner name: BAYER SCHERING PHARMA AKTIENGESELLSCHAFT,GERMANY

Free format text: MERGER;ASSIGNOR:BAYER HEALTHCARE AG;REEL/FRAME:023769/0122

Effective date: 20081204

Owner name: BAYER SCHERING PHARMA AKTIENGESELLSCHAFT, GERMANY

Free format text: MERGER;ASSIGNOR:BAYER HEALTHCARE AG;REEL/FRAME:023769/0122

Effective date: 20081204

STCF Information on status: patent grant

Free format text: PATENTED CASE

FEPP Fee payment procedure

Free format text: PAYER NUMBER DE-ASSIGNED (ORIGINAL EVENT CODE: RMPN); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY

Free format text: PAYOR NUMBER ASSIGNED (ORIGINAL EVENT CODE: ASPN); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY

AS Assignment

Owner name: AICURIS GMBH & CO. KG, GERMANY

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:BAYER SCHERING PHARMA AKTIENGESELLSCHAFT;REEL/FRAME:025492/0577

Effective date: 20101027

FEPP Fee payment procedure

Free format text: PAYER NUMBER DE-ASSIGNED (ORIGINAL EVENT CODE: RMPN); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY

Free format text: PAYOR NUMBER ASSIGNED (ORIGINAL EVENT CODE: ASPN); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY

FPAY Fee payment

Year of fee payment: 4

MAFP Maintenance fee payment

Free format text: PAYMENT OF MAINTENANCE FEE, 8TH YEAR, LARGE ENTITY (ORIGINAL EVENT CODE: M1552)

Year of fee payment: 8

AS Assignment

Owner name: AICURIS ANTI-INFECTIVE CURES GMBH, GERMANY

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:AICURIS GMBH & CO. KG;REEL/FRAME:048208/0077

Effective date: 20190122

AS Assignment

Owner name: AIC246 GMBH & CO. KG, GERMANY

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:AICURIS ANTI-INFECTIVE CURES GMBH;REEL/FRAME:057371/0159

Effective date: 20210209

AS Assignment

Owner name: AIC246 AG & CO. KG, GERMANY

Free format text: CHANGE OF NAME;ASSIGNOR:AIC246 GMBH & CO. KG;REEL/FRAME:057447/0605

Effective date: 20210723

MAFP Maintenance fee payment

Free format text: PAYMENT OF MAINTENANCE FEE, 12TH YEAR, LARGE ENTITY (ORIGINAL EVENT CODE: M1553); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY

Year of fee payment: 12